51
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
52
|
Lee HS, Song S, Shin DY, Kim GS, Lee JH, Cho CW, Lee KW, Park H, Ahn C, Yang J, Yang HM, Park JB, Kim SJ. Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-Fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Sin Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Sanghyun Song
- Department of Surgery; Dankook University College of Medicine; Dankook University Hospital; Cheonam Korea
| | - Du Yeon Shin
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
| | - Geun-Soo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Jong-Hyun Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Chan Woo Cho
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyo Won Lee
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyojun Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Curie Ahn
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Heung-Mo Yang
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Medicine; Sungkyunkwan University School of Medicine; Kyunggi Korea
| | - Jae Berm Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sung-Joo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
53
|
Mourad NI, Gianello P. Gene Editing, Gene Therapy, and Cell Xenotransplantation: Cell Transplantation Across Species. CURRENT TRANSPLANTATION REPORTS 2017; 4:193-200. [PMID: 28932650 PMCID: PMC5577055 DOI: 10.1007/s40472-017-0157-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Cell xenotransplantation has the potential to provide a safe, ethically acceptable, unlimited source for cell replacement therapies. This review focuses on genetic modification strategies aimed to overcome remaining hurdles standing in the way of clinical porcine islet transplantation and to develop neural cell xenotransplantation. RECENT FINDINGS In addition to previously described genetic modifications aimed to mitigate hyperacute rejection, instant blood-mediated inflammatory reaction, and cell-mediated rejection, new data showing the possibility of increasing porcine islet insulin secretion by transgenesis is an interesting addition to the array of genetically modified pigs available for xenotransplantation. Moreover, combining multiple modifications is possible today thanks to new, improved genomic editing tools. SUMMARY Genetic modification of large animals, pigs in particular, has come a long way during the last decade. These modifications can help minimize immunological and physiological incompatibilities between porcine and human cells, thus allowing for better tolerance and function of xenocells.
Collapse
Affiliation(s)
- Nizar I. Mourad
- Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, SSS/IREC/CHEX, Avenue Hippocrate, 55 – Bte B1.55.04, 1200 Brussels, Belgium
| | - Pierre Gianello
- Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, SSS/IREC/CHEX, Avenue Hippocrate, 55 – Bte B1.55.04, 1200 Brussels, Belgium
| |
Collapse
|
54
|
Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res 2017; 26:435-445. [PMID: 28553699 DOI: 10.1007/s11248-017-0021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG1-Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/hHO-1 that will be suitable for xenotransplantation by overcoming hyperacute, acute and anti-inflammatory rejection.
Collapse
|
55
|
Yang L, Shen ZY, Wang RR, Yin ML, Zheng WP, Wu B, Liu T, Song HL. Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation. World J Gastroenterol 2017; 23:3449-3467. [PMID: 28596681 PMCID: PMC5442081 DOI: 10.3748/wjg.v23.i19.3449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of heme oxygenase-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantation (RLT) in a rat model.
METHODS BMMSCs were isolated and cultured in vitro using an adherent method, and then transduced with HO-1-bearing recombinant adenovirus to construct HO-1/BMMSCs. A rat acute rejection model following 50% RLT was established using a two-cuff technique. Recipients were divided into three groups based on the treatment received: normal saline (NS), BMMSCs and HO-1/BMMSCs. Liver function was examined at six time points. The levels of endothelin-1 (ET-1), endothelial nitric-oxide synthase (eNOS), inducible nitric-oxide synthase (iNOS), nitric oxide (NO), and hyaluronic acid (HA) were detected using an enzyme-linked immunosorbent assay. The portal vein pressure (PVP) was detected by Power Lab ML880. The expressions of ET-1, iNOS, eNOS, and von Willebrand factor (vWF) protein in the transplanted liver were detected using immunohistochemistry and Western blotting. ATPase in the transplanted liver was detected by chemical colorimetry, and the ultrastructural changes were observed under a transmission electron microscope.
RESULTS HO-1/BMMSCs could alleviate the pathological changes and rejection activity index of the transplanted liver, and improve the liver function of rats following 50% RLT, with statistically significant differences compared with those of the NS group and BMMSCs group (P < 0.05). In term of the microcirculation of hepatic sinusoids: The PVP on POD7 decreased significantly in the HO-1/BMMSCs and BMMSCs groups compared with that of the NS group (P < 0.01); HO-1/BMMSCs could inhibit the expressions of ET-1 and iNOS, increase the expressions of eNOS and inhibit amounts of NO production, and maintain the equilibrium of ET-1/NO (P < 0.05); and HO-1/BMMSCs increased the expression of vWF in hepatic sinusoidal endothelial cells (SECs), and promoted the degradation of HA, compared with those of the NS group and BMMSCs group (P < 0.05). In term of the energy metabolism of the transplanted liver, HO-1/BMMSCs repaired the damaged mitochondria, and improved the activity of mitochondrial aspartate aminotransferase (ASTm) and ATPase, compared with the other two groups (P <0.05).
CONCLUSION HO-1/BMMSCs can improve the microcirculation of hepatic sinusoids significantly, and recover the energy metabolism of damaged hepatocytes in rats following RLT, thus protecting the transplanted liver.
Collapse
|
56
|
Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5276576. [PMID: 28503569 PMCID: PMC5414503 DOI: 10.1155/2017/5276576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Abstract
Soluble human tumor necrosis factor (shTNFRI-Fc) and human heme oxygenase 1 (hHO-1) are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets (P < 0.05). Also, H2O2 contents were increased, and superoxide dismutase was significantly lower in the higher copy number of shTNFRI-Fc and hHO-1 piglets (P < 0.05). These results indicate that TNFRI-Fc and hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.
Collapse
|
57
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
58
|
|
59
|
Petersen B, Frenzel A, Lucas-Hahn A, Herrmann D, Hassel P, Klein S, Ziegler M, Hadeler KG, Niemann H. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 2016; 23:338-46. [PMID: 27610605 DOI: 10.1111/xen.12258] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Xenotransplantation is considered to be a promising solution to the growing demand for suitable donor organs for transplantation. Despite tremendous progress in the generation of pigs with multiple genetic modifications thought to be necessary to overcoming the severe rejection responses after pig-to-non-human primate xenotransplantation, the production of knockout pigs by somatic cell nuclear transfer (SCNT) is still an inefficient process. Producing genetically modified pigs by intracytoplasmic microinjection of porcine zygotes is an alluring alternative. The porcine GGTA1 gene encodes for the α1,3-galactosyltransferase that synthesizes the Gal epitopes on porcine cells which constitute the major antigen in a xenotransplantation setting. GGTA1-KO pigs have successfully been produced by transfecting somatic cells with zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or CRISPR/Cas targeting GGTA1, followed by SCNT. METHODS Here, we microinjected a CRISPR/Cas9 vector coding for a single-guide RNA (sgRNA) targeting exon 8 of the GGTA1 gene into the cytoplasm of 97 in vivo-derived porcine zygotes and transferred 86 of the microinjected embryos into three hormonally synchronized recipients. Fetuses and piglets were analyzed by flow cytometry for remaining Gal epitopes. DNA was sequenced to detect mutations at the GGTA1 locus. RESULTS Two of the recipients remained pregnant as determined by ultrasound scanning on day 25 of gestation. One pregnancy was terminated on day 26, and six healthy fetuses were recovered. The second pregnancy was allowed to go to term and resulted in the birth of six healthy piglets. Flow cytometry analysis revealed the absence of Gal epitopes in four of six fetuses (66%), indicating a biallelic KO of GGTA1. Additionally, three of the six live-born piglets (50%) did not express Gal epitopes on their cell surface. Two fetuses and two piglets showed a mosaicism with a mixed population of Gal-free and Gal-expressing cells. Only a single piglet did not have any genomic modifications. Genomic sequencing revealed indel formation at the GGTA1 locus ranging from +17 bp to -20 bp. CONCLUSIONS These results demonstrate the efficacy of CRISPR/Cas to generate genetic modifications in pigs by simplified technology, such as intracytoplasmic microinjection into zygotes, which would significantly facilitate the production of genetically modified pigs suitable for xenotransplantation. Importantly, this simplified injection protocol avoids the penetration of the vulnerable pronuclear membrane, and is thus compatible with higher survival rates of microinjected embryos, which in turn facilitates production of genetically modified piglets.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany.
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Sabine Klein
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Maren Ziegler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Klaus-Gerd Hadeler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany.
| |
Collapse
|
60
|
Efficient production of multi-modified pigs for xenotransplantation by 'combineering', gene stacking and gene editing. Sci Rep 2016; 6:29081. [PMID: 27353424 PMCID: PMC4926246 DOI: 10.1038/srep29081] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’, and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.
Collapse
|
61
|
Murthy R, Bajona P, Bhama JK, Cooper DK. Heart Xenotransplantation: Historical Background, Experimental Progress, and Clinical Prospects. Ann Thorac Surg 2016; 101:1605-13. [DOI: 10.1016/j.athoracsur.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
|
62
|
Cowan PJ, Ayares D, Wolf E, Cooper DKC. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 2b: genetically modified source pigs. Xenotransplantation 2016; 23:32-7. [PMID: 26926888 DOI: 10.1111/xen.12224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/24/2022]
Abstract
Genetic modification of the source pig offers the opportunity to improve the engraftment and survival of islet xenografts. The type of modification can be tailored to the transplant setting; for example, intraportal islet xenografts have been shown to benefit from the expression of anticoagulant and anti-inflammatory transgenes, whereas cytoprotective transgenes are probably more relevant for encapsulated islets. The rapid development of pig genetic engineering, particularly with the introduction of genome editing techniques such as CRISPR-Cas, has accelerated the generation of new pig lines with multiple modifications. With pre-clinical testing in progress, it is an opportune time to consider any implications of genetic modification for the conditions for undertaking clinical trials. Obviously, the stringent requirements to fulfill designated pathogen-free status that are applied to wild-type pigs will apply equally to genetically modified (GM) source pigs. In addition, it is important from a safety perspective that the genetic modifications are characterized at the molecular level (e.g., integration site, absence of off-target mutations), the phenotypic level (e.g., durability and stability of transgene expression), and the functional level (e.g., protection of islets in vitro or in vivo, absence of detrimental effects on insulin secretion). The assessment of clinical trial protocols using GM pig islets will need to be performed on a case-by-case basis, taking into account a range of factors including the particular genetic modification(s) and the site and method of delivery.
Collapse
Affiliation(s)
- Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | | | - Eckhard Wolf
- Gene Center, Ludwig Maximilian University, Munich, Germany
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
63
|
Yan JJ, Yeom HJ, Jeong JC, Lee JG, Lee EW, Cho B, Lee HS, Kim SJ, Hwang JI, Kim SJ, Lee BC, Ahn C, Yang J. Beneficial effects of the transgenic expression of human sTNF-αR-Fc and HO-1 on pig-to-mouse islet xenograft survival. Transpl Immunol 2016; 34:25-32. [DOI: 10.1016/j.trim.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
|
64
|
The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 2016; 25:361-74. [PMID: 26820415 DOI: 10.1007/s11248-016-9934-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.
Collapse
|
65
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
66
|
Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol 2016; 238:288-99. [PMID: 26365762 PMCID: PMC4689670 DOI: 10.1002/path.4635] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022]
Abstract
There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | |
Collapse
|
67
|
Hinkel R, Lange P, Petersen B, Gottlieb E, Ng JKM, Finger S, Horstkotte J, Lee S, Thormann M, Knorr M, El-Aouni C, Boekstegers P, Reichart B, Wenzel P, Niemann H, Kupatt C. Heme Oxygenase-1 Gene Therapy Provides Cardioprotection Via Control of Post-Ischemic Inflammation: An Experimental Study in a Pre-Clinical Pig Model. J Am Coll Cardiol 2015; 66:154-65. [PMID: 26160631 DOI: 10.1016/j.jacc.2015.04.064] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) is an inducible stress-responsive enzyme converting heme to bilirubin, carbon monoxide, and free iron, which exerts anti-inflammatory and antiapoptotic effects. Although efficient cardioprotection after HO-1 overexpression has been reported in rodents, its role in attenuating post-ischemic inflammation is unclear. OBJECTIVES This study assessed the efficacy of recombinant adenoassociated virus (rAAV)-encoding human heme oxygenase-1 (hHO-1) in attenuating post-ischemic inflammation in a murine and a porcine ischemia/reperfusion model. METHODS Murine ischemia was induced by 45 min of left anterior descending occlusion, followed by 24 h of reperfusion and functional as well as fluorescent-activated cell sorting analysis. Porcine hearts were subjected to 60 min of ischemia and 24h of reperfusion before hemodynamic and histologic analyses were performed. RESULTS Human microvascular endothelial cells transfected with hHO-1 displayed an attenuated interleukin-6 and intercellular adhesion molecule 1 expression, resulting in reduced monocytic THP-1 cell recruitment in vitro. In murine left anterior descending occlusion and reperfusion, the post-ischemic influx of CD45(+) leukocytes, Ly-6G(+) neutrophils, and Ly-6C(high) monocytes was further exacerbated in HO-1-deficient hearts and reversed by rAAV.hHO-1 treatment. Conversely, in our porcine model of ischemia, the post-ischemic influx of myeloperoxidase-positive neutrophils and CD14(+) monocytes was reduced by 49% and 87% after rAAV.hHO-1 transduction, similar to hHO-1 transgenic pigs. Functionally, rAAV.hHO-1 and hHO-1 transgenic left ventricles displayed a smaller loss of ejection fraction than control animals. CONCLUSIONS Whereas HO-1 deficiency exacerbates post-ischemic cardiac inflammation in mice, hHO-1 gene therapy attenuates inflammation after ischemia and reperfusion in murine and porcine hearts. Regional hHO-1 gene therapy provides cardioprotection in a pre-clinical porcine ischemia/reperfusion model.
Collapse
Affiliation(s)
- Rabea Hinkel
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany; Institute for Cardiovascular Prevention, Ludwig Maximillian University, Munich, Germany; Medizinische Klinik I, Klinikum Rechts der Isar, Technical University of Munich, and German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Philipp Lange
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Elena Gottlieb
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Judy King Man Ng
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany; Medizinische Klinik I, Klinikum Rechts der Isar, Technical University of Munich, and German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Stefanie Finger
- Department of Medicine 2, Center for Thrombosis and Hemostasis Mainz and German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Jan Horstkotte
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Seungmin Lee
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Michael Thormann
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Maike Knorr
- Department of Medicine 2, Center for Thrombosis and Hemostasis Mainz and German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Chiraz El-Aouni
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Peter Boekstegers
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Bruno Reichart
- Walter-Brendel-Centre for Experimental Medicine, Munich, Germany
| | - Philip Wenzel
- Department of Medicine 2, Center for Thrombosis and Hemostasis Mainz and German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Christian Kupatt
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany; Medizinische Klinik I, Klinikum Rechts der Isar, Technical University of Munich, and German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel-Centre for Experimental Medicine, Munich, Germany.
| |
Collapse
|
68
|
Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V. Efficacy of the porcine species in biomedical research. Front Genet 2015; 6:293. [PMID: 26442109 PMCID: PMC4584988 DOI: 10.3389/fgene.2015.00293] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/04/2015] [Indexed: 01/02/2023] Open
Abstract
Since domestication, pigs have been used extensively in agriculture and kept as companion animals. More recently they have been used in biomedical research, given they share many physiological and anatomical similarities with humans. Recent technological advances in assisted reproduction, somatic cell cloning, stem cell culture, genome editing, and transgenesis now enable the creation of unique porcine models of human diseases. Here, we highlight the potential applications and advantages of using pigs, particularly minipigs, as indispensable large animal models in fundamental and clinical research, including the development of therapeutics for inherited and chronic disorders, and cancers.
Collapse
Affiliation(s)
- Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| |
Collapse
|
69
|
Reichart B, Guethoff S, Mayr T, Buchholz S, Abicht JM, Kind AJ, Brenner P. Discordant Cellular and Organ Xenotransplantation—From Bench to Bedside. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-16441-0_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
70
|
Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood. Transplant Direct 2015; 1:e23. [PMID: 27500225 PMCID: PMC4946468 DOI: 10.1097/txd.0000000000000533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/12/2015] [Indexed: 01/16/2023] Open
Abstract
Supplemental digital content is available in the text. Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties.
Collapse
|
71
|
Ahrens HE, Petersen B, Herrmann D, Lucas-Hahn A, Hassel P, Ziegler M, Kues WA, Baulain U, Baars W, Schwinzer R, Denner J, Rataj D, Werwitzke S, Tiede A, Bongoni AK, Garimella PS, Despont A, Rieben R, Niemann H. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant 2015; 15:1407-14. [PMID: 25808638 DOI: 10.1111/ajt.13120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/07/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023]
Abstract
Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.
Collapse
Affiliation(s)
- H E Ahrens
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
De Giorgi M, Cinti A, Pelikant-Malecka I, Chisci E, Lavitrano M, Giovannoni R, Smolenski RT. Co-expression of functional human Heme Oxygenase 1, Ecto-5′-Nucleotidase and ecto-nucleoside triphosphate diphosphohydrolase-1 by “self-cleaving” 2A peptide system. Plasmid 2015; 79:22-9. [DOI: 10.1016/j.plasmid.2015.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022]
|
73
|
Wolf E, Reichart B. Commentary on "Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood" (by Harris et al.): tailoring donor pigs for xenotransplantation-how to find the right combination of genetic modifications? Xenotransplantation 2015; 22:112-3. [PMID: 25711248 DOI: 10.1111/xen.12159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Reichart B, Guethoff S, Brenner P, Poettinger T, Wolf E, Ludwig B, Kind A, Mayr T, Abicht JM. Xenotransplantation of Cells, Tissues, Organs and the German Research Foundation Transregio Collaborative Research Centre 127. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:143-55. [PMID: 26306448 DOI: 10.1007/978-3-319-18603-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human organ transplantation is the therapy of choice for end-stage organ failure. However, the demand for organs far exceeds the donation rate, and many patients die while waiting for a donor. Clinical xenotransplantation using discordant species, particularly pigs, offers a possible solution to this critical shortfall. Xenotransplantation can also increase the availability of cells, such as neurons, and tissues such as cornea, insulin producing pancreatic islets and heart valves. However, the immunological barriers and biochemical disparities between pigs and primates (human) lead to rejection reactions despite the use of common immunosuppressive drugs. These result in graft vessel destruction, haemorrhage, oedema, thrombus formation, and transplant loss. Our consortium is pursuing a broad range of strategies to overcome these obstacles. These include genetic modification of the donor animals to knock out genes responsible for xenoreactive surface epitopes and to express multiple xenoprotective molecules such as the human complement regulators CD46, 55, 59, thrombomodulin and others. We are using (new) drugs including complement inhibitors (e.g. to inhibit C3 binding), anti-CD20, 40, 40L, and also employing physical protection methods such as macro-encapsulation of pancreatic islets. Regarding safety, a major objective is to assure that possible infections are not transmitted to recipients. While the aims are ambitious, recent successes in preclinical studies suggest that xenotransplantation is soon to become a clinical reality.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU), Munich, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW Heme oxygenase activity, possessed by an inducible heme oxygenase-1 (HO-1) and a constitutive isoform (HO-2), catalyzes the conversion of heme to biliverdin, liberates iron, and generates carbon monoxide. First shown in acute kidney injury (AKI), HO-1 is now recognized as a protectant against diverse insults in assorted tissues. This review summarizes recent contributions to the field of HO-1 and AKI. RECENT FINDINGS Recent findings elucidate the following: the transcriptional regulation and significance of human HO-1 in AKI; the protective effects of HO-1 in age-dependent and sepsis-related AKI, cardiorenal syndromes, and acute vascular rejection in renal xenografts; the role of heme oxygenase in tubuloglomerular feedback and renal resistance to injury; the basis for cytoprotection by HO-1; the protective properties of ferritin and carbon monoxide; HO-1 and the AKI-chronic kidney disease transition; HO-1 as a biomarker in AKI; the role of HO-1 in mediating the protective effects of specific cytokines, stem cells, and therapeutic agents in AKI; and HO-2 as a protectant in AKI. SUMMARY Recent contributions support, and elucidate the basis for, the induction of HO-1 as a protectant against AKI. Translating such therapeutic potential into a therapeutic reality requires well tolerated and effective modalities for upregulating HO-1 and/or administering its products, which, optimally, should be salutary even when AKI is already established.
Collapse
|
76
|
Ramackers W, Friedrich L, Klose J, Vondran F, Bergmann S, Schüttler W, Johanning K, Werwitzke S, Trummer A, Bröcker V, Klempnauer J, Winkler M, Tiede A. Recombinant human antithrombin prevents xenogenic activation of hemostasis in a model of pig-to-human kidney transplantation. Xenotransplantation 2014; 21:367-75. [DOI: 10.1111/xen.12104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Wolf Ramackers
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Lars Friedrich
- Department of Anesthesiology and Intensive Care; Hannover Medical School; Hannover Germany
| | - Johannes Klose
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Florian Vondran
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Sabine Bergmann
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Wolfgang Schüttler
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Kai Johanning
- Department of Anesthesiology and Intensive Care; Hannover Medical School; Hannover Germany
| | - Sonja Werwitzke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Arne Trummer
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Verena Bröcker
- Department of Pathology; Hannover Medical School; Hannover Germany
| | - Jürgen Klempnauer
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Michael Winkler
- Department of General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| |
Collapse
|
77
|
Bongoni AK, Kiermeir D, Jenni H, Bähr A, Ayares D, Klymiuk N, Wolf E, Voegelin E, Constantinescu MA, Seebach JD, Rieben R. Complement dependent early immunological responses during ex vivo xenoperfusion of hCD46/HLA-E double transgenic pig forelimbs with human blood. Xenotransplantation 2014; 21:230-43. [PMID: 24635052 DOI: 10.1111/xen.12090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Besides α1,3-galactosyltransferase gene (GGTA1) knockout, several transgene combinations to prevent pig-to-human xenograft rejection are currently being investigated. In this study, the potential of combined overexpression of human CD46 and HLA-E to prevent complement- and NK-cell-mediated xenograft rejection was tested in an ex vivo pig-to-human xenoperfusion model. METHODS α1,3-Galactosyltransferase knockout heterozygous, hCD46/HLA-E double transgenic (transgenic) as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human and autologous pig blood, respectively. Blood samples were analyzed for the production of porcine and/or human inflammatory cytokines as well as complement activation products. Biopsy samples were examined for deposition of human and porcine C3b/c, C4b/c, and C6 as well as CD62E (E-selectin) and CD106 (VCAM-1) expression. Apoptosis was measured in the porcine muscle tissue using TUNEL assays. Finally, the formation of thrombin-antithrombin (TAT) complexes was measured in EDTA plasma samples. RESULTS No hyperacute rejection was seen in this model. Extremity perfusions lasted for up to 12 h without increase in vascular resistance and were terminated due to continuous small blood losses. Plasma levels of porcine cytokines IL1β, IL-6, IL-8, IL-10, TNF-α, and MCP-1 as well as human complement activation markers C3a (P = 0.0002), C5a (P = 0.004), and soluble C5b-9 (P = 0.03) were lower in blood perfused through transgenic as compared to wild-type limbs. Human C3b/c, C4b/c, and C6 as well as CD62E and CD106 were deposited in tissue of wild-type limbs, but significantly lower levels (P < 0.0001) of C3b/c, C4b/c, and C6 deposition as well as CD62E and CD106 expression were detected in transgenic limbs perfused with human blood. Transgenic porcine tissue was protected from xenoperfusion-induced apoptosis (P < 0.0001). Finally, TAT levels were significantly lower (P < 0.0001) in transgenic limb as compared to wild-type limb xenoperfusions. CONCLUSION Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since all, the terminal pathway of complement activation, endothelial cell activation, muscle cell apoptosis, inflammatory cytokine production, as well as coagulation activation, were all downregulated. Overall, this model represents a useful tool to study early immunological responses during pig-to-human vascularized xenotransplantation in the absence of hyperacute rejection.
Collapse
Affiliation(s)
- Anjan K Bongoni
- Department of Clinical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Park SJ, Cho B, Koo OJ, Kim H, Kang JT, Hurh S, Kim SJ, Yeom HJ, Moon J, Lee EM, Choi JY, Hong JH, Jang G, Hwang JI, Yang J, Lee BC, Ahn C. Production and characterization of soluble human TNFRI-Fc and human HO-1(HMOX1) transgenic pigs by using the F2A peptide. Transgenic Res 2014; 23:407-19. [PMID: 24497084 DOI: 10.1007/s11248-013-9780-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/19/2013] [Indexed: 11/27/2022]
Abstract
Generation of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis. Herein, we successfully generated shTNFRI-Fc-F2A-HA-hHO-1 transgenic (TG) pigs expressing both shTNFRI-Fc and hemagglutinin-tagged-human heme oxygenase-1 (HA-hHO-1) by using an F2A self-cleaving peptide. shTNFRI-Fc and HA-hHO-1 transgenes containing the F2A peptide were constructed under the control of the CAG promoter. Transgene insertion and copy number in the genome of transgenic pigs was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Expressions of shTNFRI-Fc and HA-hHO-1 in TG pigs were confirmed using PCR, RT-PCR, western blot, ELISA, and immunohistochemistry. shTNFRI-Fc and HA-hHO-1 were expressed in various organs, including the heart, lung, and spleen. ELISA assays detected shTNFRI-Fc in the sera of TG pigs. For functional analysis, fibroblasts isolated from a shTNFRI-Fc-F2A-HA-hHO-1 TG pig (i.e., #14; 1 × 10(5) cells) were cultured with hTNF-α (20 ng/mL) and cycloheximide (10 μg/mL). The viability of shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was significantly higher than that of the wild type (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 24 h, 31.6 ± 3.2 vs. 60.4 ± 8.3 %, respectively; p < 0.05). Caspase-3/-7 activity of the shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was lower than that of the wild type pig fibroblasts (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 12 h, 812,452 ± 113,078 RLU vs. 88,240 ± 10,438 RLU, respectively; p < 0.05). These results show that shTNFRI-Fc and HA-hHO-1 TG pigs generated by the F2A self-cleaving peptide express both shTNFRI-Fc and HA-hHO-1 molecules, which provides protection against oxidative and inflammatory injury. Utilization of the F2A self-cleaving peptide is a promising tool for generating multiple TG pigs for xenotransplantation.
Collapse
Affiliation(s)
- Sol Ji Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Cowan PJ, Cooper DKC, d'Apice AJF. Kidney xenotransplantation. Kidney Int 2014; 85:265-75. [PMID: 24088952 PMCID: PMC3946635 DOI: 10.1038/ki.2013.381] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/14/2022]
Abstract
Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.
Collapse
Affiliation(s)
- Peter J Cowan
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony J F d'Apice
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
80
|
Abstract
The shortage of human organs for transplantation has focused research on the possibility of transplanting pig organs into humans. Many factors contribute to the failure of a pig organ graft in a primate. A rapid innate immune response (natural anti-pig antibody, complement activation, and an innate cellular response; e.g., neutrophils, monocytes, macrophages, and natural killer cells) is followed by an adaptive immune response, although T-cell infiltration of the graft has rarely been reported. Other factors (e.g., coagulation dysregulation and inflammation) appear to play a significantly greater role than in allotransplantation. The immune responses to a pig xenograft cannot therefore be controlled simply by suppression of T-cell activity. Before xenotransplantation can be introduced successfully into the clinic, the problems of the innate, coagulopathic, and inflammatory responses will have to be overcome, most likely by the transplantation of organs from genetically engineered pigs. Many of the genetic manipulations aimed at protecting against these responses also reduce the adaptive response. The T-cell and elicited antibody responses can be prevented by the biological and/or pharmacologic agents currently available, in particular, by costimulation blockade-based regimens. The exogenous immunosuppressive regimen may be significantly reduced by the presence of a graft from a pig transgenic for a mutant (human) class II transactivator gene, resulting in down-regulation of swine leukocyte antigen class II expression, or from a pig with "local" vascular endothelial cell expression of an immunosuppressive gene (e.g., CTLA4-Ig). The immunomodulatory efficacy of regulatory T cells or mesenchymal stromal cells has been demonstrated in vitro but not yet in vivo.
Collapse
|
81
|
Lesional accumulation of heme oxygenase-1+ microglia/macrophages in rat traumatic brain injury. Neuroreport 2013; 24:281-6. [PMID: 23470432 DOI: 10.1097/wnr.0b013e32835f2810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heme oxygenase-1 (HO-1) is an inducible rate-limiting enzyme for heme degradation. Here, we studied the HO-1 expression in an open-skull weight-drop-induced traumatic brain injury, with a focus on the early phase, most amenable to therapy. In normal rat brains of our study, HO-1 cells were rarely observed. Significant parenchymal accumulation of HO-1 non-neuron cells was observed 18 h post-traumatic brain injury and increased continuously during the investigating time. We also observed that the accumulated HO-1 non-neuron cells were mainly distributed in the perilesional areas and showed activated microglia/macrophage phenotypes with ramified or amoeboid morphologic characteristics. Further double-labeling experiments showed that most HO-1 non-neuron cells coexpressed CD68 and CD163, but not glial fibrillary acid protein. Our data suggest that HO-1 expression defines a subtype of activated microglia/macrophages involved in the early processes following traumatic brain injury.
Collapse
|
82
|
Niemann H, Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim 2013; 47 Suppl 5:2-10. [PMID: 22913555 DOI: 10.1111/j.1439-0531.2012.02121.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.
Collapse
Affiliation(s)
- H Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Mariensee, Neustadt, Germany.
| | | |
Collapse
|
83
|
Yeom HJ, Koo OJ, Yang J, Cho B, Hwang JI, Park SJ, Hurh S, Kim H, Lee EM, Ro H, Kang JT, Kim SJ, Won JK, O'Connell PJ, Kim H, Surh CD, Lee BC, Ahn C. Generation and characterization of human heme oxygenase-1 transgenic pigs. PLoS One 2012; 7:e46646. [PMID: 23071605 PMCID: PMC3465346 DOI: 10.1371/journal.pone.0046646] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.
Collapse
Affiliation(s)
- Hye-Jung Yeom
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ok Jae Koo
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
- Designed Animal Resource Center and Biotransplant Research Institute, Seoul National University Green-Bio Research Complex, Gangwon-do, Korea
| | - Jaeseok Yang
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Bumrae Cho
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Laboratory of G Protein Coupled Receptors, Korea University, Seoul, Korea
| | - Sol Ji Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sunghoon Hurh
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Hwajung Kim
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Eun Mi Lee
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Han Ro
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jung Taek Kang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Su Jin Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jae-Kyung Won
- Molecular Pathology Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Philip J. O'Connell
- The Center for Transplant Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Hyunil Kim
- Optifarm Solution Inc., Seonggeo-eup, Cheonan, Korea
| | - Charles D. Surh
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Byeong-Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Designed Animal Resource Center and Biotransplant Research Institute, Seoul National University Green-Bio Research Complex, Gangwon-do, Korea
- * E-mail: (AC); (B-CL)
| | - Curie Ahn
- Transplantation Research Institute, College of Medicine, Seoul National University, Seoul, Korea
- Designed Animal Resource Center and Biotransplant Research Institute, Seoul National University Green-Bio Research Complex, Gangwon-do, Korea
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
- Division of Nephrology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (AC); (B-CL)
| |
Collapse
|
84
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, November-December 2011. Xenotransplantation 2012; 19:65-9. [PMID: 22360756 DOI: 10.1111/j.1399-3089.2012.00692.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|