51
|
Torimiro J, Yengo CK, Bimela JS, Tiedeu AB, Lebon PA, Sake CS, Kouanfack C, Nchinda G, Rowland-Jones S, Yindom LM. Killer Cell Immunoglobulin-Like Receptor Genotypes and Haplotypes Contribute to Susceptibility to Hepatitis B Virus and Hepatitis C Virus Infection in Cameroon. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:110-115. [PMID: 31977279 DOI: 10.1089/omi.2019.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over 325 million people worldwide are living with hepatitis B and C viral infections and are at greater risk of developing hepatocellular carcinoma. The interactions between killer cell immunoglobulin-like receptors (KIRs) and their cognate ligands, human leukocyte antigens, modulate both infection processes and disease progression. We report here (1) genotype and haplotype variations in KIR genes in Cameroon and (2) their impact on susceptibility to hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. In 98 unrelated individuals (33 HCV+, 31 HBV+, and 34 uninfected healthy controls), we determined the presence of 15 KIR genes by polymerase chain reaction-sequence-specific primer techniques. One pseudogene and all 14 KIR genes were present. We identified 36 KIR genotypes, 5 of which have not been previously reported in public databases. Two inhibitory (KIR2DL1 and KIR2DL3) and three activating (KIR2DS4, KIR2DS2, and KIR2DS3) genes were present in all HCV-infected individuals. Similarly, KIR3DL1, KIR2DL1, and KIR2DS4 were present at 100% in the HBV+ group. Compared with uninfected healthy controls, the frequencies of KIR2DL2 and KIR3DS1 were significantly lower in the HBV+ group (p = 0.003 and p < 0.001, respectively). Conversely, KIR3DS1 was significantly overrepresented in the HCV+ group compared with controls (97.0% vs. 64.7%, respectively, p < 0.001). These results may imply that KIR3DS1 carriers were less likely to be HBV infected, but may be predisposed to HCV infection compared with uninfected controls, indicating their important role in transmission of these viruses. However, phenotypic, functional, and genomic studies to elucidate the role of these KIR genotypes and haplotypes in infection with HBV and HCV are important.
Collapse
Affiliation(s)
- Judith Torimiro
- Chantal Biya International Reference Centre for Research on Prevention and Management of HIV/AIDS (CIRCB), Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Clauvis Kunkeng Yengo
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jude Saber Bimela
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Atogho Barbara Tiedeu
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Patrick Awoumou Lebon
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Carole Stephanie Sake
- Department of Microbiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Charles Kouanfack
- Central Hospital of Yaoundé, AIDS Outpatient Clinic, Yaoundé, Cameroon.,Public Health Department, University of Dschang, Dschang, Cameroon
| | - Godwin Nchinda
- Chantal Biya International Reference Centre for Research on Prevention and Management of HIV/AIDS (CIRCB), Yaoundé, Cameroon
| | - Sarah Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Louis-Marie Yindom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
52
|
Abstract
Apolipoprotein A-I binding protein (AIBP) is a recently identified innate anti-inflammatory factor. Here, we show that AIBP inhibited HIV replication by targeting lipid rafts and reducing virus-cell fusion. Importantly, AIBP selectively reduced levels of rafts on cells stimulated by an inflammatory stimulus or treated with extracellular vesicles containing HIV-1 protein Nef without affecting rafts on nonactivated cells. Accordingly, fusion of monocyte-derived macrophages with HIV was sensitive to AIBP only in the presence of Nef. Silencing of endogenous AIBP significantly upregulated HIV-1 replication. Interestingly, HIV-1 replication in cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, was not inhibited by AIBP. These results suggest that AIBP is an innate anti-HIV factor that targets virus-cell fusion. Apolipoprotein A-I binding protein (AIBP) is a protein involved in regulation of lipid rafts and cholesterol efflux. AIBP has been suggested to function as a protective factor under several sets of pathological conditions associated with increased abundance of lipid rafts, such as atherosclerosis and acute lung injury. Here, we show that exogenously added AIBP reduced the abundance of lipid rafts and inhibited HIV replication in vitro as well as in HIV-infected humanized mice, whereas knockdown of endogenous AIBP increased HIV replication. Endogenous AIBP was much more abundant in activated T cells than in monocyte-derived macrophages (MDMs), and exogenous AIBP was much less effective in T cells than in MDMs. AIBP inhibited virus-cell fusion, specifically targeting cells with lipid rafts mobilized by cell activation or Nef-containing exosomes. MDM-HIV fusion was sensitive to AIBP only in the presence of Nef provided by the virus or exosomes. Peripheral blood mononuclear cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, bound less AIBP than cells from donors with other HLA genotypes and were not protected by AIBP from rapid HIV-1 replication. These results provide the first evidence for the role of Nef exosomes in regulating HIV-cell fusion by modifying lipid rafts and suggest that AIBP is an innate factor that restricts HIV replication by targeting lipid rafts.
Collapse
|
53
|
de Sá NBR, Ribeiro-Alves M, da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, Scott-Algara D, Morgado MG, Teixeira SLM. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect Dis 2020; 20:59. [PMID: 31959123 PMCID: PMC6971853 DOI: 10.1186/s12879-020-4786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) and AIDS are the leading causes of infectious disease death worldwide. In some TB-HIV co-infected individuals treated for both diseases simultaneously, a pathological inflammatory reaction termed immune reconstitution inflammatory syndrome (IRIS) may occur. The risk factors for IRIS are not fully defined. We investigated the association of HLA-B, HLA-C, and KIR genotypes with TB, HIV-1 infection, and IRIS onset. METHODS Patients were divided into four groups: Group 1- TB+/HIV+ (n = 88; 11 of them with IRIS), Group 2- HIV+ (n = 24), Group 3- TB+ (n = 24) and Group 4- healthy volunteers (n = 26). Patients were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. The HLA-B and HLA-C loci were typed using SBT, NGS, and KIR genes by PCR-SSP. Unconditional logistic regression models were performed for Protection/risk estimation. RESULTS Among the individuals with TB as the outcome, KIR2DS2 was associated with increased risk for TB onset (aOR = 2.39, P = 0.04), whereas HLA-B*08 and female gender were associated with protection against TB onset (aOR = 0.23, P = 0.03, and aOR = 0.33, P = 0.01, respectively). Not carrying KIR2DL3 (aOR = 0.18, P = 0.03) and carrying HLA-C*07 (aOR = 0.32, P = 0.04) were associated with protection against TB onset among HIV-infected patients. An increased risk for IRIS onset was associated with having a CD8 count ≤500 cells/mm3 (aOR = 18.23, P = 0.016); carrying the KIR2DS2 gene (aOR = 27.22, P = 0.032), the HLA-B*41 allele (aOR = 68.84, P = 0.033), the KIR2DS1 + HLA-C2 pair (aOR = 28.58, P = 0.024); and not carrying the KIR2DL3 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), and the KIR2DL1 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), CONCLUSIONS: These results suggest the participation of these genes in the immunopathogenic mechanisms related to the conditions studied. This is the first study demonstrating an association of HLA-B*41, KIR2DS2, and KIR + HLA-C pairs with IRIS onset among TB-HIV co-infected individuals.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira da Silva
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Jose Henrique Pilotto
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carmem B W Giacoia-Gripp
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil.
| | - Sylvia Lopes Maia Teixeira
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
54
|
Hirbod-Mobarakeh A, Shabani M, Keshavarz-Fathi M, Delavari F, Amirzargar AA, Nikbin B, Kutikhin A, Rezaei N. Immunogenetics of Cancer. CANCER IMMUNOLOGY 2020:417-478. [DOI: 10.1007/978-3-030-30845-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
55
|
Chaisri S, Pabalan N, Tabunhan S, Tharabenjasin P, Sankuntaw N, Leelayuwat C. Effects of the killer immunoglobulin-like receptor (KIR) polymorphisms on HIV acquisition: A meta-analysis. PLoS One 2019; 14:e0225151. [PMID: 31790432 PMCID: PMC6886768 DOI: 10.1371/journal.pone.0225151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic involvement of Killer Immunoglobulin-like Receptor (KIR) polymorphisms and Human Immunodeficiency Virus (HIV)-exposed seronegative (HESN) compared to HIV-infected (HIVI) individuals has been reported. However, inconsistency of the outcomes reduces precision of the estimates. A meta-analysis was applied to obtain more precise estimates of association. METHODS A multi-database literature search yielded thirteen case-control studies. Risks were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at a two-tailed P-value of ≤ 0.05. We used two levels of analyses: (1) gene content that included 13 KIR polymorphisms (2DL1-3, 2DL5A, 2DL5B, 2DS1-3, 2DS4F, 2DS4D, 2DS5, 3DL1 and 3DS1); and (2) 3DL1/S1 genotypes. Subgroup analysis was ethnicity-based (Caucasians, Asians and Africans). Outlier treatment was applied to heterogeneous effects which dichotomized the outcomes into pre-outlier (PRO) and post-outlier (PSO). Multiple comparisons were addressed with the Bonferroni correction. RESULTS We generated 52 and 18 comparisons from gene content and genotype analyses, respectively. Of the 70 comparisons, 13 yielded significant outcomes, two (indicating reduced risk) of which survived the Bonferroni correction (Pc). These protective effects pointed to the Caucasian subgroup in 2DL3 (OR 0.19, 95% CI 0.09, 0.40, Pc < 10-3) and 3DS1S1 (OR 0.37, 95% CI 0.24, 0.56, Pc < 10-3). These two PSO outcomes yielded effects of increased magnitude and precision, as well as raised significance and deemed robust by sensitivity analysis. Of the two, the 2DL3 effect was improved with a test of interaction (Pc interaction < 10-4). CONCLUSION Multiple meta-analytical treatments presented strong evidence of the protective effect (up to 81%) of the KIR polymorphisms (2DL3 and 3DS1S1) among Caucasians. The Asian and African outcomes were inconclusive due to the low number of studies.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- * E-mail:
| | - Sompong Tabunhan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nipaporn Sankuntaw
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
56
|
Huang S, Huang X, Li S, Zhu M, Zhuo M. MHC class I allele diversity in cynomolgus macaques of Vietnamese origin. PeerJ 2019; 7:e7941. [PMID: 31720104 PMCID: PMC6836755 DOI: 10.7717/peerj.7941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cynomolgus macaques (Macaca fascicularis, Mafa) have been used as important experimental animal models for carrying out biomedical researches. The results of biomedical experiments strongly depend on the immunogenetic background of animals, especially on the diversity of major histocompatibility complex (MHC) alleles. However, there is much less information available on the polymorphism of MHC class I genes in cynomolgus macaques, than is currently available for humans. In this study, we have identified 40 Mafa-A and 60 Mafa-B exons 2 and 3 sequences from 30 unrelated cynomolgus macaques of Vietnamese origin. Among these alleles, 28 are novel. As for the remaining 72 known alleles, 15 alleles are shared with other cynomolgus macaque populations and 32 are identical to alleles previously reported in other macaque species. A potential recombination event was observed between Mafa-A1*091:02 and Mafa-A1*057:01. In addition, the Mafa-A1 genes were found to be more diverse than human HLA-A and the functional residues for peptide binding sites (PBS) or TCR binding sites (TBS) in Mafa-A1 have greater variability than that for non-PBS or non-TBS regions. Overall, this study provides important information on the diversity of Mafa-A and Mafa-B alleles from Vietnamese origin, which may help researchers to choose the most appropriate animals for their studies.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
57
|
Tuberculosis diagnosis: algorithm that May discriminate latent from active tuberculosis. Heliyon 2019; 5:e02559. [PMID: 31692671 PMCID: PMC6806400 DOI: 10.1016/j.heliyon.2019.e02559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/08/2019] [Accepted: 09/27/2019] [Indexed: 01/26/2023] Open
Abstract
Diagnosis of tuberculosis still faces a lot of challenges and is one of the priorities in the field of tuberculosis management. Deciphering the complex tuberculosis pathogenicity network could provide biomarkers for diagnosis. We discussed the distribution of HLA-B17, -DQB and -DRB together with QuantiFERON test results in tuberculosis infection. A case control study was done during which a total of 337 subjects were enrolled comprising 227 active tuberculosis (ATB), 46 latent tuberculosis infection (LTBI) and 64 healthy controls (HC). Sequence-specific primer polymerase chain reaction and immune epitope database were used to genotype samples and determine the epitope binding ability of the over-represented alleles respectively. QuantiFERON test was done according to manufacturer's instructions. The peptides HLA-B*5801 and HLA-DRB1*12 and the peptides HLA-B*5802 and HLA-DQB1*03 were found to be associated with latent tuberculosis while the haplotypes DRB1*10-DQB1*02 and DRB1*13-DQB1*06 were found to be associated with active tuberculosis (All p-values≤0.05). The association of HLA-B*5801 and HLA-B*5802 with latent tuberculosis was linked to their ability to bind or not mycobacterial antigens. DRB1*10-DQB1*02 haplotype was found to be over-represented in LTBI compared to ATB (p-value = 0.0015) while DRB1*13-DQB1*06 was found to be under-represented in LTBI compared to ATB (p-value = 0.0335). The DRB1*10-DQB1*02 haplotype was only found in the LTBI when compared with the ATB group. The present study suggests the following algorithm to discriminate LTBI from ATB: QuantiFERON+ and DRB1*10-DQB1*02 haplotype + may indicate LTBI; QuantiFERON+ and DRB1*10-DQB1*02 haplotype - may indicate ATB.
Collapse
|
58
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
59
|
Shiina T, Blancher A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019; 8:E978. [PMID: 31455025 PMCID: PMC6770713 DOI: 10.3390/cells8090978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Among the non-human primates used in experimental medicine, cynomolgus macaques (Macaca fascicularis hereafter referred to as Mafa) are increasingly selected for the ease with which they are maintained and bred in captivity. Macaques belong to Old World monkeys and are phylogenetically much closer to humans than rodents, which are still the most frequently used animal model. Our understanding of the Mafa genome has progressed rapidly in recent years and has greatly benefited from the latest technical advances in molecular genetics. Cynomolgus macaques are widespread in Southeast Asia and numerous studies have shown a distinct genetic differentiation of continental and island populations. The major histocompatibility complex of cynomolgus macaque (Mafa MHC) is organized in the same way as that of human, but it differs from the latter by its high degree of classical class I gene duplication. Human polymorphic MHC regions play a pivotal role in allograft transplantation and have been associated with more than 100 diseases and/or phenotypes. The Mafa MHC polymorphism similarly plays a crucial role in experimental allografts of organs and stem cells. Experimental results show that the Mafa MHC class I and II regions influence the ability to mount an immune response against infectious pathogens and vaccines. MHC also affects cynomolgus macaque reproduction and impacts on numerous biological parameters. This review describes the Mafa MHC polymorphism and the methods currently used to characterize it. We discuss some of the major areas of experimental medicine where an effect induced by MHC polymorphism has been demonstrated.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Antoine Blancher
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse 31000, France.
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, 330 Avenue de Grande Bretagne, TSA40031, 31059 Toulouse CEDEX 9, France.
| |
Collapse
|
60
|
Claiborne DT, Scully EP, Palmer CD, Prince JL, Macharia GN, Kopycinski J, Michelo CM, Wiener HW, Parker R, Nganou-Makamdop K, Douek D, Altfeld M, Gilmour J, Price MA, Tang J, Kilembe W, Allen SA, Hunter E. Protective HLA alleles are associated with reduced LPS levels in acute HIV infection with implications for immune activation and pathogenesis. PLoS Pathog 2019; 15:e1007981. [PMID: 31449552 PMCID: PMC6730937 DOI: 10.1371/journal.ppat.1007981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/06/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research on the mechanisms of HLA-mediated immune control of HIV-1 pathogenesis, it is clear that much remains to be discovered, as exemplified by protective HLA alleles like HLA-B*81 which are associated with profound protection from CD4+ T cell decline without robust control of early plasma viremia. Here, we report on additional HLA class I (B*1401, B*57, B*5801, as well as B*81), and HLA class II (DQB1*02 and DRB1*15) alleles that display discordant virological and immunological phenotypes in a Zambian early infection cohort. HLA class I alleles of this nature were also associated with enhanced immune responses to conserved epitopes in Gag. Furthermore, these HLA class I alleles were associated with reduced levels of lipopolysaccharide (LPS) in the plasma during acute infection. Elevated LPS levels measured early in infection predicted accelerated CD4+ T cell decline, as well as immune activation and exhaustion. Taken together, these data suggest novel mechanisms for HLA-mediated immune control of HIV-1 pathogenesis that do not necessarily involve significant control of early viremia and point to microbial translocation as a direct driver of HIV-1 pathogenesis rather than simply a consequence. During acute HIV infection, there exists a complex interplay between the host immune response and the virus, and the balance of these interactions dramatically affects disease trajectory in infected individuals. Variations in Human Leukocyte Antigen (HLA) alleles dictate the potency of the cellular immune response to HIV, and certain well-studied alleles (HLA-B*57, B*27) are associated with control of HIV viremia. However, though plasma viral load is indicative of disease progression, the number of CD4+ T cells in the blood is a better measurement of disease severity. Through analysis of a large Zambian acute infection cohort, we identified HLA alleles that were associated with protection for CD4+ T cell loss, without dramatic affect on early plasma viremia. We further link these favorable HLA alleles to reduction in a well-known contributor to HIV pathogenesis, the presence of microbial products in the blood, which is indicative of damage to the gastrointestinal tract, a process which accelerates disease progression in HIV infected individuals. Ultimately, these results suggest a new mechanism by which the cellular immune response can combat HIV-associated pathogenesis, and further highlight the contribution of gut damage and microbial translocation to accelerating disease progression, even at early stages in HIV infection.
Collapse
Affiliation(s)
- Daniel T. Claiborne
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Eileen P. Scully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christine D. Palmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica L. Prince
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Gladys N. Macharia
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel Parker
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Krystelle Nganou-Makamdop
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcus Altfeld
- Virus Immunology Unit, Heinrich-Pette-Institut, Hamburg, Germany
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Matt A. Price
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Susan A. Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
61
|
Duerr R, Gorny MK. V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines (Basel) 2019; 7:vaccines7030082. [PMID: 31390725 PMCID: PMC6789775 DOI: 10.3390/vaccines7030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
62
|
Angulo JMC, Cuesta TAC, Menezes EP, Pedroso C, Brites C. HLA-B*14 allele predicts HIV-1 mother-to-child-transmission, in Salvador, Brazil. Braz J Infect Dis 2019; 23:71-78. [PMID: 31112676 PMCID: PMC9425689 DOI: 10.1016/j.bjid.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/29/2022] Open
Abstract
Background Class I human leukocyte antigens, especially the molecules encoded at the B locus (HLA-B), are associated with AIDS progression risk. Different groups of HLA-B alleles have been associated to a protective effect or increasing susceptibility to HIV infection and are expressed from the earliest stages of gestation. Objective The aim of this study was to evaluate which variants of HLA-B are associated with the risk of HIV vertical transmission in infected pregnant women and in their offspring, in a referral center in Salvador Bahia. Methods We performed HLA-B genotyping in 52 HIV-infected mothers and their children exposed to HIV-1 during pregnancy (N = 65) in Salvador, Brazil. We compared the HLA-B alleles frequency in mothers, uninfected and infected children, according to the use of antiretroviral prophylaxis. Results Absence of antiretroviral antenatal and postnatal prophylaxis was significantly associated with vertical transmission of HIV-1 (p = <0.01, and p = <0.01 respectively). Frequency of HLA-B*14 (29.2%, p = 0.002), HLA-B*18 (16.7%, p = 0.04) or HLA-B*14:1 (20.8%, p = 0.01) alleles subgroups were significantly higher in HIV-1 infected children and persisted (HLA-B*14, p = 0.04) even after adjusting for use of antiretroviral prophylaxis. No significant difference in expression of HLA-B alleles was observed among mothers who transmitted the virus compared to those who did not. Conclusions Expression of HLA-B*14 allele in children exposed to HIV-1 is predictive of vertical transmission and reinforces the important role of genetics in mother-to-child transmission.
Collapse
Affiliation(s)
- Juan Manuel Cubillos Angulo
- Laboratório de Pesquisa em Infectologia, Salvador, BA, Brazil; Universidade Federal da Bahia, Escola de Medicina Salvador, Complexo Hospitalar Prof. Edgard Santos, Salvador, BA, Brazil
| | - Taryn Ariadna Castro Cuesta
- Universidade Federal da Bahia, Escola de Medicina Salvador, Complexo Hospitalar Prof. Edgard Santos, Salvador, BA, Brazil
| | - Eliane Pereira Menezes
- Universidade Federal da Bahia, Escola de Medicina Salvador, Complexo Hospitalar Prof. Edgard Santos, Salvador, BA, Brazil
| | - Celia Pedroso
- Laboratório de Pesquisa em Infectologia, Salvador, BA, Brazil
| | - Carlos Brites
- Laboratório de Pesquisa em Infectologia, Salvador, BA, Brazil.
| |
Collapse
|
63
|
Tuen M, Bimela JS, Banin AN, Ding S, Harkins GW, Weiss S, Itri V, Durham AR, Porcella SF, Soni S, Mayr L, Meli J, Torimiro JN, Tongo M, Wang X, Kong XP, Nádas A, Kaufmann DE, Brumme ZL, Nanfack AJ, Quinn TC, Zolla-Pazner S, Redd AD, Finzi A, Gorny MK, Nyambi PN, Duerr R. Immune Correlates of Disease Progression in Linked HIV-1 Infection. Front Immunol 2019; 10:1062. [PMID: 31139189 PMCID: PMC6527802 DOI: 10.3389/fimmu.2019.01062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic and immunologic analyses of epidemiologically-linked HIV transmission enable insights into the impact of immune responses on clinical outcomes. Human vaccine trials and animal studies of HIV-1 infection have suggested immune correlates of protection; however, their role in natural infection in terms of protection from disease progression is mostly unknown. Four HIV-1+ Cameroonian individuals, three of them epidemiologically-linked in a polygamous heterosexual relationship and one incidence-matched case, were studied over 15 years for heterologous and cross-neutralizing antibody responses, antibody binding, IgA/IgG levels, antibody-dependent cellular cytotoxicity (ADCC) against cells expressing wild-type or CD4-bound Env, viral evolution, Env epitopes, and host factors including HLA-I alleles. Despite viral infection with related strains, the members of the transmission cluster experienced contrasting clinical outcomes including cases of rapid progression and long-term non-progression in the absence of strongly protective HLA-I or CCR5Δ32 alleles. Slower progression and higher CD4/CD8 ratios were associated with enhanced IgG antibody binding to native Env and stronger V1V2 antibody binding responses in the presence of viruses with residue K169 in V2. ADCC against cells expressing Env in the CD4-bound conformation in combination with low Env-specific IgA/IgG ratios correlated with better clinical outcome. This data set highlights for the first time that V1V2-directed antibody responses and ADCC against cells expressing open, CD4-exposed Env, in the presence of low plasma IgA/IgG ratios, can correlate with clinical outcome in natural infection. These parameters are comparable to the major correlates of protection, identified post-hoc in the RV144 vaccine trial; thus, they may also modulate the rate of clinical progression once infected. The findings illustrate the potential of immune correlate analysis in natural infection to guide vaccine development.
Collapse
Affiliation(s)
- Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jude S Bimela
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Andrew N Banin
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Svenja Weiss
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vincenza Itri
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allison R Durham
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, Division of Intramural Research, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States
| | - Sonal Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Luzia Mayr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Josephine Meli
- Medical Diagnostic Center, Yaoundé, Cameroon.,Yaoundé General Hospital, Yaoundé, Cameroon
| | - Judith N Torimiro
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.,"Chantal Biya" International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases, Institute of Medical Research and Study of Medicinal Plants, Yaoundé, Cameroon.,School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, KwaZulu-Natal Research Innovation and Sequencing Platform, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaohong Wang
- Veterans Affairs New York Harbor Healthcare Systems, New York, NY, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Arthur Nádas
- New York University School of Medicine, Institute of Environmental Medicine, New York, NY, United States
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Aubin J Nanfack
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Medical Diagnostic Center, Yaoundé, Cameroon.,"Chantal Biya" International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Thomas C Quinn
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.,Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew D Redd
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.,Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Phillipe N Nyambi
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Veterans Affairs New York Harbor Healthcare Systems, New York, NY, United States
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
64
|
A Highly Unusual V1 Region of Env in an Elite Controller of HIV Infection. J Virol 2019; 93:JVI.00094-19. [PMID: 30842322 PMCID: PMC6498048 DOI: 10.1128/jvi.00094-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
HIV elite controllers represent a remarkable minority of patients who maintain normal CD4+ T-cell counts and low or undetectable viral loads for decades in the absence of antiretroviral therapy. To examine the possible contribution of virus attenuation to elite control, we obtained a primary HIV-1 isolate from an elite controller who had been infected for 19 years, the last 10 of which were in the absence of antiretroviral therapy. Full-length sequencing of this isolate revealed a highly unusual V1 domain in Envelope (Env). The V1 domain in this HIV-1 strain was 49 amino acids, placing it in the top 1% of lengths among the 6,112 Env sequences in the Los Alamos National Laboratory online database. Furthermore, it included two additional N-glycosylation sites and a pair of cysteines suggestive of an extra disulfide loop. Virus with this Env retained good infectivity and replicative capacity; however, analysis of recombinant viruses suggested that other sequences in Env were adapted to accommodate the unusual V1 domain. While the long V1 domain did not confer resistance to neutralization by monoclonal antibodies of the V1/V2-glycan-dependent class, it did confer resistance to neutralization by monoclonal antibodies of the V3-glycan-dependent class. Our findings support results in the literature that suggest a role for long V1 regions in shielding HIV-1 from recognition by V3-directed broadly neutralizing antibodies. In the case of the elite controller described here, it seems likely that selective pressures from the humoral immune system were responsible for driving the highly unusual polymorphisms present in this HIV-1 Envelope.IMPORTANCE Elite controllers have long provided an avenue for researchers to reveal mechanisms underlying control of HIV-1. While the role of host genetic factors in facilitating elite control is well known, the possibility of infection by attenuated strains of HIV-1 has been much less studied. Here we describe an unusual viral feature found in an elite controller of HIV-1 infection and demonstrate its role in conferring escape from monoclonal antibodies of the V3-glycan class. Our results suggest that extreme variation may be needed by HIV-1 to escape neutralization by some antibody specificities.
Collapse
|
65
|
Nemat-Gorgani N, Guethlein LA, Henn BM, Norberg SJ, Chiaroni J, Sikora M, Quintana-Murci L, Mountain JL, Norman PJ, Parham P. Diversity of KIR, HLA Class I, and Their Interactions in Seven Populations of Sub-Saharan Africans. THE JOURNAL OF IMMUNOLOGY 2019; 202:2636-2647. [PMID: 30918042 DOI: 10.4049/jimmunol.1801586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, NY 11794
| | | | - Jacques Chiaroni
- UMR 7268-Anthropologie Bio-Culturelle, Droit, Éthique et Santé, Aix-Marseille Université, l'Etablissement Français du Sang, Centre National de la Recherche Scientifique, 13344 Marseille, France
| | - Martin Sikora
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | | | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO 80045; and.,Department of Immunology, University of Colorado, Denver, CO 80045
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
66
|
Mhandire K, Zijenah LS, Tshabalala M, Yindom LM, Mlambo T, Mhandire DZ, Musarurwa C, Duri K, Rowland-Jones S, Dandara C, Stray-Pedersen B. KIR and HLA-C Genetic Polymorphisms Influence Plasma IP-10 Concentration in Antiretroviral Therapy-Naive HIV-Infected Adult Zimbabweans. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:111-118. [PMID: 30614763 DOI: 10.1089/omi.2018.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Past studies on the relationship between Killer cell Immunoglobulin-like Receptor (KIR) and Human Leukocyte Antigen (HLA) genetic variation and chronic immune activation (CIA) in HIV infection are not uniformly consistent. Moreover, interferon-γ-induced protein 10 (IP-10) is a soluble biomarker of immune activation, with high plasma concentrations predicting accelerated disease progression in HIV infection. Thus, we investigated the association of KIR and HLA-C genetic polymorphisms with plasma IP-10 concentration in 183 treatment-naive chronically HIV-infected adults of Bantu origin from Zimbabwe. KIR genetic variation was determined using allele-specific primer PCR while HLA-C typing was characterized by sequencing. Plasma IP-10 was quantified using enzyme-linked immunosorbent assay. The KIR2DL3 gene was significantly associated with CIA as observed from IP-10 concentrations among KIR2DL3 carriers (265.20 pg/mL, IQR: 179.99-385.19) compared with KIR2DL3 noncarriers (183.56 pg/mL; IQR: 110.98-230.81; p = 0.001) and among KIR2DL3+HLA-C2 carriers (226.23 pg/mL, IQR: 187.96-394.73) compared with KIR2DL3+HLA-C2 noncarriers (212.86 pg/mL, IQR: 160.15-344.99; p = 0.017), respectively. Similarly, IP-10 concentrations were significantly higher (p = 0.030) in the KIR3DS1 carriers (313.86 pg/mL, IQR: 230.05-469.20) compared with KIR3DS1 noncarriers (246.01 pg/mL, IQR: 169.58-373.32). Thus, KIR and HLA-C could be playing important roles in HIV-associated immune activation. The elevation of IP-10 in KIR2DL3 and KIR2DL3+C2 could potentially be explained by increased IFN-γ secretion from activated NK cell activation due to the absence of KIR2DL3's cognate C1 ligand. To the best of our knowledge, this is the first study on a potential link between KIR and HLA-C genetic determinants and plasma IP-10 concentration in this population sample. Future studies are called for in other world populations for biomarkers of disease progression and mechanisms of IP-10 variability in HIV infection.
Collapse
Affiliation(s)
- Kudakwashe Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- 2 Letten Foundation Research House, Harare, Zimbabwe
| | - Lynn Sodai Zijenah
- 3 Department of Immunology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Mqondisi Tshabalala
- 3 Department of Immunology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Louis-Marie Yindom
- 4 Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tommy Mlambo
- 3 Department of Immunology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Doreen Zvipo Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- 2 Letten Foundation Research House, Harare, Zimbabwe
- 5 Division of Human Genetics, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Cuthbert Musarurwa
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- 3 Department of Immunology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Sarah Rowland-Jones
- 4 Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Collet Dandara
- 5 Division of Human Genetics, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Babill Stray-Pedersen
- 2 Letten Foundation Research House, Harare, Zimbabwe
- 6 Institute of Clinical Medicine, University of Oslo and Women's Clinic, Rikshospitalet, University Hospital, Oslo, Norway
| |
Collapse
|
67
|
Orange JS, Mace EM, French AR, Yokoyama WM, Fehniger TA, Cooper MA. Comment on: Evidence of innate lymphoid cell redundancy in humans. Nat Immunol 2018; 19:788-789. [PMID: 30026477 PMCID: PMC6736524 DOI: 10.1038/s41590-018-0164-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jordan S Orange
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Wayne M Yokoyama
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
68
|
Matczyńska D, Sypniewski D, Gałka S, Sołtysik D, Loch T, Nowak E, Smorąg Z, Bednarek I. Analysis of swine leukocyte antigen class I gene profiles and porcine endogenous retrovirus viremia level in a transgenic porcine herd inbred for xenotransplantation research. J Vet Sci 2018; 19:384-392. [PMID: 29366300 PMCID: PMC5974520 DOI: 10.4142/jvs.2018.19.3.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/29/2017] [Accepted: 01/20/2018] [Indexed: 11/26/2022] Open
Abstract
Molecular characterization of swine leukocyte antigen (SLA) genes is important for elucidating the immune responses between swine-donor and human-recipient in xenotransplantation. Examination of associations between alleles of SLA class I genes, type of pig genetic modification, porcine endogenous retrovirus (PERV) viral titer, and PERV subtypes may shed light on the nature of xenograft acceptance or rejection and the safety of xenotransplantation. No significant difference in PERV gag RNA level between transgenic and non-transgenic pigs was noted; likewise, the type of applied transgene had no impact on PERV viremia. SLA-1 gene profile type may correspond with PERV level in blood and thereby influence infectiveness. Screening of pigs should provide selection of animals with low PERV expression and exclusion of specimens with PERV-C in the genome due to possible recombination between A and C subtypes, which may lead to autoinfection. Presence of PERV-C integrated in the genome was detected in 31.25% of specimens, but statistically significant increased viremia in specimens with PERV-C was not observed. There is a need for multidirectional molecular characterization (SLA typing, viremia estimation, and PERV subtype screening) of animals intended for xenotransplantation research in the interest of xeno-recipient safety.
Collapse
Affiliation(s)
- Daria Matczyńska
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Daniel Sypniewski
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Sabina Gałka
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dagna Sołtysik
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Tomasz Loch
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Ewa Nowak
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Zdzisław Smorąg
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
69
|
Wang L, Zhang Y, Xu K, Dong T, Rowland-Jones S, Yindom LM. Killer-cell immunoglobulin-like receptors associate with HIV-1 infection in a narrow-source Han Chinese cohort. PLoS One 2018; 13:e0195452. [PMID: 29664957 PMCID: PMC5903672 DOI: 10.1371/journal.pone.0195452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background The HIV pandemic remains the most serious challenge to public health worldwide. The hallmark characteristics of the disease is the eventual failure of the immune system to control opportunistic infections and death. However not everyone who has HIV develops the disease at the same rate and so we are studying how the immune system works to control the virus in those who have been infected for decades and remain relatively healthy without the need of anti-retroviral therapy (ART). Methods Genomic DNA samples from 513 Chinese Han individuals from Henan province were typed for 15 KIR and 3 HLA class I genes. Genotype frequencies were compared between a village cohort of 261 former plasma donors (SM cohort) infected with HIV-1 through an illegal plasma donor scheme who survived more than 10 years of infection without ART and 252 ethnically-matched healthy controls from a nearby village. KIR and HLA were molecularly typed using a combination of polymerase chain reaction (PCR) with sequence-specific primers (PCR-SSP) and sequence based techniques. Results All 15 KIR genes were observed in the study population at various frequencies. KIR2DL3 was significantly less common in the HIV-1 infected group (95.8% vs 99.2%, p = 0.021). The combination of KIR3DS1 with homozygosity for HLA-Bw4 alleles (the putative ligand for KIR3DS1) was significantly less frequent in the HIV-1 infected group than in the control group (6.0% vs 12.0% respectively, p = 0.023). Conclusion Specific KIR-HLA compound genotypes associate with differential outcomes to infection and disease progression following exposure to a narrow-source HIV-1.
Collapse
Affiliation(s)
- Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Nuffield Department of Medicine, Headington, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yonghong Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.,Beijing You An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Keyi Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Dong
- Nuffield Department of Medicine, Headington, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
70
|
The influence of human leukocyte antigen-types on disease progression among HIV-2 infected patients in Guinea-Bissau. AIDS 2018; 32:721-728. [PMID: 29369163 DOI: 10.1097/qad.0000000000001758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES HIV-2 is endemic in West Africa and is characterized by lower transmissibility because of lower viral load, and HIV-2-infected persons usually have a slower progression to AIDS. The mechanisms behind the slower disease progression are unknown. The main objective was to identify specific HLA class I and II alleles that may influence the disease progression of HIV-2 infection. DESIGN Cohort follow-up study. METHODS We used high-resolution HLA typing of DNA from 437 antiretroviral naive HIV-2-infected patients from the Bissau HIV Cohort, Guinea-Bissau, to identify HLA alleles with an influence on HIV-2 disease progression. The effect of HLA-type on viral load and CD4 cell count was assessed initially by ranksum-test and t-test, followed by adjusted logistic regression and multivariable linear regression analysis, respectively. RESULTS Three alleles (HLA-B58:01, HLA-DPB110:01 and HLA-DRB111:01) were associated with lower possibility of detectable baseline plasma viral load (P = 0.002, P = 0.044 and P = 0.033, respectively), and no alleles were associated with higher possibility of detectable plasma viral load. HLA-DPB110:01 and HLA-DRB111:01 were in linkage disequilibrium (P = 0.047). Patients with heterozygous HLA types in all their HLA class I loci or in one or two loci were not more likely to have undetectable viral load compared with patients that were homozygous in all their class I loci after adjusting for sex and CD4 cell count (P = 0.93 and P = 0.88, respectively). CONCLUSION The three alleles HLA-B58:01, HLA-DPB110:01 and HLA-DRB111:01 may protect against HIV-2 disease progression towards AIDS.
Collapse
|
71
|
Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:1875217. [PMID: 29755620 PMCID: PMC5884297 DOI: 10.1155/2018/1875217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers.
Collapse
|
72
|
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Poli MA, Miretti MM. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics 2018; 19:142. [PMID: 29439661 PMCID: PMC5812220 DOI: 10.1186/s12864-018-4523-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Collapse
Affiliation(s)
- Hugo A. Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Dana L. Roldan
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - María J. Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino, B2700 Pergamino, Argentina
| | - María A. Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Ariel Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P. Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
| | - Gerónimo Gutierrez
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Irene Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Mario A. Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Marcos M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical (GIGA - IBS), Universidad Nacional de Misiones, N3300 Posadas, Argentina
| |
Collapse
|
73
|
Impact of the Polymorphism rs9264942 near the HLA-C Gene on HIV-1 DNA Reservoirs in Asymptomatic Chronically Infected Patients Initiating Antiviral Therapy. J Immunol Res 2017; 2017:8689313. [PMID: 29445759 PMCID: PMC5763112 DOI: 10.1155/2017/8689313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/17/2017] [Indexed: 11/17/2022] Open
Abstract
Several genome-wide association studies have identified a polymorphism located 35 kb upstream of the coding region of HLA-C gene (rs9264942; termed -35 C/T) as a host factor significantly associated with the control of HIV-1 viremia in untreated patients. The potential association of this host genetic polymorphism with the viral reservoirs has never been investigated, nor the association with the viral control in response to the treatment. In this study, we assess the influence of the polymorphism -35 C/T on the outcome of virus burden in 183 antiretroviral-naïve HIV-1-infected individuals who initiated antiviral treatment (study STIR-2102), analyzing HIV-1 RNA viremia and HIV-1 DNA reservoirs. The rs9264942 genotyping was investigated retrospectively, and plasma levels of HIV-1 RNA and peripheral blood mononuclear cell- (PBMC-) associated HIV-1 DNA were compared between carriers and noncarriers of the protective allele -35 C before antiretroviral therapy (ART), one month after ART and at the end of the study (36 months). HIV-1 RNA and HIV-1 DNA levels were both variables significantly different between carriers and noncarriers of the allele -35 C before ART. HIV-1 DNA levels remained also significantly different one month posttherapy. However, this protective effect of the -35 C allele was not maintained after long-term ART.
Collapse
|
74
|
What Is the most Important for Elite Control: Genetic Background of Patient, Genetic Background of Partner, both or neither? Description of Complete Natural History within a Couple of MSM. EBioMedicine 2017; 27:51-60. [PMID: 29273355 PMCID: PMC5828297 DOI: 10.1016/j.ebiom.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022] Open
Abstract
Background We describe a homosexual man who strongly controlled HIV-1 for ten years despite lack of protective genetic background. Methods HIV-1 DNA was measured in blood and other tissues. Cell susceptibility was evaluated with various strains. HIV-1-specific (CD4 and CD8 activation markers and immune check points) and NK cells responses were assessed; KIRs haplotypes and HLA alleles were determined. Findings Two HIV-1 RNA copies/mL of plasma were detected in 2009, using an ultra-sensitive assay. HIV-DNA was detected at 1.1 and 2 copies/106 PBMCs in 2009 and 2015 respectively, at 1.2 copies/106 cells in rectal cells in 2011. WBs showed weak reactivity with antibodies to gp160, p55 and p25 from 2007 to 2014, remaining incomplete in 2017. CD4 T cells were susceptible to various strains including HIVKON, a primary isolate of his own CRF02_AG variant. CD8 T cells showed a strong poly-functional response against HIV-Gag, producing mainly IFN-γ; a robust capacity of antibody-dependant cell cytotoxicity (ADCC) was observed in NK cells. Case patient was group B KIR haplotype. Neutralizing antibodies were not detected. CD4 and CD8 blood T cells showed normal proportions without increased activation markers. Phylogenetic analyses identified the same CRF02_AG variant in his partner. The patient and his partner were heterozygous for the CCR5ΔD32 deletion and shared HLA-B*07, C*07 non-protective alleles. Interpretation This thorough description of the natural history of an individual controlling HIV-1 in various compartments for ten years despite lack of protective alleles, and of his partner, may have implications for strategies to cure HIV-1 infection. We described a MSM, elite controller despite pejorative genetic background. The patient had two HLA pejoratives alleles and no protective alleles. The partner was infected by the same strain. The genetic backgrounds of the patient and partner, and the virus could interact with each other to lead to elite control.
We considered all the evidence about elite control, HLA, ADCC and NK, using Medline/PubMed. We described a MSM, elite controller despite non-protective genetic background, explored extensively the patient: sequential WBs, RNA in plasma (ultrasensitive assay), DNA in PBMC/GALT, cell susceptibility, HIV-1 responses in PBMC/LNMC, neutralizing antibodies, CD3-CD56 + NK, ADCC, KIRs. He had one HLA pejorative and no protective alleles. The partner was infected by the same strain, his genetic background was studied. The genetic background of the exposed person, of the source, and the viral strain could interact with each other to lead to elite control.
Collapse
|
75
|
McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, Swanton C. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017; 171:1259-1271.e11. [PMID: 29107330 PMCID: PMC5720478 DOI: 10.1016/j.cell.2017.10.001] [Citation(s) in RCA: 911] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/06/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Rachel Rosenthal
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Division of Cancer Studies, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Andrew J Rowan
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Thomas B K Watkins
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Gareth A Wilson
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Department of Human Genetics, University of Leuven, 3000 BE Leuven, Belgium
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.
| |
Collapse
|
76
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
77
|
Lian XD, Zhang XH, Dai ZX, Zheng YT. Characterization of classical major histocompatibility complex (MHC) class II genes in northern pig-tailed macaques (Macaca leonina). INFECTION GENETICS AND EVOLUTION 2017; 56:26-35. [PMID: 29055777 DOI: 10.1016/j.meegid.2017.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
The northern pig-tailed macaque (Macaca leonina) has been identified as an independent species from the pig-tailed macaque group. The species is a promising animal model for HIV/AIDS pathogenesis and vaccine studies due to susceptibility to HIV-1. However, the major histocompatibility complex (MHC) genetics in northern pig-tailed macaques remains poorly understood. We have previously studied the MHC class I genes in northern pig-tailed macaques and identified 39 novel alleles. Here, we describe the MHC class II alleles in all six classical loci (DPA, DPB, DQA, DQB, DRA, and DRB) from northern pig-tailed macaques using a sequence-based typing method for the first time. A total of 60 MHC-II alleles were identified of which 27 were shared by other macaque species. Additionally, northern pig-tailed macaques expressed a single DRA and multiple DRB genes similar to the expression in humans and other macaque species. Polymorphism and positive selection were detected, and phylogenetic analysis suggested the presence of a common ancestor in human and northern pig-tailed macaque MHC class II allelic lineages at the DQA, DQB, and DRB loci. The characterization of full-length MHC class II alleles in this study significantly improves understanding of the immunogenetics of northern pig-tailed macaques and provides the groundwork for future animal model studies.
Collapse
Affiliation(s)
- Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
78
|
Mhandire K, Zijenah LS, Yindom LM, Duri K, Mlambo T, Tshabalala M, Mazengera LR, Mhandire DZ, Musarurwa C, Dandara C, Rowland-Jones S, Matarira HT, Stray-Pedersen B. KIR Gene Content Diversity in a Zimbabwean Population: Does KIR2DL2 Have a Role in Protection Against Human Immunodeficiency Virus Infection? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:727-735. [PMID: 27930093 DOI: 10.1089/omi.2016.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) mediate natural killer cell function through interaction with their cognate human leukocyte antigen ligands. Thus, KIR gene variants have been implicated in resistance or susceptibility to viral infections. However, research on the role of these variants remains contradictory and inconclusive. In the present study, we investigated KIR gene content diversity and its association with human immunodeficiency virus (HIV) infection in an adult Black Zimbabwean population. Presence or absence of 15 KIR genes was determined in 189 HIV-infected adults and 97 HIV-uninfected blood donors using sequence specific primer polymerase chain reaction. Frequencies of KIR genes, genotypes, and haplotypes were compared between the cases and controls to identify putative associations between KIR gene variants and HIV status. We report in this study the frequencies of 15 KIR genes and 43 KIR genotypes (40 known and 3 novel) among Zimbabweans. Importantly, the frequency of the inhibitory KIR2DL2 gene was significantly higher in the uninfected group (62%) compared to the HIV-infected group (47%) (OR = 0.55, 95% CI: 0.33-0.90, p = 0.019). KIR2DL2/2DL2 homozygosity was also significantly higher in the uninfected group (35%) compared to HIV-infected group (53%) (OR = 0.33, 95% CI: 0.16-0.72, p = 0.005) under a recessive model. We conclude that the KIR2DL2 gene may be involved in protection against HIV infection. It may be possible that inhibitory KIR genes may have an important role to play in HIV acquisition among populations of African origin in whom the activating KIR genes are less frequent compared to among Caucasians.
Collapse
Affiliation(s)
- Kudakwashe Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,2 Letten Foundation Research House , Harare, Zimbabwe
| | | | - Louis-Marie Yindom
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Kerina Duri
- 3 Department of Immunology, University of Zimbabwe , Harare, Zimbabwe
| | - Tommy Mlambo
- 3 Department of Immunology, University of Zimbabwe , Harare, Zimbabwe
| | | | | | - Doreen Zvipo Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,2 Letten Foundation Research House , Harare, Zimbabwe
| | - Cuthbert Musarurwa
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Collet Dandara
- 5 Division of Human Genetics, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Sarah Rowland-Jones
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Hilda Tendisa Matarira
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Babill Stray-Pedersen
- 2 Letten Foundation Research House , Harare, Zimbabwe .,6 Institute of Clinical Medicine, University of Oslo and Womens' Clinic, Rikshospitalet, University Hospital , Oslo, Norway
| |
Collapse
|
79
|
Naiyer MM, Cassidy SA, Magri A, Cowton V, Chen K, Mansour S, Kranidioti H, Mbirbindi B, Rettman P, Harris S, Fanning LJ, Mulder A, Claas FHJ, Davidson AD, Patel AH, Purbhoo MA, Khakoo SI. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci Immunol 2017; 2:2/15/eaal5296. [DOI: 10.1126/sciimmunol.aal5296] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
|
80
|
Naranbhai V, Carrington M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 2017; 69:489-498. [PMID: 28695282 PMCID: PMC5537324 DOI: 10.1007/s00251-017-1000-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
Abstract
This review aims to provide a summary of current knowledge of host genetic effects on human immunodeficiency virus (HIV) disease. Mapping of simple single nucleotide polymorphisms (SNP) has been largely successful in HIV, but more complex genetic associations involving haplotypic or epigenetic variation, for example, remain elusive. Mechanistic insights explaining SNP associations are incomplete, but continue to be forthcoming. The number of robust immunogenetic correlates of HIV is modest and their discovery mostly predates the genome-wide era. Nevertheless, genome-wide evaluations have nicely validated the impact of HLA and CCR5 variants on HIV disease, and importantly, made clear the many false positive associations that were previously suggested by studies using the candidate gene approach. We describe how multiple HIV outcome measures such as acquisition, viral control, and immune decline have been studied in adults and in children, but that collectively these identify only the two replicable loci responsible for modifying HIV disease, CCR5, and HLA. Recent heritability estimates in this disease corroborate the modest impact of genetic determinants and their oligogenic nature. While the mechanism of protection afforded by genetic variants that diminish CCR5 expression is clear, new aspects of HLA class I-mediated protection continue to be uncovered. We describe how these genetic findings have enhanced insights into immunobiology, been clinically translated into CCR5 antagonists, allowed prioritization of antigens for vaccination efforts, and identified targets for genome-editing interventions. Finally, we describe how studies of genetically complex parts of the genome using new tools may begin revealing additional correlates.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
81
|
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2017; 36:5350-5357. [PMID: 28774561 PMCID: PMC5792371 DOI: 10.1016/j.vaccine.2017.07.062] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public health paradigm of “the same dose for everyone for every disease” model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. “systems serology”), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.
Collapse
Affiliation(s)
- G A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - I G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - R B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
82
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B. Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
83
|
Kelly A, Trowsdale J. Introduction: MHC/KIR and governance of specificity. Immunogenetics 2017; 69:481-488. [PMID: 28695288 PMCID: PMC5537316 DOI: 10.1007/s00251-017-0986-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/02/2022]
Abstract
The MHC controls specificity, to ensure that appropriate immune responses are mounted to invading pathogens whilst maintaining tolerance to the host. It encodes molecules that act as sentinels, providing a snapshot of the health of the interior and exterior of the cell for immune surveillance. To maintain the ability to respond appropriately to any disease requires a delicate balance of expression and function, and many subtleties of the system have been described at the gene, individual and population level. The main players are the highly polymorphic classical MHC class I and class II molecules, as well as some non-classical loci of both types. Transporter associated with antigen processing (TAP) peptide transporters, proteasome components and Tapasin, encoded within the MHC, are also involved in selection of peptide for presentation. The plethora of mechanisms microorganisms use to subvert immune recognition, through blocking these antigen processing and presentation pathways, attests to the importance of HLA in resistance to infection. There is continued interest in MHC genetics in its own right, as well as in relation to KIR, to transplantation, infection, autoimmunity and reproduction. Also of topical interest, cancer immunotherapy through checkpoint inhibition depends on highly specific recognition of cancer peptide antigen and continued expression of HLA molecules. Here, we briefly introduce some background to the MHC/KIR axis in man. This special issue of immunogenetics expands on these topics, in humans and other model species.
Collapse
Affiliation(s)
- Adrian Kelly
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK.
| |
Collapse
|
84
|
Silver ZA, Watkins DI. The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 2017; 69:511-519. [PMID: 28695289 PMCID: PMC5537376 DOI: 10.1007/s00251-017-0997-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Human immunodeficiency virus (HIV) remains among the most significant public health threats worldwide. Despite three decades of research following the discovery of HIV, a preventive vaccine remains elusive. The study of HIV elite controllers has been crucial to elaborate the genetic and immunologic determinants that underlie control of HIV replication. Coordinated studies of elite control in humans have, however, been limited by variability among infecting viral strains, host genotype, and the uncertainty of the timing and route of infection. In this review, we discuss the role of nonhuman primate (NHP) models for the elucidation of the immunologic correlates that underlie control of AIDS virus replication. We discuss the importance of major histocompatibility complex class I (MHC-I) alleles in activating CD8+ T-cell populations that promote control of both HIV and simian immunodeficiency virus (SIV) replication. Provocatively, we make the argument that T-cell subsets recognizing the HIV/SIV viral infectivity factor (Vif) protein may be crucial for control of viral replication. We hope that this review demonstrates how an in-depth understanding of the MHC-I gene products associated with elite control of HIV/SIV, and the epitopes that they present, can provide researchers with a glimpse into the protective immune responses that underlie AIDS nonprogression.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
85
|
Bimber BN, Ramakrishnan R, Cervera-Juanes R, Madhira R, Peterson SM, Norgren RB, Ferguson B. Whole genome sequencing predicts novel human disease models in rhesus macaques. Genomics 2017; 109:214-220. [PMID: 28438488 DOI: 10.1016/j.ygeno.2017.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/23/2022]
Abstract
Rhesus macaques are an important pre-clinical model of human disease. To advance our understanding of genomic variation that may influence disease, we surveyed genome-wide variation in 21 rhesus macaques. We employed best-practice variant calling, validated with Mendelian inheritance. Next, we used alignment data from our cohort to detect genomic regions likely to produce inaccurate genotypes, potentially due to either gene duplication or structural variation between individuals. We generated a final dataset of >16 million high confidence variants, including 13 million in Chinese-origin rhesus macaques, an increasingly important disease model. We detected an average of 131 mutations predicted to severely alter protein coding per animal, and identified 45 such variants that coincide with known pathogenic human variants. These data suggest that expanded screening of existing breeding colonies will identify novel models of human disease, and that increased genomic characterization can help inform research studies in macaques.
Collapse
Affiliation(s)
- Benjamin N Bimber
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Ranjani Ramakrishnan
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Rita Cervera-Juanes
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Ravi Madhira
- Oregon Health & Sciences University, Portland, OR 97239, United States
| | - Samuel M Peterson
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Robert B Norgren
- Dept. of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Betsy Ferguson
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States.
| |
Collapse
|
86
|
Wroblewski EE, Guethlein LA, Norman PJ, Li Y, Shaw CM, Han AS, Ndjango JBN, Ahuka-Mundeke S, Georgiev AV, Peeters M, Hahn BH, Parham P. Bonobos Maintain Immune System Diversity with Three Functional Types of MHC-B. THE JOURNAL OF IMMUNOLOGY 2017; 198:3480-3493. [PMID: 28348269 PMCID: PMC5469624 DOI: 10.4049/jimmunol.1601955] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/01/2017] [Indexed: 11/19/2022]
Abstract
Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. Because only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspectives on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a clade of MHC-B, defined by residues 45-74 of the α1 domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3-14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell Ig-like receptors of NK cells, allotypes having the C1 epitope also recognized by killer cell Ig-like receptors, and allotypes having neither epitope. For population Malebo, these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean proportional distance) of Papa-B in Malebo is greater than in the other populations and is also greater than expected for random combinations of three Papa-B Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christiana M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alex S Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, 2012 Kisangani, Democratic Republic of the Congo
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicales, 1197 Kinshasa, Democratic Republic of the Congo.,University of Kinshasa, 190 Kinshasa, Democratic Republic of the Congo.,Institut de Recherche pour le Développement, Université de Montpellier, 34394 Montpellier, France; and
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Martine Peeters
- Institut de Recherche pour le Développement, Université de Montpellier, 34394 Montpellier, France; and
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
87
|
Malnati MS, Ugolotti E, Monti MC, Battista DD, Vanni I, Bordo D, Sironi F, Larghero P, Marco ED, Biswas P, Poli G, Vicenzi E, Riva A, Tarkowski M, Tambussi G, Nozza S, Tripodi G, Marras F, Maria AD, Pistorio A, Biassoni R. Activating Killer Immunoglobulin Receptors and HLA-C: a successful combination providing HIV-1 control. Sci Rep 2017; 7:42470. [PMID: 28211903 PMCID: PMC5304173 DOI: 10.1038/srep42470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
Several studies demonstrated a relevant role of polymorphisms located within the HLA-B and -C loci and the Killer Immunoglobulin Receptors (KIRs) 3DL1 and 3DS1 in controlling HIV-1 replication. KIRs are regulatory receptors expressed at the surface of NK and CD8+ T-cells that specifically bind HLA-A and -B alleles belonging to the Bw4 supratype and all the -C alleles expressing the C1 or C2 supratype. We here disclose a novel signature associated with the Elite Controller but not with the long-term nonprogressor status concerning 2DS activating KIRs and HLA-C2 alleles insensitive to miRNA148a regulation. Overall, our findings support a crucial role of NK cells in the control of HIV-1 viremia.
Collapse
Affiliation(s)
- Mauro S. Malnati
- Unit of Human Virology, Division of Immunology, transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Maria Cristina Monti
- Department of Public Health Unit of biostatistics and clinical epidemiology University of Pavia, Pavia Italy
| | - Davide De Battista
- Unit of Human Virology, Division of Immunology, transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Francesca Sironi
- Unit of Human Virology, Division of Immunology, transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Priscilla Biswas
- Unit of Human Virology, Division of Immunology, transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Guido Poli
- Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Elisa Vicenzi
- Unit of Viral Pathogens and Biosafety, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Agostino Riva
- Department of Clinical Sciences Chair of Infectious Diseases and Tropical Medicine University of Milan,“L. Sacco” Hospital, Milan, Italy
| | - Maciej Tarkowski
- Department of Clinical Sciences Chair of Infectious Diseases and Tropical Medicine University of Milan,“L. Sacco” Hospital, Milan, Italy
| | - Giuseppe Tambussi
- Department of Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Nozza
- Department of Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Andrea De Maria
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Health Science, DISSAL and Center for excellence in Biomedical Research CEBR University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
88
|
Abstract
OBJECTIVE The aim of this study is to analyse the influence of LILRA3 and the genetic leukocyte immunoglobulin-like receptor 3 (LILRA3) deletion on transmission and clinical course of HIV infection. DESIGN Case and control study. METHODS LILRA3 genotypes were determined by PCR. HIV patients were categorized into short-term progressors, normal progressors and long-term nonprogressors according to the clinical course. Functional studies were performed using real-time PCR, intracellular flow cytometry and ELISA. RESULTS The prevalence of the homozygous LILRA3 deletion was higher in HIV-positive individuals (n = 439) than in controls (n = 651) (P = 0.02). The disease progression was faster in homozygously deleted patients with more short-term progressors than in heterozygous (P = 0.03) and homozygously positive (P = 0.002) individuals. These results have been confirmed in a seroconverter cohort (n = 288). The frequency of the homozygous deletion in the confirmation cohort was higher than in controls (P = 0.04). Combining both cohorts, the proportion of homozygously LILRA3-deleted individuals was 6.2% in HIV-infected patients (n = 727) vs. 3.2% in controls (P = 0.01). Functional analysis revealed an upregulation of the LILRA3 gene in real-time PCR in treated patients when compared with untreated patients (P = 0.007) and controls (P = 0.02) resulting in a higher LILRA3 expression in CD4 (P = 0.008) and CD14 (P = 0.02) cells of untreated patients in intracellular flow cytometry. LILRA 3 concentrations in the sera were similar between the groups, in untreated patients a correlation between viral load and LILRA3 concentration was found. CONCLUSION The homozygous LILRA3 deletion is associated with a higher susceptibility for HIV disease and with a faster disease progression.
Collapse
|
89
|
John M, Gaudieri S, Mallal S. Immunogenetics and Vaccination. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
90
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
91
|
Chen Y, Shen C, Guha D, Ding M, Kulich S, Ashimkhanova A, Rinaldo C, Seaberg E, Margolick JB, Stosor V, Martínez-Maza O, Gupta P. Identification of the transcripts associated with spontaneous HCV clearance in individuals co-infected with HIV and HCV. BMC Infect Dis 2016; 16:693. [PMID: 27875997 PMCID: PMC5120459 DOI: 10.1186/s12879-016-2044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/16/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Infection with human immunodeficiency virus (HIV) influences the outcome and natural disease progression of hepatitis C virus (HCV) infection. While the majority of HCV mono-infected and HCV/HIV co-infected subjects develop chronic HCV infection, 20-46% of mono- and co-infected subjects spontaneously clear HCV infection. The mechanism underlying viral clearance is not clearly understood. Analysis of differential cellular gene expression (mRNA) between HIV-infected patients with persistent HCV infection or spontaneous clearance could provide a unique opportunity to decipher the mechanism of HCV clearance. METHODS Plasma RNA from HIV/HCV co-infected subjects who cleared HCV and those who remained chronically infected with HCV was sequenced using Ion Torrent technology. The sequencing results were analyzed to identify transcripts that are associated with HCV clearance by measuring differential gene expression in HIV/HCV co-infected subjects who cleared HCV and those who remained chronically infected with HCV. RESULTS We have identified plasma mRNA, the levels of which are significantly elevated (at least 5 fold, False Discovery Rate (FDR) <0.05) before HCV infection in subjects who cleared HCV compared to those who remained chronically infected. Upon further analysis of these differentially expressed genes, before and after HCV infection, we found that before HCV infection 12 genes were uniquely upregulated in the clearance group compared to the chronically infected group. Importantly, a number of these 12 genes and their upstream regulators (such as CCL3, IL17D, LBP, SOCS3, NFKBIL1, IRF) are associated with innate immune response functions. CONCLUSIONS These results suggest that subjects who spontaneously clear HCV may express these unique genes associated with innate immune functions.
Collapse
Affiliation(s)
- Yue Chen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA.
| | - Chengli Shen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA
| | - Debjani Guha
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA
| | - Ming Ding
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA
| | - Scott Kulich
- Department of Pathology, VA Hospital, Pittsburgh, Pa, USA
| | - Aiymkul Ashimkhanova
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA
| | - Charles Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA
| | - Eric Seaberg
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Valentina Stosor
- Division of Infectious Diseases, School of Medicine, Northwestern University, Chicago, IL, USA
| | - Otoniel Martínez-Maza
- Department of Epidemiology, UCLA Fielding School of Public Health, and Departments of Obstetrics & Gynecology and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2138 Parran Hall, 130 DeSoto Street, Pittsburgh, Pa, 15261, USA
| |
Collapse
|
92
|
Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth. PLoS Pathog 2016; 12:e1005989. [PMID: 27851829 PMCID: PMC5112890 DOI: 10.1371/journal.ppat.1005989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/11/2016] [Indexed: 11/19/2022] Open
Abstract
A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.
Collapse
|
93
|
Burian A, Wang KL, Finton KAK, Lee N, Ishitani A, Strong RK, Geraghty DE. HLA-F and MHC-I Open Conformers Bind Natural Killer Cell Ig-Like Receptor KIR3DS1. PLoS One 2016; 11:e0163297. [PMID: 27649529 PMCID: PMC5029895 DOI: 10.1371/journal.pone.0163297] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022] Open
Abstract
Based on previous findings supporting HLA-F as a ligand for KIR3DL2 and KIR2DS4, we investigated the potential for MHC-I open conformers (OCs) as ligands for KIR3DS1 and KIR3DL1 through interactions measured by surface plasmon resonance. These measurements showed physical binding of KIR3DS1 but not KIR3DL1 with HLA-F and other MHC-I OC while also confirming the allotype specific binding of KIR3DL1 with MHC-I peptide complex. Concordant results were obtained with biochemical pull-down from cell lines and biochemical heterodimerization experiments with recombinant proteins. In addition, surface binding of HLA-F and KIR3DS1 to native and activated NK and T cells was coincident with specific expression of the putative ligand or receptor. A functional response of KIR3DS1 was indicated by increased granule exocytosis in activated cells incubated with HLA-F bound to surfaces. The data extend a model for interaction between MHC-I open conformers and activating KIR receptors expressed during an inflammatory response, potentially contributing to communication between the innate and adaptive immune response.
Collapse
Affiliation(s)
- Aura Burian
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Kevin L. Wang
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Kathryn A. K. Finton
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Ni Lee
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | | | - Roland K. Strong
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Daniel E. Geraghty
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
- * E-mail:
| |
Collapse
|
94
|
Hudson LE, Allen RL. Leukocyte Ig-Like Receptors - A Model for MHC Class I Disease Associations. Front Immunol 2016; 7:281. [PMID: 27504110 PMCID: PMC4959025 DOI: 10.3389/fimmu.2016.00281] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023] Open
Abstract
MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system.
Collapse
Affiliation(s)
- Laura Emily Hudson
- Institute for Infection and Immunity, St George's, University of London , London , UK
| | - Rachel Louise Allen
- Institute for Infection and Immunity, St George's, University of London , London , UK
| |
Collapse
|
95
|
Lian XD, Zhang XH, Dai ZX, Zheng YT. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina). Immunogenetics 2016; 68:261-74. [PMID: 26782049 DOI: 10.1007/s00251-015-0897-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/28/2015] [Indexed: 11/25/2022]
Abstract
The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model.
Collapse
Affiliation(s)
- Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
96
|
Singh KK, Qin M, Brummel SS, Angelidou K, Trout RN, Fenton T, Spector SA. Killer Cell Immunoglobulin-Like Receptor Alleles Alter HIV Disease in Children. PLoS One 2016; 11:e0151364. [PMID: 26983081 PMCID: PMC4794224 DOI: 10.1371/journal.pone.0151364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/27/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HLA class I molecules are ligands for killer cell immunoglobin like receptors (KIR) that control the antiviral response of natural killer (NK) cells. However, the effects of KIR and HLA (KIR/HLA) alleles on HIV disease of children have not been studied. METHODS 993 antiretroviral naïve children with symptomatic HIV infection from PACTG protocols P152 and P300 were genotyped for KIR and HLA alleles using the Luminex platform. Linear regression was used to test the association between genotypes and baseline pre-ART HIV RNA, CD4+ lymphocyte count, and cognitive score, adjusting for age, race/ethnicity and study. The interaction between genetic markers and age was investigated. To account for multiple testing the false discovery rate (FDR) was controlled at 0.05. RESULTS Children with the KIR2DS4*ALL FULL LENGTH (KIR2DS4*AFL) allele had higher CD4+ lymphocyte counts. Among children ≤2 years of age, the KIR2DS4*AFL was associated with lower plasma HIV RNA and higher cognitive index scores. KIR Cent2DS3/5_1 had lower CD4+ lymphocyte counts in children ≤2 years of age, while the presence of Tel1, Tel2DS4_2, Tel2DS4_4, Tel8, Tel2DS4_6 had higher CD4+ lymphocyte counts in all children. Presence of Cent2, Cent4 and Cent8 was associated with increased HIV RNA load in children ≤2 years. Presence of KIR3DL1+Bw4 was associated with higher CD4+ lymphocyte counts in all children. Among children >2 years old, KIR3DS1+Bw4-80I was associated with higher plasma HIV RNA, and Bw6/Bw6 was associated with lower plasma HIV RNA compared to children with KIR3DS1+Bw4-80I. CONCLUSIONS Presented data show for the first time that specific KIR alleles independently or combined with HLA ligands are associated with HIV RNA and CD4+ lymphocyte counts in infected, antiretroviral naive children; and many of these effect estimates appear to be age dependent. These data support a role for specific KIR alleles in HIV pathogenesis in children.
Collapse
Affiliation(s)
- Kumud K. Singh
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Min Qin
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sean S. Brummel
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Konstantia Angelidou
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Rodney N. Trout
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Terence Fenton
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephen A. Spector
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Rady Children’s Hospital, San Diego, California, United States of America
| |
Collapse
|
97
|
The effects of killer cell immunoglobulin-like receptor (KIR) genes on susceptibility to HIV-1 infection in the Polish population. Immunogenetics 2016; 68:327-37. [PMID: 26888639 PMCID: PMC4842214 DOI: 10.1007/s00251-016-0906-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are the most polymorphic receptors of natural killer (NK) cells. Their activity diversifies the functions of NK cells in the antiviral immune response, so the presence of certain KIR may affect transmission of HIV-1. The aim of the study was to evaluate the influence of KIR genes on the susceptibility to HIV-1 infection in the Polish population depending on the route of exposure. We determined the frequencies of activating (2DS1, 2DS2, 2DS3, 2DS4f, 2DS4del, 2DS5, 3DS1) and inhibitory (2DL1, 2DL2, 2DL3, 2DL5, 3DL1) KIRs in HIV-1-positive patients (n = 459), individuals exposed to HIV-1 but uninfected (EU, n = 118) and in uninfected, healthy blood donors (BD, n = 98). Analysis was performed using stepwise logistic regression. Apart from KIRs, CCR5-∆32, and CCR2-64I, alleles were also analyzed, as we knew or suspected that these features could affect susceptibility to HIV infection. The regression confirmed the protective effect of CCR5-∆32 (OR = 0.25, p = 0.006) and CCR2-64I (OR = 0.59, p = 0.032) against HIV infection. Among KIR genes, 2DL3 was found to be a protective factor (OR = 0.30, p = 0.015). A similar effect was seen for 3DS1 but only in intravenous drug users (IDUs) (OR = 0.30, p = 0.019), not in sexually exposed people. 2DL5 was found to be a factor facilitating HIV infection (OR = 2.13, p = 0.013). A similar effect was observed for 2DL2 but only in females (OR = 2.15, p = 0.040), and 2DS1 in IDUs (OR = 3.03, p = 0.022). Our results suggest a beneficial role of KIR3DS1 and 2DL3 supporting resistance to HIV infection and a harmful effect of 2DS1, 2DL5, and 2DL2 genes promoting HIV acquisition.
Collapse
|
98
|
Goedert JJ, Martin MP, Vitale F, Lauria C, Whitby D, Qi Y, Gao X, Carrington M. Risk of Classic Kaposi Sarcoma With Combinations of Killer Immunoglobulin-Like Receptor and Human Leukocyte Antigen Loci: A Population-Based Case-control Study. J Infect Dis 2016; 213:432-8. [PMID: 26268853 PMCID: PMC4719589 DOI: 10.1093/infdis/jiv413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a complication of KS-associated herpesvirus (KSHV) infection. Other oncogenic viral infections and malignancies are associated with certain HLA alleles and their natural killer (NK) cell immunoglobulin-like receptor (KIR) ligands. We tested whether HLA-KIR influences the risk of KSHV infection or KS. METHODS In population-based case-control studies, we compared HLA class I and KIR gene frequencies in 250 classic (non-AIDS) KS cases, 280 KSHV-seropositive controls, and 576 KSHV-seronegative controls composing discovery and validation cohorts. Logistic regression was used to calculate sex- and age-adjusted odds ratios (ORs) and 95% confidence intervals. RESULTS In both the discovery and validation cohorts, KS was associated with HLA-A*11:01 (adjusted OR for the combined cohorts, 0.4; P = .002) and HLA-C*07:01 (adjusted OR, 1.6; P = .002). Consistent associations across cohorts were also observed with activating KIR3DS1 plus HLA-B Bw4-80I and homozygosity for HLA-C group 1. With KIR3DS1 plus HLA-B Bw4-80I, the KSHV seroprevalence was 40% lower (adjusted OR for the combined cohorts, 0.6; P = .01), but the KS risk was 2-fold higher (adjusted OR, 2.1; P = .002). Similarly, the KSHV seroprevalence was 40% lower (adjusted OR, 0.6; P = .01) but the KS risk 80% higher with HLA-C group 1 homozygosity (adjusted OR, 1.8; P = .005). CONCLUSIONS KIR-mediated NK cell activation may decrease then risk of KSHV infection but enhance KSHV dissemination and progression to KS if infection occurs.
Collapse
Affiliation(s)
- James J Goedert
- Division of Cancer Epidemiology and Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Maureen P Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Francesco Vitale
- Dipartimento di Igiene e Microbiologia Giuseppe D'Alessandro, Universitá degli Studi di Palermo
| | - Carmela Lauria
- Lega Italiana per la Lotta Contro i Tumori-Sez Ragusa, Italy
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
99
|
Huang Y, Zhang L, Jolliffe D, Hovden AO, Ökvist M, Pantaleo G, Sommerfelt MA. A case for preART-adjusted endpoints in HIV therapeutic vaccine trials. Vaccine 2016; 34:1282-8. [PMID: 26826543 DOI: 10.1016/j.vaccine.2016.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND In a randomized, double-blind, placebo-controlled phase 2 clinical trial of Vacc-4x, a peptide-based therapeutic HIV-1 p24(Gag) vaccine candidate, 135 HIV-infected participants (vaccine:placebo=92:43) received a series of six immunizations while on combination antiretroviral therapy (cART). At week 28, all participants underwent an analytical treatment interruption (ATI) for up to 24 weeks. preART VL appeared to be higher among Vacc-4x recipients. Based on a previous analysis, during ATI viral load (VL) appeared to be lower in Vacc-4x recipients, but no difference in CD4 level was observed between Vacc-4x and placebo groups. We propose fold-change-based endpoints and report comparative analyses accounting for imbalanced preART VL and missing data. METHODS All analyses included per-protocol (PP) participants who received the full immunization and underwent ATI. Linear regression models were used to identify predictors of study endpoints and to estimate the vaccine effect based on fold changes in CD4 counts or VL over preART values at week 40 or at set-point (geometric mean over weeks 48 and 52 values). We adjusted for potential baseline factors and used a multiple imputation approach to account for missing endpoints due to cART resumption or dropout. P-values were adjusted for multiple comparisons using q-values. RESULTS preART VL and CD4 count were significant predictors of study endpoints. The vaccine recipients had a higher fold change in week 40 CD4 counts (vaccine vs. placebo mean fold-change difference=0.08; p=0.02; q=0.03), a higher fold change in CD4 count set-point (0.06; p=0.06; q=0.07), a lower fold change in week 40 VL (-0.47; p=0.03; q=0.05), and a lower fold change in VL set-point (-0.50; p=0.02; q=0.03). CONCLUSIONS These exploratory analyses consistently suggested that Vacc-4x provided positive effects on both CD4 counts and VL. Future HIV therapeutic vaccine studies may adopt similar preART-adjusted endpoints and missing data imputation methods in vaccine effect evaluations.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
100
|
Genetic diagnosis of seronegative (HIV−) partner of female patient with AIDS in the context of HIV transmission. HIV & AIDS REVIEW 2016. [DOI: 10.1016/j.hivar.2016.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|