51
|
Yi C, Yao R, Song L, Jiang L, Si Y, Li P, Li F, Yao D, Zhang Y, Xu P. A Novel Method for Constructing EEG Large-Scale Cortical Dynamical Functional Network Connectivity (dFNC): WTCS. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12869-12881. [PMID: 34398778 DOI: 10.1109/tcyb.2021.3090770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a kind of biological network, the brain network conduces to understanding the mystery of high-efficiency information processing in the brain, which will provide instructions to develop efficient brain-like neural networks. Large-scale dynamical functional network connectivity (dFNC) provides a more context-sensitive, dynamical, and straightforward sight at a higher network level. Nevertheless, dFNC analysis needs good enough resolution in both temporal and spatial domains, and the construction of dFNC needs to capture the time-varying correlations between two multivariate time series with unmatched spatial dimensions. Effective methods still lack. With well-developed source imaging techniques, electroencephalogram (EEG) has the potential to possess both high temporal and spatial resolutions. Therefore, we proposed to construct the EEG large-scale cortical dFNC based on brain atlas to probe the subtle dynamic activities in the brain and developed a novel method, that is, wavelet coherence-S estimator (WTCS), to assess the dynamic couplings among functional subnetworks with different spatial dimensions. The simulation study demonstrated its robustness and availability of applying to dFNC. The application in real EEG data revealed the appealing "Primary peak" and "P3-like peak" in dFNC network properties and meaningful evolutions in dFNC network topology for P300. Our study brings new insights for probing brain activities at a more dynamical and higher hierarchical level and pushing forward the development of brain-inspired artificial neural networks. The proposed WTCS not only benefits the dFNC studies but also gives a new solution to capture the time-varying couplings between the multivariate time series that is often encountered in signal processing disciplines.
Collapse
|
52
|
Feng P, Wang J, Ding X, Li C, Guo F, Ding X. How do extrinsic cues influence consumers’ online hotel booking decisions? An event-related potential experiment. Front Psychol 2022; 13:990640. [DOI: 10.3389/fpsyg.2022.990640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
Booking decision is a typical decision-making behavior in hospitality, while the neural processing of it is still unclear. To address this issue, with the help of event-related potential (ERP), this work uncovered the neural mechanism of the influence of two extrinsic cues, namely, brand familiarity (familiar vs. unfamiliar) and online reviews (positive vs. negative) on online hotel booking decisions. Behavioral results indicated that the booking rate under the condition of positive reviews was higher than that of negative reviews. In addition, the response time in the case of familiar brands was longer than that of unfamiliar brands. ERP results showed that the P200 amplitude of familiar brands was smaller than that of unfamiliar brands, while for the late positive potential amplitude, the opposite was the case. It is suggested that in the early stage of cognitive processing, unfamiliar brands evoke more automatic and unconscious attention while in the later stage, familiar brands attract more conscious attention. This study also found that the N400 amplitude of negative online reviews was larger than that of positive online reviews, indicating that negative stimuli can result in a larger emotional conflicts than that of positive stimuli. This study provides new insights into the neural mechanism of online booking decisions in the hospitality.
Collapse
|
53
|
Voegtle A, Reichert C, Hinrichs H, Sweeney-Reed CM. Repetitive Anodal TDCS to the Frontal Cortex Increases the P300 during Working Memory Processing. Brain Sci 2022; 12:1545. [PMID: 36421869 PMCID: PMC9688092 DOI: 10.3390/brainsci12111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (TDCS) is a technique with which neuronal activity, and therefore potentially behavior, is modulated by applying weak electrical currents to the scalp. Application of TDCS to enhance working memory (WM) has shown promising but also contradictory results, and little emphasis has been placed on repeated stimulation protocols, in which effects are expected to be increased. We aimed to characterize potential behavioral and electrophysiological changes induced by TDCS during WM training and evaluate whether repetitive anodal TDCS has a greater modulatory impact on the processes underpinning WM than single-session stimulation. We examined the effects of single-session and repetitive anodal TDCS to the dorsolateral prefrontal cortex (DLPFC), targeting the frontal-parietal network, during a WM task in 20 healthy participants. TDCS had no significant impact on behavioral measures, including reaction time and accuracy. Analyzing the electrophysiological response, the P300 amplitude significantly increased following repetitive anodal TDCS, however, positively correlating with task performance. P300 changes were identified over the parietal cortex, which is known to engage with the frontal cortex during WM processing. These findings support the hypothesis that repetitive anodal TDCS modulates electrophysiological processes underlying WM.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Catherine M. Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
54
|
Bonetti L, Brattico E, Bruzzone SEP, Donati G, Deco G, Pantazis D, Vuust P, Kringelbach ML. Brain recognition of previously learned versus novel temporal sequences: a differential simultaneous processing. Cereb Cortex 2022; 33:5524-5537. [PMID: 36346308 PMCID: PMC10152090 DOI: 10.1093/cercor/bhac439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Memory for sequences is a central topic in neuroscience, and decades of studies have investigated the neural mechanisms underlying the coding of a wide array of sequences extended over time. Yet, little is known on the brain mechanisms underlying the recognition of previously memorized versus novel temporal sequences. Moreover, the differential brain processing of single items in an auditory temporal sequence compared to the whole superordinate sequence is not fully understood. In this magnetoencephalography (MEG) study, the items of the temporal sequence were independently linked to local and rapid (2–8 Hz) brain processing, while the whole sequence was associated with concurrent global and slower (0.1–1 Hz) processing involving a widespread network of sequentially active brain regions. Notably, the recognition of previously memorized temporal sequences was associated to stronger activity in the slow brain processing, while the novel sequences required a greater involvement of the faster brain processing. Overall, the results expand on well-known information flow from lower- to higher order brain regions. In fact, they reveal the differential involvement of slow and faster whole brain processing to recognize previously learned versus novel temporal information.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
- University of Bologna Department of Psychology, , Italy
| | - E Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- University of Bari Aldo Moro Department of Education, Psychology, Communication, , Italy
| | - S E P Bruzzone
- Center for Music in the Brain (MIB) , Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, 8000, Aarhus C , Denmark
- Copenhagen University Hospital Rigshospitalet Neurobiology Research Unit (NRU), , Inge Lehmanns Vej 6, 2100, Copenhagen , Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, 2200, Copenhagen , Denmark
| | - G Donati
- University of Bologna Department of Psychology, , Italy
| | - G Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra Computational and Theoretical Neuroscience Group, , Edifici Merce Rodereda, C/ de Ramon Trias Fargas, 25, 08018 Barcelona , Spain
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Ave, Cambridge, MA 02139 , USA
| | - P Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
| | - M L Kringelbach
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
| |
Collapse
|
55
|
Bai Y, Shao J, Zhang Y, Chen L, Zhao X, Tian F, Xue C. ERP Study of Mine Management System Warning Interface under Fatigue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12616. [PMID: 36231916 PMCID: PMC9565217 DOI: 10.3390/ijerph191912616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Due to the large volume of monitoring data in mines, concentrating on and reviewing the data for a long period of time will easily cause fatigue. To study the influence of different visual codes of early-warning interfaces on the response of individuals who are fatigued, the changes in the subjective fatigue and corresponding frequency waves are compared before and after a fatigue-inducing task, as well as using event-related potential to study the behavioral data and EEG signals of subjects who participated in an oddball task on an early-warning interface. The results showed that all 14 subjects became fatigued after the fatigue-inducing task, and the amplitude of P200 when text is used in a fatigued state was the largest, with the longest latency. The subjects showed a slower reaction time and a reduced accuracy rate, thus indicating that in designing a warning interface, when text rather than color is used as a visual code, the operating load will be larger, mental load is increased, and attention resources are consumed. The experimental results provide the basis for the design and evaluation of early-warning interfaces of mine management systems.
Collapse
Affiliation(s)
- Yuxin Bai
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiang Shao
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ying Zhang
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Lulu Chen
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Xijie Zhao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Fangyuan Tian
- School of Management, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Chengqi Xue
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
56
|
Zhang X, Zhang J. The human brain in a high altitude natural environment: A review. Front Hum Neurosci 2022; 16:915995. [PMID: 36188182 PMCID: PMC9520777 DOI: 10.3389/fnhum.2022.915995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
With the advancement of in vivo magnetic resonance imaging (MRI) technique, more detailed information about the human brain at high altitude (HA) has been revealed. The present review aimed to draw a conclusion regarding changes in the human brain in both unacclimatized and acclimatized states in a natural HA environment. Using multiple advanced analysis methods that based on MRI as well as electroencephalography, the modulations of brain gray and white matter morphology and the electrophysiological mechanisms underlying processing of cognitive activity have been explored in certain extent. The visual, motor and insular cortices are brain regions seen to be consistently affected in both HA immigrants and natives. Current findings regarding cortical electrophysiological and blood dynamic signals may be related to cardiovascular and respiratory regulations, and may clarify the mechanisms underlying some behaviors at HA. In general, in the past 10 years, researches on the brain at HA have gone beyond cognitive tests. Due to the sample size is not large enough, the current findings in HA brain are not very reliable, and thus much more researches are needed. Moreover, the histological and genetic bases of brain structures at HA are also needed to be elucidated.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
- Department of Physiology, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
- Department of Physiology, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Jiaxing Zhang,
| |
Collapse
|
57
|
Featherstone RE, Shimada T, Crown LM, Melnychenko O, Yi J, Matsumoto M, Tajinda K, Mihara T, Adachi M, Siegel SJ. Calcium/calmodulin-dependent protein kinase IIα heterozygous knockout mice show electroencephalogram and behavioral changes characteristic of a subpopulation of schizophrenia and intellectual impairment. Neuroscience 2022; 499:104-117. [PMID: 35901933 DOI: 10.1016/j.neuroscience.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Cognitive deficit remains an intractable symptom of schizophrenia, accounting for substantial disability. Despite this, little is known about the cause of cognitive dysfunction in schizophrenia. Recent studies suggest that schizophrenia patients show several changes in dentate gyrus structure and functional characteristic of immaturity. The immature dentate gyrus (iDG) has been replicated in several mouse models, most notably the αCaMKII heterozygous mouse (CaMKIIa-hKO). The current study characterizes behavioral phenotypes of CaMKIIa-hKO mice and determines their neurophysiological profile using electroencephalogram (EEG) recording from hippocampus. CaMKIIa-hKO mice were hypoactive in home-cage environment; however, they displayed less anxiety-like phenotype, suggestive of impulsivity-like behavior. In addition, severe cognitive dysfunction was evident in CaMKIIa-hKO mice as examined by novel object recognition and contextual fear conditioning. Several EEG phenomena established in both patients and relevant animal models indicate key pathological changes associated with the disease, include auditory event-related potentials and time-frequency EEG oscillations. CaMKIIa-hKO mice showed altered event-related potentials characterized by an increase in amplitude of the N40 and P80, as well as increased P80 latency. These mice also showed increased power in theta range time-frequency measures. Additionally, CaMKIIa-hKO mice showed spontaneous bursts of spike wave activity, possibly indicating absence seizures. The GABAB agonist baclofen increased, while the GABAB antagonist CGP35348 and the T-Type Ca2+ channel blocker Ethosuximide decreased spike wave burst frequency. None of these changes in event-related potentials or EEG oscillations are characteristic of those observed in general population of patients with schizophrenia; yet, CaMKIIa-hKO mice likely model a subpopulation of patients with schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Takeshi Shimada
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Olya Melnychenko
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Janice Yi
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | | | | | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Megumi Adachi
- Astellas Research Institute of America, San Diego, CA, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA.
| |
Collapse
|
58
|
Liu Z, Du W, Sun Z, Hou G, Wang Z. Neural Processing Differences of Facial Emotions Between Human and Vehicles: Evidence From an Event-Related Potential Study. Front Psychol 2022; 13:876252. [PMID: 35874396 PMCID: PMC9302361 DOI: 10.3389/fpsyg.2022.876252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Vehicle “faces” are a crucial factor influencing consumer intention to purchase gasoline and electric vehicles. However, little empirical evidence has demonstrated whether people process a vehicle’s face similarly to a human’s face. We investigated the neural processing relationship among human facial emotions and facial emotions of gasoline and electric vehicles using a 2 (emotional) × 3 (face type) repeated measures design and electroencephalograph (EEG) recordings. The results showed that human faces appear to share a partly similar neural processing mechanism in the latency of 100–300 ms, and that both human and vehicle faces elicited the ERP components N170, EPN, and P2. The large EPN and P2 suggest that gasoline vehicle facial emotions can be perceived more efficiently than those of electric vehicles. These findings provide an insight for vehicle designers to better understand the facial emotions presented by cars.
Collapse
Affiliation(s)
- Zhuo Liu
- School of Art and Design, Tianjin University of Technology, Tianjin, China
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Zhuo Liu,
| | - Wenjun Du
- School of Art and Design, Tianjin University of Technology, Tianjin, China
| | - Zhongrui Sun
- School of Art and Design, Tianjin University of Technology, Tianjin, China
| | - Guanhua Hou
- Pan Tianshou College of Architecture, Art and Design, Ningbo University, Ningbo, China
- Guanhua Hou,
| | - Zhuonan Wang
- School of Art and Design, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
59
|
Cognitive impairment in the co-occurrence of alcohol dependence and major depression: neuropsychological assessment and event-related potentials analyses. Heliyon 2022; 8:e09899. [PMID: 35874061 PMCID: PMC9305349 DOI: 10.1016/j.heliyon.2022.e09899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
To evaluate the putative detrimental effect of Major Depressive Disorder (MDD) on the cognitive impairment associated with Alcohol Dependence (AD), we contrasted the neuropsychological profile and behavioral responses of AD subjects, MDD individuals, and in those with a co-occurring AD-MDD diagnosis (DD). Patients and healthy subjects completed a comprehensive neuropsychological battery and were recorded for P200, P300, and N450 event-related potentials during memory and Stroop tasks. AD subjects exhibited a generalized detrimental neuropsychological performance; in contrast, in MDD individuals, impairment was limited to discrete domains. Notably, the deficits were distinctive in DD cases. A P200 increased amplitude in MDD, a decrease in P300 amplitude in AD, and increased latency of P300 in DD patients were the overt electrophysiological abnormalities identified. Dual patients also exhibited a distinct pattern of behavioral responses, particularly apparent during high-demand cognitive tasks. Specific ERP adjustments were associated with the short-term fluoxetine treatment in DD and MDD subjects; the SSRI also improved altered baseline performance in learning and cognitive flexibility in DD subjects. In conclusion, the neuropsychological and behavioral alterations detected in the co-occurrence of AD-MDD did not seem to be merely the sum of the negative contributions of the independent disorders. Dual diagnosis (DD) patients exhibited a distinctive pattern of cognitive impairments compared to single diagnosis subjects. The ERP alterations identified were not shared among affected groups. Dual patients exhibited idiosyncratic behavioral responses. Impaired executive functions in DD subjects improved with SSRI medication. Neuropsychological and behavioral alterations are not explained as the sum of negative contributions of individual diagnosis.
Collapse
|
60
|
Moreira D, Azeredo A, Barros S, Barbosa F. Exploring psychopathy traits on intertemporal decision-making, neurophysiological correlates, and emotions on time estimation in community adults. Heliyon 2022; 8:e09792. [PMID: 35800242 PMCID: PMC9254348 DOI: 10.1016/j.heliyon.2022.e09792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
There are certain characteristics of psychopathy that may be related to changes in intertemporal choices. Specifically, traits such as impulsivity or lack of inhibitory control may be associated with a more pronounced discounting function in intertemporal choices (IC) and, in turn, this function may be based on changes in the basic mechanisms of time estimation (TE). Therefore, this study aimed to examine potential differences in neurophysiological correlates, specifically through N1, P3, and LPP measurements, which may be related to TE and IC, examining their modulation according to psychopathic traits, different emotional conditions, and different decision-making conditions. This experimental study included 67 adult participants (48 women) from the northern region of Portugal, who performed an intertemporal decision-making task and, of those, 19 participants (16 women), with a mean age of 25 years (SD = 5.41) and a mean of 16 years of schooling (SD = 3.37) performed the time estimation task. The instruments/measures applied were MoCA, used as a neurocognitive screening tool; the Triarchic Psychopathy Measure (TriPM), a self-report instrument with 58 items that map the core features of psychopathy along three facets – boldness, meanness, and disinhibition – and considers them continuously distributed among the general population; intertemporal decision-making and time estimation tasks – for the time estimation task, the stimuli consisted of 45 color images extracted from the Nencki Affective Picture System (NAPS). In the TE task, there was an almost significant effect of disinhibition on the values of θ, with higher values on this variable associated with greater values of θ in the unpleasant emotional condition. In the IC task, there were no significant effects of any psychopathy measure on the values of the gains and losses ratios. In addition, the analysis of the neurophysiological correlates of the IC task did not reveal a main effect of the decision-making condition, nor effects of any psychopathy measure on the N1 and P3 amplitudes. The analysis of the neurophysiological correlates of the TE task revealed that higher meanness values are associated with smaller N1 amplitude in the pleasant emotional condition, whereas higher disinhibition values are associated with greater N1 amplitude in the pleasant emotional condition. Still in this task, higher disinhibition values were associated with a smaller LPP amplitude in the unpleasant emotional condition. The increase in the distribution of attention resources towards time and/or the increase in activation states, including those originated by responses to emotional stimuli, may be the main factor that alters the way impulsive individuals and, presumably, individuals with high psychopathy, consider time when making decisions. There are certain characteristics of psychopathy that may be related to changes in IC. Higher meanness values are associated with smaller N1 amplitude in the pleasant emotional condition (TE task). Higher disinhibition values are associated with greater N1 amplitude in the pleasant emotional condition (TE task). Higher disinhibition values were associated with a smaller LPP amplitude in the unpleasant emotional condition (TE task).
Collapse
Affiliation(s)
- Diana Moreira
- Faculty of Psychology and Educational Sciences, University of Porto, Portugal
- Observatory Permanent Violence and Crime (OPVC), University Fernando Pessoa, Portugal
- Institute of Psychology and Neuropsychology of Porto – IPNP Health, Portugal
- Centro de Solidariedade de Braga/Projecto Homem, Portugal
- Corresponding author.
| | - Andreia Azeredo
- Faculty of Psychology and Educational Sciences, University of Porto, Portugal
| | - Susana Barros
- Faculty of Psychology and Educational Sciences, University of Porto, Portugal
| | - Fernando Barbosa
- Faculty of Psychology and Educational Sciences, University of Porto, Portugal
| |
Collapse
|
61
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
62
|
Dysfunctional temporal stages of eye-gaze perception in adults with ADHD: a high-density EEG study. Biol Psychol 2022; 171:108351. [PMID: 35568095 DOI: 10.1016/j.biopsycho.2022.108351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/03/2022] [Accepted: 05/07/2022] [Indexed: 11/21/2022]
Abstract
ADHD has been associated with social cognitive impairments across the lifespan, but no studies have specifically addressed the presence of abnormalities in eye-gaze processing in the adult brain. This study investigated the neural basis of eye-gaze perception in adults with ADHD using event-related potentials (ERP). Twenty-three ADHD and 23 controls performed a delayed face-matching task with neutral faces that had either direct or averted gaze. ERPs were classified using microstate analyses. ADHD and controls displayed similar P100 and N170 microstates. ADHD was associated with cluster abnormalities in the attention-sensitive P200 to direct gaze, and in the N250 related to facial recognition. For direct gaze, source localization revealed reduced activity in ADHD for the P200 in the left/midline cerebellum, as well as in a cingulate-occipital network at the N250. These results suggest brain impairments involving eye-gaze decoding in adults with ADHD, suggestive of neural signatures associated with this disorder in adulthood.
Collapse
|
63
|
Francis AM, Parks A, Choueiry J, El-Marj N, Impey D, Knott VJ, Fisher DJ. Sensory gating in tobacco-naïve cannabis users is unaffected by acute nicotine administration. Psychopharmacology (Berl) 2022; 239:1279-1288. [PMID: 33932162 DOI: 10.1007/s00213-021-05843-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Long-term cannabis use has been associated with the appearance of psychotic symptoms and schizophrenia-like cognitive impairments; however these studies may be confounded by concomitant use of tobacco by cannabis users. We aimed to determine if previously observed cannabis-associated deficits in sensory gating would be seen in cannabis users with no history of tobacco use, as evidenced by changes in the P50, N100, and P200 event-related potentials. A secondary objective of this study was to examine the effects of acute nicotine administration on cannabis users with no tobacco use history. METHODS Three components (P50, N100, P200) of the mid-latency auditory-evoked response (MLAER) were elicited by a paired-stimulus paradigm in 43 healthy, non-tobacco smoking male volunteers between the ages of 18-30. Cannabis users (CU, n = 20) were administered nicotine (6 mg) and placebo gum within a randomized, double-blind design. Non-cannabis users (NU, n = 23) did not receive nicotine. RESULTS Between-group sensory gating effects were only observed for the N100, with CUs exhibiting a smaller N100 to S1 of the paired stimulus paradigm, in addition to reduced dN100 (indicating poorer gating). Results revealed no significant sensory gating differences with acute administration of nicotine compared to placebo cannabis conditions. CONCLUSIONS These findings suggest a relationship between gating impairment and cannabis use; however, acute nicotine administration nicotine does not appear to impact sensory gating function.
Collapse
Affiliation(s)
- Ashley M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS, Canada
| | - Andrea Parks
- Department of Biomedical Science, University of Ottawa, Ottawa, ON, Canada
| | - Joëlle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Nicole El-Marj
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Danielle Impey
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Verner J Knott
- Department of Biomedical Science, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Derek J Fisher
- Department of Psychology, Saint Mary's University, Halifax, NS, Canada.
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
- Department of Psychology, Mount Saint Vincent University, 166 Bedford Hwy, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
64
|
Blacker KJ, McHail DG. Effects of Acute Hypoxia on Early Visual and Auditory Evoked Potentials. Front Neurosci 2022; 16:846001. [PMID: 35546885 PMCID: PMC9082933 DOI: 10.3389/fnins.2022.846001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Reduced levels of environmental oxygen lead to hypoxic hypoxia and are a primary threat in tactical aviation. The visual system is particularly vulnerable to hypoxia, and its impairment can severely impact performance. The auditory system is relatively spared by hypoxia, although which stages of auditory processing are most impacted by hypoxia remains unclear. Previous work has used electroencephalography (EEG) to assess neural markers of cognitive processing for visual and auditory stimuli and found that these markers were sensitive to a normobaric hypoxic exposure. In the current study, we assessed whether early sensory evoked potentials, that precede cognitive activity, are also impaired by normobaric hypoxia. In a within-subjects design, we compared visual (P100) and auditory evoked potentials (sensory gating for the P50, N100, and P200) in 34 healthy adults during normoxic (21% O2) and two separate hypoxic (9.7% O2) exposures. Self-reported symptoms of hypoxia were also assessed using the Hypoxia Symptom Questionnaire (HSQ). We found that P100 mean amplitude was not reduced under hypoxic compared to normoxic conditions, suggesting no statistically significant impairment of early visual processing. The sensory gating ratio for auditory stimuli was intact for paired responses of the P50 and N100. However, the P200 sensory gating ratio was attenuated under hypoxic compared to normoxic conditions, suggesting disruption of the auditory system specific to the level of allocating attention that follows basic auditory processing. Exploratory analyses of HSQ scores identified a robust effect of hypoxia. However, consistency of symptoms reported between the two hypoxia exposures exhibited high intra-individual variability, which may have implications for the theory that individuals have a consistent hypoxia signature or reliable constellation of responses to hypoxia. These findings suggest that early sensory processing is not impaired during hypoxia, but for the auditory system there is impairment at the level of attentional processing. Given the previous findings of impaired visual performance under hypoxia, these results suggest that this impairment does not stem from early visual processing deficits in visual cortex. Together these findings help focus the search on when and where hypoxia-induced deficits occur and may guide the development of countermeasures for hypoxia in tactical aviation.
Collapse
Affiliation(s)
- Kara J. Blacker
- Naval Medical Research Unit-Dayton, Wright-Patterson Air Force Base (AFB), Dayton, OH, United States
| | | |
Collapse
|
65
|
Wang C, Rimol LM, Wang W. Visual Event-Related Potentials under External Emotional Stimuli in Bipolar I Disorder with and without Hypersexuality. Brain Sci 2022; 12:441. [PMID: 35447973 PMCID: PMC9032653 DOI: 10.3390/brainsci12040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Hypersexuality is related to functions of personality and emotion and is a salient symptom of bipolar I disorder especially during manic episode. However, it is uncertain whether bipolar I disorder with (BW) and without (BO) hypersexuality exhibits different cerebral activations under external emotion stimuli. In 54 healthy volunteers, 27 BW and 26 BO patients, we administered the visual oddball event-related potentials (ERPs) under external emotions of Disgust, Erotica, Fear, Happiness, Neutral, and Sadness. Participants' concurrent states of mania, hypomania, and depression were also evaluated. The N1 latencies under Erotica and Happiness were prolonged, and the P3b amplitudes under Fear and Sadness were decreased in BW; the P3b amplitudes under Fear were increased in BO. The parietal, frontal, and occipital activations were found in BW, and the frontal and temporal activations in BO under different external emotional stimuli, respectively. Some ERP components were correlated with the concurrent affective states in three groups of participants. The primary perception under Erotica and Happiness, and voluntary attention under Fear and Sadness, were impaired in BW, while the voluntary attention under Fear was impaired in BO. Our study indicates different patterns of visual attentional deficits under different external emotions in BW and BO.
Collapse
Affiliation(s)
- Chu Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou 310058, China
| | - Lars M. Rimol
- Department of Psychology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Wei Wang
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou 310058, China
- Department of Psychology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| |
Collapse
|
66
|
Kaymak Koca E, Durmaz O, Füsun Domaç S, Kesebir S. Neuropsychological and Neurophysiological Assessment in Different Phases of Bipolar Disorder. PSYCHIAT CLIN PSYCH 2022; 32:9-16. [PMID: 38764907 PMCID: PMC11099630 DOI: 10.5152/pcp.2022.21281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 05/21/2024] Open
Abstract
Background Recent studies have shown that cognitive deficits are significant and pervasive even among remitted bipolar disorder patients. The aim of the current controlled study was to investigate the relationships between cognitive performances, symptom severity, and event-related potentials with regard to different episodes in bipolar patients. Methods This study was conducted on a total of 60 patients diagnosed with bipolar disorder (20 depressive, 20 manic, and 20 in remission). The Frontal Assessment Battery and Stroop test were used for neuropsychological assessment. Event-related potentials were measured using frontal, central, and parietal EEG recordings, while Nihon-Kohden EMG-EP system was used. Results Delayed P300 latencies were observed in all phases of bipolar disorder when compared to the controls. There was a positive relationship between frontal, central P300 latencies, and Young Mania Rating Scale scores. A strong positive relationship was also observed between Young Mania Rating Scale scores and Stroop interference scores. A negative relationship was observed between Frontal Assessment Battery scores and frontal, central, and parietal N100 latencies and amplitudes in depressed patients. Consistent with these findings, there was a relationship between Hamilton Depression Rating Scale scores and N100 latencies. There was also a positive relationship between Stroop interference scores and central N200 latency, as well as frontal N200 and parietal N200 amplitudes, while a negative relationship was observed between Stroop total time scores and central N200 latency as well as parietal N200 amplitude in depressed patients. Conclusions Study findings imply that depression episodes could be associated with decision-making autonomy and memory issues, while there is also a relationship between episodes of mania, impaired inhibitory control, and issues with selective attention. Moreover, these cognitive impairments might be included in the initial phases of processing observed in N100 responses in depression, while processing impairment could be pervasive in mania that results in P300 delays.
Collapse
Affiliation(s)
- Esra Kaymak Koca
- Department of Psychiatry, Erenköy Mental Health and Neurology Training and Research Hospital, İstanbul, Turkey
| | - Onur Durmaz
- Department of Psychiatry, Erenköy Mental Health and Neurology Training and Research Hospital, İstanbul, Turkey
| | - Saime Füsun Domaç
- Department of Neurology, Erenköy Mental Health and Neurology Training and Research Hospital, İstanbul, Turkey
| | - Sermin Kesebir
- Department of Neurology, Erenköy Mental Health and Neurology Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
67
|
Barry RJ, De Blasio FM, Rushby JA, MacDonald B, Fogarty JS, Cave AE. Stimulus intensity effects and sequential processing in the passive auditory ERP. Int J Psychophysiol 2022; 176:149-163. [DOI: 10.1016/j.ijpsycho.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
68
|
An EEG Classification-Based Method for Single-Trial N170 Latency Detection and Estimation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6331956. [PMID: 35222689 PMCID: PMC8881175 DOI: 10.1155/2022/6331956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Event-related potentials (ERPs) can reflect the high-level thinking activities of the brain. In ERP analysis, the superposition and averaging method is often used to estimate ERPs. However, the single-trial ERP estimation can provide researchers with more information on cognitive activities. In recent years, more and more researchers try to find an effective method to extract single-trial ERPs, because most of the existing methods have poor generalization ability or suffer from strong assumptions about the characteristics of ERPs, resulting in unsatisfactory results under the condition of a very low signal-to-noise ratio. In this paper, an EEG classification-based method for single-trial ERP detection and estimation was proposed. This study used a linear generated EEG model containing templates of ERP local descriptors which include amplitude and latency, and this model can avoid the invalid assumption about ERPs taken by other methods. The purpose of this method is not to recover the whole ERP waveform but to model the amplitude and latency of ERP components. This method afterwards examined the three machine learning models including logistic regression, neural network, and support vector machine in the EEG signal classification for ERP detection and selected the best performed MLPNN model for detection. To get the utmost out of information produced in the classification process, this study also used extra information to propose a new optimization model, with which outperformed detection results were obtained. Performance of the proposed method is evaluated on simulated N170 and real P50 data sets, and the results show that the model is more effective than the Woody filter and the SingleTrialEM algorithm. These results are also consistent with the conclusion of sensory gating, which demonstrated good generalization ability.
Collapse
|
69
|
Barros C, Roach B, Ford JM, Pinheiro AP, Silva CA. From Sound Perception to Automatic Detection of Schizophrenia: An EEG-Based Deep Learning Approach. Front Psychiatry 2022; 12:813460. [PMID: 35250651 PMCID: PMC8892210 DOI: 10.3389/fpsyt.2021.813460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022] Open
Abstract
Deep learning techniques have been applied to electroencephalogram (EEG) signals, with promising applications in the field of psychiatry. Schizophrenia is one of the most disabling neuropsychiatric disorders, often characterized by the presence of auditory hallucinations. Auditory processing impairments have been studied using EEG-derived event-related potentials and have been associated with clinical symptoms and cognitive dysfunction in schizophrenia. Due to consistent changes in the amplitude of ERP components, such as the auditory N100, some have been proposed as biomarkers of schizophrenia. In this paper, we examine altered patterns in electrical brain activity during auditory processing and their potential to discriminate schizophrenia and healthy subjects. Using deep convolutional neural networks, we propose an architecture to perform the classification based on multi-channels auditory-related EEG single-trials, recorded during a passive listening task. We analyzed the effect of the number of electrodes used, as well as the laterality and distribution of the electrical activity over the scalp. Results show that the proposed model is able to classify schizophrenia and healthy subjects with an average accuracy of 78% using only 5 midline channels (Fz, FCz, Cz, CPz, and Pz). The present study shows the potential of deep learning methods in the study of impaired auditory processing in schizophrenia with implications for diagnosis. The proposed design can provide a base model for future developments in schizophrenia research.
Collapse
Affiliation(s)
- Carla Barros
- Psychological Neurosciences Lab, Psychology Research Center (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Brian Roach
- Psychiatry Service, San Francisco Veteran Affairs Medical Center (VAMC), San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Judith M. Ford
- Psychiatry Service, San Francisco Veteran Affairs Medical Center (VAMC), San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Ana P. Pinheiro
- Psychological Neurosciences Lab, Psychology Research Center (CIPsi), School of Psychology, University of Minho, Braga, Portugal
- Research Center for Psychological Science (CICPSI), Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A. Silva
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
70
|
Auditory event-related electroencephalographic potentials in borderline personality disorder. J Affect Disord 2022; 296:454-464. [PMID: 34600969 DOI: 10.1016/j.jad.2021.09.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Borderline Personality Disorder (BPD) is characterized by mood dysregulation, impulsivity, identity disturbances, and a higher risk for suicide. Currently, the diagnosis is solely based on clinical observation of overt symptoms, and this can delay the detection of the disease and the timely start of appropriate treatment. Several candidate clinical tools have been studied to better characterize BPD, including event-related potentials (ERP). This review aimed at summarizing the results of the available ERP studies on BPD to clarify the possible application of this technique in the early diagnosis of BPD. METHODS A bibliographic search on PubMed and PsycInfo was performed in order to identify studies comprising individuals with BPD diagnosis and a control group that evaluated the ERP elicited by auditory stimuli. RESULTS Ten studies that explored various ERP components associated with auditory stimuli in BPD were included. Overall, the results showed that positive ERP (P50, P100, and P300) amplitude and latencies as well as loudness dependance were altered in BPD patients compared to controls, possibly reflecting deficits involving attention, mainly at its early stage, and executive functions. LIMITATIONS The reviewed studies used different ERP approaches and non-homogeneous BPD diagnostic criteria. CONCLUSIONS Auditory ERP appear to be a promising tool for the assessment of BPD patients, especially for early diagnosis and evaluation of cognitive symptoms.
Collapse
|
71
|
Stolte M, Oranje B, Van Luit JEH, Kroesbergen EH. Prepulse Inhibition and P50 Suppression in Relation to Creativity and Attention: Dispersed Attention Beneficial to Quantitative but Not Qualitative Measures of Divergent Thinking. Front Psychiatry 2022; 13:875398. [PMID: 35757214 PMCID: PMC9218263 DOI: 10.3389/fpsyt.2022.875398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The current study investigated whether lower sensory and sensorimotor gating were related to higher levels of creativity and/or attentional difficulties in a natural population of primary school children (9- to 13-year-old). Gating abilities were measured with P50 suppression and prepulse inhibition of the startle reflex (PPI). The final sample included 65 participants in the P50 analyses and 37 participants in the PPI analyses. Our results showed that children with a high P50 amplitude to testing stimuli scored significantly higher on the divergent outcome measures of fluency and flexibility but not originality compared to children with a lower amplitude. No significant differences were found on any of the creativity measures when the sample was split on average PPI parameters. No significant differences in attention, as measured with a parent questionnaire, were found between children with low or high levels of sensory or sensorimotor gating. The data suggest that quantitative, but not qualitative measures of divergent thinking benefit from lower psychophysiological gating and that attentional difficulties stem from specific instead of general gating deficits. Future studies should take the effect of controlled attention into consideration.
Collapse
Affiliation(s)
- Marije Stolte
- Department of Orthopedagogics: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Johannes E H Van Luit
- Department of Orthopedagogics: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
72
|
Pultsina K, Alekhin A, Petrova E, Vorobieva N. Efficiency of the attention networks and severity of positive and negative symptoms in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:88-96. [DOI: 10.17116/jnevro202212202188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Chen YX, Xu XR, Huang S, Guan RR, Hou XY, Sun JQ, Sun JW, Guo XT. Auditory Sensory Gating in Children With Cochlear Implants: A P50-N100-P200 Study. Front Neurosci 2021; 15:768427. [PMID: 34938156 PMCID: PMC8685319 DOI: 10.3389/fnins.2021.768427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background: While a cochlear implant (CI) can restore access to audibility in deaf children, implanted children may still have difficulty in concentrating. Previous studies have revealed a close relationship between sensory gating and attention. However, whether CI children have deficient auditory sensory gating remains unclear. Methods: To address this issue, we measured the event-related potentials (ERPs), including P50, N100, and P200, evoked by paired tone bursts (S1 and S2) in CI children and normal-hearing (NH) controls. Suppressed amplitudes for S2 compared with S1 in these three ERPs reflected sensory gating during early and later phases, respectively. A Swanson, Nolan, and Pelham IV (SNAP-IV) scale was performed to assess the attentional performance. Results: Significant amplitude differences between S1 and S2 in N100 and P200 were observed in both NH and CI children, indicating the presence of sensory gating in the two groups. However, the P50 suppression was only found in NH children and not in CI children. Furthermore, the duration of deafness was significantly positively correlated with the score of inattention in CI children. Conclusion: Auditory sensory gating can develop but is deficient during the early phase in CI children. Long-term auditory deprivation has a negative effect on sensory gating and attentional performance.
Collapse
Affiliation(s)
- Yan-Xin Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Ran Xu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuo Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui-Rui Guan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Yan Hou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing-Wu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Tao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
74
|
Bonetti L, Brattico E, Carlomagno F, Donati G, Cabral J, Haumann NT, Deco G, Vuust P, Kringelbach ML. Rapid encoding of musical tones discovered in whole-brain connectivity. Neuroimage 2021; 245:118735. [PMID: 34813972 DOI: 10.1016/j.neuroimage.2021.118735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
Information encoding has received a wide neuroscientific attention, but the underlying rapid spatiotemporal brain dynamics remain largely unknown. Here, we investigated the rapid brain mechanisms for encoding of sounds forming a complex temporal sequence. Specifically, we used magnetoencephalography (MEG) to record the brain activity of 68 participants while they listened to a highly structured musical prelude. Functional connectivity analyses performed using phase synchronisation and graph theoretical measures showed a large network of brain areas recruited during encoding of sounds, comprising primary and secondary auditory cortices, frontal operculum, insula, hippocampus and basal ganglia. Moreover, our results highlighted the rapid transition of brain activity from primary auditory cortex to higher order association areas including insula and superior temporal pole within a whole-brain network, occurring during the first 220 ms of the encoding process. Further, we discovered that individual differences along cognitive abilities and musicianship modulated the degree centrality of the brain areas implicated in the encoding process. Indeed, participants with higher musical expertise presented a stronger centrality of superior temporal gyrus and insula, while individuals with high working memory abilities showed a stronger centrality of frontal operculum. In conclusion, our study revealed the rapid unfolding of brain network dynamics responsible for the encoding of sounds and their relationship with individual differences, showing a complex picture which extends beyond the well-known involvement of auditory areas. Indeed, our results expanded our understanding of the general mechanisms underlying auditory pattern encoding in the human brain.
Collapse
Affiliation(s)
- L Bonetti
- Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy.
| | - E Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
| | - F Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - G Donati
- Department of Psychology, University of Bologna, Italy; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - J Cabral
- Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - N T Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - G Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Computational and Theoretical Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - M L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
75
|
Crook-Rumsey M, Howard CJ, Hadjiefthyvoulou F, Sumich A. Neurophysiological markers of prospective memory and working memory in typical ageing and mild cognitive impairment. Clin Neurophysiol 2021; 133:111-125. [PMID: 34839236 DOI: 10.1016/j.clinph.2021.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Prospective memory (PM) -the memory of delayed intentions- is impacted by age-related cognitive decline. The current event-related potential study investigates neural mechanisms underpinning typical and atypical (Mild Cognitive Impairment, MCI) age-related decline in PM. METHODS Young adults (YA, n = 30, age = 24.7, female n = 13), healthy older adults (OA, n = 39, age = 72.87, female n = 24) and older adults with MCI (n = 27, age = 77.54, female n = 12) performed two event-based PM tasks (perceptual, conceptual) superimposed on an ongoing working memory task. Electroencephalographic data was recorded from 128 electrodes. Groups were compared for P2 (higher order perceptual processing), N300/frontal positivity (cue detection), the parietal positivity (retrieval), reorienting negativity (RON; attention shifting). RESULTS Participants with MCI had poorer performance (ongoing working memory task, conceptual PM), lower P2 amplitudes, and delayed RON (particularly for perceptual PM) than YA and OA. MCI had lower parietal positivity relative to YA only. YA had earlier latencies for the parietal positivity than MCI and OA, and lower amplitudes for N300 (than OA) and frontal positivity (than OA and MCI). CONCLUSIONS Impaired attention and working memory may underpin PM deficits in MCI. SIGNIFICANCE This is the first study to document the role of RON in PM and to investigate neurophysiological mechanisms underpinning PM in MCI.
Collapse
Affiliation(s)
- Mark Crook-Rumsey
- Department of Psychology, Nottingham Trent University, NG1 4BU, UK; Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, 1010, New Zealand.
| | | | | | - Alexander Sumich
- Department of Psychology, Nottingham Trent University, NG1 4BU, UK; Department of Psychology, Auckland University of Technology, 1010, New Zealand
| |
Collapse
|
76
|
Habelt B, Wirth C, Afanasenkau D, Mihaylova L, Winter C, Arvaneh M, Minev IR, Bernhardt N. A Multimodal Neuroprosthetic Interface to Record, Modulate and Classify Electrophysiological Biomarkers Relevant to Neuropsychiatric Disorders. Front Bioeng Biotechnol 2021; 9:770274. [PMID: 34805123 PMCID: PMC8595111 DOI: 10.3389/fbioe.2021.770274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most mental disorders, such as addictive diseases or schizophrenia, are characterized by impaired cognitive function and behavior control originating from disturbances within prefrontal neural networks. Their often chronic reoccurring nature and the lack of efficient therapies necessitate the development of new treatment strategies. Brain-computer interfaces, equipped with multiple sensing and stimulation abilities, offer a new toolbox whose suitability for diagnosis and therapy of mental disorders has not yet been explored. This study, therefore, aimed to develop a biocompatible and multimodal neuroprosthesis to measure and modulate prefrontal neurophysiological features of neuropsychiatric symptoms. We used a 3D-printing technology to rapidly prototype customized bioelectronic implants through robot-controlled deposition of soft silicones and a conductive platinum ink. We implanted the device epidurally above the medial prefrontal cortex of rats and obtained auditory event-related brain potentials in treatment-naïve animals, after alcohol administration and following neuromodulation through implant-driven electrical brain stimulation and cortical delivery of the anti-relapse medication naltrexone. Towards smart neuroprosthetic interfaces, we furthermore developed machine learning algorithms to autonomously classify treatment effects within the neural recordings. The neuroprosthesis successfully captured neural activity patterns reflecting intact stimulus processing and alcohol-induced neural depression. Moreover, implant-driven electrical and pharmacological stimulation enabled successful enhancement of neural activity. A machine learning approach based on stepwise linear discriminant analysis was able to deal with sparsity in the data and distinguished treatments with high accuracy. Our work demonstrates the feasibility of multimodal bioelectronic systems to monitor, modulate and identify healthy and affected brain states with potential use in a personalized and optimized therapy of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Christopher Wirth
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Dzmitry Afanasenkau
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Lyudmila Mihaylova
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Charite University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ivan R. Minev
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
77
|
Wiesman AI, Mundorf VM, Casagrande CC, Wolfson SL, Johnson CM, May PE, Murman DL, Wilson TW. Somatosensory dysfunction is masked by variable cognitive deficits across patients on the Alzheimer's disease spectrum. EBioMedicine 2021; 73:103638. [PMID: 34689085 PMCID: PMC8550984 DOI: 10.1016/j.ebiom.2021.103638] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is generally thought to spare primary sensory function; however, such interpretations have drawn from a literature that has rarely taken into account the variable cognitive declines seen in patients with AD. As these cognitive domains are now known to modulate cortical somatosensory processing, it remains possible that abnormalities in somatosensory function in patients with AD have been suppressed by neuropsychological variability in previous research. METHODS In this study, we combine magnetoencephalographic (MEG) brain imaging during a paired-pulse somatosensory gating task with an extensive battery of neuropsychological tests to investigate the influence of cognitive variability on estimated differences in somatosensory function between biomarker-confirmed patients on the AD spectrum and cognitively-normal older adults. FINDINGS We show that patients on the AD spectrum exhibit largely non-significant differences in somatosensory function when cognitive variability is not considered (p-value range: .020-.842). However, once attention and processing speed abilities are considered, robust differences in gamma-frequency somatosensory response amplitude (p < .001) and gating (p = .004) emerge, accompanied by significant statistical suppression effects. INTERPRETATION These findings suggest that patients with AD exhibit insults to functional somatosensory processing in primary sensory cortices, but these effects are masked by variability in cognitive decline across individuals. FUNDING National Institutes of Health, USA; Fremont Area Alzheimer's Fund, USA.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada; Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
| | - Victoria M Mundorf
- Center for Brain, Biology, and Behavior, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | | | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Memory Disorders and Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|
78
|
Dias JW, McClaskey CM, Harris KC. Early auditory cortical processing predicts auditory speech in noise identification and lipreading. Neuropsychologia 2021; 161:108012. [PMID: 34474065 DOI: 10.1016/j.neuropsychologia.2021.108012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Individuals typically exhibit better cross-sensory perception following unisensory loss, demonstrating improved perception of information available from the remaining senses and increased cross-sensory use of neural resources. Even individuals with no sensory loss will exhibit such changes in cross-sensory processing following temporary sensory deprivation, suggesting that the brain's capacity for recruiting cross-sensory sources to compensate for degraded unisensory input is a general characteristic of the perceptual process. Many studies have investigated how auditory and visual neural structures respond to within- and cross-sensory input. However, little attention has been given to how general auditory and visual neural processing relates to within and cross-sensory perception. The current investigation examines the extent to which individual differences in general auditory neural processing accounts for variability in auditory, visual, and audiovisual speech perception in a sample of young healthy adults. Auditory neural processing was assessed using a simple click stimulus. We found that individuals with a smaller P1 peak amplitude in their auditory-evoked potential (AEP) had more difficulty identifying speech sounds in difficult listening conditions, but were better lipreaders. The results suggest that individual differences in the auditory neural processing of healthy adults can account for variability in the perception of information available from the auditory and visual modalities, similar to the cross-sensory perceptual compensation observed in individuals with sensory loss.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina, United States.
| | | | | |
Collapse
|
79
|
Boustani N, Pishghadam R, Shayesteh S. Multisensory Input Modulates P200 and L2 Sentence Comprehension: A One-Week Consolidation Phase. Front Psychol 2021; 12:746813. [PMID: 34616346 PMCID: PMC8488095 DOI: 10.3389/fpsyg.2021.746813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Multisensory input is an aid to language comprehension; however, it remains to be seen to what extent various combinations of senses may affect the P200 component and attention-related cognitive processing associated with L2 sentence comprehension along with the N400 as a later component. To this aim, we provided some multisensory input (enriched with data from three (i.e., exvolvement) and five senses (i.e., involvement)) for a list of unfamiliar words to 18 subjects. Subsequently, the words were embedded in an acceptability judgment task with 360 pragmatically correct and incorrect sentences. The task, along with the ERP recording, was conducted after a 1-week consolidation period to track any possible behavioral and electrophysiological distinctions in the retrieval of information with various sense combinations. According to the behavioral results, we found that the combination of five senses leads to more accurate and quicker responses. Based on the electrophysiological results, the combination of five senses induced a larger P200 amplitude compared to the three-sense combination. The implication is that as the sensory weight of the input increases, vocabulary retrieval is facilitated and more attention is directed to the overall comprehension of L2 sentences which leads to more accurate and quicker responses. This finding was not, however, reflected in the neural activity of the N400 component.
Collapse
Affiliation(s)
- Nasim Boustani
- Department of English, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Pishghadam
- Department of English, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
80
|
De Groote E, Eqlimi E, Bockstael A, Botteldooren D, Santens P, De Letter M. Parkinson's disease affects the neural alpha oscillations associated with speech-in-noise processing. Eur J Neurosci 2021; 54:7355-7376. [PMID: 34617350 DOI: 10.1111/ejn.15477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) has increasingly been associated with auditory dysfunction, including alterations regarding the control of auditory information processing. Although these alterations may interfere with the processing of speech in degraded listening conditions, behavioural studies have generally found preserved speech-in-noise recognition in PD. However, behavioural speech audiometry does not capture the neurophysiological mechanisms supporting speech-in-noise processing. Therefore, the aim of this study was to investigate the neural oscillatory mechanisms associated with speech-in-noise processing in PD. Twelve persons with PD and 12 age- and gender-matched healthy controls (HCs) were included in this study. Persons with PD were studied in the medication off condition. All subjects underwent an audiometric screening and performed a sentence-in-noise recognition task under simultaneous electroencephalography (EEG) recording. Behavioural speech recognition scores and self-reported ratings of effort, performance, and motivation were collected. Time-frequency analysis of EEG data revealed no significant difference between persons with PD and HCs regarding delta-theta (2-8 Hz) inter-trial phase coherence to noise and sentence onset. In contrast, significantly increased alpha (8-12 Hz) power was found in persons with PD compared with HCs during the sentence-in-noise recognition task. Behaviourally, persons with PD demonstrated significantly decreased speech recognition scores, whereas no significant differences were found regarding effort, performance, and motivation ratings. These results suggest that persons with PD allocate more cognitive resources to support speech-in-noise processing. The interpretation of this finding is discussed in the context of a top-down mediated compensation mechanism for inefficient filtering and degradation of auditory input in PD.
Collapse
Affiliation(s)
- Evelien De Groote
- Department of Rehabilitation Sciences, BrainComm Research Group, Ghent University, Ghent, Belgium
| | - Ehsan Eqlimi
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, BrainComm Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
81
|
Şahin D, Hever F, Bossert M, Herwig K, Aschenbrenner S, Weisbrod M, Sharma A. Early and middle latency auditory event-related potentials do not explain differences in neuropsychological performance between schizophrenia spectrum patients and matched healthy controls. Psychiatry Res 2021; 304:114162. [PMID: 34380086 DOI: 10.1016/j.psychres.2021.114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Abnormalities of early and middle latency auditory event-related potentials (ERPs) are widespread in schizophrenia and have been suggested to be associated with cognitive deficits in schizophrenia patients. In this cross-sectional study with schizophrenia patients (n=30) and psychiatrically healthy counterparts (n=31) (matched for age, sex, education), we investigated whether auditory information processing (measured via amplitudes and gating of the auditory ERPs P50, N100 and P200) correlates with neuropsychological performance across cognitive domains. The groups differed significantly in amplitudes and gating of N100 and P200 potentials as well as in neuropsychological performance, but not in P50 amplitude and gating. Neither amplitudes nor gating of auditory ERPs correlated with neuropsychological performance. Neuropsychological intergroup differences could not be explained by abnormalities in auditory information processing. Although pronounced impairments exist on the levels of both auditory information processing and cognitive performance in schizophrenia, these abnormalities are not directly associated with each other.
Collapse
Affiliation(s)
- Derya Şahin
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Felix Hever
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Magdalena Bossert
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Kerstin Herwig
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Matthias Weisbrod
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Anuradha Sharma
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
82
|
Montoro CI, Winterholler C, Terrasa JL, Montoya P. Somatosensory Gating Is Modulated by Anodal Transcranial Direct Current Stimulation. Front Neurosci 2021; 15:651253. [PMID: 34557064 PMCID: PMC8452934 DOI: 10.3389/fnins.2021.651253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Anodal transcranial direct current stimulation (tDCS) of the somatosensory cortex causes cerebral hyperexcitability and a significant enhancement in pain thresholds and tactile spatial acuity. Sensory gating is a brain mechanism to suppress irrelevant incoming inputs, which is elicited by presenting pairs of identical stimuli (S1 and S2) within short time intervals between stimuli (e.g., 500 ms). Objectives/Hypothesis The present study addressed the question of whether tDCS could modulate the brain correlates of this inhibitory mechanism. Methods Forty-one healthy individuals aged 18–26 years participated in the study and were randomly assigned to tDCS (n = 21) or SHAM (n = 20). Somatosensory evoked potentials (SEP) elicited by S1 and S2 pneumatic stimuli (duration of 100 ms, ISI 550 ± 50 ms) and applied to the index finger of the dominant hand were recorded before and after tDCS. Results Before the intervention, the second tactile stimuli significantly attenuated the amplitudes of P50, N100, and the late positive complex (LPC, mean amplitude in the time window 150–350) compared to the first stimuli. This confirmed that sensory gating is a widespread brain inhibitory mechanism that can affect early- and middle-latency components of SEPs. Furthermore, our data revealed that this response attenuation or sensory gating (computed as S1 minus S2) was improved after tDCS for LPC, while no changes were found in participants who received SHAM. Conclusion All these findings suggested that anodal tDCS might modulate brain excitability leading to an enhancement of inhibitory mechanisms elicited in response to repetitive somatosensory stimuli during late stages of information processing.
Collapse
Affiliation(s)
- Casandra I Montoro
- Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Christine Winterholler
- Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Juan L Terrasa
- Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Pedro Montoya
- Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| |
Collapse
|
83
|
Farah R, Ionta S, Horowitz-Kraus T. Neuro-Behavioral Correlates of Executive Dysfunctions in Dyslexia Over Development From Childhood to Adulthood. Front Psychol 2021; 12:708863. [PMID: 34497563 PMCID: PMC8419422 DOI: 10.3389/fpsyg.2021.708863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Dyslexia is a neurobiological learning disability in the reading domain that has symptoms in early childhood and persists throughout life. Individuals with dyslexia experience difficulties in academia and cognitive and emotional challenges that can affect wellbeing. Early intervention is critical to minimize the long-term difficulties of these individuals. However, the behavioral and neural correlates which predict dyslexia are challenging to depict before reading is acquired. One of the precursors for language and reading acquisition is executive functions (EF). The present review aims to highlight the current atypicality found in individuals with dyslexia in the domain of EF using behavioral measures, brain mapping, functional connectivity, and diffusion tensor imaging along development. Individuals with dyslexia show EF abnormalities in both behavioral and neurobiological domains, starting in early childhood that persist into adulthood. EF impairment precedes reading disability, therefore adding an EF assessment to the neuropsychological testing is recommended for early intervention. EF training should also be considered for the most comprehensive outcomes.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Haifa, Israel
- Reading and Literacy Discovery Center and the Pediatric Neuroimaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Haifa, Israel
- Reading and Literacy Discovery Center and the Pediatric Neuroimaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
84
|
Spooner RK, Taylor BK, L’Heureux E, Schantell M, Arif Y, May PE, Morsey B, Wang T, Ideker T, Fox HS, Wilson TW. Stress-induced aberrations in sensory processing predict worse cognitive outcomes in healthy aging adults. Aging (Albany NY) 2021; 13:19996-20015. [PMID: 34410999 PMCID: PMC8436901 DOI: 10.18632/aging.203433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023]
Abstract
It is well recognized that not all individuals age equivalently, with functional dependence attributable, at least in part, to stress accumulated across the lifespan. Amongst these dependencies are age-related declines in cognitive function, which may be the result of impaired inhibitory processing (e.g., sensory gating). Herein, we examined the unique roles of life and biological stress on somatosensory gating dynamics in 74 adults (22-72 years old). Participants completed a sensory gating paired-pulse electrical stimulation paradigm of the right median nerve during magnetoencephalography (MEG) and data were subjected to advanced oscillatory and time-domain analysis methods. We observed separable mechanisms by which increasing levels of life and biological stress predicted higher oscillatory gating ratios, indicative of age-related impairments in inhibitory function. Specifically, elevations in life stress significantly modulated the neural response to the first stimulation in the pair, while elevations in biological stress significantly modulated the neural response to the second stimulation in the pair. In contrast, neither elevations in life nor biological stress significantly predicted the gating of time-domain neural activity in the somatosensory cortex. Finally, our study is the first to link stress-induced decline in sensory gating to cognitive dysfunction, suggesting that gating paradigms may hold promise for detecting discrepant functional trajectories in age-related pathologies in the future.
Collapse
Affiliation(s)
- Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Emma L’Heureux
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pamela E. May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
85
|
Does mobile payment change consumers' perception during payment process? -An ERP study. Neurosci Lett 2021; 762:136138. [PMID: 34324960 DOI: 10.1016/j.neulet.2021.136138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022]
Abstract
Innovative payment methods have been getting worldwide attention. Exploring the mechanisms behind consumers' purchase behaviors modulated by different payment methods was critical but challenging. In this paper, we proposed a 2 (payment methods: cash payment vs mobile payment) × 2 (price levels of products: high vs low) Event-Related Potentials (ERPs) experiment to study the difference of cash payment and mobile payment on consumers' purchase intention of products in different price level from a neuroscience perspective. Greater P200 amplitude was found in mobile payment condition, which meant that mobile payment captured more early attention resources than cash. Larger N270 amplitude was found in cash payment condition as the participants had to spend more cognitive resources and struggled more when using cash. Moreover, lower N270 amplitude was found in high-price product condition, which indicated that when there were limited cognitive resources, the affective process played a dominating role. Specifically, buying the high-price products with mobile payment, the consumers would experience the pleasure of consumption more rather than the pain of paying. The study offers insights on the cognitive process of consumers when they pay with different methods.
Collapse
|
86
|
Marcenaro B, Leiva A, Dragicevic C, López V, Delano PH. The medial olivocochlear reflex strength is modulated during a visual working memory task. J Neurophysiol 2021; 125:2309-2321. [PMID: 33978484 DOI: 10.1152/jn.00032.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Top-down modulation of sensory responses to distracting stimuli by selective attention has been proposed as an important mechanism by which our brain can maintain relevant information during working memory tasks. Previous works in visual working memory (VWM) have reported modulation of neural responses to distracting sounds at different levels of the central auditory pathways. Whether these modulations occur also at the level of the auditory receptor is unknown. Here, we hypothesize that cochlear responses to irrelevant auditory stimuli can be modulated by the medial olivocochlear system during VWM. Twenty-one subjects (13 males, mean age 25.3 yr) with normal hearing performed a visual change detection task with different VWM load conditions (high load = 4 visual objects; low load = 2 visual objects). Auditory stimuli were presented as distractors and allowed the measurement of distortion product otoacoustic emissions (DPOAEs) and scalp auditory evoked potentials. In addition, the medial olivocochlear reflex strength was evaluated by adding contralateral acoustic stimulation. We found larger contralateral acoustic suppression of DPOAEs during the visual working memory period (n = 21) compared with control experiments (n = 10), in which individuals were passively exposed to the same experimental conditions. These results show that during the visual working memory period there is a modulation of the medial olivocochlear reflex strength, suggesting a possible common mechanism for top-down filtering of auditory responses during cognitive processes.NEW & NOTEWORTHY The auditory efferent system has been proposed to function as a biological filter of cochlear responses during selective attention. Here, we recorded electroencephalographic activity and otoacoustic emissions in response to auditory distractors during a visual working memory task in humans. We found that the olivocochlear efferent activity is modulated during the visual working memory period suggesting a common mechanism for suppressing cochlear responses during selective attention and working memory.
Collapse
Affiliation(s)
- Bruno Marcenaro
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaiso, Chile.,Interdisciplinary Center of Neuroscience, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Leiva
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Constantino Dragicevic
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vladimir López
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul H Delano
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Otolaryngology Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaiso, Chile
| |
Collapse
|
87
|
Han N, Jack BN, Hughes G, Elijah RB, Whitford TJ. Sensory attenuation in the absence of movement: Differentiating motor action from sense of agency. Cortex 2021; 141:436-448. [PMID: 34146742 DOI: 10.1016/j.cortex.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/13/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Sensory attenuation is the phenomenon that stimuli generated by willed motor actions elicit a smaller neurophysiological response than those generated by external sources. It has mostly been investigated in the auditory domain, by comparing ERPs evoked by self-initiated (active condition) and externally-generated (passive condition) sounds. The mechanistic basis of sensory attenuation has been argued to involve a duplicate of the motor command being used to predict sensory consequences of self-generated movements. An alternative possibility is that the effect is driven by between-condition differences in participants' sense of agency over the sound. In this paper, we disambiguated the effects of motor-action and sense of agency on sensory attenuation with a novel experimental paradigm. In Experiment 1, participants watched a moving, marked tickertape while EEG was recorded. In the active condition, participants chose whether to press a button by a certain mark on the tickertape. If a button-press had not occurred by the mark, then a tone would be played 1 s later. If the button was pressed prior to the mark, the tone was not played. In the passive condition, participants passively watched the animation, and were informed about whether a tone would be played on each trial. The design for Experiment 2 was identical, except that the contingencies were reversed (i.e., a button-press by the mark led to a tone). The results were consistent across the two experiments: while there were no differences in N1 amplitude between the active and passive conditions, the amplitude of the Tb component was suppressed in the active condition. The amplitude of the P2 component was enhanced in the active condition in both Experiments 1 and 2. These results suggest that motor-actions and sense of agency have differential effects on sensory attenuation to sounds and are indexed with different ERP components.
Collapse
Affiliation(s)
- Nathan Han
- School of Psychology, The University of New South Wales (UNSW Sydney), Sydney, Australia.
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Canberra, Australia
| | - Gethin Hughes
- Department of Psychology, University of Essex, Colchester, UK
| | - Ruth B Elijah
- School of Psychology, The University of New South Wales (UNSW Sydney), Sydney, Australia
| | - Thomas J Whitford
- School of Psychology, The University of New South Wales (UNSW Sydney), Sydney, Australia
| |
Collapse
|
88
|
Giannopoulos AE, Zioga I, Papageorgiou PC, Kapsali F, Spantideas ST, Kapsalis NC, Capsalis CN, Kontoangelos K, Papageorgiou CC. Early auditory-evoked potentials in body dysmorphic disorder: An ERP/sLORETA study. Psychiatry Res 2021; 299:113865. [PMID: 33735739 DOI: 10.1016/j.psychres.2021.113865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/07/2021] [Indexed: 01/13/2023]
Abstract
Body dysmorphic disorder (BDD) is characterized by excessive preoccupation with imagined or slight physical defects in appearance. BDD is associated with cognitive impairments (attention, visual processing). Our study aims to evaluate the early neural responses (N100, P200) to prepulse inhibition (PPI) and prepulse facilitation (PPF), to investigate attentional processing of BDD in the auditory domain. Fifty-five adults took part: 30 BDD patients and 25 healthy controls. We compared their brain responses to PPI and PPF by analyzing global field power (GFP), event-related potentials (ERPs) and their respective sources. BDD exhibited reduced N100 amplitudes compared to healthy controls in response to the startle tone elicited by both PPI and PPF, potentially suggesting impaired allocation of attention. Interestingly, the lower the GFP at the N100, the higher the BDD severity. Source reconstruction analysis showed reduced activation for BDD during the N100 time window in PPI. Scalp responses and source activations in PPI were decreased overall compared to PPF, confirming the gating effect of PPI. We provided evidence that the N100 may serve as an electrophysiological marker of BDD, predicting its severity. Our study demonstrated the potential of using ERPs combined with behavioural PPI and PPF protocols to advance our understanding of BDD pathophysiology.
Collapse
Affiliation(s)
- Anastasios E Giannopoulos
- School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece.
| | - Ioanna Zioga
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom.
| | | | - Fotini Kapsali
- Psychiatric Hospital of Attica, 374 Athinon Ave., 12462, Athens, Greece
| | - Sotirios T Spantideas
- School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Nikolaos C Kapsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Christos N Capsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Konstantinos Kontoangelos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., 11528, Athens, Greece
| | - Charalabos C Papageorgiou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., 11528, Athens, Greece; University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", (UMHRI), Athens, Greece
| |
Collapse
|
89
|
Miller SE, Graham J, Schafer E. Auditory Sensory Gating of Speech and Nonspeech Stimuli. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1404-1412. [PMID: 33755510 DOI: 10.1044/2020_jslhr-20-00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose Auditory sensory gating is a neural measure of inhibition and is typically measured with a click or tonal stimulus. This electrophysiological study examined if stimulus characteristics and the use of speech stimuli affected auditory sensory gating indices. Method Auditory event-related potentials were elicited using natural speech, synthetic speech, and nonspeech stimuli in a traditional auditory gating paradigm in 15 adult listeners with normal hearing. Cortical responses were recorded at 64 electrode sites, and peak amplitudes and latencies to the different stimuli were extracted. Individual data were analyzed using repeated-measures analysis of variance. Results Significant gating of P1-N1-P2 peaks was observed for all stimulus types. N1-P2 cortical responses were affected by stimulus type, with significantly less neural inhibition of the P2 response observed for natural speech compared to nonspeech and synthetic speech. Conclusions Auditory sensory gating responses can be measured using speech and nonspeech stimuli in listeners with normal hearing. The results of the study indicate the amount of gating and neural inhibition observed is affected by the spectrotemporal characteristics of the stimuli used to evoke the neural responses.
Collapse
Affiliation(s)
- Sharon E Miller
- Department of Audiology and Speech-Language Pathology, University of North Texas, Denton
| | - Jessica Graham
- Division of Audiology, St. Louis Children's Hospital, MO
| | - Erin Schafer
- Department of Audiology and Speech-Language Pathology, University of North Texas, Denton
| |
Collapse
|
90
|
Sun HH, Lin MY, Nouchi R, Wang PN, Cheng CH. Neuromagnetic evidence of abnormal automatic inhibitory function in subjective memory complaint. Eur J Neurosci 2021; 53:3350-3361. [PMID: 33754412 DOI: 10.1111/ejn.15196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Subjective memory complaint (SMC), a self-perceived worsening in memory capacity concurrent with normal performance on standardized cognitive assessments, is considered a risk factor for the development of Alzheimer's disease (AD). Deficient sensory gating (SG), referring to the lack of automatic inhibition of neural responses to the second identical stimulus, has been documented in prodromal and incident AD patients. However, it remains unknown whether the cognitively normal elderly with SMC demonstrate alterations of SG function compared with those without SMC. A total of 19 healthy controls (HC) and 16 SMC subjects were included in the present study. Neural responses to the auditory paired-stimulus paradigm were recorded by the magnetoencephalography and analyzed by the distributed source imaging method of minimum norm estimate. The SG of M50 and M100 components were measured using the amplitude ratio of the second response over the first response at the cortical level. Compared to HC, subjects with SMC showed significantly increased M50 SG ratios in the inferior parietal lobule (IPL). Furthermore, M50 SG ratios in the right IPL yielded an acceptable discriminative ability to distinguish SMC from HC. However, we did not find a significant association between SG ratios and cognitive function requiring inhibitory control either in the HC or SMC group. In conclusion, although SMC subjects have intact cognitive functioning revealed by objective neuropsychological tests, their deficits in automatic inhibitory function could be detected through neurophysiological recordings. Our results suggest that altered brain function occurs in SMC prior to the obvious decline of cognitive performance.
Collapse
Affiliation(s)
- Hua-Hsuan Sun
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Bali Psychiatric Center, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Mei-Yin Lin
- Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Smart Aging Research Center (S.A.R.C), Tohoku University, Sendai, Japan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
91
|
Li Z, Xue X, Li X, Bao X, Yu S, Wang Z, Liu M, Ma H, Zhang D. Neuropsychological effect of working memory capacity on mental rotation under hypoxia environment. Int J Psychophysiol 2021; 165:18-28. [PMID: 33839196 DOI: 10.1016/j.ijpsycho.2021.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
High-altitude exposure induces the decline of spatial manipulation such as mental rotation which is limited by working memory capacity, but the underlying neuropsychological effect remains to be identified. We evaluated the mental rotation task and the contralateral delay activity (CDA) task under hypoxia environment using the event-related potential. When compared with the controls, the behavior response was slowed on two tasks in the high-altitude group. The declined mental rotation and the decreased working memory capacity were synchronously related to the amplitudes of P50 and CDA, respectively. The P50 during mental rotation was positively correlated to that of rotation-related negativity (RRN) component, so was with the CDA. Time-frequency analysis showed that the beta/alpha power in mental rotation and the theta/alpha/beta power in CDA were enhanced in the high-altitude group. The present study might suggest that the decline of working memory capacity induced poor performance of mental rotation, which may be derived from a bottom-up sensory gating deficit reflected by P50.
Collapse
Affiliation(s)
- Zefeng Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Xiaojuan Xue
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Xiaoyan Li
- Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Xiaohua Bao
- Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Sifang Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Zengjian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Delong Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, South China Normal University/Tibet University, China.
| |
Collapse
|
92
|
Acute Stress and Gender Effects in Sensory Gating of the Auditory Evoked Potential in Healthy Subjects. Neural Plast 2021; 2021:8529613. [PMID: 33777136 PMCID: PMC7981181 DOI: 10.1155/2021/8529613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory gating is a neurophysiological measure of inhibition that is characterized by a reduction in the P50, N100, and P200 event-related potentials to a repeated identical stimulus. It was proposed that abnormal sensory gating is involved in the neural pathological basis of some severe mental disorders. Since then, the prevailing application of sensory gating measures has been in the study of neuropathology associated with schizophrenia and so on. However, sensory gating is not only trait-like but can be also state-like, and measures of sensory gating seemed to be affected by several factors in healthy subjects. The objective of this work was to clarify the roles of acute stress and gender in sensory gating. Data showed acute stress impaired inhibition of P50 to the second click in the paired-click paradigm without effects on sensory registration leading to worse P50 sensory gating and disrupted attention allocation reflected by attenuated P200 responses than control condition, without gender effects. As for N100 and P200 gating, women showed slightly better than men without effects of acute stress. Data also showed slightly larger N100 amplitudes across clicks and significant larger P200 amplitude to the first click for women, suggesting that women might be more alert than men.
Collapse
|
93
|
Turning to the negative: attention allocation to emotional faces in adolescents with dysregulation profile-an event-related potential study. J Neural Transm (Vienna) 2021; 128:381-392. [PMID: 33689026 PMCID: PMC7969549 DOI: 10.1007/s00702-021-02319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
Patients with irritability, temper outbursts, hyperactivity and mood swings often meet the dysregulation profile (DP) of the Child Behavior Checklist (CBCL) or the Strengths and Difficulties Questionnaire (SDQ), which have been investigated over the past few decades. While the DP has emerged as a transdiagnostic marker with a negative impact on therapeutic outcome and psychosocial functioning, little is known about its underlying mechanisms such as attention and emotion regulation processes. In this study, we tested whether adolescent psychiatric patients (n = 27) with the SDQ-DP show impaired emotional face processing for task-irrelevant stimuli compared to psychiatric patients without the SDQ-DP (n = 30) and non-clinical adolescents (n = 21). Facial processing was tested with event-related potential (ERP) measures known to be modulated by attention (i.e., P1, N1, N170, P2, and Nc) during a modified Attention Network Task, to which task-irrelevant emotional stimuli (sad, fearful, and neutral faces) were added prior to the actual trial. The results reveal group differences in the orienting and in the conflicting network. Patients with DP showed a less efficient orienting network and the clinical control group showed a less efficient conflicting network. Moreover, patients with the dysregulation profile had a shorter N1/N170 latency than did the two control groups, suggesting that dysregulation in adolescents is associated with a faster but less arousing encoding of (task-irrelevant) emotional information and less top-down control.
Collapse
|
94
|
De Keyser K, De Letter M, Santens P, Talsma D, Botteldooren D, Bockstael A. Neurophysiological investigation of auditory intensity dependence in patients with Parkinson's disease. J Neural Transm (Vienna) 2021; 128:345-356. [PMID: 33515333 DOI: 10.1007/s00702-021-02305-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
There is accumulating evidence for auditory dysfunctions in patients with Parkinson's disease (PD). Moreover, a possible relationship has been suggested between altered auditory intensity processing and the hypophonic speech characteristics in PD. Nonetheless, further insight into the neurophysiological correlates of auditory intensity processing in patients with PD is needed primarily. In the present study, high-density EEG recordings were used to investigate intensity dependence of auditory evoked potentials (IDAEPs) in 14 patients with PD and 14 age- and gender-matched healthy control participants (HCs). Patients with PD were evaluated in both the on- and off-medication states. HCs were also evaluated twice. Significantly increased IDAEP of the N1/P2 was demonstrated in patients with PD evaluated in the on-medication state compared to HCs. Distinctive results were found for the N1 and P2 component. Regarding the N1 component, no differences in latency or amplitude were shown between patients with PD and HCs regardless of the medication state. In contrast, increased P2 amplitude was demonstrated in patients with PD evaluated in the on-medication state compared to the off-medication state and HCs. In addition to a dopaminergic deficiency, deficits in serotonergic neurotransmission in PD were shown based on increased IDAEP. Due to specific alterations of the N1-P2 complex, the current results suggest deficiencies in early-attentive inhibitory processing of auditory input in PD. This interpretation is consistent with the involvement of the basal ganglia and the role of dopaminergic and serotonergic neurotransmission in auditory gating.
Collapse
Affiliation(s)
- Kim De Keyser
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Durk Talsma
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| |
Collapse
|
95
|
Hong X, Chen Y, Wang J, Shen Y, Li Q, Zhao B, Guo X, Feng W, Wu W, Li C. Effects of multi-domain cognitive training on working memory retrieval in older adults: behavioral and ERP evidence from a Chinese community study. Sci Rep 2021; 11:1207. [PMID: 33441734 PMCID: PMC7806963 DOI: 10.1038/s41598-020-79784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022] Open
Abstract
Working memory (WM) is a fundamental cognitive function that typically declines with age. Previous studies have shown that targeted WM training has the potential to improve WM performance in older adults. In the present study, we investigated whether a multi-domain cognitive training program that was not designed to specifically target WM could improve the behavioral performance and affect the neural activity during WM retrieval in healthy older adults. We assigned healthy older participants (70-78 years old) from a local community into a training group who completed a 3-month multi-domain cognitive training and a control group who only attended health education lectures during the same period. Behavioral and electroencephalography (EEG) data were recorded from participants while performing an untrained delayed match or non-match to category task and a control task at a pre-training baseline session and a post-training follow-up session. Behaviorally, we found that participants in the training group showed a trend toward greater WM performance gains than participants in the control group. Event-related potential (ERP) results suggest that the task-related modulation of P3 during WM retrieval was significantly enhanced at the follow-up session compared with the baseline session, and importantly, this enhancement of P3 modulation was only significant in the training group. Furthermore, no training-related effects were observed for the P2 or N2 component during WM retrieval. These results suggest that the multi-domain cognitive training program that was not designed to specifically target WM is a promising approach to improve WM performance in older adults, and that training-related gains in performance are likely mediated by an enhanced modulation of P3 which might reflect the process of WM updating.
Collapse
Affiliation(s)
- Xiangfei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, People's Republic of China
| | - You Chen
- Shanghai Yangpu District Mental Health Center, Shanghai, 200090, People's Republic of China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, People's Republic of China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, People's Republic of China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital, Tongji University, Shanghai, 200065, People's Republic of China
| | - Binglei Zhao
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Feng
- Department of Psychological Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| | - Wenyuan Wu
- Department of Psychiatry, Tongji Hospital, Tongji University, Shanghai, 200065, People's Republic of China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, People's Republic of China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, People's Republic of China. .,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China. .,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
96
|
Meghdadi AH, Berka C, Richard C, Rupp G, Smith S, Stevanović Karić M, McShea K, Sones E, Marinković K, Marcotte T. EEG event related potentials in sustained, focused and divided attention tasks: Potential biomarkers for cognitive impairment in HIV patients. Clin Neurophysiol 2020; 132:598-611. [PMID: 33573761 PMCID: PMC9045835 DOI: 10.1016/j.clinph.2020.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The objective of this study was to assess the usability of event-related-potentials (ERPs) during sustained, focused, and divided attention tasks as biomarkers for cognitive decline in HIV patients. METHODS EEG was acquired using a mobile/wireless 9-channel system in 39 persons with HIV, with well-controlled immune function and 63 healthy control participants (HCs) during three ERP tasks: sustained attention, focused attention, and divided attention. RESULTS The HIV-group evidenced smaller late positive potential (LPP) and larger P200 amplitudes across the tasks compared to the HC group. P200 amplitude was correlated (r = 0.56) with the estimated duration of infection. Both groups showed higher P200 and LPP amplitudes in response to infrequent stimuli; this effect was not significantly different between groups. In the sustained attention task, the HIV-group showed significantly slower reaction time than controls while maintaining the same level of accuracy. In the divided attention task, the HIV-group showed a trend towards faster/less accurate responses. CONCLUSIONS HIV seropositive participants receiving anti-retroviral treatment (ART) demonstrated significantly larger P200 amplitude during three different attention tasks. This may reflect attentional deficits characterized by over-attending to non-target/distracting stimuli. SIGNIFICANCE These findings demonstrate the potential benefits of EEG-ERP metrics derived from attention tasks as neurocognitive biomarkers for HIV. This approach may reveal underlying causes of attentional deficits in HIV patients.
Collapse
Affiliation(s)
| | - Chris Berka
- Advanced Brain Monitoring Inc., Carlsbad, CA, USA
| | | | - Greg Rupp
- Advanced Brain Monitoring Inc., Carlsbad, CA, USA
| | | | | | - Kevin McShea
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Emily Sones
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ksenija Marinković
- Psychology Department, San Diego State University, San Diego, USA; Department of Radiology, University of California, San Diego, USA
| | - Thomas Marcotte
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
97
|
Increases in attentional demands are associated with language group differences in working memory performance. Brain Cogn 2020; 147:105658. [PMID: 33341655 DOI: 10.1016/j.bandc.2020.105658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
One approach to resolving the controversy over whether bilingualism affects executive function (EF) performance has been to identify the specific tasks and populations that might show these effects. The assumption is that the effect of bilingualism reliably occurs with some tasks and populations but not others and that identifying those conditions will settle outstanding contradictions. However, it is now clear that experiments using the same task (e.g., flanker, Simon, etc.) and apparently the same populations (monolingual or bilingual participants) still lead to different outcomes. Therefore, something in addition to these factors must determine performance. The present study tested the hypothesis that changes in demands for attentional control within a task is associated with performance differences for groups with different attentional resources, in this case, monolingual and bilingual participants. Sixty-four young adults who were classified as monolingual or bilingual based on a detailed questionnaire completed four increasingly difficult conditions of an n-back task while EEG was recorded. Behavioral results showed greater declines with increasing difficulty for monolinguals than bilinguals, and electrophysiological results revealed more effortful processing by monolinguals across all conditions. Our interpretation is that demands for attentional control by the task in conjunction with assessments of attentional resources in individuals or groups determines performance on executive function tasks. These results lead to a re-examination of how executive function is conceptualized and the role of bilingualism in performance on these tasks.
Collapse
|
98
|
Zisk AH, Borgheai SB, McLinden J, Hosni SM, Deligani RJ, Shahriari Y. P300 latency jitter and its correlates in people with amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 132:632-642. [PMID: 33279436 DOI: 10.1016/j.clinph.2020.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/19/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE People with amyotrophic lateral sclerosis (ALS) can benefit from brain-computer interfaces (BCIs). However, users with ALS may experience significant variations in BCI performance and event-related potential (ERP) characteristics. This study investigated latency jitter and its correlates in ALS. METHODS Electroencephalographic (EEG) responses were recorded from six people with ALS and nine neurotypical controls. ERP amplitudes and latencies were extracted. Classifier-based latency estimation was used to calculate latency jitter. ERP components and latency jitter were compared between groups using Wilcoxon rank-sum tests. Correlations between latency jitter and each of the clinical measures, ERP features, and performance measures were investigated using Spearman and repeated measures correlations. RESULTS Latency jitter was significantly increased in participants with ALS and significantly negatively correlated with BCI performance in both ALS and control participants. ERP amplitudes were significantly attenuated in ALS, and significant correlations between ERP features and latency jitter were observed. There was no significant correlation between latency jitter and clinical measures. CONCLUSIONS Latency jitter is increased in ALS and correlates with both BCI performance and ERP features. SIGNIFICANCE These results highlight the associations of latency jitter with BCI performance and ERP characteristics and could inform future BCI designs for people with ALS.
Collapse
Affiliation(s)
- Alyssa Hillary Zisk
- University of Rhode Island, Interdisciplinary Neuroscience Program, Kingston, RI, USA.
| | - Seyyed Bahram Borgheai
- University of Rhode Island, Electrical, Computer, and Biomedical Engineering Department, Kingston, RI, USA
| | - John McLinden
- University of Rhode Island, Electrical, Computer, and Biomedical Engineering Department, Kingston, RI, USA
| | - Sarah M Hosni
- University of Rhode Island, Electrical, Computer, and Biomedical Engineering Department, Kingston, RI, USA
| | - Roohollah Jafari Deligani
- University of Rhode Island, Electrical, Computer, and Biomedical Engineering Department, Kingston, RI, USA
| | - Yalda Shahriari
- University of Rhode Island, Interdisciplinary Neuroscience Program, Kingston, RI, USA; University of Rhode Island, Electrical, Computer, and Biomedical Engineering Department, Kingston, RI, USA.
| |
Collapse
|
99
|
Rovný R, Besterciová D, Riečanský I. Genetic Determinants of Gating Functions: Do We Get Closer to Understanding Schizophrenia Etiopathogenesis? Front Psychiatry 2020; 11:550225. [PMID: 33324248 PMCID: PMC7723973 DOI: 10.3389/fpsyt.2020.550225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Deficits in the gating of sensory stimuli, i.e., the ability to suppress the processing of irrelevant sensory input, are considered to play an important role in the pathogenesis of several neuropsychiatric disorders, in particular schizophrenia. Gating is disrupted both in schizophrenia patients and their unaffected relatives, suggesting that gating deficit may represent a biomarker associated with a genetic liability to the disorder. To assess the strength of the evidence for the etiopathogenetic links between genetic variation, gating efficiency, and schizophrenia, we carried out a systematic review of human genetic association studies of sensory gating (suppression of the P50 component of the auditory event-related brain potential) and sensorimotor gating (prepulse inhibition of the acoustic startle response). Sixty-three full-text articles met the eligibility criteria for inclusion in the review. In total, 117 genetic variants were reported to be associated with gating functions: 33 variants for sensory gating, 80 variants for sensorimotor gating, and four variants for both sensory and sensorimotor gating. However, only five of these associations (four for prepulse inhibition-CHRNA3 rs1317286, COMT rs4680, HTR2A rs6311, and TCF4 rs9960767, and one for P50 suppression-CHRNA7 rs67158670) were consistently replicated in independent samples. Although these variants and genes were all implicated in schizophrenia in research studies, only two polymorphisms (HTR2A rs6311 and TCF4 rs9960767) were also reported to be associated with schizophrenia at a meta-analytic or genome-wide level of evidence. Thus, although gating is widely considered as an important endophenotype of schizophrenia, these findings demonstrate that evidence for a common genetic etiology of impaired gating functions and schizophrenia is yet unsatisfactory, warranting further studies in this field.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominika Besterciová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
100
|
Aubonnet R, Banea OC, Sirica R, Wassermann EM, Yassine S, Jacob D, Magnúsdóttir BB, Haraldsson M, Stefansson SB, Jónasson VD, Ívarsson E, Jónasson AD, Hassan M, Gargiulo P. P300 Analysis Using High-Density EEG to Decipher Neural Response to rTMS in Patients With Schizophrenia and Auditory Verbal Hallucinations. Front Neurosci 2020; 14:575538. [PMID: 33328850 PMCID: PMC7720634 DOI: 10.3389/fnins.2020.575538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex disorder about which much is still unknown. Potential treatments, such as transcranial magnetic stimulation (TMS), have not been exploited, in part because of the variability in behavioral response. This can be overcome with the use of response biomarkers. It has been however shown that repetitive transcranial magnetic stimulation (rTMS) can the relieve positive and negative symptoms of schizophrenia, particularly auditory verbal hallucinations (AVH). This exploratory work aims to establish a quantitative methodological tool, based on high-density electroencephalogram (HD-EEG) data analysis, to assess the effect of rTMS on patients with schizophrenia and AVH. Ten schizophrenia patients with drug-resistant AVH were divided into two groups: the treatment group (TG) received 1 Hz rTMS treatment during 10 daily sessions (900 pulses/session) over the left T3-P3 International 10-20 location. The control group (CG) received rTMS treatment over the Cz (vertex) EEG location. We used the P300 oddball auditory paradigm, known for its reduced amplitude in schizophrenia with AVH, and recorded high-density electroencephalography (HD-EEG, 256 channels), twice for each patient: pre-rTMS and 1 week post-rTMS treatment. The use of HD-EEG enabled the analysis of the data in the time domain, but also in the frequency and source-space connectivity domains. The HD-EEG data were linked with the clinical outcome derived from the auditory hallucinations subscale (AHS) of the Psychotic Symptom Rating Scale (PSYRATS), the Quality of Life Scale (QoLS), and the Depression, Anxiety and Stress Scale (DASS). The general results show a variability between subjects, independent of the group they belong to. The time domain showed a higher N1-P3 amplitude post-rTMS, the frequency domain a higher power spectral density (PSD) in the alpha and beta bands, and the connectivity analysis revealed a higher brain network integration (quantified using the participation coefficient) in the beta band. Despite the small number of subjects and the high variability of the results, this work shows a robust data analysis and an interplay between morphology, spectral, and connectivity data. The identification of a trend post-rTMS for each domain in our results is a first step toward the definition of quantitative neurophysiological parameters to assess rTMS treatment.
Collapse
Affiliation(s)
- Romain Aubonnet
- Institute of Biomedical and Neural Engineering/Medical Technology Center, Reykjavik University, Reykjavik, Iceland
| | - Ovidiu C. Banea
- Institute of Biomedical and Neural Engineering/Medical Technology Center, Reykjavik University, Reykjavik, Iceland
- Clinical Neurophysiology Unit, Neurology Department, National University Hospital of Iceland, Reykjavik, Iceland
| | - Roberta Sirica
- Institute of Biomedical and Neural Engineering/Medical Technology Center, Reykjavik University, Reykjavik, Iceland
| | - Eric M. Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | | | - Deborah Jacob
- Institute of Biomedical and Neural Engineering/Medical Technology Center, Reykjavik University, Reykjavik, Iceland
| | - Brynja Björk Magnúsdóttir
- Department of Psychiatry, National University Hospital, Reykjavik, Iceland
- Department of Psychology, Reykjavik University, Reykjavik, Iceland
| | - Magnús Haraldsson
- Department of Psychiatry, National University Hospital, Reykjavik, Iceland
| | - Sigurjon B. Stefansson
- Clinical Neurophysiology Unit, Neurology Department, National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Eysteinn Ívarsson
- Clinical Neurophysiology Unit, Neurology Department, National University Hospital of Iceland, Reykjavik, Iceland
| | - Aron D. Jónasson
- Clinical Neurophysiology Unit, Neurology Department, National University Hospital of Iceland, Reykjavik, Iceland
| | - Mahmoud Hassan
- NeuroKyma, Rennes, France
- University of Rennes 1, LTSI, Rennes, France
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering/Medical Technology Center, Reykjavik University, Reykjavik, Iceland
- Department of Science, National University Hospital, Reykjavik, Iceland
- *Correspondence: Paolo Gargiulo
| |
Collapse
|