51
|
Chen C, Zhu T, Gong L, Hu Z, Wei H, Fan J, Lin D, Wang X, Xu J, Dong X, Wang Y, Xia N, Zeng L, Jiang P, Xie Y. Trpm2 deficiency in microglia attenuates neuroinflammation during epileptogenesis by upregulating autophagy via the AMPK/mTOR pathway. Neurobiol Dis 2023; 186:106273. [PMID: 37648036 DOI: 10.1016/j.nbd.2023.106273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Lifen Gong
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Zhe Hu
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Hao Wei
- Department of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jianchen Fan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Donghui Lin
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xiaojun Wang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Junyu Xu
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xinyan Dong
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Yifan Wang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Ningxiao Xia
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peifang Jiang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Yicheng Xie
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
52
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
53
|
Česká K, Papež J, Ošlejšková H, Slabý O, Radová L, Loja T, Libá Z, Svěráková A, Brázdil M, Aulická Š. CCL2/MCP-1, interleukin-8, and fractalkine/CXC3CL1: Potential biomarkers of epileptogenesis and pharmacoresistance in childhood epilepsy. Eur J Paediatr Neurol 2023; 46:48-54. [PMID: 37429062 DOI: 10.1016/j.ejpn.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE The pathophysiological processes leading to epileptogenesis and pharmacoresistance in epilepsy have been the subject of extensive preclinical and clinical research. The main impact on clinical practice is the development of new targeted therapies for epilepsy. We studied the importance of neuroinflammation in the development of epileptogenesis and pharmacoresistance in childhood epilepsy patients. METHODS A cross-sectional study conducted at two epilepsy centers in the Czech Republic compared 22 pharmacoresistant patients and 4 pharmacodependent patients to 9 controls. We analyzed the ProcartaPlex™ 9-Plex immunoassay panel consisting of interleukin (IL)-6, IL-8, IL-10, IL-18, CXCL10/IP-10, monocyte chemoattractant protein 1 (CCL2/MCP-1), B lymphocyte chemoattractant (BLC), tumor necrosis factor-alpha (TNF-α), and chemokine (C-X3-X motif) ligand 1 (fractalkine/CXC3CL1) to determine their alterations in cerebrospinal fluid (CSF) and blood plasma, concurrently. RESULTS The analysis of 21 paired CSF and plasma samples in pharmacoresistant patients compared to controls revealed a significant elevation of CCL2/MCP-1 in CSF (p < 0.000512) and plasma (p < 0.00.017). Higher levels of fractalkine/CXC3CL1 were revealed in the plasma of pharmacoresistant patients than in controls (p < 0.0704), and we determined an upward trend in CSF IL-8 levels (p < 0.08). No significant differences in CSF and plasma levels were detected between pharmacodependent patients and controls. CONCLUSION Elevated CCL2/MCP-1 in CSF and plasma, elevated levels of fractalkine/CXC3CL1 in CSF, and a trend toward elevated IL-8 in the CSF of patients with pharmacoresistant epilepsy indicate these cytokines as potential biomarkers of epileptogenesis and pharmacoresistance. CCL2/MCP-1was detected in blood plasma; this assessment may be easily achieved in clinical practice without the invasiveness of a spinal tap. However, due to the complexity of neuroinflammation in epilepsy, further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Katarína Česká
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Papež
- Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Ošlejšková
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Slabý
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Lenka Radová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomáš Loja
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Zuzana Libá
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Anna Svěráková
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Full-member of ERN, EpiCARE, Brno, Czech Republic
| | - Štefánia Aulická
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic; Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
54
|
von Rüden EL, Potschka H, Tipold A, Stein VM. The role of neuroinflammation in canine epilepsy. Vet J 2023; 298-299:106014. [PMID: 37393038 DOI: 10.1016/j.tvjl.2023.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The lack of therapeutics that prevent the development of epilepsy, improve disease prognosis or overcome drug resistance represents an unmet clinical need in veterinary as well as in human medicine. Over the past decade, experimental studies and studies in human epilepsy patients have demonstrated that neuroinflammatory processes are involved in epilepsy development and play a key role in neuronal hyperexcitability that underlies seizure generation. Targeting neuroinflammatory signaling pathways may provide a basis for clinically relevant disease-modification strategies in general, and moreover, could open up new therapeutic avenues for human and veterinary patients with drug-resistant epilepsy. A sound understanding of the neuroinflammatory mechanisms underlying seizure pathogenesis in canine patients is therefore essential for mechanism-based discovery of selective epilepsy therapies that may enable the development of new disease-modifying treatments. In particular, subgroups of canine patients in urgent needs, e.g. dogs with drug-resistant epilepsy, might benefit from more intensive research in this area. Moreover, canine epilepsy shares remarkable similarities in etiology, disease manifestation, and disease progression with human epilepsy. Thus, canine epilepsy is discussed as a translational model for the human disease and epileptic dogs could provide a complementary species for the evaluation of antiepileptic and antiseizure drugs. This review reports key preclinical and clinical findings from experimental research and human medicine supporting the role of neuroinflammation in the pathogenesis of epilepsy. Moreover, the article provides an overview of the current state of knowledge regarding neuroinflammatory processes in canine epilepsy emphasizing the urgent need for further research in this specific field. It also highlights possible functional impact, translational potential and future perspectives of targeting specific inflammatory pathways as disease-modifying and multi-target treatment options for canine epilepsy.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
55
|
Wang S, Su T, Pang S, Wang J, Lang Y, Zhu M, Cui L. Assessment of the relationship between generalized convulsive epilepsy and systemic inflammatory regulators: a bidirectional Mendelian randomization study. Front Neurol 2023; 14:1206290. [PMID: 37470000 PMCID: PMC10353605 DOI: 10.3389/fneur.2023.1206290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Background Generalized convulsive epilepsy (GCE), an important subtype of epilepsy, is a syndrome of neuronal dysfunction characterized by diffuse abnormal discharge of neurons within the brain. Compounding evidence suggests a correlation between epilepsy and inflammatory factors, for instance, cyclooxygenase-2, interleukin-1β, and interleukin-6. Elevated levels of inflammatory factors have been observed in patients with epilepsy and several animal models. Therefore, inflammation may be closely associated with the pathogenesis and progression of GCE. However, the cause-and-effect relationship between the two is difficult to determine because of small sample sizes and confounding factors. Methods To test for causality of the 41 cytokines on GCE, we conducted a two-sample Mendelian randomization (MR) based on the largest and latest genome-wide association study (GWAS) involving 290 cases and 453,521 European controls and a GWAS meta-analysis consisting of 41 cytokines from 8,293 individuals. Results R confirmed a bidirectional causal link between cytokines and GCE. Genetically predicted increased levels of hepatocyte growth factor and decreased levels of eotaxin and interleukin-18 are associated with an increased risk of GCE (OR = 1.904, 95% CI = 1.019-3.561, p = 0.044; OR = 0.641, 95% CI = 0.417-0.984, p = 0.042; OR = 0.482, 95% CI = 0.251-0.927, p = 0.046). Furthermore, the presence of GCE is related to an increase in levels of multiple cytokines, such as macrophage inflammatory protein-1α, interleukin-12p70, interleukin-17, interleukin-1 receptor antagonist, and basic fibroblast growth factor (OR = 1.038, 95% CI = 1.005-1.073, p = 0.024; OR = 1.031, 95% CI = 1.009-1.054, p = 0.006; OR = 1.027, 95% CI = 1.002-1.053, p = 0.037; OR = 1.037, 95% CI = 1.003-1.072, p = 0.032; OR = 1.032, 95% CI = 1.000-1.066, p = 0.048; OR = 1.025, 95% CI = 1.003-1.048, p = 0026). Conclusion A bidirectional causal link existed between inflammation and GCE. Detecting significantly altered factor concentrations may be of great significance for screening GCE and predicting their occurrence. Moreover, available pharmacological treatments for GCE are focused primarily on suppressing seizures. In future, altering the concentration of these cytokines in the body through targeted anti-inflammatory therapy to modify the epileptogenic mechanism and prevent the recurrence and refractoriness of GCE may become the key to new treatments.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tengfei Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shuyan Pang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
56
|
Li P, Ji X, Shan M, Wang Y, Dai X, Yin M, Liu Y, Guan L, Ye L, Cheng H. Melatonin regulates microglial polarization to M2 cell via RhoA/ROCK signaling pathway in epilepsy. Immun Inflamm Dis 2023; 11:e900. [PMID: 37382264 PMCID: PMC10266134 DOI: 10.1002/iid3.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Melatonin (MEL), an endogenous hormone, has been widely investigated in neurological diseases. Microglia (MG), a resident immunocyte localizing in central nervous system is reported to play important functions in the animal model of temporal lobe epilepsy (TLE). Some evidence showed that MEL influenced activation of MG, but the detailed model of action that MEL plays in remains uncertain. METHODS In this study, we established a model of TLE in mice by stereotactic injection of kainic acid (KA). We treated the mice with MEL. Lipopolysaccharide, ROCK2-knockdown (ROCK-KD) and -overexpression (ROCK-OE) of lentivirus-treated cells were used in cell experiments to simulate an in vitro inflammatory model. RESULTS The results of electrophysiological tests showed that MEL reduced frequency and severity of seizure. The results of behavioral tests indicated MEL improved cognition, learning, and memory ability. Histological evidences demonstrated a significant reduction of neuronal death in the hippocampus. In vivo study showed that MEL changed the polarization status of MG from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype by inversely regulating the RhoA/ROCK signaling pathway. In cytological study, we found that MEL had a significant protective effect in LPS-treated BV-2 cells and ROCK-KD cells, while the protective effect of MEL was significantly attenuated in ROCK-OE cells. CONCLUSION MEL played an antiepileptic role in the KA-induced TLE modeling mice both in behavioral and histological levels, and changed MG polarization status by regulating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Pingping Li
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuefei Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ming Shan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yi Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xingliang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Mengyuan Yin
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yunlong Liu
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Liao Guan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Ye
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hongwei Cheng
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
57
|
Fonseca-Barriendos D, Castañeda-Cabral JL, Martínez-Cuevas F, Besio W, Valdés-Cruz A, Rocha L. Transcranial Focal Electric Stimulation Avoids P-Glycoprotein Over-Expression during Electrical Amygdala Kindling and Delays Epileptogenesis in Rats. Life (Basel) 2023; 13:1294. [PMID: 37374077 DOI: 10.3390/life13061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Recent evidence suggests that P-glycoprotein (P-gp) overexpression mediates hyperexcitability and is associated with epileptogenesis. Transcranial focal electrical stimulation (TFS) delays epileptogenesis and inhibits P-gp overexpression after a generalized seizure. Here, first we measured P-gp expression during epileptogenesis and second, we assessed if TFS antiepileptogenic effect was related with P-gp overexpression avoidance. Male Wistar rats were implanted in right basolateral amygdala and stimulated daily for electrical amygdala kindling (EAK), P-gp expression was assessed during epileptogenesis in relevant brain areas. Stage I group showed 85% increase in P-gp in ipsilateral hippocampus (p < 0.001). Stage III group presented 58% and 57% increase in P-gp in both hippocampi (p < 0.05). Kindled group had 92% and 90% increase in P-gp in both hippocampi (p < 0.01), and 93% and 143% increase in both neocortices (p < 0.01). For the second experiment, TFS was administrated daily after each EAK stimulation for 20 days and P-gp concentration was assessed. No changes were found in the TFS group (p > 0.05). Kindled group showed 132% and 138% increase in P-gp in both hippocampi (p < 0.001) and 51% and 92% increase in both cortices (p < 0.001). Kindled + TFS group presented no changes (p > 0.05). Our experiments revealed that progression of EAK is associated with increased P-gp expression. These changes are structure-specific and dependent on seizure severity. EAK-induced P-gp overexpression would be associated with neuronal hyperexcitability and thus, epileptogenesis. P-gp could be a novel therapeutical target to avoid epileptogenesis. In accordance with this, TFS inhibited P-gp overexpression and interfered with EAK. An important limitation of the present study is that P-gp neuronal expression was not evaluated under the different experimental conditions. Future studies should be carried out to determine P-gp neuronal overexpression in hyperexcitable networks during epileptogenesis. The TFS-induced lessening of P-gp overexpression could be a novel therapeutical strategy to avoid epileptogenesis in high-risk patients.
Collapse
Affiliation(s)
- Daniel Fonseca-Barriendos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitrio de Ciencias Biológicas y Agropecuaias, Universidad de Guadalajara, Zapopan C.P. 44600, Mexico
| | - Frida Martínez-Cuevas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - Walter Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA
| | - Alejandro Valdés-Cruz
- Laboratorio de Neurofisiología del Control y la Regulación, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México C.P. 14370, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| |
Collapse
|
58
|
Lim HK, Bae S, Han K, Kang BM, Jeong Y, Kim SG, Suh M. Seizure-induced neutrophil adhesion in brain capillaries leads to a decrease in postictal cerebral blood flow. iScience 2023; 26:106655. [PMID: 37168551 PMCID: PMC10164910 DOI: 10.1016/j.isci.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Cerebral hypoperfusion has been proposed as a potential cause of postictal neurological dysfunction in epilepsy, but its underlying mechanism is still unclear. We show that a 30% reduction in postictal cerebral blood flow (CBF) has two contributing factors: the early hypoperfusion up to ∼30 min post-seizure was mainly induced by arteriolar constriction, while the hypoperfusion that persisted for over an hour was due to increased capillary stalling induced by neutrophil adhesion to brain capillaries, decreased red blood cell (RBC) flow accompanied by constriction of capillaries and venules, and elevated intercellular adhesion molecule-1 (ICAM-1) expression. Administration of antibodies against the neutrophil marker Ly6G and against LFA-1, which mediates adhesive interactions with ICAM-1, prevented neutrophil adhesion and recovered the prolonged CBF reductions to control levels. Our findings provide evidence that seizure-induced neutrophil adhesion to cerebral microvessels via ICAM-1 leads to prolonged postictal hypoperfusion, which may underlie neurological dysfunction in epilepsy.
Collapse
Affiliation(s)
- Hyun-Kyoung Lim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Sungjun Bae
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- IMNEWRUN Inc, N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kayoung Han
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Bok-Man Kang
- IMNEWRUN Inc, N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- IMNEWRUN Inc, N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, South Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
59
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
60
|
Zhao K, Bai X, Wang X, Cao Y, Zhang L, Li W, Wang S. Insight on the hub gene associated signatures and potential therapeutic agents in epilepsy and glioma. Brain Res Bull 2023; 199:110666. [PMID: 37192718 DOI: 10.1016/j.brainresbull.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The relationship between epilepsy and glioma has long been widely recognized, but the mechanisms of interaction remain unclear. This study aimed to investigate the shared genetic signature and treatment strategies between epilepsy and glioma. METHODS We subjected hippocampal tissue samples from patients with epilepsy and glioma to transcriptomic analysis to identify differential genes and associated pathways, respectively. Weight gene co-expression network (WGCNA) analysis was performed to identify conserved modules in epilepsy and glioma and to obtain differentially expressed conserved genes. Prognostic and diagnostic models were built using lasso regression. We also focused on building transcription factor-gene interaction networks and assessing the proportion of immune invading cells in epilepsy patients. Finally, drug compounds were inferred using a drug signature database (DSigDB) based on core targets. RESULTS We discovered 88 differently conserved genes, most of which are involved in synaptic signaling and calcium ion pathways. We used lasso regression model to reduce 88 characteristic genes, and finally screened out 14 genes (EIF4A2, CEP170B, SNPH, EPHA4, KLK7, GNG3, MYOP, ANKRD29, RASD2, PRRT3, EFR3A, SGIP1, RAB6B, CNNM1) as the features of glioma prognosis model whose ROC curve is 0.9. Then, we developed a diagnosis model for epilepsy patients using 8 genes (PRRT3, RASD2, MYPOP, CNNM1, ANKRD29, GNG3, SGIP1, KLK7) with area under ROC curve (AUC) values near 1. According to the ssGSEA method, we observed an increase in activated B cells, eosinophils, follicular helper T cells and type 2T helper cells, and a decrease in monocytes in patients with epilepsy. Notably, the great majority of these immune cells showed a negative correlation with hub genes. To reveal the transcriptional-level regulation mechanism, we also built a TF-gene network. In addition, we discovered that patients with glioma-related epilepsy may benefit more from gabapentin and pregabalin. CONCLUSION This study reveals the modular conserved phenotypes of epilepsy and glioma and constructs effective diagnostic and prognostic markers. It provides new biological targets and ideas for the early diagnosis and effective treatment of epilepsy.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300000, China
| | - Xuexue Bai
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Xiao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yiyao Cao
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Shiyong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
61
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
62
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
63
|
Legouhy A, Allen LA, Vos SB, Oliveira JFA, Kassinopoulos M, Winston GP, Duncan JS, Ogren JA, Scott C, Kumar R, Lhatoo SD, Thom M, Lemieux L, Harper RM, Zhang H, Diehl B. Volumetric and microstructural abnormalities of the amygdala in focal epilepsy with varied levels of SUDEP risk. Epilepsy Res 2023; 192:107139. [PMID: 37068421 DOI: 10.1016/j.eplepsyres.2023.107139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.
Collapse
Affiliation(s)
- Antoine Legouhy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
| | - Luke A Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK; The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Joana F A Oliveira
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Michalis Kassinopoulos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK; Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Jennifer A Ogren
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Catherine Scott
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rajesh Kumar
- Brain Research Institute, UCLA, Los Angeles, CA, USA; Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Bioengineering, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samden D Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Ronald M Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Brain Research Institute, UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK; The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
64
|
Mathon B, Navarro V, Lecas S, Roussel D, Charpier S, Carpentier A. Safety Profile of Low-Intensity Pulsed Ultrasound-Induced Blood-Brain Barrier Opening in Non-epileptic Mice and in a Mouse Model of Mesial Temporal Lobe Epilepsy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1327-1336. [PMID: 36878831 DOI: 10.1016/j.ultrasmedbio.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE It is unknown whether ultrasound-induced blood-brain barrier (BBB) disruption can promote epileptogenesis and how BBB integrity changes over time after sonication. METHODS To gain more insight into the safety profile of ultrasound (US)-induced BBB opening, we determined BBB permeability as well as histological modifications in C57BL/6 adult control mice and in the kainate (KA) model for mesial temporal lobe epilepsy in mice after sonication with low-intensity pulsed ultrasound (LIPU). Microglial and astroglial changes in ipsilateral hippocampus were examined at different time points following BBB disruption by respectively analyzing Iba1 and glial fibrillary acidic protein immunoreactivity. Using intracerebral EEG recordings, we further studied the possible electrophysiological repercussions of a repeated disrupted BBB for seizure generation in nine non-epileptic mice. RESULTS LIPU-induced BBB opening led to transient albumin extravasation and reversible mild astrogliosis, but not to microglial activation in the hippocampus of non-epileptic mice. In KA mice, the transient albumin extravasation into the hippocampus mediated by LIPU-induced BBB opening did not aggravate inflammatory processes and histologic changes that characterize the hippocampal sclerosis. Three LIPU-induced BBB opening did not induce epileptogenicity in non-epileptic mice implanted with depth EEG electrodes. CONCLUSION Our experiments in mice provide persuasive evidence of the safety of LIPU-induced BBB opening as a therapeutic modality for neurological diseases.
Collapse
Affiliation(s)
- Bertrand Mathon
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, Paris, France.
| | - Vincent Navarro
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France; Epileptology Unit, Department of Neurology, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, Paris, France
| | - Sarah Lecas
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Delphine Roussel
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Stéphane Charpier
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, Paris, France
| |
Collapse
|
65
|
Phoswa WN, Mokgalaboni K. Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sci 2023; 13:brainsci13050732. [PMID: 37239204 DOI: 10.3390/brainsci13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE OF THE REVIEW Type 2 diabetes mellitus (T2DM) is a global health burden that leads to an increased morbidity and mortality rate arising from microvascular and macrovascular complications. Epilepsy leads to complications that cause psychological and physical distress to patients and carers. Although these conditions are characterized by inflammation, there seems to be a lack of studies that have evaluated inflammatory markers in the presence of both conditions (T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8), tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs) in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between inflammatory markers in the central and peripheral levels of epilepsy. CONCLUSIONS Understanding the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of immunological imbalances might improve diagnosis and further counter the risks of developing complications. This might also assist in delivering safe and effective therapies to T2DM patients affected, thus reducing morbidity and mortality by preventing or reducing associated complications. Moreover, this review also provides an overview approach on inflammatory cytokines that can be targeted when developing alternative therapies, in case these conditions coexist.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
66
|
Legouhy A, Allen LA, Vos SB, Oliveira JFA, Kassinopoulos M, Winston GP, Duncan JS, Ogren JA, Scott C, Kumar R, Lhatoo SD, Thom M, Lemieux L, Harper RM, Zhang H, Diehl B. Volumetric and microstructural abnormalities of the amygdala in focal epilepsy with varied levels of SUDEP risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.13.23287045. [PMID: 36993394 PMCID: PMC10055456 DOI: 10.1101/2023.03.13.23287045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.
Collapse
Affiliation(s)
- Antoine Legouhy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Luke A Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Joana F A Oliveira
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Michalis Kassinopoulos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Jennifer A Ogren
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Catherine Scott
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rajesh Kumar
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Bioengineering, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samden D Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, London, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Ronald M Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
67
|
Malekpour M, Salarikia SR, Kashkooli M, Asadi-Pooya AA. The genetic link between systemic autoimmune disorders and temporal lobe epilepsy: A bioinformatics study. Epilepsia Open 2023. [PMID: 36929812 DOI: 10.1002/epi4.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE We aimed to explore the underlying pathomechanisms of the comorbidity between three common systemic autoimmune disorders (SADs) [i.e., insulin-dependent diabetes mellitus (IDDM), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA)] and temporal lobe epilepsy (TLE), using bioinformatics tools. We hypothesized that there are shared genetic variations among these four conditions. METHODS Different databases (DisGeNET, Harmonizome, and Enrichr) were searched to find TLE-associated genes with variants; their single nucleotide polymorphisms (SNPs) were gathered from the literature. We also did a separate literature search using PubMed with the following keywords for original articles: "TLE" or "Temporal lobe epilepsy" AND "genetic variation," "single nucleotide polymorphism," "SNP," or "genetic polymorphism." In the next step, the SNPs associated with TLE were searched in the LitVar database to find the shared gene variations with RA, SLE, and IDDM. RESULTS Ninety unique SNPs were identified to be associated with TLE. LitVar search identified two SNPs that were shared between TLE and all three SADs (i.e., IDDM, SLE, and RA). The first SNP was rs16944 on the Interleukin-1β (IL-1β) gene. The second genetic variation was ε4 variation of apolipoprotein E (APOE) gene. SIGNIFICANCE The shared genetic variations (i.e., rs16944 on the IL-1β gene and ε4 variation of the APOE gene) may explain the underlying pathomechanisms of the comorbidity between three common SADs (i.e., IDDM, SLE, and RA) and TLE. Exploring such shared genetic variations may help find targeted therapies for patients with TLE, especially those with drug-resistant seizures who also have comorbid SADs.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Kashkooli
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
68
|
Zeicu C, Legouhy A, Scott CA, Oliveira JFA, Winston G, Duncan JS, Vos SB, Thom M, Lhatoo S, Zhang H, Harper RM, Diehl B. Altered Amygdala Volumes and Microstructure in Focal Epilepsy Patients with Tonic-Clonic Seizures, Ictal and Post-Ictal Central Apnea. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.16.23287369. [PMID: 36993530 PMCID: PMC10055587 DOI: 10.1101/2023.03.16.23287369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Objectives Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by presence or absence of FBTCS, ictal central apnea (ICA) and post-ictal central apnea (PICA). Methods 73 patients with only-focal seizures and 30 with FBTCS recorded during video EEG (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomical and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all epilepsy patients and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between healthy subjects, and patients with only-focal seizures or FBTCS The FBTCS group was further subdivided by presence of ICA and PICA, verified by VEEG. Results Bilateral amygdala volumes were significantly increased in the FBTCS cohort compared to healthy controls and the focal cohort. Patients with recorded PICA had the highest increase in bilateral amygdala volume of the FBTCS cohort.Amygdala neurite density index (NDI) values were significantly decreased in both the focal and FBTCS groups relative to healthy controls, with values in the FBTCS group being the lowest of the two. The presence of PICA was associated with significantly lower NDI values vs the non-apnea FBTCS group (p=0.004). Significance Individuals with FBTCS and PICA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.
Collapse
Affiliation(s)
- Claudia Zeicu
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoine Legouhy
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Catherine A. Scott
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Joana F. A. Oliveira
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Gavin Winston
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
- Division of Neurology, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B. Vos
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Samden Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Ronald M. Harper
- Brain Research Institute, University of California at Los Angeles, California, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
69
|
Khan D, Bedner P, Müller J, Lülsberg F, Henning L, Prinz M, Steinhäuser C, Muhammad S. TGF-β Activated Kinase 1 (TAK1) Is Activated in Microglia After Experimental Epilepsy and Contributes to Epileptogenesis. Mol Neurobiol 2023; 60:3413-3422. [PMID: 36862288 PMCID: PMC10122619 DOI: 10.1007/s12035-023-03290-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Increasing evidence suggests that inflammation promotes epileptogenesis. TAK1 is a central enzyme in the upstream pathway of NF-κB and is known to play a central role in promoting neuroinflammation in neurodegenerative diseases. Here, we investigated the cellular role of TAK1 in experimental epilepsy. C57Bl6 and transgenic mice with inducible and microglia-specific deletion of Tak1 (Cx3cr1CreER:Tak1fl/fl) were subjected to the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE). Immunohistochemical staining was performed to quantify different cell populations. The epileptic activity was monitored by continuous telemetric electroencephalogram (EEG) recordings over a period of 4 weeks. The results show that TAK1 was activated predominantly in microglia at an early stage of kainate-induced epileptogenesis. Tak1 deletion in microglia resulted in reduced hippocampal reactive microgliosis and a significant decrease in chronic epileptic activity. Overall, our data suggest that TAK1-dependent microglial activation contributes to the pathogenesis of chronic epilepsy.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Fabienne Lülsberg
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany. .,Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
70
|
Mohammadi E, Nikbakht F, Vazifekhah S, Babae JF, Jogataei MT. Evaluation the cognition-improvement effects of N-acetyl cysteine in experimental temporal lobe epilepsy in rat. Behav Brain Res 2023; 440:114263. [PMID: 36563904 DOI: 10.1016/j.bbr.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Memory impairment is a critical issue in patients with temporal lobe epilepsy (TLE). Neuronal loss within the hippocampus and recurrent seizures may cause cognitive impairment in TLE. N -acetyl cysteine (NAC) is a sulfur-containing amino acid cysteine that is currently being investigated due to its protective effects on neurodegenerative disorders. NAC was orally administrated at a dose of 100 mg/kg for 8 days (7-day pretreatment and 1-day post-surgery). Neuronal viability, mTOR protein level, and spatial memory were detected in the kainite temporal epilepsy model via Nissl staining, western blot method, and Morris water maze task, respectively. Results showed that NAC delayed seizure activity and ameliorated memory deficit induced by Kainic acid. Histological analysis showed that NAC significantly increased the number of intact neurons in CA3 and hilar areas of the hippocampus following the induction of epilepsy. NAC also modulated the mTOR protein level 5 days after epilepsy compared to the KA-induced group. CONCLUSION: These results suggest that NAC improved memory impairment via anticonvulsant and neuroprotective activity and, in all probability, by lowering the level of mTOR.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran.
| | - Somayeh Vazifekhah
- Department of Basic Sciences, Sari Branch. Islamic Azad University, Sari, Iran
| | - Javad Fahanik Babae
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Taghi Jogataei
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, University of Medical Sciences, Tehran Iran
| |
Collapse
|
71
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
72
|
Mizuguchi M, Shibata A, Kasai M, Hoshino A. Genetic and environmental risk factors of acute infection-triggered encephalopathy. Front Neurosci 2023; 17:1119708. [PMID: 36761411 PMCID: PMC9902370 DOI: 10.3389/fnins.2023.1119708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Acute encephalopathy is a constellation of syndromes in which immune response, metabolism and neuronal excitation are affected in a variable fashion. Most of the syndromes are complex disorders, caused or aggravated by multiple, genetic and environmental risk factors. Environmental factors include pathogenic microorganisms of the antecedent infection such as influenza virus, human herpesvirus-6 and enterohemorrhagic Escherichia coli, and drugs such as non-steroidal anti-inflammatory drugs, valproate and theophylline. Genetic factors include mutations such as rare variants of the SCN1A and RANBP2 genes, and polymorphisms such as thermolabile CPT2 variants and HLA genotypes. By altering immune response, metabolism or neuronal excitation, these factors complicate the pathologic process. On the other hand, some of them could provide promising targets to prevent or treat acute encephalopathy.
Collapse
Affiliation(s)
- Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Pediatrics, National Rehabilitation Center for Children With Disabilities, Tokyo, Japan,*Correspondence: Masashi Mizuguchi,
| | - Akiko Shibata
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Tokyo, Japan
| | - Mariko Kasai
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Pediatrics, Saitama Citizens Medical Center, Saitama, Japan
| | - Ai Hoshino
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Japan
| |
Collapse
|
73
|
Li G, Jiang X, Liang X, Hou Y, Zang J, Zhu B, Jia C, Niu K, Liu X, Xu X, Jiang R, Wang B. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model. Life Sci 2023; 313:121310. [PMID: 36549351 DOI: 10.1016/j.lfs.2022.121310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
AIMS The cell adhesion molecules (CAMs) that mediate neutrophil-endothelium cell adhesion are deeply involved in the pathogenesis of acute lung injury (ALI). B-cell receptor associated protein 31 (BAP31) has been reported to engage in the expression of some CAMs. This study was undertaken to explore whether BAP31 in endotheliocyte affects the pathological process of ALI by regulating CAMs, and its possible mechanism. MAIN METHODS Our study used the shBAP31 endothelium cell lines and endothelial-specific BAP31 conditional knockdown mice constructed via Cre/loxP system. Hematoxylin and eosin staining was used to observe the histopathological manifestations. The adhesion of neutrophils to vascular wall was examined by intravital microscopy. The nuclear translocation of NF-κB was observed by immunofluorescence staining assay. Flow cytometric, real-time polymerase chain reaction and Western blot assay were performed to determine the expression of CAMs and key proteins in MyD88/NF-κB-related signaling pathway. Luciferase reporter and chromatin immunoprecipitation assay were analyzed for transcriptional activity of ICAM-1 and VCAM-1. KEY FINDINGS Mechanistic investigations indicated that endothelium-specific BAP31 depletion dramatically reduced the capacity of neutrophils adherence to endothelial cells (ECs), which was mainly attributed to the significant downregulation of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.05) expression. Interestingly, BAP31 knockdown apparently deactivated MyD88/TRAF6-mediated TAK1/NF-κB and PI3K/Akt signaling cascades, resulting in the inhibition of NF-κB activation and nuclear translocation. SIGNIFICANCE Our data furnished convincing evidence that BAP31 deficiency performs a mitigative effect on ALI by decreasing neutrophils-ECs adhesion. These findings identified BAP31 as a promising protein for regulating the pathogenesis process of ALI.
Collapse
Affiliation(s)
- Guoxun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaohan Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoyu Liang
- Southern Methodist University, Dallas, TX 75275, USA
| | - Yue Hou
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jingnan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Benzhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoli Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
74
|
Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023; 13:metabo13010083. [PMID: 36677008 PMCID: PMC9866293 DOI: 10.3390/metabo13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in adults. Experimental and clinical data indicate that neuroinflammation and neurodegeneration accompanying epileptogenesis make a significant contribution to the chronicity of epilepsy and the development of drug resistance in TLE cases. Changes in plasma and serum concentrations of proteins associated with neuroinflammation and neurodegeneration can be predictive biomarkers of the course of the disease. This study used an enzyme-linked immunosorbent assay of the following plasma proteins: brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNFa), and high-mobility group protein B1 (HMGB1) in patients with mesial TLE to search for biomarkers of the disease. The objective of the study was to examine biomarkers of the neuroinflammation and neurodegeneration of plasma: BDNF, TNFa, and HMGB1. The aim of the study was to identify changes in the concentration of circulating pro-inflammatory and neurotrophic factors that are prognostically significant for the development of drug resistance and the course of TLE. A decrease in the concentration of BDNF, TNFa, and HMGB1 was registered in the group of patients with TLE compared with the control group. A significant decrease in the concentration of HMGB1 in patients with drug-resistant TLE was observed. Aberrations in plasma concentrations of BDNF, TNFa, and HMGB1 in patients with TLE compared with the controls have been confirmed by earlier studies. A decrease in the expression of the three biomarkers may be the result of neurodegenerative processes caused by the long course of the disease. The results of the study may indicate the acceptability of using HMGB1 and TNFa as prognostic biological markers to indicate the severity of the disease course and the risk of developing drug resistance.
Collapse
|
75
|
Santos LEC, Almeida ACG, Silva SCB, Rodrigues AM, Cecílio SG, Scorza CA, Finsterer J, Moret M, Scorza FA. The amygdala lesioning due to status epilepticus - Changes in mechanisms controlling chloride homeostasis. Clinics (Sao Paulo) 2023; 78:100159. [PMID: 36774732 PMCID: PMC9945640 DOI: 10.1016/j.clinsp.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). METHODS Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. RESULTS The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. INTERPRETATION The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na+/K+-ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.
Collapse
Affiliation(s)
- Luiz E C Santos
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Antônio-Carlos G Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Sílvia C B Silva
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Antônio M Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Samyra G Cecílio
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Carla A Scorza
- Disciplina de Neurologia Experimental, Escola Paulista de Medicina (Unifesp), São Paulo, SP, Brazil
| | | | - Marcelo Moret
- SENAI ‒ Departamento Regional da Bahia, Centro Integrado de Manufatura e Tecnologia, Bahia, BA, Brazil
| | - Fulvio A Scorza
- Disciplina de Neurologia Experimental, Escola Paulista de Medicina (Unifesp), São Paulo, SP, Brazil.
| |
Collapse
|
76
|
Chen J, Huang F, Fang X, Li S, Liang Y. Silencing TLR4 using an ultrasound-targeted microbubble destruction-based shRNA system reduces ischemia-induced seizures in hyperglycemic rats. Open Life Sci 2022; 17:1689-1697. [PMID: 36619717 PMCID: PMC9795576 DOI: 10.1515/biol-2022-0526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022] Open
Abstract
The toll-like receptor 4 (TLR4) pathway is involved in seizures. We investigated whether ultrasound-targeted microbubble destruction (UTMD)-mediated delivery of short hairpin RNA (shRNA) targeting the TLR4 gene (shRNA-TLR4) can reduce ischemia-induced seizures in rats with hyperglycemia. A total of 100 male Wistar rats were randomly assigned to five groups: (1) Sham; (2) normal saline (NS); (3) shRNA-TLR4, where rats were injected with shRNA-TLR4; (4) shRNA-TLR4 + US, where rats were injected with shRNA-TLR4 followed by ultrasound (US) irradiation; and (5) shRNA-TLR4 + microbubbles (MBs) + US, where rats were injected with shRNA-TLR4 mixed with MBs followed by US irradiation. Western blot and immunohistochemical staining were used to measure TLR4-positive cells. Half of the rats in the NS group developed tonic-clonic seizures, and TLR4 expression in the CA3 region of the hippocampus was increased in these rats. In addition, the NS group showed an increased number of TLR4-positive cells compared with the Sham group, while there was a decreased number of TLR4-positive cells in the shRNA, shRNA + US, and shRNA + MBs + US groups. Our findings indicate that the TLR4 pathway is involved in the pathogenesis of ischemia-induced seizures in hyperglycemic rats and that UTMD technology may be a promising strategy to treat brain diseases.
Collapse
Affiliation(s)
- Jia Chen
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Fami Huang
- Department of Intensive Care Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Xiaobo Fang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Siying Li
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Yanling Liang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| |
Collapse
|
77
|
Effects of Diclofenac Sodium on Seizure Activity in Rats with Pentylenetetrazole-Induced Convulsions. Neurochem Res 2022; 48:1412-1423. [PMID: 36474102 DOI: 10.1007/s11064-022-03838-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a disease which affects between 1 and 2% of the population, and a large proportion of these people do not react to currently available anticonvulsant medications, indicating the need for further research into novel pharmacological therapies. Numerous studies have demonstrated that oxidative stress and inflammation occur during epilepsy and may contribute to its development and progression, indicating higher levels of oxidative and inflammatory parameters in experimental models and clinical patients. This research aimed to assess the impact of diclofenac sodium, a nonsteroidal anti-inflammatory medicine, on seizure and levels of oxidative stress and inflammatory biomarkers in a rat model of epilepsy triggered by pentylenetetrazole (PTZ). 60 rats were randomly allocated to one of two groups: electroencephalography (EEG) recordings or behavioral evaluation. Rats received diclofenac sodium at three various doses (25, 50, and 75 mg/kg) intraperitoneally (IP) or a placebo, followed by intraperitoneal (IP) pentylenetetrazole, a powerful seizure-inducing medication. To investigate if diclofenac sodium had antiseizure properties, seizure activity in rats was evaluated using EEG recordings, the Racine convulsion scale (RCS) behaviour score, the duration of the first myoclonic jerk (FMJ), and the levels of MDA, TNF-α, and SOD. The average percentage of EEG spike waves decreased from 76.8% (placebo) to 64.1% (25 mg/kg diclofenac), 55.9% (50 mg/kg diclofenac), and 37.8% (75 mg/kg diclofenac). FMJ had increased from a mean of 58.8 s (placebo), to 93.6 s (25 mg/kg diclofenac), 185.8 s (50 mg/kg diclofenac) and 231.7 s (75 mg/kg diclofenac). RCS scores decreased from a mean score of 5.6 (placebo), to 3.75 (25 mg/kg diclofenac), 2.8 (50 mg/kg diclofenac) and 1.75 (75 mg/kg diclofenac). MDA levels reduced from 14.2 ng/gr (placebo) to 9.6 ng/gr (25 mg/kg diclofenac), 8.4 ng/gr (50 mg/kg diclofenac) and 5.1 ng/gr (75 mg/kg diclofenac). Likely, TNF-α levels decreased from 67.9 ng/gr (placebo) to 48.1 ng/gr (25 mg/kg diclofenac), 33.5 ng/gr (50 mg/kg diclofenac) and 21.3 ng/gr (75 mg/kg diclofenac). SOD levels, however, enhanced from 0.048 U/mg (placebo) to 0.055 U/mg (25 mg/kg diclofenac), 0.14 U/mg (50 mg/kg diclofenac), and 0.18 U/mg (75 mg/kg diclofenac). Diclofenac sodium (25, 50, and 75 mg/kg i.p.) effectively lowered the spike percentages and RCS scores linked with PTZ-induced epilepsy in rats, as well as significantly decreased MDA, TNF-α, IL-1β, PGE2 and increased SOD levels. Probably as a result of its anti-oxidative and anti-inflammatory effects, diclofenac sodium dramatically lowered seizure activity at both doses compared to placebo control. Each of these results were significant, with p-values of < 0.01, < 0.05. Therefore, the therapeutic application diclofenac sodium as a potential anticonvulsant should be investigated further.
Collapse
|
78
|
Barker-Haliski M, Pitsch J, Galanopoulou AS, Köhling R. A companion to the preclinical common data elements for phenotyping seizures and epilepsy in rodent models. A report of the TASK3-WG1C: Phenotyping working group of the ILAE/AES joint translational task force. Epilepsia Open 2022. [PMID: 36461665 DOI: 10.1002/epi4.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
79
|
Alam AM, Chen JPK, Wood GK, Facer B, Bhojak M, Das K, Defres S, Marson A, Granerod J, Brown D, Thomas RH, Keller SS, Solomon T, Michael BD. Increased volume of cerebral oedema is associated with risk of acute seizure activity and adverse neurological outcomes in encephalitis - regional and volumetric analysis in a multi-centre cohort. BMC Neurol 2022; 22:412. [PMID: 36344954 PMCID: PMC9639313 DOI: 10.1186/s12883-022-02926-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Seizures can occur unpredictably in patients with acute encephalitis syndrome (AES), and many suffer from poor long-term neurological sequelae. Establishing factors associated with acute seizures risk and poor outcomes could support clinical care. We aimed to conduct regional and volumetric analysis of cerebral oedema on magnetic resonance imaging (MRI) in patients with AES. We assessed the relationship of brain oedema with acute seizure activity and long-term neurological outcome. METHODS In a multi-centre cohort study, adults and children presenting with an AES were recruited in the UK. The clinical and brain MRI data were retrospectively reviewed. The outcomes variables were inpatient acute seizure activity and neurological disability at six-months post-discharge. A poor outcome was defined as a Glasgow outcome score (GOS) of 1-3. We quantified regional brain oedema on MRI through stereological examination of T2-weighted images using established methodology by independent and blinded assessors. Clinical and neuroimaging variables were analysed by multivariate logistic regression to assess for correlation with acute seizure activity and outcome. RESULTS The study cohort comprised 69 patients (mean age 31.8 years; 53.6% female), of whom 41 (59.4%) had acute seizures as inpatients. A higher Glasgow coma scale (GCS) score on admission was a negative predictor of seizures (OR 0.61 [0.46-0.83], p = 0.001). Even correcting for GCS on admission, the presence of cortical oedema was a significant risk factor for acute seizure activity (OR 5.48 [1.62-18.51], p = 0.006) and greater volume of cerebral oedema in these cortical structures increased the risk of acute seizures (OR 1.90 [1.12-3.21], p = 0.017). At six-month post-discharge, 21 (30.4%) had a poor neurological outcome. Herpes simplex virus encephalitis was associated with higher risk of poor outcomes in univariate analysis (OR 3.92 [1.08-14.20], p = 0.038). When controlling for aetiology, increased volume of cerebral oedema was an independent risk factor for adverse neurological outcome at 6 months (OR 1.73 [1.06-2.83], p = 0.027). CONCLUSIONS Both the presence and degree of cerebral oedema on MRIs of patients with AES may help identify patients at risk of acute seizure activity and subsequent long-term morbidity.
Collapse
Affiliation(s)
- Ali M Alam
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, UK
- The NIHR Health Protection Research Unit for Emerging and Zoonotic Infection, Liverpool, UK
| | | | - Greta K Wood
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, UK
- The NIHR Health Protection Research Unit for Emerging and Zoonotic Infection, Liverpool, UK
| | - Bethany Facer
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Maneesh Bhojak
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Kumar Das
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Sylviane Defres
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, UK
- The NIHR Health Protection Research Unit for Emerging and Zoonotic Infection, Liverpool, UK
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Trust, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Julia Granerod
- Independent Scientific Consultant, formerly of Public Health England, London, UK
| | - David Brown
- UK Heath Security Agency, 61 Colindale Avenue, London, UK
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, UK
- The NIHR Health Protection Research Unit for Emerging and Zoonotic Infection, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Benedict D Michael
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, UK.
- The NIHR Health Protection Research Unit for Emerging and Zoonotic Infection, Liverpool, UK.
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
80
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
81
|
Zakiniaeiz Y, Hoye J, Ryan Petrulli J, LeVasseur B, Stanley G, Gao H, Najafzadeh S, Ropchan J, Nabulsi N, Huang Y, Chen MK, Matuskey D, Barron DS, Kelmendi B, Fulbright RK, Hampson M, Cosgrove KP, Morris ED. Systemic inflammation enhances stimulant-induced striatal dopamine elevation in tobacco smokers. Brain Behav Immun 2022; 106:262-269. [PMID: 36058419 PMCID: PMC10097458 DOI: 10.1016/j.bbi.2022.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 02/04/2023] Open
Abstract
Immune-brain interactions influence the pathophysiology of addiction. Lipopolysaccharide (LPS)-induced systemic inflammation produces effects on reward-related brain regions and the dopamine system. We previously showed that LPS amplifies dopamine elevation induced by methylphenidate (MP), compared to placebo (PBO), in eight healthy controls. However, the effects of LPS on the dopamine system of tobacco smokers have not been explored. The goal of Study 1 was to replicate previous findings in an independent cohort of tobacco smokers. The goal of Study 2 was to combine tobacco smokers with the aforementioned eight healthy controls to examine the effect of LPS on dopamine elevation in a heterogenous sample for power and effect size determination. Eight smokers were each scanned with [11C]raclopride positron emission tomography three times-at baseline, after administration of LPS (0.8 ng/kg, intravenously) and MP (40 mg, orally), and after administration of PBO and MP, in a double-blind, randomized order. Dopamine elevation was quantified as change in [11C]raclopride binding potential (ΔBPND) from baseline. A repeated-measures ANOVA was conducted to compare LPS and PBO conditions. Smokers and healthy controls were well-matched for demographics, drug dosing, and scanning parameters. In Study 1, MP-induced striatal dopamine elevation was significantly higher following LPS than PBO (p = 0.025, 18 ± 2.9 % vs 13 ± 2.7 %) for smokers. In Study 2, MP-induced striatal dopamine elevation was also significantly higher under LPS than under PBO (p < 0.001, 18 ± 1.6 % vs 11 ± 1.5 %) in the combined sample. Smoking status did not interact with the effect of condition. This is the first study to translate the phenomenon of amplified dopamine elevation after experimental activation of the immune system to an addicted sample which may have implications for drug reinforcement, seeking, and treatment.
Collapse
Affiliation(s)
- Yasmin Zakiniaeiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA.
| | - Jocelyn Hoye
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joseph Ryan Petrulli
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Gelsina Stanley
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hong Gao
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Soheila Najafzadeh
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ming-Kai Chen
- Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Daniel S Barron
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA; Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Robert K Fulbright
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Michelle Hampson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA
| | - Evan D Morris
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Yale Positron Emission Tomography (PET) Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|
82
|
Hu A, Yuan H, Qin Y, Zhu Y, Zhang L, Chen Q, Wu L. Lipopolysaccharide (LPS) increases susceptibility to epilepsy via interleukin-1 type 1 receptor signaling. Brain Res 2022; 1793:148052. [PMID: 35970265 DOI: 10.1016/j.brainres.2022.148052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy is the most common disease of the nervous system, characterized by aberrant normal brain activity. Neuroinflammation is a prominent feature in the brain in epileptic humans and animal models of epilepsy. However, it remains elusive as to how peripheral inflammation affects epilepsy. Herein we demonstrated significantly greater seizure susceptibility and severity of epilepsy under kainic acid (KA) via intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in mouse model of epilepsy. Nissl staining was employed for assessment of the neuronal damage, immunofluorescence for staining of the microglial cells and astrocytes in the mouse brain slices, and ELISA for detection of the changes of inflammatory factors. We observed a smaller population of viable neurons in CA1 and CA3 regions, a greater population of IBA-1-positive and GFAP-positive cells, with a significant upregulation of IL-1β and IL-6 in hippocampus of epileptic mice when treated with LPS, indicating that LPS aggravates hippocampal neuron injury in epilepsy, and induces neuroinflammation in the hippocampus. In addition, we provide an evident increase in BrdU+/DCX+ and Nestin+ cell populations in dentate gyrus (DG) in LPS-treated group, versus saline group on epileptic mouse model, which demonstrated LPS treatment enhanced hippocampal neurogenesis. In order to investigate whether interleukin-1 type 1 (IL-1R1) signaling is involved in this process, we adopted IL-1R1 globally restored mice (IL-1R1GR/GR) as an IL-1R1 reporter to visualize labeling of IL-1R1 mRNA and protein by means of RFP staining. Strikingly, the RFP immunofluorescence revealed increased IL-1R1 expression in LPS-treated group, versus saline group. Further, blockage of central IL-1R1 alleviated seizure susceptibility and severity of epilepsy. In summary, our findings suggested that LPS could enhance central inflammatory response and aggravate the susceptibility to epileptic seizure, which we postulated to be mediated by IL-1R1.
Collapse
Affiliation(s)
- Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Honghua Yuan
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ying Qin
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuhua Zhu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lingzhi Zhang
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Quangang Chen
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lianlian Wu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
83
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
84
|
Chang A, Chang Y, Wang SJ. Rutin prevents seizures in kainic acid-treated rats: evidence of glutamate levels, inflammation and neuronal loss modulation. Food Funct 2022; 13:10401-10414. [PMID: 36148811 DOI: 10.1039/d2fo01490d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rutin, a naturally derived flavonoid molecule with known neuroprotective properties, has been demonstrated to have anticonvulsive potential, but the mechanism of this effect is still unclear. The current study aimed to investigate the probable antiseizure mechanisms of rutin in rats using the kainic acid (KA) seizure model. Rutin (50 and 100 mg kg-1) and carbamazepine (100 mg kg-1) were administered daily by oral gavage for 7 days before KA (15 mg kg-1) intraperitoneal (i.p.) injection. Seizure behavior, neuronal cell death, glutamate concentration, excitatory amino acid transporters (EAATs), glutamine synthetase (GS), glutaminase, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, N-methyl-D-aspartate (NMDA) receptor subunits GluN2A and GluN2B, activated astrocytes, and inflammatory and anti-inflammatory molecules in the hippocampus were evaluated. Supplementation with rutin attenuated seizure severity in KA-treated rats and reversed KA-induced neuronal loss and glutamate elevation in the hippocampus. Decreased glutaminase and GluN2B, and increased EAATs, GS, GluA1, GluA2 and GluN2A were observed with rutin administration. Rutin pretreatment also suppressed activated astrocytes, downregulated the protein levels of inflammatory molecules [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), high mobility group Box 1 (HMGB1), interleukin-1 receptor 1 (IL-1R1), and Toll-like receptor-4 (TLR-4)] and upregulated anti-inflammatory molecule interleukin-10 (IL-10) protein expression. Taken together, the results indicate that the preventive treatment of rats with rutin attenuated KA-induced seizures and neuronal loss by decreasing glutamatergic hyperactivity and suppressing the IL-1R1/TLR4-related neuroinflammatory cascade.
Collapse
Affiliation(s)
- Anna Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 22060, Taiwan
| | - Yi Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 22060, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
85
|
Erisken S, Nune G, Chung H, Kang JW, Koh S. Time and age dependent regulation of neuroinflammation in a rat model of mesial temporal lobe epilepsy: Correlation with human data. Front Cell Dev Biol 2022; 10:969364. [PMID: 36172274 PMCID: PMC9512631 DOI: 10.3389/fcell.2022.969364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute brain insults trigger diverse cellular and signaling responses and often precipitate epilepsy. The cellular, molecular and signaling events relevant to the emergence of the epileptic brain, however, remain poorly understood. These multiplex structural and functional alterations tend also to be opposing - some homeostatic and reparative while others disruptive; some associated with growth and proliferation while others, with cell death. To differentiate pathological from protective consequences, we compared seizure-induced changes in gene expression hours and days following kainic acid (KA)-induced status epilepticus (SE) in postnatal day (P) 30 and P15 rats by capitalizing on age-dependent differential physiologic responses to KA-SE; only mature rats, not immature rats, have been shown to develop spontaneous recurrent seizures after KA-SE. To correlate gene expression profiles in epileptic rats with epilepsy patients and demonstrate the clinical relevance of our findings, we performed gene analysis on four patient samples obtained from temporal lobectomy and compared to four control brains from NICHD Brain Bank. Pro-inflammatory gene expressions were at higher magnitudes and more sustained in P30. The inflammatory response was driven by the cytokines IL-1β, IL-6, and IL-18 in the acute period up to 72 h and by IL-18 in the subacute period through the 10-day time point. In addition, a panoply of other immune system genes was upregulated, including chemokines, glia markers and adhesion molecules. Genes associated with the mitogen activated protein kinase (MAPK) pathways comprised the largest functional group identified. Through the integration of multiple ontological databases, we analyzed genes belonging to 13 separate pathways linked to Classical MAPK ERK, as well as stress activated protein kinases (SAPKs) p38 and JNK. Interestingly, genes belonging to the Classical MAPK pathways were mostly transiently activated within the first 24 h, while genes in the SAPK pathways had divergent time courses of expression, showing sustained activation only in P30. Genes in P30 also had different regulatory functions than in P15: P30 animals showed marked increases in positive regulators of transcription, of signaling pathways as well as of MAPKKK cascades. Many of the same inflammation-related genes as in epileptic rats were significantly upregulated in human hippocampus, higher than in lateral temporal neocortex. They included glia-associated genes, cytokines, chemokines and adhesion molecules and MAPK pathway genes. Uniquely expressed in human hippocampus were adaptive immune system genes including immune receptors CDs and MHC II HLAs. In the brain, many immune molecules have additional roles in synaptic plasticity and the promotion of neurite outgrowth. We propose that persistent changes in inflammatory gene expression after SE leads not only to structural damage but also to aberrant synaptogenesis that may lead to epileptogenesis. Furthermore, the sustained pattern of inflammatory genes upregulated in the epileptic mature brain was distinct from that of the immature brain that show transient changes and are resistant to cell death and neuropathologic changes. Our data suggest that the epileptogenic process may be a result of failed cellular signaling mechanisms, where insults overwhelm the system beyond a homeostatic threshold.
Collapse
Affiliation(s)
- Sinem Erisken
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - George Nune
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Hyokwon Chung
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
| | - Joon Won Kang
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- Department of Pediatrics & Medical Science, Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sookyong Koh
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- *Correspondence: Sookyong Koh,
| |
Collapse
|
86
|
Rubio C, López-López F, Rojas-Hernández D, Moreno W, Rodríguez-Quintero P, Rubio-Osornio M. Caloric restriction: Anti-inflammatory and antioxidant mechanisms against epileptic seizures. Epilepsy Res 2022; 186:107012. [PMID: 36027691 DOI: 10.1016/j.eplepsyres.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Caloric restriction (CR) possesses different cellular mechanisms. Though there are still gaps in the literature regarding its plausible beneficial effects, the suggestion that this alternative therapy can improve the inflammatory and antioxidant response to control epileptic seizures is explored throughout this study. Epilepsy is the second most prevalent neurodegenerative disease in the world. However, the appropriate mechanisms for it to be fully controlled are still unknown. Neuroinflammation and oxidative stress promote epileptic seizures' appearance and might even aggravate them. There is growing evidence that caloric restriction has extensive anti-inflammatory and antioxidant properties. For instance, nuclear factor erythroid 2-related factor 2 (Nrf2) and all-trans retinoic acid (ATRA) have been proposed to induce antioxidant processes and ulteriorly improve the disease progression. Caloric restriction can be an option for those patients with refractory epilepsy since it allows for anti-inflammatory and antioxidant properties to evolve within the brain areas involved.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico
| | - Felipe López-López
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Facultad de Medicina, Universidad Autónoma de Baja California, Campus Mexicali, Mexico
| | - Daniel Rojas-Hernández
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico.
| |
Collapse
|
87
|
Civan AB, Ekici A, Havali C, Kiliç N, Bostanci M. Evaluation of the risk factors for recurrence and the development of epilepsy in patients with febrile seizure. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:779-785. [PMID: 36252585 PMCID: PMC9703884 DOI: 10.1055/s-0042-1755202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Background Although febrile seizure (FS) is generally considered benign and self-limiting, there are differences regarding the risk factors, the prognosis, and the development of epilepsy.
Objective To examine the clinical and sociodemographic characteristics of patients diagnosed with FS, and to determine the risks of recurrence and the development of epilepsy.
Methods Between 2015 and 2019, we performed a retrospective evaluation of 300 patients with FS followed for at least 24 months.
Results The first episode of FS was simple in 72.7% of the patients and complex in 27.3%, and it recurred in 40%. Age under 12 months in the first FS, complex FS, and neurodevelopmental delay were found to statistically increase the risk of recurrence (p < 0.05). A total of 7% of the patients developed epilepsy, and this rate was found to be higher in patients with neurodevelopmental delay and long-term use of antiepileptic drugs (p < 0.001). The development of epilepsy was also observed in 77.8% of the patients with abnormal electroencephalogram (EEG). Epilepsy developed more frequently in those with abnormal EEG (p<0.001).
Conclusions Neurodevelopmental delay was an important risk factor for FS recurrence and the development of epilepsy. Abnormality in the EEG is an important risk factor for the development of epilepsy. We found that the long-term prophylactic treatment did not cause decreases in the recurrence of FS nor in the development of epilepsy.
Collapse
Affiliation(s)
- Ahmet Burak Civan
- University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Department of Pediatrics, Bursa, Turkey
| | - Arzu Ekici
- University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Department of Pediatric Neurology, Bursa, Turkey
| | - Cengiz Havali
- University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Department of Pediatric Neurology, Bursa, Turkey
| | - Nevin Kiliç
- University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Department of Pediatrics, Bursa, Turkey
| | - Muharrem Bostanci
- University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Department of Pediatrics, Bursa, Turkey
| |
Collapse
|
88
|
Effect of Vagus Nerve Stimulation on Blood Inflammatory Markers in Children with Drug-Resistant Epilepsy: A Pilot Study. CHILDREN 2022; 9:children9081133. [PMID: 36010024 PMCID: PMC9406968 DOI: 10.3390/children9081133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Background: Since one of the suggested mechanisms of action of VNS on epilepsy is the reduction of central inflammation, we carried out a comprehensive analysis of blood inflammatory markers in children considered for VNS surgery. Materials and methods: Five pediatric patients were studied. An extensive analysis of blood inflammatory markers was performed before surgery (T0) and six weeks after VNS implantation (T1). An epileptological outcome was obtained according to the McHugh score. Results: The variations of IgA, IgE, IgG, CD19, and PTX3 displayed a tendency toward a positive statistical correlation between T0 and T1. According to McHugh score, the patients were divided into Group 1 (i.e., Class I) and Group 2 (i.e., Classes II and III). IL-1β and PTX-3 tended to decrease more in Group 1, while TNF-α decreased in Group 2 (−56.65%) and slightly increased (+3.61%) in Group 1 at T1 without statistical correlation. Conclusions: The variation of IL-1β and PTX-3 seem to be related to a better outcome; thus, they do not reach statistical significance. A larger series of patients is needed to determine whether biochemical changes could relay with the clinical improvement of epilepsy.
Collapse
|
89
|
Berger TC, Taubøll E, Heuser K. The potential role of DNA methylation as preventive treatment target of epileptogenesis. Front Cell Neurosci 2022; 16:931356. [PMID: 35936496 PMCID: PMC9353008 DOI: 10.3389/fncel.2022.931356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmacological therapy of epilepsy has so far been limited to symptomatic treatment aimed at neuronal targets, with the result of an unchanged high proportion of patients lacking seizure control. The dissection of the intricate pathological mechanisms that transform normal brain matter to a focus for epileptic seizures—the process of epileptogenesis—could yield targets for novel treatment strategies preventing the development or progression of epilepsy. While many pathological features of epileptogenesis have been identified, obvious shortcomings in drug development are now believed to be based on the lack of knowledge of molecular upstream mechanisms, such as DNA methylation (DNAm), and as well as a failure to recognize glial cell involvement in epileptogenesis. This article highlights the potential role of DNAm and related gene expression (GE) as a treatment target in epileptogenesis.
Collapse
Affiliation(s)
- Toni Christoph Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Toni Christoph Berger
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Kjell Heuser
| |
Collapse
|
90
|
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci 2022; 23:ijms23126788. [PMID: 35743229 PMCID: PMC9224176 DOI: 10.3390/ijms23126788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Collapse
|
91
|
Kaneko KI, Irie S, Mawatari A, Igesaka A, Hu D, Nakaoka T, Hayashinaka E, Wada Y, Doi H, Watanabe Y, Cui Y. [ 18F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus. Eur J Nucl Med Mol Imaging 2022; 49:2265-2275. [PMID: 35157105 DOI: 10.1007/s00259-022-05719-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Most antiepileptic drug therapies are symptomatic and adversely suppress normal brain function by nonspecific inhibition of neuronal activity. In recent times, growing evidence has suggested that neuroinflammation triggered by epileptic seizures might be involved in the pathogenesis of epilepsy. Although the potential effectiveness of anti-inflammatory treatment for curing epilepsy has been extensively discussed, the limited quantitative data regarding spatiotemporal characteristics of neuroinflammation after epileptic seizures makes it difficult to be realized. We quantitatively analyzed the spatiotemporal changes in neuroinflammation in the early phase after status epilepticus in rats, using translocator protein (TSPO) positron emission tomography (PET) imaging, which has been widely used for the quantitative evaluation of neuroinflammation in several animal models of CNS disease. METHODS The second-generation TSPO PET probe, [18F]DPA-714, was used for brain-wide quantitative analysis of neuroinflammation in the brains of rats, when the status epilepticus was induced by subcutaneous injection of kainic acid (KA, 15 mg/kg) into those rats. A series of [18F]DPA-714 PET scans were performed at 1, 3, 7, and 15 days after status epilepticus, and the corresponding histological changes, including activation of microglia and astrocytes, were confirmed by immunohistochemistry. RESULTS Apparent accumulation of [18F]DPA-714 was observed in several KA-induced epileptogenic regions, such as the amygdala, piriform cortex, ventral hippocampus, mediodorsal thalamus, and cortical regions 3 days after status epilepticus, and was reversibly displaced by unlabeled PK11195 (1 mg/kg). Consecutive [18F]DPA-714 PET scans revealed that accumulation of [18F]DPA-714 was focused in the KA-induced epileptogenic regions from 3 days after status epilepticus and was further maintained in the amygdala and piriform cortex until 7 days after status epilepticus. Immunohistochemical analysis revealed that activated microglia but not reactive astrocytes were correlated with [18F]DPA-714 accumulation in the KA-induced epileptogenic regions for at least 1 week after status epilepticus. CONCLUSIONS These results indicate that the early spatiotemporal characteristics of neuroinflammation quantitatively evaluated by [18F]DPA-714 PET imaging provide valuable evidence for developing new anti-inflammatory therapies for epilepsy. The predominant activation of microglia around epileptogenic regions in the early phase after status epilepticus could be a crucial therapeutic target for curing epilepsy.
Collapse
Affiliation(s)
- Ken-Ichi Kaneko
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ami Igesaka
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Di Hu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takayoshi Nakaoka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
92
|
Inflammation in pediatric epilepsies: Update on clinical features and treatment options. Epilepsy Behav 2022; 131:107959. [PMID: 33867302 DOI: 10.1016/j.yebeh.2021.107959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023]
Abstract
The role of inflammation is increasingly recognized in triggering or sustaining epileptic activity. In the last decades, increasing research has provided definite evidence to support the link between immunity, inflammatory process, and epilepsy. Neuro- and systemic inflammation play a pivotal role in driving epileptogenesis through different pathogenetic mechanisms: the activation of innate immunity in glia, neurons, and microvasculature, the brain mediated by blood-brain barrier (BBB) impairment, and the imbalance of pro- and anti-inflammatory molecules produced by both arms of immunity. More recently, research has focused on the adverse effects of maternal or early-life immune activation and cytokine imbalance on fetal neurodevelopment and postnatal epilepsy. A complex crosstalk between the immune and nervous system, and a crucial interplay of genetic, epigenetic, and environmental factors may influence structures and functions of the developing brain. A better understanding of the inflammatory process in promoting epilepsy implies that targeting specific pathways may be effective in seizure control. Multiple targets have been identified so far, and several antiseizure interventions are obtained by inhibiting inflammatory signaling or protecting/restoring BBB. All this evidence has changed the field of epilepsy research and neuropharmacology. Further developments and new treatments will rapidly emerge to improve seizure management in inflammation-related epilepsies. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
|
93
|
Cilberti MG, Santillo A, Polito AN, Messina G, della Malva A, Caroprese M, Sevi A, Albenzio M. Cytokine Pattern of Peripheral Blood Mononuclear Cells Isolated from Children Affected by Generalized Epilepsy Treated with Different Protein Fractions of Meat Sources. Nutrients 2022; 14:nu14112243. [PMID: 35684043 PMCID: PMC9182632 DOI: 10.3390/nu14112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of the present study was the evaluation of cytokine patterns in terms of TNF-α, IL-10, IL-6, and IL-1β secretion in peripheral blood mononuclear cell (PBMC) supernatants isolated from blood of children affected by generalized epilepsy and treated in vitro with myofibrillar, sarcoplasmic, and total protein fractions of meat and fish sources. Children with generalized epilepsy (EC group, n = 16) and children without any clinical signs of disease, representing a control group (CC group n = 16), were recruited at the Complex Structure of Neuropsychiatry Childhood-Adolescence of Policlinico Riuniti (Foggia, Italy). Myofibrillar (MYO), sarcoplasmic (SA), and total (TOT) protein fractions were obtained from longissimus thoracis muscle of beef (BF) and lamb (LA); from pectoralis muscle of chicken (CH); and from dorsal white muscle of sole (Solea solea, SO), European hake (Merluccius merluccius, EH), and sea bass fish (Dicentrarchus labrax, SB), respectively. PBMCs were isolated from peripheral blood of EC and CC groups, and an in vitro stimulation in the presence of 100 μg/mL for each protein fraction from different meat sources was performed. Data were classified according to three different levels of cytokines produced from the EC group relative to the CC group. TNF-α, IL-10, and IL-6 levels were not affected by different meat fractions and meat sources; on the contrary, IL-1β levels were found to be significantly affected by the tested proteins fractions, as well as different meat sources, in high-level cytokine group. On average, the protein fractions obtained from LB, BF, and CH meat sources showed a higher level of IL-1β than the protein fractions obtained from EH and SB fish samples. When all cytokine classes were analyzed, on average, a significant effect was observed for IL-10, IL-1β, and TNF-α. Data obtained in the present study evidence that the nutritional strategy based on protein from fish and meat sources may modulate the immunological cytokine pattern of infants with generalized epilepsy.
Collapse
Affiliation(s)
- Maria Giovanna Cilberti
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
- Correspondence:
| | - Anna N. Polito
- Complex Structure of Neuropsychiatry Childhood-Adolescence of Ospedali Riuniti of Foggia, Viale Pinto, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Antonella della Malva
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| |
Collapse
|
94
|
Zhong K, Qian C, Lyu R, Wang X, Hu Z, Yu J, Ma J, Ye Y. Anti-Epileptic Effect of Crocin on Experimental Temporal Lobe Epilepsy in Mice. Front Pharmacol 2022; 13:757729. [PMID: 35431921 PMCID: PMC9009530 DOI: 10.3389/fphar.2022.757729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common kind of refractory epilepsy. More than 30% TLE patients were multi-drug resistant. Some patients may even develop into status epilepticus (SE) because of failing to control seizures. Thus, one of the avid goals for anti-epileptic drug development is to discover novel potential compounds to treat TLE or even SE. Crocin, an effective component of Crocus sativus L., has been applied in several epileptogenic models to test its anti-epileptic effect. However, it is still controversial and its effect on TLE remains unclear. Therefore, we investigated the effects of crocin on epileptogenesis, generalized seizures (GS) in hippocampal rapid electrical kindling model as well as SE and spotaneous recurrent seizure (SRS) in pilocarpine-induced TLE model in ICR mice in this study. The results showed that seizure stages and cumulative afterdischarge duration were significantly depressed by crocin (20 and 50 mg/kg) during hippocampal rapid kindling acquisition. And crocin (100 mg/kg) significantly reduced the incidence of GS and average seizure stages in fully kindled animals. In pilocarpine-induced TLE model, the latency of SE was significantly prolonged and the mortality of SE was significantly decreased by crocin (100 mg/kg), which can also significantly suppress the number of SRS. The underlying mechanism of crocin may be involved in the protection of neurons, the decrease of tumor necrosis factor-α in the hippocampus and the increase of brain derived neurotrophic factor in the cortex. In conclusion, crocin may be a potential and promising anti-epileptic compound for treatment of TLE.
Collapse
Affiliation(s)
- Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chengyu Qian
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rui Lyu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xinyi Wang
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zhe Hu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
95
|
Entezari Z, Jahanabadi S. Anticonvulsant Effect of Minocycline on Pentylenetetrazole-Induced Seizure in Mice: Involvement of 5-HT3 Receptor. Drug Res (Stuttg) 2022; 72:268-273. [PMID: 35426093 DOI: 10.1055/a-1783-7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Minocycline, widely used as an antibiotic, has recently been found to have an anti-inflammatory, neuroprotective and anticonvulsant effects. This study was aimed to investigate the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures considering the possible involvement of 5-HT3 receptor in this effect. For this purpose, seizures were induced by intravenous PTZ infusion. All drugs were administrated by intraperitoneal (i.p.) route before PTZ injection. Also, 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT3 receptor agonist) and Tropisetron (a 5-HT3 receptor antagonist) were used 45 minutes before minocycline treatment. Our results demonstrate that acute minocycline treatment (80 and 120 mg/kg) increased the seizure threshold. In addition, the 5-HT3 antagonist, tropisetron, at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of minocycline (40 mg/kg), while mCPBG (0.2 mg/kg) blunted the anticonvulsant effect of minocycline (80 mg/kg). In conclusion, our findings revealed that the anticonvulsant effect of minocycline is mediated, at least in part, by inhibition of 5-HT3 receptor.
Collapse
Affiliation(s)
- Zahra Entezari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
96
|
Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW, Wang SJ. Neferine, an Alkaloid from Lotus Seed Embryos, Exerts Antiseizure and Neuroprotective Effects in a Kainic Acid-Induced Seizure Model in Rats. Int J Mol Sci 2022; 23:ijms23084130. [PMID: 35456948 PMCID: PMC9027762 DOI: 10.3390/ijms23084130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Current anti-seizure drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective anti-seizure drugs, and medicinal plants provide an attractive source for new compounds. This study aimed to evaluate the possible anti-seizure and neuroprotective effects of neferine, an alkaloid from the lotus seed embryos of Nelumbo nucifera, in a kainic acid (KA)-induced seizure rat model and its underlying mechanisms. Rats were intraperitoneally (i.p.) administrated neferine (10 and 50 mg/kg) 30 min before KA injection (15 mg/kg, i.p.). Neferine pretreatment increased seizure latency and reduced seizure scores, prevented glutamate elevation and neuronal loss, and increased presynaptic protein synaptophysin and postsynaptic density protein 95 expression in the hippocampi of rats with KA. Neferine pretreatment also decreased glial cell activation and proinflammatory cytokine (interleukin-1β, interleukin-6, tumor necrosis factor-α) expression in the hippocampi of rats with KA. In addition, NOD-like receptor 3 (NLRP3) inflammasome, caspase-1, and interleukin-18 expression levels were decreased in the hippocampi of seizure rats pretreated with neferine. These results indicated that neferine reduced seizure severity, exerted neuroprotective effects, and ameliorated neuroinflammation in the hippocampi of KA-treated rats, possibly by inhibiting NLRP3 inflammasome activation and decreasing inflammatory cytokine secretion. Our findings highlight the potential of neferine as a therapeutic option in the treatment of epilepsy.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chih-Yu Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Kuan-Ming Chiu
- Cardiovascular Center, Division of Cardiovascular Surgery, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Cardiovascular Center, Division of Cardiovascular Surgery, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
- Correspondence: (C.-W.L.); (S.-J.W.)
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (C.-W.L.); (S.-J.W.)
| |
Collapse
|
97
|
Chen Z, Yu W, Xu R, Karoly PJ, Maturana MI, Payne DE, Li L, Nurse ES, Freestone DR, Li S, Burkitt AN, Cook MJ, Guo Y, Grayden DB. Ambient air pollution and epileptic seizures: a panel study in Australia. Epilepsia 2022; 63:1682-1692. [PMID: 35395096 PMCID: PMC9543609 DOI: 10.1111/epi.17253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista dataset, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary dataset, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 μm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), while no significant associations were found for the other four air pollutants in the whole study population. Females had a significantly increased risk of seizures when exposing to elevated CO and NO2 , with RR of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. Additionally, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE Daily exposure to elevated CO concentrations may be associated with the increased risk of epileptic seizures, especially for subclinical seizures.
Collapse
Affiliation(s)
- Zhuying Chen
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - Philippa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Graeme Clark Institute, The University of Melbourne, VIC, Australia
| | - Matias I Maturana
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Seer Medical, Melbourne, VIC, Australia
| | - Daniel E Payne
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Seer Medical, Melbourne, VIC, Australia
| | - Lyra Li
- Graeme Clark Institute, The University of Melbourne, VIC, Australia
| | - Ewan S Nurse
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Seer Medical, Melbourne, VIC, Australia
| | | | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - Anthony N Burkitt
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Graeme Clark Institute, The University of Melbourne, VIC, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Graeme Clark Institute, The University of Melbourne, VIC, Australia
| |
Collapse
|
98
|
Bera A, Srivastava A, Dubey V, Dixit AB, Tripathi M, Sharma MC, Lalwani S, Chandra PS, Banerjee J. Altered hippocampal expression and function of cytosolic phospholipase A2 (cPLA2) in temporal lobe epilepsy (TLE). Neurol Res 2022; 44:748-753. [DOI: 10.1080/01616412.2022.2051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Akash Bera
- Department of Biophysics, AIIMS, New Delhi, India
| | | | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | | | | | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine & Toxicology, AIIMS, New Delhi, India
| | | | | |
Collapse
|
99
|
Wolinski P, Ksiazek-Winiarek D, Glabinski A. Cytokines and Neurodegeneration in Epileptogenesis. Brain Sci 2022; 12:brainsci12030380. [PMID: 35326336 PMCID: PMC8945903 DOI: 10.3390/brainsci12030380] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by a heterogenous etiology. Its main features are recurrent seizures. Despite many clinical studies, about 30% of cases are refractory to treatment. Recent studies suggested the important role of immune-system elements in its pathogenesis. It was suggested that a deregulated inflammatory process may lead to aberrant neural connectivity and the hyperexcitability of the neuronal network. The aim of our study was the analysis of the expression of inflammatory mediators in a mouse model of epilepsy and their impact on the neurodegeneration process located in the brain. We used the KA-induced model of epilepsy in SJL/J mice and performed the analysis of gene expression and protein levels. We observed the upregulation of IL1β and CXCL12 in the early phase of KA-induced epilepsy and elevated levels of CCL5 at a later time point, compared with control animals. The most important result obtained in our study is the elevation of CXCL2 expression at both studied time points and its correlation with the neurodegeneration observed in mouse brain. Increasing experimental and clinical data suggest the influence of peripheral inflammation on epileptogenesis. Thus, studies focused on the molecular markers of neuroinflammation are of great value and may help deepen our knowledge about epilepsy, leading to the discovery of new drugs.
Collapse
|
100
|
Campos-Bedolla P, Feria-Romero I, Orozco-Suárez S. Factors not considered in the study of drug-resistant epilepsy: Drug-resistant epilepsy: assessment of neuroinflammation. Epilepsia Open 2022; 7 Suppl 1:S68-S80. [PMID: 35247028 PMCID: PMC9340302 DOI: 10.1002/epi4.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
More than one‐third of people with epilepsy develop drug‐resistant epilepsy (DRE). Different hypotheses have been proposed to explain the origin of DRE. Accumulating evidence suggests the contribution of neuroinflammation, modifications in the integrity of the blood‐brain barrier (BBB), and altered immune responses in the pathophysiology of DRE. The inflammatory response is mainly due to the increase of cytokines and related molecules; these molecules have neuromodulatory effects that contribute to hyperexcitability in neural networks that cause seizure generation. Some patients with DRE display the presence of autoantibodies in the serum and mainly cerebrospinal fluid. These patients are refractory to the different treatments with standard antiseizure medications (ASMs), and they could be responding well to immunomodulatory therapies. This observation emphasizes that the etiopathogenesis of DRE is involved with immunology responses and associated long‐term events and chronic inflammation processes. Furthermore, multiple studies have shown that functional polymorphisms as risk factors are involved in inflammation processes. Several relevant polymorphisms could be considered risk factors involved in inflammation‐related DRE such as receptor for advanced glycation end products (RAGE) and interleukin 1β (IL‐1β). All these evidences sustained the hypothesis that the chronic inflammation process is associated with the DRE. However, the effect of the chronic inflammation process should be investigated in further clinical studies to promote the development of novel therapeutics useful in treatment of DRE.
Collapse
Affiliation(s)
- Patricia Campos-Bedolla
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|