51
|
Schaenman J, Korin Y, Sidwell T, Kandarian F, Harre N, Gjertson D, Lum E, Reddy U, Huang E, Pham P, Bunnapradist S, Danovitch G, Veale J, Gritsch H, Reed E. Increased Frequency of BK Virus-Specific Polyfunctional CD8+ T Cells Predict Successful Control of BK Viremia After Kidney Transplantation. Transplantation 2017; 101:1479-1487. [PMID: 27391197 PMCID: PMC5219876 DOI: 10.1097/tp.0000000000001314] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND BK virus infection remains an important cause of loss of allograft function after kidney transplantation. We sought to determine whether polyfunctional T cells secreting multiple cytokines simultaneously, which have been shown to be associated with viral control, could be detected early after start of BK viremia, which would provide insight into the mechanism of successful antiviral control. METHODS Peripheral blood mononuclear cells collected during episodes of BK viral replication were evaluated by multiparameter flow cytometry after stimulation by overlapping peptide pools of BK virus antigen to determine frequency of CD8+ and CD4+ T cells expressing 1 or more cytokines simultaneously, as well as markers of T-cell activation, exhaustion, and maturation. RESULTS BK virus controllers, defined as those with episodes of BK viremia of 3 months or less, had an 11-fold increase in frequency of CD8+ polyfunctional T cells expressing multiple cytokines, as compared with patients with prolonged episodes of BK viremia. Patients with only low level BK viremia expressed low frequencies of polyfunctional T cells. Polyfunctional T cells were predominantly of the effector memory maturation subtype and expressed the cytotoxicity marker CD107a. CONCLUSIONS Noninvasive techniques for immune assessment of peripheral blood can provide insight into the mechanism of control of BK virus replication and may allow for future patient risk stratification and customization of immune suppression at the onset of BK viremia.
Collapse
Affiliation(s)
- J.M. Schaenman
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Y. Korin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - T. Sidwell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - F. Kandarian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - N. Harre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - D. Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA
| | - E. Lum
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - U. Reddy
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - E. Huang
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - P.T. Pham
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - S. Bunnapradist
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - G. Danovitch
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - J. Veale
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - H.A. Gritsch
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - E.F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
52
|
Laher F, Ranasinghe S, Porichis F, Mewalal N, Pretorius K, Ismail N, Buus S, Stryhn A, Carrington M, Walker BD, Ndung'u T, Ndhlovu ZM. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer + Gag-Specific CD4 + T Cells in Chronic Clade C HIV-1 Infection. J Virol 2017; 91:e02477-16. [PMID: 28077659 PMCID: PMC5355603 DOI: 10.1128/jvi.02477-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections.IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4+ T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4+ T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4+ T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections.
Collapse
Affiliation(s)
- Faatima Laher
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Srinika Ranasinghe
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Filippos Porichis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Nikoshia Mewalal
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Karyn Pretorius
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Zaza M Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
53
|
Gonzalez-Perez G, Lamousé-Smith ESN. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8 + T Cell Receptor Signaling. Front Immunol 2017; 8:265. [PMID: 28337207 PMCID: PMC5340779 DOI: 10.3389/fimmu.2017.00265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
We recently reported that maternal antibiotic treatment (MAT) of mice in the last days of pregnancy and during lactation dramatically alters the density and composition of the gastrointestinal microbiota of their infants. MAT infants also exhibited enhanced susceptibility to a systemic viral infection and altered adaptive immune cell activation phenotype and function. CD8+ effector T cells from MAT infants consistently demonstrate an inability to sustain interferon gamma (IFN-γ) production in vivo following vaccinia virus infection and in vitro upon T cell receptor (TCR) stimulation. We hypothesize that T cells developing in infant mice with gastrointestinal microbiota dysbiosis and insufficient toll-like receptor (TLR) exposure alters immune responsiveness associated with intrinsic T cell defects in the TCR signaling pathway and compromised T cell effector function. To evaluate this, splenic T cells from day of life 15 MAT infant mice were stimulated in vitro with anti-CD3 and anti-CD28 antibodies prior to examining the expression of ZAP-70, phosphorylated ZAP-70, phospho-Erk-1/2, c-Rel, total protein tyrosine phosphorylation, and IFN-γ production. We determine that MAT infant CD8+ T cells fail to sustain total protein tyrosine phosphorylation and Erk1/2 activation. Lipopolysaccharide treatment in vitro and in vivo, partially restored IFN-γ production in MAT effector CD8+ T cells and reduced mortality typically observed in MAT mice following systemic viral infection. Our results demonstrate a surprising dependence on the gastrointestinal microbiome and TLR ligand stimulation toward shaping optimal CD8+ T cell function during infancy.
Collapse
Affiliation(s)
- Gabriela Gonzalez-Perez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center , New York, NY , USA
| | - Esi S N Lamousé-Smith
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center , New York, NY , USA
| |
Collapse
|
54
|
Dekeyser M, Ladrière M, Audonnet S, Frimat L, De Carvalho Bittencourt M. An Early Immediate Early Protein IE-1-Specific T-Cell Polyfunctionality Is Associated With a Better Control of Cytomegalovirus Reactivation in Kidney Transplantation. Kidney Int Rep 2017; 2:486-492. [PMID: 29142976 PMCID: PMC5678683 DOI: 10.1016/j.ekir.2017.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 10/25/2022] Open
Affiliation(s)
- Manon Dekeyser
- Department of Nephrology and Kidney Transplantation, CHRU Nancy, Nancy, France
| | - Marc Ladrière
- Department of Nephrology and Kidney Transplantation, CHRU Nancy, Nancy, France
| | - Sandra Audonnet
- Laboratory of Immunology, Nancytomique, Pôle Laboratoires, CHRU Nancy, Nancy, France
| | - Luc Frimat
- Department of Nephrology and Kidney Transplantation, CHRU Nancy, Nancy, France
| | | |
Collapse
|
55
|
Fisicaro P, Barili V, Montanini B, Acerbi G, Ferracin M, Guerrieri F, Salerno D, Boni C, Massari M, Cavallo MC, Grossi G, Giuberti T, Lampertico P, Missale G, Levrero M, Ottonello S, Ferrari C. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med 2017; 23:327-336. [DOI: 10.1038/nm.4275] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
|
56
|
Schmitt MER, Sitte S, Voehringer D. CD4 T Helper Cells Instruct Lymphopenia-Induced Memory-Like CD8 T Cells for Control of Acute LCMV Infection. Front Immunol 2017; 7:622. [PMID: 28066432 PMCID: PMC5174106 DOI: 10.3389/fimmu.2016.00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/07/2016] [Indexed: 01/12/2023] Open
Abstract
Lymphopenic conditions lead to expansion of memory-like T cells (TML), which develop from naïve T cells by spontaneous proliferation. TML cells are often increased in the elderly population, AIDS patients, and patients recovering from radio- or chemotherapy. At present, it is unclear whether TML cells can efficiently respond to foreign antigen and participate in antiviral immunity. To address this question, we analyzed the immune response during acute low-dose infection with lymphocytic choriomeningitis virus-WE in T cell lymphopenic CD4Cre/R-diphtheria toxin alpha (DTA) mice in which most peripheral T cells show a TML phenotype. On day 8 after infection, the total number of effector T cells and polyfunctional IFN-γ and TNF-α producing CD8 T cells were three- to fivefold reduced in CD4Cre/R-DTA mice as compared to controls. Viral clearance and the humoral immune response were severely impaired in CD4Cre/R-DTA mice although CTLs efficiently killed transferred target cells in vivo. Transfer of naïve CD4 T cells but not anti-PD-L1 blockade restored the expansion of antigen-specific polyfunctional CD8 T cells and resulted in lower viral titers. This finding indicates that under lymphopenic conditions endogenous CD4 TML cell lack the capacity to promote expansion of CTLs. However, CD8 TML cells retain sufficient functional plasticity to participate in antiviral immunity in the presence of appropriate help by fully functional CD4 T cells. This capacity might be exploited to develop treatments for improvement of CD8 T cell functions under various clinical settings of lymphopenia.
Collapse
Affiliation(s)
- Michaela E R Schmitt
- Department of Infection Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Selina Sitte
- Department of Infection Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
57
|
Presti R, Pantaleo G. The Immunopathogenesis of HIV-1 Infection. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
58
|
Körber N, Behrends U, Hapfelmeier A, Protzer U, Bauer T. Validation of an IFNγ/IL2 FluoroSpot assay for clinical trial monitoring. J Transl Med 2016; 14:175. [PMID: 27297580 PMCID: PMC4906590 DOI: 10.1186/s12967-016-0932-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022] Open
Abstract
Background The FluoroSpot assay, an advancement of the ELISpot assay, enables simultaneous measurement of different analytes secreted at a single-cell level. This allows parallel detection of several cytokines secreted by immune cells upon antigen recognition. Easier standardization, higher sensitivity and reduced labour intensity render FluoroSpot assays an interesting alternative to flow-cytometry based assays for analysis of clinical samples. While the use of immunoassays to study immunological primary and secondary endpoints becomes increasingly attractive, assays used require pre-trial validation. Here we describe the assay validation (precision, specificity and linearity) of a FluoroSpot immunological endpoint assay detecting Interferon γ (IFNγ) and Interleukin 2 (IL2) for use in clinical trial immune monitoring. Methods We validated an IFNγ/IL2 FluoroSpot assay to determine Epstein-Barr virus (EBV)-specific cellular immune responses (IFNγ, IL2 and double positive IFNγ + IL2 responses), using overlapping peptide pools corresponding to EBV-proteins BZLF1 and EBNA3A. Assay validation was performed using cryopreserved PBMC of 16 EBV-seropositive and 6 EBV-seronegative donors. Precision was assessed by (i) testing 16 donors using three replicates per assay (intra-assay precision/repeatability) (ii) using two plates in parallel (intermediate precision/plate-to-plate variability) and (iii) by performing the assays on three different days (inter-assay precision/reproducibility). In addition, we determined specificity, linearity and quantification limits of the assay. Further we tested precision across the two assay systems, IFNγ/IL2 FluoroSpot and the corresponding enzymatic single cytokine ELISpot. Results The validation revealed: (1) a high intra-assay precision (coefficient of variation (CV) 9.96, 8.85 and 13.05 %), intermediate precision (CV 6.48, 10.20 and 12.97 %) and reproducibility (CV 20.81 %, 12,75 % and 12.07 %) depending on the analyte and antigen used; (2) a specificity of 100 %; (3) a linearity with R2 values from 0.93 to 0.99 depending on the analyte. The testing of the precision across the two assay systems, adduced a concordance correlation coefficient pc = 0.99 for IFNγ responses and pc = 0.93 for IL2 responses, indicating a large agreement between both assay methods. Conclusions The validated primary endpoint assay, an EBV peptide pool specific IFNγ/IL2 FluoroSpot assay was found to be suitable for the detection of EBV-specific immune responses subject to the requirement of standardized assay procedure and data analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Uta Behrends
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany.,Clinical Cooperation Group, Immune Monitoring, Helmholtz Zentrum München/Technische Universität München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany. .,Clinical Cooperation Group, Immune Monitoring, Helmholtz Zentrum München/Technische Universität München, Munich, Germany. .,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
59
|
Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. J Virol 2016; 90:4133-4149. [PMID: 26865719 DOI: 10.1128/jvi.03135-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.
Collapse
|
60
|
Fergusson J, Hühn M, Swadling L, Walker L, Kurioka A, Llibre A, Bertoletti A, Holländer G, Newell E, Davis M, Sverremark-Ekström E, Powrie F, Capone S, Folgori A, Barnes E, Willberg C, Ussher J, Klenerman P. CD161(int)CD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol 2016; 9:401-13. [PMID: 26220166 PMCID: PMC4732939 DOI: 10.1038/mi.2015.69] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/13/2015] [Indexed: 02/04/2023]
Abstract
The C-type lectin-like receptor CD161 is expressed by lymphocytes found in human gut and liver, as well as blood, especially natural killer (NK) cells, T helper 17 (Th17) cells, and a population of unconventional T cells known as mucosal-associated invariant T (MAIT) cells. The association of high CD161 expression with innate T-cell populations including MAIT cells is established. Here we show that CD161 is also expressed, at intermediate levels, on a prominent subset of polyclonal CD8+ T cells, including antiviral populations that display a memory phenotype. These memory CD161(int)CD8+ T cells are enriched within the colon and express both CD103 and CD69, markers associated with tissue residence. Furthermore, this population was characterized by enhanced polyfunctionality, increased levels of cytotoxic mediators, and high expression of the transcription factors T-bet and eomesodermin (EOMES). Such populations were induced by novel vaccine strategies based on adenoviral vectors, currently in trial against hepatitis C virus. Thus, intermediate CD161 expression marks potent polyclonal, polyfunctional tissue-homing CD8+ T-cell populations in humans. As induction of such responses represents a major aim of T-cell prophylactic and therapeutic vaccines in viral disease and cancer, analysis of these populations could be of value in the future.
Collapse
MESH Headings
- Adenoviridae/immunology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Clinical Trials as Topic
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colon/immunology
- Colon/pathology
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/pathology
- Gene Expression Regulation
- Hepacivirus/immunology
- Hepatitis C/immunology
- Hepatitis C/prevention & control
- Hepatitis C/virology
- Humans
- Immunologic Memory
- Integrin alpha Chains/genetics
- Integrin alpha Chains/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Activation
- NK Cell Lectin-Like Receptor Subfamily B/genetics
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- Primary Cell Culture
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
- J.R. Fergusson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - M.H. Hühn
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - L. Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - L.J. Walker
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Newcastle University Institute of Cellular Medicine, Framlington Place, Newcastle upon Tyne, Tyne And Wear, United Kingdom, NE2 4HH
| | - A. Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - A. Llibre
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - A. Bertoletti
- Program Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - G. Holländer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - E.W. Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - M.M. Davis
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - E. Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - F. Powrie
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - S. Capone
- Okairos, via dei Castelli Romani 22, Pomezia, 00040 Rome, Italy
| | - A. Folgori
- Okairos, via dei Castelli Romani 22, Pomezia, 00040 Rome, Italy
| | - E. Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - C.B. Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - J.E. Ussher
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - P. Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9TU, UK
| |
Collapse
|
61
|
Radford F, Tyagi S, Gennaro ML, Pine R, Bushkin Y. Flow Cytometric Characterization of Antigen-Specific T Cells Based on RNA and Its Advantages in Detecting Infections and Immunological Disorders. Crit Rev Immunol 2016; 36:359-378. [PMID: 28605344 PMCID: PMC5548664 DOI: 10.1615/critrevimmunol.2017018316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescence in situ hybridization coupled with flow cytometry (FISH-Flow) is a highly quantitative, high-throughput platform allowing precise quantification of total mRNA transcripts in single cells. In undiagnosed infections posing a significant health burden worldwide, such as latent tuberculosis or asymptomatic recurrent malaria, an important challenge is to develop accurate diagnostic tools. Antigen-specific T cells create a persistent memory to pathogens, making them useful for diagnosis of infection. Stimulation of memory response initiates T-cell transitions between functional states. Numerous studies have shown that changes in protein levels lag real-time T-cell transitions. However, analysis at the single-cell transcriptional level can determine the differences. FISH-Flow is a powerful tool with which to study the functional states of T-cell subsets and to identify the gene expression profiles of antigen-specific T cells during disease progression. Advances in instrumentation, fluorophores, and FISH methodologies will broaden and deepen the use of FISH-Flow, changing the immunological field by allowing determination of functional immune signatures at the mRNA level and the development of new diagnostic tools.
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Richard Pine
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
62
|
Wahid R, Fresnay S, Levine MM, Sztein MB. Immunization with Ty21a live oral typhoid vaccine elicits crossreactive multifunctional CD8+ T-cell responses against Salmonella enterica serovar Typhi, S. Paratyphi A, and S. Paratyphi B in humans. Mucosal Immunol 2015; 8:1349-59. [PMID: 25872480 PMCID: PMC4607552 DOI: 10.1038/mi.2015.24] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/06/2015] [Indexed: 02/04/2023]
Abstract
Previously we have extensively characterized Salmonella enterica serovar Typhi (S. Typhi)-specific cell-mediated immune (CMI) responses in volunteers orally immunized with the licensed Ty21a typhoid vaccine. In this study we measured Salmonella-specific multifunctional (MF) CD8+ T-cell responses to further investigate whether Ty21a elicits crossreactive CMI against S. Paratyphi A and S. Paratyphi B that also cause enteric fever. Ty21a-elicited crossreactive CMI responses against all three Salmonella serotypes were predominantly observed in CD8+ T effector/memory (T(EM)) and, to a lesser extent, in CD8+CD45RA+ T(EM) (T(EMRA)) subsets. These CD8+ T-cell responses were largely mediated by MF cells coproducing interferon-γ and macrophage inflammatory protein-1β and expressing CD107a with or without tumor necrosis factor-α. Significant proportions of Salmonella-specific MF cells expressed the gut-homing molecule integrin α4β7. In most subjects, similar MF responses were observed to S. Typhi and S. Paratyphi B, but not to S. Paratyphi A. These results suggest that Ty21a elicits MF CMI responses against Salmonella that could be critical in clearing the infection. Moreover, because S. Paratyphi A is a major public concern and Ty21a was shown in field studies not to afford cross-protection to S. Paratyphi A, these results will be important in developing a S. Typhi/S. Paratyphi A bivalent vaccine against enteric fevers.
Collapse
Affiliation(s)
- Rezwanul Wahid
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Fresnay
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myron M. Levine
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcelo B. Sztein
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
63
|
Seshadri C, Lin L, Scriba TJ, Peterson G, Freidrich D, Frahm N, DeRosa SC, Moody DB, Prandi J, Gilleron M, Mahomed H, Jiang W, Finak G, Hanekom WA, Gottardo R, McElrath MJ, Hawn TR. T Cell Responses against Mycobacterial Lipids and Proteins Are Poorly Correlated in South African Adolescents. THE JOURNAL OF IMMUNOLOGY 2015; 195:4595-603. [PMID: 26466957 DOI: 10.4049/jimmunol.1501285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Human T cells are activated by both peptide and nonpeptide Ags produced by Mycobacterium tuberculosis. T cells recognize cell wall lipids bound to CD1 molecules, but effector functions of CD1-reactive T cells have not been systematically assessed in M. tuberculosis-infected humans. It is also not known how these features correlate with T cell responses to secreted protein Ags. We developed a flow cytometric assay to profile CD1-restricted T cells ex vivo and assessed T cell responses to five cell wall lipid Ags in a cross-sectional study of 19 M. tuberculosis-infected and 22 M. tuberculosis-uninfected South African adolescents. We analyzed six T cell functions using a recently developed computational approach for flow cytometry data in high dimensions. We compared these data with T cell responses to five protein Ags in the same cohort. We show that CD1b-restricted T cells producing antimycobacterial cytokines IFN-γ and TNF-α are detectable ex vivo in CD4(+), CD8(+), and CD4(-)CD8(-) T cell subsets. Glucose monomycolate was immunodominant among lipid Ags tested, and polyfunctional CD4 T cells specific for this lipid simultaneously expressed CD40L, IFN-γ, IL-2, and TNF-α. Lipid-reactive CD4(+) T cells were detectable at frequencies of 0.001-0.01%, and this did not differ by M. tuberculosis infection status. Finally, CD4 T cell responses to lipids were poorly correlated with CD4 T cell responses to proteins (Spearman rank correlation -0.01; p = 0.95). These results highlight the functional diversity of CD1-restricted T cells circulating in peripheral blood as well as the complementary nature of T cell responses to mycobacterial lipids and proteins. Our approach enables further population-based studies of lipid-specific T cell responses during natural infection and vaccination.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109;
| | - Lin Lin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Thomas J Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa; Department of Pediatrics and Child Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Glenna Peterson
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109
| | - David Freidrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; Department of Laboratory Medicine, University of Washington, Seattle WA 98109
| | - D Branch Moody
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Jacques Prandi
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse 31077, France; and
| | - Martine Gilleron
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse 31077, France; and
| | - Hassan Mahomed
- Division of Community Health, Stellenbosch University, Stellanbosch 7602, South Africa
| | - Wenxin Jiang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Willem A Hanekom
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa; Department of Pediatrics and Child Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Thomas R Hawn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
64
|
Giménez E, Blanco-Lobo P, Muñoz-Cobo B, Solano C, Amat P, Pérez-Romero P, Navarro D. Role of cytomegalovirus (CMV)-specific polyfunctional CD8+ T-cells and antibodies neutralizing virus epithelial infection in the control of CMV infection in an allogeneic stem-cell transplantation setting. J Gen Virol 2015; 96:2822-2831. [DOI: 10.1099/vir.0.000203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Pilar Blanco-Lobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Muñoz-Cobo
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Paula Amat
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Pilar Pérez-Romero
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - David Navarro
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| |
Collapse
|
65
|
Dekeyser M, François H, Beaudreuil S, Durrbach A. Polyomavirus-Specific Cellular Immunity: From BK-Virus-Specific Cellular Immunity to BK-Virus-Associated Nephropathy? Front Immunol 2015; 6:307. [PMID: 26136745 PMCID: PMC4468917 DOI: 10.3389/fimmu.2015.00307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/29/2015] [Indexed: 12/29/2022] Open
Abstract
In renal transplantation, BK-virus (BKV)-associated nephropathy has emerged as a major complication, with a prevalence of 1-10% and graft loss in >50% of cases. BKV is a member of the polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BKV-specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BKV-associated nephropathy.
Collapse
Affiliation(s)
- Manon Dekeyser
- Nephrology Department, IFRNT, Bicêtre Hospital , Le Kremlin Bicêtre , France ; UMRS1197, INSERM , Villejuif , France ; University Paris South , Orsay , France
| | - Hélène François
- Nephrology Department, IFRNT, Bicêtre Hospital , Le Kremlin Bicêtre , France ; UMRS1197, INSERM , Villejuif , France ; University Paris South , Orsay , France
| | - Séverine Beaudreuil
- Nephrology Department, IFRNT, Bicêtre Hospital , Le Kremlin Bicêtre , France ; UMRS1197, INSERM , Villejuif , France ; University Paris South , Orsay , France
| | - Antoine Durrbach
- Nephrology Department, IFRNT, Bicêtre Hospital , Le Kremlin Bicêtre , France ; UMRS1197, INSERM , Villejuif , France ; University Paris South , Orsay , France
| |
Collapse
|
66
|
Giménez E, Muñoz-Cobo B, Solano C, Amat P, de la Cámara R, Nieto J, López J, Remigia MJ, Garcia-Noblejas A, Navarro D. Functional patterns of cytomegalovirus (CMV) pp65 and immediate early-1-specific CD8(+) T cells that are associated with protection from and control of CMV DNAemia after allogeneic stem cell transplantation. Transpl Infect Dis 2015; 17:361-70. [PMID: 25850900 DOI: 10.1111/tid.12391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/15/2014] [Accepted: 03/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The functional profile of cytomegalovirus (CMV)-specific CD8(+) T cells that associate with protection from and control of CMV DNAemia in allogeneic stem cell transplant (allo-SCT) recipients remains incompletely characterized. METHODS We enumerated pp65 and immediate early (IE)-1-specific CD8(+) T cells expressing interferon-gamma, tumor necrosis factor-alpha, and CD107a, by flow cytometry in 94 patients at days +30 and +60 after allo-SCT. RESULTS Fifty of 94 patients had CMV DNAemia within the first 100 days after transplant. CMV-specific CD8(+) T-cell responses (of any functional type) were more likely to be detected in patients who did not display CMV DNAemia than in those who did (P = 0.04). Qualitatively, no major differences in the functional signature of CMV-specific CD8(+) T cells were noted between patients who had or did not have CMV DNAemia. Patients displaying levels of polyfunctional CD8(+) T cells at day +30 >0.30 cell/μL had a lower risk of CMV DNAemia (positive predictive value 76%, and negative predictive value 43%). CONCLUSION The presence of polyfunctional CD8(+) T cells (either expressing CD107a or not) was associated with lower levels of CMV replication, and higher frequency of self-resolved episodes. The data reported further clarify the role of polyfunctional CD8(+) T cells in control of CMV DNAemia in allo-SCT recipients.
Collapse
Affiliation(s)
- E Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - B Muñoz-Cobo
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - C Solano
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - P Amat
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - R de la Cámara
- Hematology Service, Hospital de La Princesa, Madrid, Spain
| | - J Nieto
- Hospital Morales Meseguer, Murcia, Spain
| | - J López
- Hematology Service, Hospital Ramón y Cajal, Madrid, Spain
| | - M J Remigia
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | | | - D Navarro
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
67
|
Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells. PLoS One 2015; 10:e0122560. [PMID: 25822536 PMCID: PMC4378938 DOI: 10.1371/journal.pone.0122560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/22/2015] [Indexed: 01/13/2023] Open
Abstract
Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis—Rv1813, Rv2660c, Ag85B, Rv2623, and HspX—were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6′-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants preclinical evaluation in animal models of latent infection and may boost BCG vaccination.
Collapse
|
68
|
Knudsen ML, Ljungberg K, Tatoud R, Weber J, Esteban M, Liljeström P. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA) or with HIV gp140 protein antigen. PLoS One 2015; 10:e0117042. [PMID: 25643354 PMCID: PMC4314072 DOI: 10.1371/journal.pone.0117042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP) vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA) and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF) adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.
Collapse
MESH Headings
- Alphavirus/genetics
- Animals
- Antibodies, Viral/immunology
- Chemistry, Pharmaceutical
- DNA, Recombinant/genetics
- DNA, Viral/genetics
- Female
- Gene Expression
- Genetic Vectors/genetics
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV-1/immunology
- Immunization, Secondary
- Immunoglobulin G/immunology
- Lipid A/chemistry
- Mice
- Mice, Inbred BALB C
- Replicon/genetics
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Maria L. Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MLK); (PL)
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Tatoud
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Jonathan Weber
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MLK); (PL)
| |
Collapse
|
69
|
Zehn D, Wherry EJ. Immune Memory and Exhaustion: Clinically Relevant Lessons from the LCMV Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:137-52. [PMID: 26324351 DOI: 10.1007/978-3-319-15774-0_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.
Collapse
Affiliation(s)
- D Zehn
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland,
| | | |
Collapse
|
70
|
T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat Rev Immunol 2014; 14:768-74. [PMID: 25257362 DOI: 10.1038/nri3740] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.
Collapse
|
71
|
Gabanti E, Bruno F, Fornara C, Bernuzzi S, Lilleri D, Gerna G. Polyfunctional Analysis of Human Cytomegalovirus (HCMV)-Specific CD4+ and CD8+ Memory T-Cells in HCMV-Seropositive Healthy Subjects Following Different Stimuli. J Clin Immunol 2014; 34:999-1008. [DOI: 10.1007/s10875-014-0093-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
72
|
Schub D, Janssen E, Leyking S, Sester U, Assmann G, Hennes P, Smola S, Vogt T, Rohrer T, Sester M, Schmidt T. Altered phenotype and functionality of varicella zoster virus-specific cellular immunity in individuals with active infection. J Infect Dis 2014; 211:600-12. [PMID: 25180236 DOI: 10.1093/infdis/jiu500] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) establishes lifelong persistence and may reactivate in individuals with impaired immune function. To investigate immunologic correlates of protection and VZV reactivation, we characterized specific immunity in 207 nonsymptomatic immunocompetent and 132 immunocompromised individuals in comparison with patients with acute herpes zoster. METHODS VZV-specific CD4 T cells were quantified flow cytometrically after stimulation and characterized for expression of interferon-γ, interleukin 2, and tumor necrosis factor α and surface markers for differentiation (CD127) and anergy (cytotoxic T lymphocyte antigen 4 [CTLA-4] and programmed death [PD]-1). Immunoglobulin G and A levels were quantified using an enzyme-linked immunosorbent assay. RESULTS In healthy individuals, VZV-specific antibody and T-cell levels were age dependent, with the highest median VZV-specific CD4 T-cell frequencies of 0.108% (interquartile range, 0.121%) during adolescence. VZV-specific T-cell profiles were multifunctional with predominant expression of all 3 cytokines, CD127 positivity, and low expression of CTLA-4 and PD-1. Nonsymptomatic immunocompromised patients had similar VZV-specific immunologic properties except for lower T-cell frequencies (P<.001) and restricted cytokine expression. In contrast, significantly elevated antibody- and VZV-specific CD4 T-cell levels were found in patients with zoster. Their specific T cells showed a shift in cytokine expression toward interferon γ single positivity, an increase in CTLA-4 and PD-1, and a decrease in CD127 expression (all P<.001). This phenotype normalized after resolution of symptoms. CONCLUSIONS VZV-specific CD4-T cells in patients with zoster bear typical features of anergy. This phenotype is reversible and may serve as adjunct tool for monitoring VZV reactivations in high-risk patients.
Collapse
Affiliation(s)
- David Schub
- Department of Transplant and Infection Immunology
| | | | | | | | | | | | - Sigrun Smola
- Institute of Virology, Saarland University, Homburg, Germany
| | | | | | | | - Tina Schmidt
- Department of Transplant and Infection Immunology
| |
Collapse
|
73
|
Gabanti E, Bruno F, Lilleri D, Fornara C, Zelini P, Cane I, Migotto C, Sarchi E, Furione M, Gerna G. Human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells are both required for prevention of HCMV disease in seropositive solid-organ transplant recipients. PLoS One 2014; 9:e106044. [PMID: 25166270 PMCID: PMC4148399 DOI: 10.1371/journal.pone.0106044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/27/2014] [Indexed: 11/18/2022] Open
Abstract
In solid-organ transplant recipients (SOTR) the protective role of human cytomegalovirus (HCMV)-specific CD4+, CD8+ and γδ T-cells vs. HCMV reactivation requires better definition. The aim of this study was to investigate the relevant role of HCMV-specific CD4+, CD8+ and γδ T-cells in different clinical presentations during the post-transplant period. Thirty-nine SOTR underwent virologic and immunologic follow-up for about 1 year after transplantation. Viral load was determined by real-time PCR, while immunologic monitoring was performed by measuring HCMV-specific CD4+ and CD8+ T cells (following stimulation with autologous HCMV-infected dendritic cells) and γδ T-cells by flow cytometry. Seven patients had no infection and 14 had a controlled infection, while both groups maintained CD4+ T-cell numbers above the established cut-off (0.4 cell/µL blood). Of the remaining patients, 9 controlled the infection temporarily in the presence of HCMV-specific CD8+ only, until CD4+ T-cell appearance; while 9 had to be treated preemptively due to a viral load greater than the established cut-off (3×10(5) DNA copies/mL blood) in the absence of specific CD4+ T-cells. Polyfunctional CD8+ T-cells as well as Vδ2- γδ T-cells were not associated with control of infection. In conclusion, in the absence of HCMV-specific CD4+ T-cells, no long-term protection is conferred to SOTR by either HCMV-specific CD8+ T-cells alone or Vδ2- γδ T-cell expansion.
Collapse
Affiliation(s)
- Elisa Gabanti
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Bruno
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fornara
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Cane
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Clara Migotto
- Divisione di Nefrologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eleonora Sarchi
- Divisione di Cardiochirurgia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- S. S. Virologia Molecolare, S. C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Gerna
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- * E-mail:
| |
Collapse
|
74
|
Kinetic and phenotypic analysis of CD8+ T cell responses after priming with alphavirus replicons and homologous or heterologous booster immunizations. J Virol 2014; 88:12438-51. [PMID: 25122792 DOI: 10.1128/jvi.02223-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Alphavirus replicons are potent inducers of CD8(+) T cell responses and thus constitute an attractive vaccine vector platform for developing novel vaccines. However, the kinetics and memory phenotype of CD8(+) T cell responses induced by alphavirus replicons are not well characterized. Furthermore, little is known how priming with alphavirus replicons affects booster immune responses induced by other vaccine modalities. We demonstrate here that a single immunization with an alphavirus replicon, administered as viral particles or naked DNA, induced an antigen-specific CD8(+) T cell response that had a sharp peak, followed by a rapid contraction. Administering a homologous boost before contraction had occurred did not further increase the response. In contrast, boosting after contraction when CD8(+) T cells had obtained a memory phenotype (based on CD127/CD62L expression), resulted in maintenance of CD8(+) T cells with a high recall capacity (based on CD27/CD43 expression). Increasing the dose of replicon particles promoted T effector memory (Tem) and inhibited T central memory development. Moreover, infection with a replicating alphavirus induced a similar distribution of CD8(+) T cells as the replicon vector. Lastly, the distribution of T cell subpopulations induced by a DNA-launched alphavirus replicon could be altered by heterologous boosts. For instance, boosting with a poxvirus vector (MVA) favored expansion of the Tem compartment. In summary, we have characterized the antigen-specific CD8(+) T cell response induced by alphavirus replicon vectors and demonstrated how it can be altered by homologous and heterologous boost immunizations. IMPORTANCE Alphavirus replicons are promising vaccine candidates against a number of diseases and are by themselves developed as vaccines against, for example, Chikungunya virus infection. Replicons are also considered to be used for priming, followed by booster immunization using different vaccine modalities. In order to rationally design prime-boost immunization schedules with these vectors, characterization of the magnitude and phenotype of CD8(+) T cell responses induced by alphavirus replicons is needed. Here, we demonstrate how factors such as timing and dose affect the phenotypes of memory T cell populations induced by immunization with alphavirus replicons. These findings are important for designing future clinical trials with alphaviruses, since they can be used to tailor vaccination regimens in order to induce a CD8(+) T cell response that is optimal for control and/or clearance of a specific pathogen.
Collapse
|
75
|
Chen G, Gupta R, Petrik S, Laiko M, Leatherman JM, Asquith JM, Daphtary MM, Garrett-Mayer E, Davidson NE, Hirt K, Berg M, Uram JN, Dauses T, Fetting J, Duus EM, Atay-Rosenthal S, Ye X, Wolff AC, Stearns V, Jaffee EM, Emens LA. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol Res 2014; 2:949-61. [PMID: 25116755 DOI: 10.1158/2326-6066.cir-14-0058] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor vaccines are bioactive, but limited by disease burden and immune tolerance. Cyclophosphamide augments vaccine activity in tolerant neu mice and in patients with metastatic breast cancer. HER2-specific monoclonal antibodies (mAb) enhance vaccine activity in neu mice. We hypothesized that cyclophosphamide-modulated vaccination with HER2-specific mAb safely induces relevant HER2-specific immunity in neu mice and patients with HER2+ metastatic breast cancer. Adding both cyclophosphamide and the HER2-specific mAb 7.16.4 to vaccination maximized HER2-specific CD8+ T-cell immunity and tumor-free survival in neu transgenic mice. We, therefore, conducted a single-arm feasibility study of cyclophosphamide, an allogeneic HER2+ GM-CSF-secreting breast tumor vaccine, and weekly trastuzumab in 20 patients with HER2+ metastatic breast cancer. Primary clinical trial objectives were safety and clinical benefit, in which clinical benefit represents complete response + partial response + stable disease. Secondary study objectives were to assess HER2-specific T-cell responses by delayed type hypersensitivity (DTH) and intracellular cytokine staining. Patients received three monthly vaccinations, with a boost 6 to 8 months from trial entry. This combination immunotherapy was safe, with clinical benefit rates at 6 months and 1 year of 55% [95% confidence interval (CI), 32%-77%; P = 0.013] and 40% (95% CI, 19%-64%), respectively. Median progression-free survival and overall survival durations were 7 months (95% CI, 4-16) and 42 months (95% CI, 22-70), respectively. Increased HER2-specific DTH developed in 7 of 20 patients [of whom 4 had clinical benefit (95% CI, 18-90)], with a trend toward longer progression-free survival and overall survival in DTH responders. Polyfunctional HER2-specific CD8+ T cells progressively expanded across vaccination cycles. Further investigation of cyclophosphamide-modulated vaccination with trastuzumab is warranted.
Collapse
Affiliation(s)
- Gang Chen
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richa Gupta
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Silvia Petrik
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marina Laiko
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James M Leatherman
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin M Asquith
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maithili M Daphtary
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Nancy E Davidson
- University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, Pennsylvania
| | - Kellie Hirt
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maureen Berg
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer N Uram
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tianna Dauses
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Fetting
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Duus
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saadet Atay-Rosenthal
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antonio C Wolff
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leisha A Emens
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
76
|
Yi B, Rykova M, Feuerecker M, Jäger B, Ladinig C, Basner M, Hörl M, Matzel S, Kaufmann I, Strewe C, Nichiporuk I, Vassilieva G, Rinas K, Baatout S, Schelling G, Thiel M, Dinges DF, Morukov B, Choukèr A. 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype. Brain Behav Immun 2014; 40:203-10. [PMID: 24704568 DOI: 10.1016/j.bbi.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023] Open
Abstract
During interplanetary exploration, chronic stress caused by long term isolation and confinement in the spacecraft is one of the major concerns of physical and psychological health of space travelers. And for human on Earth, more and more people live in an isolated condition, which has become a common social problem in modern western society. Collective evidences have indicated prolonged chronic stress could bring big influence to human immune function, which may lead to a variety of health problems. However, to what extent long-term isolation can affect the immune system still remains largely unknow. A simulated 520-d Mars mission provided an extraordinary chance to study the effect of prolonged isolation. Six healthy males participated in this mission and their active neuroendocrine and immune conditions were studied with saliva and blood samples from all participants on chosen time points during the isolation period. As a typical neuroendocrine parameter, stress hormone cortisol was measured in the morning saliva samples. Immune phenotype changes were monitored through peripheral leukocyte phenotype analysis. Using an ex vivo viral infection simulation assay we assessed the immune response changes characterized by the ability to produce representative endogenous pro-inflammatory cytokines. The results of this study revealed elevated cortisol levels, increased lymphocyte amount and heightened immune responses, suggesting that prolonged isolation acting as chronic stressors are able to trigger leukocyte phenotype changes and poorly controlled immune responses.
Collapse
Affiliation(s)
- B Yi
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - M Rykova
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - M Feuerecker
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - B Jäger
- Institute of Virology (Max von Pettenkofer-Institut), University of Munich, Munich, Germany
| | - C Ladinig
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - M Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Hörl
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - S Matzel
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - I Kaufmann
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - C Strewe
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - I Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - G Vassilieva
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - K Rinas
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - S Baatout
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, Mol, Belgium
| | - G Schelling
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany
| | - M Thiel
- Clinic of Anaesthesiology and Intensive Care, Klinikum Mannheim, University of Mannheim, Mannheim, Germany
| | - D F Dinges
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - B Morukov
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - A Choukèr
- Hospital of the University of Munich (LMU), Department of Anesthesiology, Research Group Stress & Immunity, Marchioninistrasse 15, 81377 Munich, Germany.
| |
Collapse
|
77
|
Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J Virol 2014; 88:10894-908. [PMID: 25008941 DOI: 10.1128/jvi.01477-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED CD8(+) T cells specific for pp65, IE1, and IE2 are present at high frequencies in human cytomegalovirus (HCMV)-seropositive individuals, and these have been shown to have phenotypes associated with terminal differentiation, as well as both cytokine and proliferative dysfunctions, especially in the elderly. However, more recently, T cell responses to many other HCMV proteins have been described, but little is known about their phenotypes and functions. Consequently, in this study, we chose to determine the diversity of HCMV-specific CD8(+) T cell responses to the products of 11 HCMV open reading frames (ORFs) in a cohort of donors aged 20 to 80 years old as well as the ability of the T cells to secrete gamma interferon (IFN-γ). Finally, we also tested their functional antiviral capacity using a novel viral dissemination assay. We identified substantial CD8(+) T cell responses by IFN-γ enzyme-linked immunospot (ELISPOT) assays to all 11 of these HCMV proteins, and across the cohort, individuals displayed a range of responses, from tightly focused to highly diverse, which were stable over time. CD8(+) T cell responses to the HCMV ORFs were highly differentiated and predominantly CD45RA(+), CD57(+), and CD28(-), across the cohort. These highly differentiated cells had the ability to inhibit viral spread even following direct ex vivo isolation. Taken together, our data argue that HCMV-specific CD8(+) T cells have effective antiviral activity irrespective of the viral protein recognized across the whole cohort and despite viral immune evasion. IMPORTANCE Human cytomegalovirus (HCMV) is normally carried without clinical symptoms and is widely prevalent in the population; however, it often causes severe clinical disease in individuals with compromised immune responses. HCMV is never cleared after primary infection but persists in the host for life. In HCMV carriers, the immune response to HCMV includes large numbers of virus-specific immune cells, and the virus has evolved many mechanisms to evade the immune response. While this immune response seems to protect healthy people from subsequent disease, the virus is never eliminated. It has been suggested that this continuous surveillance by the immune system may have deleterious effects in later life. The study presented in this paper examined immune responses from a cohort of donors and shows that these immune cells are effective at controlling the virus and can overcome the virus' lytic cycle immune evasion mechanisms.
Collapse
|
78
|
Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol 2014; 5:180. [PMID: 24795723 PMCID: PMC4001014 DOI: 10.3389/fimmu.2014.00180] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care problem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb, but the majority of infected individuals develop long-lived protective immunity, which controls and contains Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions. On the other hand, many aspects remain unsolved in understanding why some individuals are protected from Mtb infection while others go on to develop disease. Several studies have demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals. There are many subsets of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets co-operate or interfere with each other to control infection; the dominant subset may differ between active and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associated the presence of this particular functional profile as marker of TB disease activity. Although the role of CD8 T cells in TB is less clear than CD4 T cells, they are generally considered to contribute to optimal immunity and protection. CD8 T cells possess a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T cells. The interest in studying CD8 T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8+ T cells in Mtb infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional profile termed “multifunctional,” can be a better marker of protection in TB than CD4+ T cells. Their effector mechanisms could contribute to control Mtb infection, as upon activation, CD8 T cells release cytokines or cytotoxic molecules, which cause apoptosis of target cells. Taken together, the balance of the immune response in the control of infection and possibly bacterial eradication is important in understanding whether the host immune response will be appropriate in contrasting the infection or not, and, consequently, the inability of the immune response, will determine the dissemination and the transmission of bacilli to new subjects. In conclusion, the recent highlights on the role of different functional signatures of T cell subsets in the immune response toward Mtb infection will be discerned in this review, in order to summarize what is known about the immune response in human TB. In particular, we will discuss the role of CD4 and CD8 T cells in contrasting the advance of the intracellular pathogen in already infected people or the progression to active disease in subjects with latent infection. All the information will be aimed at increasing the knowledge of this complex disease in order to improve diagnosis, prognosis, drug treatment, and vaccination.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Giuliana Guggino
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Marco Pio La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Diana Di Liberto
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| |
Collapse
|
79
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
80
|
Day CL, Moshi ND, Abrahams DA, van Rooyen M, O'rie T, de Kock M, Hanekom WA. Patients with tuberculosis disease have Mycobacterium tuberculosis-specific CD8 T cells with a pro-apoptotic phenotype and impaired proliferative capacity, which is not restored following treatment. PLoS One 2014; 9:e94949. [PMID: 24740417 PMCID: PMC3989259 DOI: 10.1371/journal.pone.0094949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/21/2014] [Indexed: 11/18/2022] Open
Abstract
CD8 T cells play a critical role in control of chronic viral infections; however, the role of these cells in containing persistent bacterial infections, such as those caused by Mycobacterium tuberculosis (Mtb), is less clear. We assessed the phenotype and functional capacity of CD8 T cells specific for the immunodominant Mtb antigens CFP-10 and ESAT-6, in patients with pulmonary tuberculosis (TB) disease, before and after treatment, and in healthy persons with latent Mtb infection (LTBI). In patients with TB disease, CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells had an activated, pro-apoptotic phenotype, with lower Bcl-2 and CD127 expression, and higher Ki67, CD57, and CD95 expression, than in LTBI. When CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells were detectable, expression of distinct combinations of these markers was highly sensitive and specific for differentiating TB disease from LTBI. Successful treatment of disease resulted in changes of these markers, but not in restoration of CFP-10/ESAT-6-specific CD8 or CD4 memory T cell proliferative capacity. These data suggest that high mycobacterial load in active TB disease is associated with activated, short-lived CFP-10/ESAT-6-specific CD8 T cells with impaired functional capacity that is not restored following treatment. By contrast, LTBI is associated with preservation of long-lived CFP-10/ESAT-6-specific memory CD8 T cells that maintain high Bcl-2 expression and which may readily proliferate.
Collapse
Affiliation(s)
- Cheryl L. Day
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Noella D. Moshi
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Deborah A. Abrahams
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Terrence O'rie
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
81
|
Romano E, Michielin O, Voelter V, Laurent J, Bichat H, Stravodimou A, Romero P, Speiser DE, Triebel F, Leyvraz S, Harari A. MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial. J Transl Med 2014; 12:97. [PMID: 24726012 PMCID: PMC4021605 DOI: 10.1186/1479-5876-12-97] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 12/03/2022] Open
Abstract
Background Immunotherapy offers a promising novel approach for the treatment of cancer and both adoptive T-cell transfer and immune modulation lead to regression of advanced melanoma. However, the potential synergy between these two strategies remains unclear. Methods We investigated in 12 patients with advanced stage IV melanoma the effect of multiple MART-1 analog peptide vaccinations with (n = 6) or without (n = 6) IMP321 (LAG-3Ig fusion protein) as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs at day (D) 0 (Trial registration No: NCT00324623). All patients were selected on the basis of ex vivo detectable MART-1-specific CD8 T-cell responses and immunized at D0, 8, 15, 22, 28, 52, and 74 post-reinfusion. Results After immunization, a significant expansion of MART-1-specific CD8 T cells was measured in 83% (n = 5/6) and 17% (n = 1/6) of patients from the IMP321 and control groups, respectively (P < 0.02). Compared to the control group, the mean fold increase of MART-1-specific CD8 T cells in the IMP321 group was respectively >2-, >4- and >6-fold higher at D15, D30 and D60 (P < 0.02). Long-lasting MART-1-specific CD8 T-cell responses were significantly associated with IMP321 (P < 0.02). At the peak of the response, MART-1-specific CD8 T cells contained higher proportions of effector (CCR7− CD45RA+/−) cells in the IMP321 group (P < 0.02) and showed no sign of exhaustion (i.e. were mostly PD1−CD160−TIM3−LAG3−2B4+/−). Moreover, IMP321 was associated with a significantly reduced expansion of regulatory T cells (P < 0.04); consistently, we observed a negative correlation between the relative expansion of MART-1-specific CD8 T cells and of regulatory T cells. Finally, although there were no confirmed responses as per RECIST criteria, a transient, 30-day partial response was observed in a patient from the IMP321 group. Conclusions Vaccination with IMP321 as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs induced more robust and durable cellular antitumor immune responses, supporting further development of IMP321 as an adjuvant for future immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Serge Leyvraz
- Department of Oncology, Service of Medical Oncology, CHUV BH-06 1011 Lausanne, Switzerland.
| | | |
Collapse
|
82
|
Wan Y, Ren X, Ren Y, Wang J, Hu Z, Xie X, Xu J. As a genetic adjuvant, CTA improves the immunogenicity of DNA vaccines in an ADP-ribosyltransferase activity- and IL-6-dependent manner. Vaccine 2014; 32:2173-80. [DOI: 10.1016/j.vaccine.2014.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/30/2023]
|
83
|
Sun L, Zhang Y, Zhao B, Deng M, Liu J, Li X, Hou J, Gui M, Zhang S, Li X, Gao GF, Meng S. A new unconventional HLA-A2-restricted epitope from HBV core protein elicits antiviral cytotoxic T lymphocytes. Protein Cell 2014; 5:317-27. [PMID: 24659387 PMCID: PMC3978166 DOI: 10.1007/s13238-014-0041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 01/02/2023] Open
Abstract
Cytotoxic T cells (CTLs) play a key role in the control of Hepatitis B virus (HBV) infection and viral clearance. However, most of identified CTL epitopes are derived from HBV of genotypes A and D, and few have been defined in virus of genotypes B and C which are more prevalent in Asia. As HBV core protein (HBc) is the most conservative and immunogenic component, in this study we used an overlapping 9-mer peptide pool covering HBc to screen and identify specific CTL epitopes. An unconventional HLA-A2-restricted epitope HBc141-149 was discovered and structurally characterized by crystallization analysis. The immunogenicity and anti-HBV activity were further determined in HBV and HLA-A2 transgenic mice. Finally, we show that mutations in HBc141-149 epitope are associated with viral parameters and disease progression in HBV infected patients. Our data therefore provide insights into the structure characteristics of this unconventional epitope binding to MHC-I molecules, as well as epitope specific CTL activity that orchestrate T cell response and immune evasion in HBV infected patients.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Yu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Bao Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Mingming Gui
- Xinjiang Agricultural University, Ürümqi, 830052 China
| | - Shuijun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Xiaodong Li
- Beijing Institute of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039 China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| |
Collapse
|
84
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
85
|
Xu H, Perez SD, Cheeseman J, Mehta AK, Kirk AD. The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation. Am J Transplant 2014; 14:319-32. [PMID: 24472192 PMCID: PMC3906634 DOI: 10.1111/ajt.12574] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 01/25/2023]
Abstract
Tacrolimus impairs allo- and viral-specific T cell responses. Belatacept, a costimulation-based alternative to tacrolimus, has emerged with a paradoxical picture of less complete control of alloimmunity with concomitant impaired viral immunity limited to viral-naïve patients. To reconcile these signatures, bulk population and purified memory and naïve lymphocytes from cytomegalovirus (CMV)-seropositive (n=10) and CMV-seronegative (n=10) volunteers were studied using flow cytometry, interrogating proliferation (carboxyfluorescein succinimidyl ester dilution) and function (intracellular cytokine staining) in response to alloantigens or CMV-pp-65 peptides. As anticipated, T cells from CMV-experienced, but not naïve, individuals responded to pp-65 with a small percentage of their repertoire (<2.5%) consisting predominantly of mature, polyfunctional (expressing interferon gamma, tumor necrosis factor alpha and IL-2) T effector memory cells. Both CMV naïve and experienced individuals responded similarly to alloantigen with a substantially larger percentage of the repertoire (up to 48.2%) containing proportionately fewer polyfunctional cells. Tacrolimus completely inhibited responses of CMV- and allo-specific T cells regardless of their maturation. However, belatacept's effects were decreasingly evident in increasingly matured cells, with minimal effect on viral-specific triple cytokine producers and CD28-negative allo-specific cells. These data indicate that belatacept's immunosuppressive effect, unlike tacrolimus's, wanes on progressively developed effector responses, and may explain the observed clinical effects of belatacept.
Collapse
Affiliation(s)
- H Xu
- Emory Transplant Center, Emory University, Atlanta, GA
| | | | | | | | | |
Collapse
|
86
|
de Martino M, Galli L, Chiappini E. Reflections on the immunology of tuberculosis: will we ever unravel the skein? BMC Infect Dis 2014; 14 Suppl 1:S1. [PMID: 24564297 PMCID: PMC4015689 DOI: 10.1186/1471-2334-14-s1-s1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many and large dumps exist in our knowledge about Mycobacterium tuberculosis infection and disease in infants and children. We still do not understand why some individuals do acquire and others do not acquire the infection in the presence of the same risk factors. We do not understand why some individuals convert from latent to active tuberculosis and why other individuals convert from active to inactive tuberculosis even without treatment. As a matter of fact the immune system mounts a bouncing, robust and polyedral defence against Mycobacterium tuberculosis, but the bacillus is so much artful and dextrous that it has ahead from this immunological fierce accoutrements. Mycobacterium tuberculosis survival, multiplication, and transmission are largely favoured by the immune mechanisms. The granuloma itself is more bacillus- than host-protective. These abilities make Mycobacterium tuberculosis one of more successful human pathogens, but dumps in our knowledge and the counterproductive immunity hinder development of new diagnostics, therapies and vaccines. This occurs in front of an infection which engages one third of the world population and a disease which kills in a year about 1.5 million individuals worldwide. Understanding mechanisms and meaning of immune response in tuberculosis marks out the foundations of strategies with a view to prepare effective vaccines and reliable diagnostic tools as well as to build up therapeutic weapons. To gain these objectives is vital and urgent considering that tuberculosis is a common cause of morbidity and is a leading cause of death.
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW Major advances have been made in the delineation of HIV-specific immune response and in the mechanisms of virus escape. The kinetics of the immunological and virological events occurring during primary HIV infection indicate that the establishment of the latent HIV reservoir, the major obstacle to HIV eradication likely occurs during the very early stages of primary infection, that is, the 'eclipse phase', prior to the development of the HIV-specific immune response which has limited efficacy in the control of the early events of infection. Therefore, the window of opportunity to develop effective interventions either to clear HIV during primary infection or to prevent rebound of HIV in patients successfully treated who stop antiretroviral therapy is very narrow. RECENT FINDINGS Genetic factors most strongly associated with nonprogressive infection are human leukocyte antigen (HLA) class I alleles and particularly HLA-B5701. CD4 and CD8 T-cell responses with polyfunctional profile are associated with nonprogressive infection. Broader neutralizing antibodies are detected 3-4 years after infection, generated only in 20% of individuals but show no efficacy in the control of HIV replication. SUMMARY In the present review, we shall discuss the different components of the HIV-specific immune response elicited by the infection, the kinetics of these responses during primary infection and the changes following transition to the chronic phase of infection, and the functional profile of 'effective' versus 'noneffective' HIV-specific immune responses.
Collapse
|
88
|
Kutscher S, Dembek CJ, Deckert S, Russo C, Körber N, Bogner JR, Geisler F, Umgelter A, Neuenhahn M, Albrecht J, Cosma A, Protzer U, Bauer T. Overnight resting of PBMC changes functional signatures of antigen specific T- cell responses: impact for immune monitoring within clinical trials. PLoS One 2013; 8:e76215. [PMID: 24146841 PMCID: PMC3795753 DOI: 10.1371/journal.pone.0076215] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Polyfunctional CD4 or CD8 T cells are proposed to represent a correlate of immune control for persistent viruses as well as for vaccine mediated protection against infection. A well-suited methodology to study complex functional phenotypes of antiviral T cells is the combined staining of intracellular cytokines and phenotypic marker expression using polychromatic flow cytometry. In this study we analyzed the effect of an overnight resting period at 37°C on the quantity and functionality of HIV-1, EBV, CMV, HBV and HCV specific CD4 and CD8 T-cell responses in a cohort of 21 individuals. We quantified total antigen specific T cells by multimer staining and used 10-color intracellular cytokine staining (ICS) to determine IFNγ, TNFα, IL2 and MIP1β production. After an overnight resting significantly higher numbers of functionally active T cells were detectable by ICS for all tested antigen specificities, whereas the total number of antigen specific T cells determined by multimer staining remained unchanged. Overnight resting shifted the quality of T-cell responses towards polyfunctionality and increased antigen sensitivity of T cells. Our data suggest that the observed effect is mediated by T cells rather than by antigen presenting cells. We conclude that overnight resting of PBMC prior to ex vivo analysis of antiviral T-cell responses represents an efficient method to increase sensitivity of ICS-based methods and has a prominent impact on the functional phenotype of T cells.
Collapse
Affiliation(s)
- Sarah Kutscher
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
| | - Claudia J. Dembek
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Simone Deckert
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
| | - Carolina Russo
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Nina Körber
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Johannes R. Bogner
- Department of Infectious Diseases/Med. Klinik und Poliklinik, University Hospital of Munich/Ludwig Maximilians Universität, Munich, Germany
| | - Fabian Geisler
- Department of Internal Medicine II, Klinikum rechts der Isar/Technische Universität München, Munich, Germany
| | - Andreas Umgelter
- Department of Internal Medicine II, Klinikum rechts der Isar/Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Julia Albrecht
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | | | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Cooperation Group ‘Immune Monitoring’, Helmholtz Zentrum München, Munich, Germany
- * E-mail:
| |
Collapse
|
89
|
Chauvat A, Benhamouda N, Gey A, Lemoine FM, Paulie S, Carrat F, Gougeon ML, Rozenberg F, Krivine A, Cherai M, Lehmann P, Quintin-Colonna F, Launay O, Tartour E. Clinical validation of IFNγ/IL-10 and IFNγ/IL-2 FluoroSpot assays for the detection of Tr1 T cells and influenza vaccine monitoring in humans. Hum Vaccin Immunother 2013; 10:104-13. [PMID: 24084262 DOI: 10.4161/hv.26593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The type of T cell polarization and simultaneous production of multiple cytokines have been correlated with vaccine efficacy. ELISpot is a T cell detection technique optimized for the measurement of a secreted cytokine at the single cell level. The FluoroSpot assay differs from ELISpot by the use of multiple fluorescent-labeled anticytokine detection antibodies, allowing optimal measurement of multiple cytokines. In the present study, we show that an IFNγ/IL-10 FluoroSpot assay is more sensitive than flow cytometry to detect Tr1 regulatory T cells, an immunosuppressive T cell population characterized by the production of IL-10 and IFNγ. As many tolerogenic vaccines are designed to induce these Tr1 cells, this FluoroSpot test could represent a standard method for the detection of these cells in the future. The use of an IFNγ/IL-2 FluoroSpot assay during influenza vaccine monitoring showed that the influenza-specific IL-2-producing T-cell response was the dominant response both before and after vaccine administration. This study therefore questions the rationale of using the single-color IFNγ ELISpot as the standard technique to monitor vaccine-specific T-cell response. Using this same test, a trend was also observed between baseline levels of IFNγ T cell response and T cell vaccine response. In addition, a lower IFNγ+IL-2+ T-cell response after vaccine was observed in the group of patients treated with TNFα inhibitors (P=0.08). This study therefore supports the use of the FluoroSpot assay due to its robustness, versatility and the complementary information that it provides compared with ELISpot or flow cytometry to monitor vaccine-specific T-cell responses.
Collapse
Affiliation(s)
- Anne Chauvat
- INSERM U970 ; Université Paris Descartes Sorbonne Paris-Cité; Paris, France; Hôpital Européen Georges Pompidou; Service d'Immunologie Biologique; Paris, France; CTL-Europe GmbH; Bonn, Germany
| | - Nadine Benhamouda
- INSERM U970 ; Université Paris Descartes Sorbonne Paris-Cité; Paris, France; Hôpital Européen Georges Pompidou; Service d'Immunologie Biologique; Paris, France
| | - Alain Gey
- INSERM U970 ; Université Paris Descartes Sorbonne Paris-Cité; Paris, France; Hôpital Européen Georges Pompidou; Service d'Immunologie Biologique; Paris, France
| | - Francois M Lemoine
- Departement de Biothérapie; Centre d'Investigation Clinique de biothérapie 1001; Groupe Hospitalier Pitié-Salpêtrière et Univ Pierre et Marie Curie Paris; Paris, France
| | | | - Fabrice Carrat
- Epidemiology, Information System, Modeling; UMR-S 707; University Paris 6-UPMC; Paris, France; Inserm U707; Paris, France; Public Health Unit; Saint-Antoine Hospital; Paris, France
| | - Marie-Lise Gougeon
- Antiviral Immunity; Biotherapy and Vaccine Unit; Infection and Epidemiology Department; Institut Pasteur; Paris, France
| | - Flore Rozenberg
- Laboratoire de virologie; Hôpital Cochin; Assistance-Publique Hôpitaux de Paris (AP-HP); Paris, France
| | - Anne Krivine
- Laboratoire de virologie; Hôpital Cochin; Assistance-Publique Hôpitaux de Paris (AP-HP); Paris, France
| | - Mustapha Cherai
- Departement de Biothérapie; Centre d'Investigation Clinique de biothérapie 1001; Groupe Hospitalier Pitié-Salpêtrière et Univ Pierre et Marie Curie Paris; Paris, France
| | - Paul Lehmann
- Cellular Technology Limited; Shaker Heights, OH USA
| | | | - Odile Launay
- Université Paris Descartes; Paris, France; Inserm; CIC BT505; Paris, France; Hôpital Cochin; AP-HP CIC de Vaccinologie Cochin-Pasteur; Paris, France
| | - Eric Tartour
- INSERM U970 ; Université Paris Descartes Sorbonne Paris-Cité; Paris, France; Hôpital Européen Georges Pompidou; Service d'Immunologie Biologique; Paris, France; Université Paris Descartes; Paris, France; Inserm; CIC BT505; Paris, France
| |
Collapse
|
90
|
Öhrmalm L, Smedman C, Wong M, Broliden K, Tolfvenstam T, Norbeck O. Decreased functional T lymphocyte-mediated cytokine responses in patients with chemotherapy-induced neutropenia. J Intern Med 2013; 274:363-70. [PMID: 23789642 DOI: 10.1111/joim.12100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The degree of immunosuppression in patients with haematological malignancies treated with chemotherapy is routinely measured as number of circulating cells (preferable neutrophils) in peripheral blood. A parallel decline in the number of T cells is expected, but a possible alteration in their functionality has been less well explored. The ability of T cells to secrete more than one cytokine simultaneously is known to indicate protective immunity. The aim of this study was to determine whether the function of circulating T cells is altered in patients with chemotherapy-induced neutropenia. DESIGN, SETTING AND SUBJECTS In this cross-sectional study, we used the FluoroSpot assay to investigate the proportion of T cells secreting either interferon-γ or interleukin-2, or both cytokines simultaneously, after anti-CD3 stimulation. Peripheral blood mononuclear cells from 53 adult patients with chemotherapy-induced neutropenia and 20 healthy individuals were investigated. RESULTS There were significantly fewer T cells secreting interferon-γ in patients with neutropenia compared with healthy control subjects (P = 0.02), but the difference was greatest for dual cytokine-secreting T cells (P = 0.001). Furthermore, the amount of secreted cytokine per T cell appeared to be reduced in patients, compared with control subjects. CONCLUSION Our results suggest that the functionality of T cells is altered in patients with haematological malignancies with chemotherapy-induced neutropenia. In parallel with a decline in T cell count, this may further increase the risk of severe infections.
Collapse
Affiliation(s)
- L Öhrmalm
- Department of Medicine, Solna, Infectious Diseases Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
91
|
Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, Lazor-Blanchet C, Petruccioli E, Hanekom W, Goletti D, Bart PA, Nicod L, Pantaleo G, Harari A. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 2013; 43:1568-77. [PMID: 23456989 DOI: 10.1002/eji.201243262] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.
Collapse
Affiliation(s)
- Virginie Rozot
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Chen W, Huang NT, Oh B, Lam RHW, Fan R, Cornell TT, Shanley TP, Kurabayashi K, Fu J. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells. Adv Healthc Mater 2013; 2:965-975. [PMID: 23335389 DOI: 10.1002/adhm.201200378] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Indexed: 01/02/2023]
Abstract
An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this "bulk" assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined poly-dimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay ("AlphaLISA"), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples.
Collapse
Affiliation(s)
- Weiqiang Chen
- Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109 USA
| | - Nien-Tsu Huang
- Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109 USA
| | - Boram Oh
- Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109 USA
| | - Raymond H W Lam
- Department of Mechanical and Biomedical Engineering City University of Hong Kong, Hong Kong, China
| | - Rong Fan
- Department of Biomedical Engineering Yale University New Haven, CT 06511, USA
| | - Timothy T Cornell
- Department of Pediatrics and Communicable Diseases University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas P Shanley
- Department of Pediatrics and Communicable Diseases University of Michigan, Ann Arbor, MI 48109, USA
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109 USA
| | - Jianping Fu
- Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109 USA
| |
Collapse
|
93
|
Kaabinejadian S, Piazza PA, McMurtrey CP, Vernon SR, Cate SJ, Bardet W, Schafer FB, Jackson KW, Campbell DM, Buchli R, Rinaldo CR, Hildebrand WH. Identification of class I HLA T cell control epitopes for West Nile virus. PLoS One 2013; 8:e66298. [PMID: 23762485 PMCID: PMC3677933 DOI: 10.1371/journal.pone.0066298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.
Collapse
Affiliation(s)
- Saghar Kaabinejadian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Paolo A. Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Curtis P. McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stephen R. Vernon
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Steven J. Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Fredda B. Schafer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kenneth W. Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Diana M. Campbell
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Rico Buchli
- Pure Protein L.L.C., Oklahoma City, Oklahoma, United States of America
| | - Charles R. Rinaldo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Pure Protein L.L.C., Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
94
|
Rafik MM, Hosny AEDMS, Abdallah KO, Abbas AA, Abo Shady RA, Soliman DA, Nasr El-Din Rakha KM, Alfedawy SF. TH1 cytokine response to HCV peptides in Egyptian health care workers: a pilot study. Virol J 2013; 10:144. [PMID: 23663415 PMCID: PMC3655851 DOI: 10.1186/1743-422x-10-144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 05/03/2013] [Indexed: 12/24/2022] Open
Abstract
Our objective was to elucidate the effects of different HCV peptides on TH1 cytokine synthesis (interleukin 2(IL2), gamma interferon (INFγ) and tumor necrosis factor α (TNF α)), in a proliferative response in a high risk population of HCV seronegative aviremic Egyptian healthcare workers (HCW). We studied the TH1 cytokine response to different HCV peptides among 47 HCW with and without evidence of HCV infection. Participants were classified according to the proliferation index (PI) in a CFSE proliferation assay as an indicator of previous exposure to HCV. Cytokines were analyzed using Luminex xMAP technology. Results showed that positive PI HCW produced a higher IL2 in response to all HCV peptides except NS4, a higher IFNγ response to NS3 and NS4 and no difference in TNFα response when compared to the negative PI HCWs. When compared to chronic HCV HCW, positive PI HCW showed no difference in the IL2 response, a higher IFNγ response to NS4 and NS5 HCV peptides and a higher TNFα response to all peptides. In conclusion the magnitude and type of cytokines produced in HCV infection is critical in determining the outcome of infection. NS4 & NS5 HCV peptides induce a protective TH1 response in positive PI HCW.
Collapse
Affiliation(s)
- Mona M Rafik
- Ain Shams Faculty of Medicine Clinical Pathology Department, Abbassia square, Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Qualitative and quantitative analysis of adenovirus type 5 vector-induced memory CD8 T cells: not as bad as their reputation. J Virol 2013; 87:6283-95. [PMID: 23536658 DOI: 10.1128/jvi.00465-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that adenovirus (Ad)-primed CD8 T cells may display a distinct and partially exhausted phenotype. Given the practical implications of this claim, we decided to analyze in detail the quality of Ad-primed CD8 T cells by directly comparing these cells to CD8 T cells induced through infection with lymphocytic choriomeningitis virus (LCMV). We found that localized immunization with intermediate doses of Ad vector induces a moderate number of functional CD8 T cells which qualitatively match those found in LCMV-infected mice. The numbers of these cells may be efficiently increased by additional adenoviral boosting, and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad vaccination led to even higher numbers of memory cells. In this case, the vaccination led to the generation of a population of memory cells characterized by relatively low CD27 expression and high CD127 and killer cell lectin-like receptor subfamily G member 1 (KLRG1) expression. These memory CD8 T cells were capable of proliferating in response to viral challenge and protecting against infection with live virus. Furthermore, viral challenge was followed by sustained expansion of the memory CD8 T-cell population, and the generated memory cells did not appear to have been driven toward exhaustive differentiation. Based on these findings, we suggest that adenovirus-based prime-boost regimens (including Ad serotype 5 [Ad5] and Ad5-like vectors) represent an effective means to induce a substantially expanded, long-lived population of high-quality transgene-specific memory CD8 T cells.
Collapse
|
96
|
Costa C, Saldan A, Cavallo R. Evaluation of virus-specific cellular immune response in transplant patients. World J Virol 2012; 1:150-3. [PMID: 24175220 PMCID: PMC3782278 DOI: 10.5501/wjv.v1.i6.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 08/23/2012] [Accepted: 11/07/2012] [Indexed: 02/05/2023] Open
Abstract
Virus-specific immune responses have a major impact on the outcome of the infection. Viral agents that are characterized by latency, such as herpesviruses and polyomaviruses, require a continuous immune control to reduce the extent of viral reactivation, as viral clearance cannot be accomplished, independently from the anti-viral treatment. In transplant patients, morbidity and mortality related to viral infections are significantly increased. In fact, the key steps of activation of T-cells are major target for anti-rejection immunosuppressive therapy and anti-viral immune response may be altered when infected cells and cellular effectors of immune response coexist in a transplanted organ. The role of cellular immune response in controlling viral replication and the main methods employed for its evaluation will be discussed. In particular, the main features, including both advantages and limitations, of available assays, including intracellular cytokine staining, major histocompatibility complex - multimer-based assays, Elispot assay, and QuantiFERON test, will be described. The potential applications of these assays in the transplant context will be discussed, particularly in relation to cytomegalovirus and polyomavirus BK infection. The relevance of introducing viro-immunological monitoring, beside virological monitoring, in order to identify the risk profile for viral infections in the transplant patients will allows for define a patient-tailored clinical management, particular in terms of modulation of immunosuppressive therapy and anti-viral administration.
Collapse
Affiliation(s)
- Cristina Costa
- Cristina Costa, Alda Saldan, Rossana Cavallo, Virology Unit, University Hospital San Giovanni Battista di Torino, 10126 Turin, Italy
| | | | | |
Collapse
|
97
|
Duthie MS, Sampaio LH, Oliveira RM, Raman VS, O'Donnell J, Bailor HR, Ireton GC, Sousa ALM, Stefani MMA, Reed SG. Development and pre-clinical assessment of a 73 kD chimeric fusion protein as a defined sub-unit vaccine for leprosy. Vaccine 2012; 31:813-9. [PMID: 23228811 DOI: 10.1016/j.vaccine.2012.11.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 12/01/2022]
Abstract
Despite the advances toward the elimination of leprosy through widespread provision of multi-drug therapy to registered patients over the last 2 decades, new case detection rates have stabilized and leprosy remains endemic in a number of localized regions. A vaccine could overcome the inherent limitations of the drug treatment program by providing protection in individuals who are not already harboring the Mycobacterium leprae bacilli at the time of administration and effectively interrupt the transmission cycle over a wider timespan. In this report we present data validating the production of 73f, a chimeric fusion protein incorporating the M. leprae antigens ML2028, ML2346 and ML2044. The 73f protein was recognized by IgG in multibacillary (MB) leprosy patient sera and stimulated IFNγ production within whole blood assays of paucibacillary (PB) leprosy patient and healthy household contacts of MB patients (HHC). When formulated with a TLR4L-containing adjuvant (GLA-SE), 73f stimulated a strong and pluripotent Th1 response that inhibited M. leprae-induced inflammation in mice. We are using these data to develop new vaccine initiatives for the continued and long-term control of leprosy.
Collapse
|
98
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
99
|
Perez-Mazliah DE, Alvarez MG, Cooley G, Lococo BE, Bertocchi G, Petti M, Albareda MC, Armenti AH, Tarleton RL, Laucella SA, Viotti R. Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: a pilot study. J Antimicrob Chemother 2012; 68:424-37. [PMID: 23104493 DOI: 10.1093/jac/dks390] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Even though the use of combined drugs has been proved to be effective in other chronic infections, assessment of combined treatment of antiparasitic drugs in human Chagas' disease has not been performed. Herein, a pilot study was conducted to evaluate the tolerance and side effects of a sequential combined treatment of two antiparasitic drugs, allopurinol and benznidazole, in the chronic phase of Trypanosoma cruzi infection. PATIENTS AND METHODS Changes in total and T. cruzi-specific T and B cells were monitored during a median follow-up of 36 months. Allopurinol was administered for 3 months (600 mg/day) followed by 30 days of benznidazole (5 mg/kg/day) in 11 T. cruzi-infected subjects. RESULTS The combined sequential treatment of allopurinol and benznidazole was well tolerated. The levels of T. cruzi-specific antibodies significantly decreased after sequential combined treatment, as determined by conventional serology and by a multiplex assay using recombinant proteins. The frequency of T. cruzi-specific interferon-γ-producing T cells significantly increased after allopurinol treatment and decreased to background levels following benznidazole administration in a substantial proportion of subjects evaluated. The levels of total naive (CD45RA + CCR7 + CD62L+) CD4 + and CD8 + T cells were restored after allopurinol administration and maintained after completion of the combined drug protocol, along with a decrease in T cell activation in total peripheral CD4 + and CD8 + T cells. CONCLUSIONS This pilot study shows that the combination of allopurinol and benznidazole induces significant modifications in T and B cell responses indicative of a reduction in parasite burden, and sustains the feasibility of administration of two antiparasitic drugs in the chronic phase of Chagas' disease.
Collapse
Affiliation(s)
- D E Perez-Mazliah
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Av. Paseo Colón 568, Buenos Aires (1063), Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Transcriptional profiling of experimental CD8(+) lymphocyte depletion in rhesus macaques infected with simian immunodeficiency virus SIVmac239. J Virol 2012; 87:433-43. [PMID: 23097439 DOI: 10.1128/jvi.01746-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8(+) T cells inhibit virus replication in SIV-infected rhesus macaques. However, it is unclear to what extent the viral suppression mediated by CD8(+) T cells reflects direct killing of infected cells as opposed to indirect, noncytolytic mechanisms. In this study, we used functional genomics to investigate noncytolytic mechanisms of in vivo viral suppression mediated by CD8(+) lymphocytes. Eight chronically SIVmac239-infected rhesus macaques underwent CD8(+) lymphocyte depletion, and RNA from whole blood was obtained prior to depletion, during the nadir of CD8(+) cell depletion, and after CD8(+) lymphocyte numbers had rebounded. We observed significant downregulation of the expression of genes encoding factors that can suppress SIV replication, including the CCR5-binding chemokine CCL5/RANTES and CCL4 and several members of the tripartite motif-containing (TRIM) family. Surprisingly, we also noted a strong, widespread downregulation of α- and θ-defensins with anti-HIV activity, which are not expressed by CD8(+) T cells. After cessation of depleting antibody treatment, we observed induction of a transcriptional signature indicative of B lymphocyte activation. Validation experiments demonstrated that animals during this period had elevated levels of B cells coupled with higher expression of the proliferative marker Ki67, indicating that CD8(+) depletion triggered a potent expansion of B cell numbers. Collectively, these data identify antiviral pathways perturbed by in vivo CD8(+) T cell depletion that may contribute to noncytolytic control of SIV replication.
Collapse
|