51
|
Schlinker AC, Duncan MT, DeLuca TA, Whitehead DC, Miller WM. Megakaryocyte Polyploidization and Proplatelet Formation in Low-Attachment Conditions. Biochem Eng J 2016; 111:24-33. [PMID: 27087780 DOI: 10.1016/j.bej.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro-derived platelets (PLTs), which could provide an alternative source of PLTs for patient transfusions, are formed from polyploid megakaryocytes (MKs) that extend long cytoplasmic projections, termed proplatelets (proPLTs). In this study, we compared polyploidization and proPLT formation (PPF) of MKs cultured on surfaces that either promote or inhibit protein adsorption and subsequent cell adhesion. A megakaryoblastic cell line exhibited increased polyploidization and arrested PPF on a low-attachment surface. Primary human MKs also showed low levels of PPF on the same surface, but no difference in ploidy. Importantly, both cell types exhibited accelerated PPF after transfer to a surface that supports attachment, suggesting that pre-culture on a non-adhesive surface may facilitate synchronization of PPF and PLT generation in culture.
Collapse
Affiliation(s)
- Alaina C Schlinker
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Mark T Duncan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Teresa A DeLuca
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - David C Whitehead
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - William M Miller
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
52
|
Balduini CL, Melazzini F, Pecci A. Inherited thrombocytopenias-recent advances in clinical and molecular aspects. Platelets 2016; 28:3-13. [PMID: 27161842 DOI: 10.3109/09537104.2016.1171835] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the beginning of the century, our knowledge of inherited thrombocytopenias greatly advanced, and we presently know 30 forms with well-defined genetic defects. This great advancement changed our view of these disorders, as we realized that most patients have only mild thrombocytopenia with inconspicuous bleeding or no bleeding tendency at all. However, better knowledge of inherited thrombocytopenias also revealed that some of the most prevalent forms expose to the risk of acquiring during infancy or adulthood additional disorders that endanger the life of patients much more than hemorrhages. Thus, inherited thrombocytopenias are complex disorders with quite different clinical features and prognosis. Identification of novel genes whose mutations result in low platelet count greatly advanced also our knowledge of the megakaryocyte biology and proved beyond any doubt that the defective proteins play an essential role in platelet biogenesis or survival in humans. Based on the study of inherited thrombocytopenias, we better understood the sequence of molecular events regulating megakaryocyte differentiation, maturation, and platelet release. Since nearly 50% of patients have as yet unidentified genetic or molecular mechanisms underlying their inherited thrombocytopenia, further studies are expected to reveal new clinical entities and new molecular mechanisms of platelet production.
Collapse
Affiliation(s)
- Carlo L Balduini
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| | - Federica Melazzini
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| | - Alessandro Pecci
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| |
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW The human body produces and removes 10 platelets daily to maintain a normal steady-state platelet count. Platelet production must be tightly regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet removal and production in physiological and pathological conditions. This review will focus on different mechanisms of platelet clearance, with focus on the biological significance of platelet glycans. RECENT FINDINGS The Ashwell-Morrell receptor (AMR) recognizes senescent, desialylated platelets under steady state conditions. Desialylated platelets and the AMR are the physiological ligand-receptor pair regulating hepatic thrombopoietin (TPO) mRNA production, resolving the longstanding mystery of steady state TPO regulation. The AMR-mediated removal of desialylated platelets regulates TPO synthesis in the liver by recruiting JAK2 and STAT3 to increase thrombopoiesis. SUMMARY Inhibition of TPO production downstream of the hepatic AMR-JAK2 signaling cascade could additionally contribute to the thrombocytopenia associated with JAK1/2 treatment, which is clinically used in myeloproliferative neoplasms.
Collapse
|
54
|
Di Buduo CA, Alberelli MA, Glembostky AC, Podda G, Lev PR, Cattaneo M, Landolfi R, Heller PG, Balduini A, De Candia E. Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients. Sci Rep 2016; 6:23213. [PMID: 26987485 PMCID: PMC4796794 DOI: 10.1038/srep23213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakaryocytes from GPS patients with NBEAL2 mutations. Megakaryocytes cultured from peripheral blood or bone marrow hematopoietic progenitor cells from four patients were used to investigate megakaryopoiesis, megakaryocyte morphology and platelet formation. In vitro differentiation of megakaryocytes was normal, whereas we observed deficiency of megakaryocyte α-granule proteins and emperipolesis. Importantly, we first demonstrated that platelet formation by GPS megakaryocytes was severely affected, a defect which might be the major cause of thrombocytopenia in patients. These results demonstrate that cultured megakaryocytes from GPS patients provide a valuable model to understand the pathogenesis of GPS in humans.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Adele Alberelli
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| | - Ana C Glembostky
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gianmarco Podda
- Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paola R Lev
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marco Cattaneo
- Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Raffaele Landolfi
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| | - Paula G Heller
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Erica De Candia
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
55
|
Abstract
Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.
Collapse
Affiliation(s)
| | - N G Kjeld
- Nordic Bioscience A/S, Herlev, Denmark
| | | |
Collapse
|
56
|
Abbonante V, Di Buduo CA, Gruppi C, Malara A, Gianelli U, Celesti G, Anselmo A, Laghi L, Vercellino M, Visai L, Iurlo A, Moratti R, Barosi G, Rosti V, Balduini A. Thrombopoietin/TGF-β1 Loop Regulates Megakaryocyte Extracellular Matrix Component Synthesis. Stem Cells 2016; 34:1123-33. [PMID: 26748484 DOI: 10.1002/stem.2285] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
Extracellular matrix (ECM) components initiate crucial biochemical and biomechanical cues that are required for bone marrow homeostasis. In our research, we prove that a peri-cellular matrix composed primarily of type III and type IV collagens, and fibronectin surrounds human megakaryocytes in the bone marrow. The data we collected support the hypothesis that bone marrow megakaryocytes possess a complete mechanism to synthesize the ECM components, and that thrombopoietin is a pivotal regulator of this new function inducing transforming growth factor-β1 (TGF-β1) release and consequent activation of the downstream pathways, both in vitro and in vivo. This activation results in a dose dependent increase of ECM component synthesis by megakaryocytes, which is reverted upon incubation with JAK and TGF-β1 receptor specific inhibitors. These data are pivotal for understanding the central role of megakaryocytes in creating their own regulatory niche within the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Umberto Gianelli
- Hematopathology Service, Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Celesti
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Achille Anselmo
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Vercellino
- Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomics and Disability, Salvatore Maugeri Foundation (FSM), Laboratory of Nanotechnology, Pavia, Italy
| | - Livia Visai
- Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomics and Disability, Salvatore Maugeri Foundation (FSM), Laboratory of Nanotechnology, Pavia, Italy
| | - Alessandra Iurlo
- Oncohematology of the Elderly Unit, Oncohematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Remigio Moratti
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
57
|
Nelson MR, Roy K. Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. J Mater Chem B 2016; 4:3490-3503. [DOI: 10.1039/c5tb02644j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review discusses the considerations and approaches that have been employed for designing biomaterial based cultures for replicating the hematopoietic stem and progenitor cell niche.
Collapse
Affiliation(s)
- Michael R. Nelson
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Tech and Emory University
- The Parker H. Petit Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
- USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Tech and Emory University
- The Parker H. Petit Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
58
|
An B, Abbonante V, Xu H, Gavriilidou D, Yoshizumi A, Bihan D, Farndale RW, Kaplan DL, Balduini A, Leitinger B, Brodsky B. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor. J Biol Chem 2015; 291:4343-55. [PMID: 26702058 PMCID: PMC4813464 DOI: 10.1074/jbc.m115.674507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/24/2022] Open
Abstract
A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.
Collapse
Affiliation(s)
- Bo An
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Vittorio Abbonante
- the Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Huifang Xu
- the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Despoina Gavriilidou
- the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ayumi Yoshizumi
- the Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo 143-8540, Japan, and
| | - Dominique Bihan
- the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Richard W Farndale
- the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David L Kaplan
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Alessandra Balduini
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, the Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Birgit Leitinger
- the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom,
| | - Barbara Brodsky
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155,
| |
Collapse
|
59
|
Balduini A, Di Buduo CA, Kaplan DL. Translational approaches to functional platelet production ex vivo. Thromb Haemost 2015; 115:250-6. [PMID: 26353819 DOI: 10.1160/th15-07-0570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022]
Abstract
Platelets, which are released by megakaryocytes, play key roles in haemostasis, angiogenesis, immunity, tissue regeneration and wound healing. The scarcity of clinical cures for life threatening platelet diseases is in a large part due to limited insight into the mechanisms that control the developmental process of megakaryocytes and the mechanisms that govern the production of platelets within the bone marrow. To overcome these limitations, functional human tissue models have been developed and studied to extrapolate ex vivo outcomes for new insight on bone marrow functions in vivo. There are many challenges that these models must overcome, from faithfully mimicking the physiological composition and functions of bone marrow, to the collection of the platelets generated and validation of their viability and function for human use. The overall goal is to identify innovative instruments to study mechanisms of platelet release, diseases related to platelet production and new therapeutic targets starting from human progenitor cells.
Collapse
Affiliation(s)
- Alessandra Balduini
- Alessandra Balduini, Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA, Tel.: +1 617 627 2580, Fax: +1 617 627 3231, E-mail:
| | | | - David L Kaplan
- David L. Kaplan, Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA, Tel.: +1 617 627 2580, Fax: +1 617 627 3231, E-mail:
| |
Collapse
|
60
|
Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126:1877-84. [PMID: 26330242 DOI: 10.1182/blood-2015-01-569129] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.
Collapse
|
61
|
Abstract
Historically, platelet transfusion has proven a reliable way to treat patients suffering from thrombocytopenia or similar ailments. An undersupply of donors, however, has demanded alternative platelet sources. Scientists have therefore sought to recapitulate the biological events that convert hematopoietic stem cells into platelets in the laboratory. Such platelets have shown good function and potential for treatment. Yet the number manufactured ex vivo falls well short of clinical application. Part of the reason is the remarkable gaps in our understanding of the molecular mechanisms driving platelet formation. Using several stem cell sources, scientists have progressively clarified the chemical signaling and physical microenvironment that optimize ex vivo platelets and reconstituted them in synthetic environments. Key advances in cell reprogramming and the ability to propagate self-renewal have extended the lifetime of megakaryocytes to increase the pool of platelet progenitors.
Collapse
Affiliation(s)
- P Karagiannis
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - K Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
62
|
Jimenez K, Khare V, Evstatiev R, Kulnigg-Dabsch S, Jambrich M, Strobl H, Gasche C. Increased expression of HIF2α during iron deficiency-associated megakaryocytic differentiation. J Thromb Haemost 2015; 13:1113-27. [PMID: 25715026 PMCID: PMC4949661 DOI: 10.1111/jth.12884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/12/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iron deficiency is associated with reactive thrombocytosis; however, the mechanisms driving this phenomenon remain unclear. We previously demonstrated that this occurs alongside enhanced megakaryopoiesis in iron-deficient rats, without alterations in the megakaryopoietic growth factors thrombopoietin, interleukin-6, or interleukin-11. OBJECTIVES The aim of this study was to evaluate megakaryocyte differentiation under iron deficiency in an in vitro model and to investigate potential genes involved in this process. METHODS Human erythroleukemia and megakaryoblastic leukemia cell lines, as well as cord-blood derived hematopoietic stem cells were cultured under iron deficiency. Cell morphology, ploidy, expression of CD41, CD61, and CD42b, and proplatelet formation were assessed in iron-deficient cultures. Polymerase chain reaction arrays were used to identify candidate genes that were verified using real-time polymerase chain reaction. Hypoxia-inducible factor 1, α subunit (HIF2α) protein expression was assessed in bone marrow sections from iron-deficient rats and vascular endothelial growth factor (VEGF)-A in culture supernatants. RESULTS AND CONCLUSIONS Iron deficiency enhanced megakaryoid features in cell lines, increasing ploidy and initiating formation of proplatelet-like structures. In cord blood cell cultures, iron deficiency increased the percentage of cells expressing megakaryopoietic markers and enhanced proplatelet formation. HIF2α and VEGF were identified as potential pathways involved in this process. HIF2α protein expression was increased in megakaryocytes from iron-deficient rats, and VEGF-A concentration was higher in iron-deficient culture supernatants. Addition of VEGF-A to cell cultures increased percentage expression of megakaryocyte CD41. In conclusion, the data demonstrate that iron deficiency augments megakaryocytic differentiation and proplatelet formation and a potential role of HIF2α in megakaryopoiesis.
Collapse
Affiliation(s)
- K Jimenez
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - V Khare
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - R Evstatiev
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - S Kulnigg-Dabsch
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - M Jambrich
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - H Strobl
- Center of Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Center of Molecular Medicine, Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - C Gasche
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
63
|
Hyaluronan based hydrogels provide an improved model to study megakaryocyte-matrix interactions. Exp Cell Res 2015; 346:1-8. [PMID: 26027944 DOI: 10.1016/j.yexcr.2015.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/30/2015] [Accepted: 05/16/2015] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a glycosamminoglican involved in cell biology as well as a relevant polymer for tissue engineering and regenerative medicine. Megakaryocytes (Mks) are immersed in a mesh of extracellular matrix (ECM) components that regulate their maturation in the bone marrow (BM) and the release of platelets into the bloodstream. While fibrous ECMs such as collagens and fibronectin have been demonstrated to differently regulate Mk function and platelet release, the role of HA, that fills the majority of the BM extracellular interstitial space, has not been investigated so far. Here we demonstrated that, although human Mks express HA receptors, they are not affected by HA in terms of in vitro differentiation, maturation and platelet formation. Importantly, chemical properties of HA were exploited to generate hydrogels with entrapped ECMs that represent a useful model to more closely mimic the tridimensional characteristics of the BM environment for studying Mk function. In conclusion, in this work we demonstrated that HA is an ideal candidate for a 3D ex vivo model of human BM ECM component environment.
Collapse
|
64
|
Avanzi MP, Izak M, Oluwadara OE, Mitchell WB. Actin inhibition increases megakaryocyte proplatelet formation through an apoptosis-dependent mechanism. PLoS One 2015; 10:e0125057. [PMID: 25875470 PMCID: PMC4397066 DOI: 10.1371/journal.pone.0125057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/14/2015] [Indexed: 12/25/2022] Open
Abstract
Background Megakaryocytes assemble and release platelets through the extension of proplatelet processes, which are cytoplasmic extensions that extrude from the megakaryocyte and form platelets at their tips. Proplatelet formation and platelet release are complex processes that require a combination of structural rearrangements. While the signals that trigger the initiation of proplatelet formation process are not completely understood, it has been shown that inhibition of cytoskeletal signaling in mature megakaryocytes induces proplatelet formation. Megakaryocyte apoptosis may also be involved in initiation of proplatelet extension, although this is controversial. This study inquires whether the proplatelet production induced by cytoskeletal signaling inhibition is dependent on activation of apoptosis. Methods Megakaryocytes derived from human umbilical cord blood CD34+ cells were treated with the actin polymerization inhibitor latrunculin and their ploidy and proplatelet formation were quantitated. Apoptosis activation was analyzed by flow cytometry and luminescence assays. Caspase activity was inhibited by two compounds, ZVAD and QVD. Expression levels of pro-survival and pro-apoptosis genes were measured by quantitative RT-PCR. Protein levels of Bcl-XL, Bax and Bak were measured by western blot. Cell ultrastructure was analyzed by electron microscopy. Results Actin inhibition resulted in increased ploidy and increased proplatelet formation in cultured umbilical cord blood-derived megakaryocytes. Actin inhibition activated apoptosis in the cultured cells. The effects of actin inhibition on proplatelet formation were blocked by caspase inhibition. Increased expression of both pro-apoptotic and pro-survival genes was observed. Pro-survival protein (Bcl-xL) levels were increased compared to levels of pro-apoptotic proteins Bak and Bax. Despite apoptosis being activated, the megakaryocytes underwent minimal ultrastructural changes during actin inhibition. Conclusions We report a correlation between increased proplatelet formation and activation of apoptosis, and that the increase in proplatelet formation in response to actin inhibition is caspase dependent. These findings support a role for apoptosis in proplatelet formation in this model.
Collapse
Affiliation(s)
- Mauro P. Avanzi
- Platelet Biology Laboratory, New York Blood Center, New York, New York, United States of America
| | - Marina Izak
- Platelet Biology Laboratory, New York Blood Center, New York, New York, United States of America
| | | | - William Beau Mitchell
- Platelet Biology Laboratory, New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
65
|
Di Buduo CA, Wray LS, Tozzi L, Malara A, Chen Y, Ghezzi CE, Smoot D, Sfara C, Antonelli A, Spedden E, Bruni G, Staii C, De Marco L, Magnani M, Kaplan DL, Balduini A. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood 2015; 125:2254-64. [PMID: 25575540 PMCID: PMC4383799 DOI: 10.1182/blood-2014-08-595561] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/03/2015] [Indexed: 01/16/2023] Open
Abstract
We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Lindsay S Wray
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Daniel Smoot
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Carla Sfara
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section, University of Urbino "Carlo Bo," Urbino, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section, University of Urbino "Carlo Bo," Urbino, Italy
| | - Elise Spedden
- Department of Physics, Tufts University, Medford, MA
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, University of Pavia, Pavia, Italy
| | | | - Luigi De Marco
- Department of Translational Research, Stem Cells Unit, Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico, Aviano, Italy; and Department of Molecular and Experimental Research, The Scripps Research Institute, La Jolla, CA
| | - Mauro Magnani
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section, University of Urbino "Carlo Bo," Urbino, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
66
|
Espasandin YR, Glembotsky AC, Grodzielski M, Lev PR, Goette NP, Molinas FC, Marta RF, Heller PG. Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms. J Thromb Haemost 2015; 13:631-42. [PMID: 25604267 DOI: 10.1111/jth.12850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Anagrelide represents a treatment option for essential thrombocythemia patients. It lowers platelet counts through inhibition of megakaryocyte maturation and polyploidization, although the basis for this effect remains unclear. Based on its rapid onset of action, we assessed whether, besides blocking megakaryopoiesis, anagrelide represses proplatelet formation (PPF) and aimed to clarify the underlying mechanisms. METHODS AND RESULTS Exposure of cord blood-derived megakaryocytes to anagrelide during late stages of culture led to a dose- and time-dependent inhibition of PPF and reduced proplatelet complexity, which were independent of the anagrelide-induced effect on megakaryocyte maturation. Whereas anagrelide was shown to phosphorylate cAMP-substrate VASP, two pharmacologic inhibitors of the cAMP pathway were completely unable to revert anagrelide-induced repression in megakaryopoiesis and PPF, suggesting these effects are unrelated to its ability to inhibit phosphodiesterase (PDE) 3. The reduction in thrombopoiesis was not the result of down-regulation of transcription factors which coordinate PPF, while the myosin pathway was identified as a candidate target, as anagrelide was shown to phosphorylate the myosin light chain and the PPF phenotype was partially rescued after inhibition of myosin activity with blebbistatin. CONCLUSIONS The platelet-lowering effect of anagrelide results from impaired megakaryocyte maturation and reduced PPF, both of which are deregulated in essential thrombocythemia. These effects seem unrelated to PDE3 inhibition, which is responsible for anagrelide's cardiovascular side-effects and antiplatelet activity. Further work in this field may lead to the potential development of drugs to treat thrombocytosis in myeloproliferative disorders with an improved pharmacologic profile.
Collapse
Affiliation(s)
- Y R Espasandin
- Departamento de Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
68
|
Guo T, Wang X, Qu Y, Yin Y, Jing T, Zhang Q. Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investig 2015; 2:3. [PMID: 27358871 DOI: 10.3978/j.issn.2306-9759.2015.02.01] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo successive lineage commitment steps to generate megakaryocytes (MKs) in a process referred to as megakaryopoiesis. MKs undergo a unique differentiation process involving endomitosis to eventually produce platelets. Many transcription factors participate in the regulation of this complex progress. Chemokines and other factors in the microenvironment where megakaryopoiesis and platelet production occur play vital roles in the regulation of HSC lineage commitment and MK maturation; among these factors, thrombopoietin (TPO) is the most important. Endomitosis is a vital process of MK maturation, and granules that are formed in MKs are important for platelet function. Proplatelets are firstly generated from mature MKs and then become platelets. The proplatelet production process was verified by novel studies that revealed that the mechanism is partially regulated by the invaginated membrane system (IMS), microtubules and Rho GTPases. The extracellular matrices (ECMs) and shear stress also affect and regulate the process while the mature MKs migrate from the marrow to the sub-endothelium region near the venous sinusoids leading to the release of platelets into the circulation. This review describes the entire process of megakaryopoiesis in detail, illustrates both the transcriptional and microenvironmental regulation of MKs and provides insight into platelet biogenesis.
Collapse
Affiliation(s)
- Tianyu Guo
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Xuejun Wang
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Yigong Qu
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Yu Yin
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Tao Jing
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Qing Zhang
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
69
|
Malara A, Currao M, Gruppi C, Celesti G, Viarengo G, Buracchi C, Laghi L, Kaplan DL, Balduini A. Megakaryocytes contribute to the bone marrow-matrix environment by expressing fibronectin, type IV collagen, and laminin. Stem Cells 2015; 32:926-37. [PMID: 24357118 DOI: 10.1002/stem.1626] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/13/2013] [Indexed: 01/22/2023]
Abstract
Megakaryocytes associate with the bone marrow vasculature where they convert their cytoplasm into proplatelets that protrude through the vascular endothelium into the lumen and release platelets. The extracellular matrix (ECM) microenvironment plays a critical role in regulating these processes. In this work we demonstrate that, among bone marrow ECM components, fibronectin, type IV collagen, and laminin are the most abundant around bone marrow sinusoids and constitute a pericellular matrix surrounding megakaryocytes. Most importantly, we report, for the first time, that megakaryocytes express components of the basement membrane and that these molecules contribute to the regulation of megakaryocyte development and bone marrow ECM homeostasis both in vitro and in vivo. In vitro, fibronectin induced a threefold increase in the proliferation rate of mouse hematopoietic stem cells leading to higher megakaryocyte output with respect to cells treated only with thrombopoietin or other matrices. However, megakaryocyte ploidy level in fibronectin-treated cultures was significantly reduced. Stimulation with type IV collagen resulted in a 1.4-fold increase in megakaryocyte output, while all tested matrices supported proplatelet formation to a similar extent in megakaryocytes derived from fetal liver progenitor cells. In vivo, megakaryocyte expression of fibronectin and basement membrane components was upregulated during bone marrow reconstitution upon 5-fluorouracil induced myelosuppression, while only type IV collagen resulted upregulated upon induced thrombocytopenia. In conclusion, this work demonstrates that ECM components impact megakaryocyte behavior differently during their differentiation and highlights a new role for megakaryocyte as ECM-producing cells for the establishment of cell niches during bone marrow regeneration.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The production of platelets is a complex process that involves hematopoietic stem cells (HSCs), their differentiated progeny, the marrow microenvironment and hematopoietic cytokines. Much has been learned in the 110 years since James Homer Wright postulated that marrow megakaryocytes were responsible for blood platelet production, at a time when platelets were termed the "dust of the blood". In the 1980s a number of in vitro culture systems were developed that could produce megakaryocytes, followed by the identification of several cytokines that could stimulate the process in vitro. However, none of these cytokines produced a substantial thrombocytosis when injected into animals or people, nor were blood levels inversely related to platelet count, the sine qua non of a physiological regulator. A major milestone in our understanding of thrombopoiesis occurred in 1994 when thrombopoietin, the primary regulator of platelet production was cloned and initially characterized. Since that time many of the molecular mechanisms of thrombopoiesis have been identified, including the effects of thrombopoietin on the survival, proliferation, and differentiation of hematopoietic stem and progenitor cells, the development of polyploidy and proplatelet formation, the final fragmentation of megakaryocyte cytoplasm to yield blood platelets, and the regulation of this process. While much progress has been made, several outstanding questions remain, such as the nature of the signals for final platelet formation, the molecular nature of the regulation of marrow stromal thrombopoietin production, and the role of these physiological processes in malignant hematopoiesis.
Collapse
|
71
|
|
72
|
Molina-Ortiz P, Polizzi S, Ramery E, Gayral S, Delierneux C, Oury C, Iwashita S, Schurmans S. Rasa3 controls megakaryocyte Rap1 activation, integrin signaling and differentiation into proplatelet. PLoS Genet 2014; 10:e1004420. [PMID: 24967784 PMCID: PMC4072513 DOI: 10.1371/journal.pgen.1004420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/20/2014] [Indexed: 01/17/2023] Open
Abstract
Rasa3 is a GTPase activating protein of the GAP1 family which targets Ras and Rap1. Ubiquitous Rasa3 catalytic inactivation in mouse results in early embryonic lethality. Here, we show that Rasa3 catalytic inactivation in mouse hematopoietic cells results in a lethal syndrome characterized by severe defects during megakaryopoiesis, thrombocytopenia and a predisposition to develop preleukemia. The main objective of this study was to define the cellular and the molecular mechanisms of terminal megakaryopoiesis alterations. We found that Rasa3 catalytic inactivation altered megakaryocyte development, adherence, migration, actin cytoskeleton organization and differentiation into proplatelet forming megakaryocytes. These megakaryocyte alterations were associated with an increased active Rap1 level and a constitutive integrin activation. Thus, these mice presented a severe thrombocytopenia, bleeding and anemia associated with an increased percentage of megakaryocytes in the bone marrow, bone marrow fibrosis, extramedular hematopoiesis, splenomegaly and premature death. Altogether, our results indicate that Rasa3 catalytic activity controls Rap1 activation and integrin signaling during megakaryocyte differentiation in mouse. Megakaryocytes are the bone marrow cellular precursors of circulating blood platelets and give rise to nascent platelets by forming branching filaments called proplatelets. Terminal differentiation of round megakaryocytes into branched proplatelet forming megakaryocytes is a complex cytoskeletal-driven process which is affected in rare human familial thrombocytopenias. Interactions of megakaryocytes with extracellular matrix proteins are essential in this process since constitutive megakaryocyte integrin activity caused by specific mutations in ITGA2B or ITGB3 genes encoding for extracellular matrix protein receptors may result in abnormal adherent megakaryocytes, defect in proplatelet formation and thrombocytopenia. Here, we show that Rasa3, a GTPase activating protein of the GAP1 family, controls Rap1 activation and integrin signaling during megakaryocyte differentiation. We found that Rasa3 catalytic inactivation in mice altered megakaryocyte development, adherence, migration, actin cytoskeleton organization and differentiation into proplatelet. Thus, these mice presented a severe thrombocytopenia, bleeding and anemia.
Collapse
Affiliation(s)
- Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Research Centre, Université de Liège, Liège, and Welbio, Belgium
| | - Séléna Polizzi
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eve Ramery
- Laboratoire de Biologie Clinique, Faculté de Médecine-vétérinaire, Université de Liège, Liège, Belgium
| | - Stéphanie Gayral
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Céline Delierneux
- Laboratory of Thrombosis and Hemostasis, GIGA-Research Centre, Université de Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Thrombosis and Hemostasis, GIGA-Research Centre, Université de Liège, Liège, Belgium
| | - Shintaro Iwashita
- Mitsubishi Kagaku Institute of Life Sciences and Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Japan
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Research Centre, Université de Liège, Liège, and Welbio, Belgium
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
73
|
SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 2014; 124:277-86. [PMID: 24735964 DOI: 10.1182/blood-2014-01-547638] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Megakaryocyte (MK) development in the bone marrow progresses spatially from the endosteal niche, which promotes MK progenitor proliferation, to the sinusoidal vascular niche, the site of terminal maturation and thrombopoiesis. The chemokine stromal cell-derived factor-1 (SDF-1), signaling through CXCR4, is implicated in the maturational chemotaxis of MKs toward sinusoidal vessels. Here, we demonstrate that both IV administration of SDF-1 and stabilization of endogenous SDF-1 acutely increase MK-vasculature association and thrombopoiesis with no change in MK number. In the setting of radiation injury, we find dynamic fluctuations in marrow SDF-1 distribution that spatially and temporally correlate with variations in MK niche occupancy. Stabilization of altered SDF-1 gradients directly affects MK location. Importantly, these SDF-1-mediated changes have functional consequences for platelet production, as the movement of MKs away from the vasculature decreases circulating platelets, while MK association with the vasculature increases circulating platelets. Finally, we demonstrate that manipulation of SDF-1 gradients can improve radiation-induced thrombocytopenia in a manner additive with earlier TPO treatment. Taken together, our data support the concept that SDF-1 regulates the spatial distribution of MKs in the marrow and consequently circulating platelet numbers. This knowledge of the microenvironmental regulation of the MK lineage could lead to improved therapeutic strategies for thrombocytopenia.
Collapse
|
74
|
Lev PR, Grodzielski M, Goette NP, Glembotsky AC, Espasandin YR, Pierdominici MS, Contrufo G, Montero VS, Ferrari L, Molinas FC, Heller PG, Marta RF. Impaired proplatelet formation in immune thrombocytopenia: a novel mechanism contributing to decreased platelet count. Br J Haematol 2014; 165:854-64. [DOI: 10.1111/bjh.12832] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Paola R. Lev
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Matías Grodzielski
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Nora P. Goette
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Ana C. Glembotsky
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Yesica R. Espasandin
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | | | - Geraldine Contrufo
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Verónica S. Montero
- Departamento de Análisis Clínicos; Centro de Educación Médica e Investigación Clínica “Norberto Quirno” (CEMIC); Buenos Aires Argentina
| | - Luciana Ferrari
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Felisa C. Molinas
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Paula G. Heller
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Rosana F. Marta
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
75
|
Achilli C, Jadhav SA, Guidetti GF, Ciana A, Abbonante V, Malara A, Fagnoni M, Torti M, Balduini A, Balduini C, Minetti G. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets. Chem Biol Drug Des 2014; 83:532-40. [PMID: 24666508 DOI: 10.1111/cbdd.12264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023]
Abstract
Boron neutron capture therapy (BNCT) is an anticancer treatment based on the accumulation in the tumor cells of (10) B-containing molecules and subsequent irradiation with low-energy neutrons, which bring about the decay of (10) B to very toxic (7) Li(3+) and (4) He(2+) ions. The effectiveness of BNCT is limited by the low delivery and accumulation of the used (10) B-containing compounds. Here, we report the development of folic acid-conjugated 4-amino-phenylboronate as a novel possible compound for the selective delivery of (10) B in BNCT. An extensive analysis about its biocompatibility to mature blood cells and platelet progenitors revealed that the compound markedly supports platelet aggregation, neutrophil oxidative burst, and inhibition of megakaryocyte development, while it does not have any manifest effect on red blood cells.
Collapse
Affiliation(s)
- Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, via Bassi, 21, Pavia, 27100, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Avanzi MP, Mitchell WB. Ex Vivoproduction of platelets from stem cells. Br J Haematol 2014; 165:237-47. [DOI: 10.1111/bjh.12764] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Mauro P. Avanzi
- Platelet Biology Laboratory; New York Blood Center; Lindsley F. Kimball Research Institute; New York NY USA
| | - William Beau Mitchell
- Platelet Biology Laboratory; New York Blood Center; Lindsley F. Kimball Research Institute; New York NY USA
| |
Collapse
|
77
|
Pecci A, Balduini CL. Lessons in platelet production from inherited thrombocytopenias. Br J Haematol 2014; 165:179-92. [PMID: 24480030 DOI: 10.1111/bjh.12752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our knowledge of the cellular and molecular mechanisms of platelet production has greatly expanded in recent years due to the opportunity to culture in vitro megakaryocytes and to create transgenic animals with specific genetic defects that interfere with platelet biogenesis. However, in vitro models do not reproduce the complexity of the bone marrow microenvironment where megakaryopoiesis takes place, and experience shows that what is seen in animals does not always happen in humans. So, these experimental models tell us what might happen in humans, but does not assure us that these events really occur. In contrast, inherited thrombocytopenias offer the unique opportunity to verify in humans the actual effects of abnormalities in specific molecules on platelet production. There are currently 20 genes whose defects are known to result in thrombocytopenia and, on this basis, this review tries to outline a model of megakaryopoiesis based on firm evidence. Inherited thrombocytopenias have not yet yielded all the information they can provide, because nearly half of patients have forms that do not fit with any known disorder. So, further investigation of inherited thrombocytopenias will advance not only the knowledge of human illnesses, but also our understanding of human platelet production.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation - University of Pavia, Pavia, Italy
| | | |
Collapse
|
78
|
Di Buduo CA, Moccia F, Battiston M, De Marco L, Mazzucato M, Moratti R, Tanzi F, Balduini A. The importance of calcium in the regulation of megakaryocyte function. Haematologica 2014; 99:769-78. [PMID: 24463213 DOI: 10.3324/haematol.2013.096859] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions.
Collapse
|
79
|
An B, Abbonante V, Yigit S, Balduini A, Kaplan DL, Brodsky B. Definition of the native and denatured type II collagen binding site for fibronectin using a recombinant collagen system. J Biol Chem 2013; 289:4941-51. [PMID: 24375478 DOI: 10.1074/jbc.m113.530808] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interaction of collagen with fibronectin is important for extracellular matrix assembly and regulation of cellular processes. A fibronectin-binding region in collagen was identified using unfolded fragments, but it is not clear if the native protein binds fibronectin with the same primary sequence. A recombinant bacterial collagen is utilized to characterize the sequence requirement for fibronectin binding. Chimeric collagens were generated by inserting the putative fibronectin-binding region from human collagen into the bacterial collagen sequence. Insertion of a sufficient length of human sequence conferred fibronectin affinity. The minimum sequence requirement was identified as a 6-triplet sequence near the unique collagenase cleavage site and was the same in both triple-helix and denatured states. Denaturation of the chimeric collagen increased its affinity for fibronectin, as seen for mammalian collagens. The fibronectin binding recombinant collagen did not contain hydroxyproline, indicating hydroxyproline is not essential for binding. However, its absence may account, in part, for the higher affinity of the native chimeric protein and the lower affinity of the denatured protein compared with type II collagen. Megakaryocytes cultured on chimeric collagen with fibronectin affinity showed improved adhesion and differentiation, suggesting a strategy for generating bioactive materials in biomedical applications.
Collapse
Affiliation(s)
- Bo An
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155 and
| | | | | | | | | | | |
Collapse
|
80
|
C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood 2013; 122:1649-57. [PMID: 23794065 DOI: 10.1182/blood-2012-12-471102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C1galt1 is essential for synthesis of the core 1 structure of mucin-type O-glycans. To clarify the physiological role of O-glycans in adult hematopoiesis, we exploited the interferon-inducible Mx1-Cre transgene to conditionally ablate the C1galt(flox) allele (Mx1-C1). Mx1-C1 mice exhibit severe thrombocytopenia, giant platelets, and prolonged bleeding times. Both the number and DNA ploidy of megakaryocytes in Mx1-C1 bone marrow were similar to those in wild-type (WT) mice. However, there were few proplatelets in Mx1-C1 primary megakaryocytes. Conversely, bone marrow transplanted from Mx1-C1 to WT and splenectomized Mx1-C1 mice gave rise to observations similar to those described above. The expression of GPIbα messenger RNA was unchanged in Mx1-C1 bone marrow, whereas flow cytometric and western blot analyses using megakaryocytes and platelets revealed that the expression of GPIbα protein was significantly reduced in Mx1-C1 mice. Moreover, circulating Mx1-C1 platelets exhibited an increase in the number of microtubule coils, despite normal levels of α- and β-tubulin. Our observations suggest that O-glycan is required for terminal megakaryocyte differentiation and platelet production and that the decrease in GPIbα in cells lacking O-glycan might be caused by increased proteolysis.
Collapse
|
81
|
Abstract
The diagnosis of inherited thrombocytopenias is difficult, for many reasons. First, as they are all rare diseases, they are little known by clinicians, who therefore tend to suspect the most common forms. Second, making a definite diagnosis often requires complex laboratory techniques that are available in only a few centers. Finally, half of the patients have forms that have not yet been described. As a consequence, many patients with inherited thrombocytopenias are misdiagnosed with immune thrombocytopenia, and are at risk of receiving futile treatments. Misdiagnosis is particularly frequent in patients whose low platelet count is discovered in adult life, because, in these cases, even the inherited origin of thrombocytopenia may be missed. Making the correct diagnosis promptly is important, as we recently learned that some forms of inherited thrombocytopenia predispose to other illnesses, such as leukemia or kidney failure, and affected subjects therefore require close surveillance and, if necessary, prompt treatments. Moreover, medical treatment can increase platelet counts in specific disorders, and affected subjects can therefore receive drugs instead of platelet transfusions when selective surgery is required. In this review, we will discuss how to suspect, diagnose and manage inherited thrombocytopenias, with particular attention to the forms that frequently present in adults. Moreover, we describe four recently identified disorders that belong to this group of disorders that are often diagnosed in adults: MYH9-related disease, monoallelic Bernard-Soulier syndrome, ANKRD26-related thrombocytopenia, and familial platelet disorder with predisposition to acute leukemia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia-IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
82
|
Pecci A. Pathogenesis and management of inherited thrombocytopenias: rationale for the use of thrombopoietin-receptor agonists. Int J Hematol 2013; 98:34-47. [PMID: 23636669 DOI: 10.1007/s12185-013-1351-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/30/2022]
Abstract
Knowledge in the field of inherited thrombocytopenias (ITs) has considerably improved over the recent years. In the last 5 years, nine new genes whose mutations are responsible for thrombocytopenia have been identified, and this also led to the recognition of several novel nosographic entities, such as thrombocytopenias deriving from mutations in CYCS, TUBB1, FLNA, ITGA2B/ITGB3, ANKRD26 and ACTN1. The identification of novel molecular alterations causing thrombocytopenia together with improvement of methodologies to study megakaryopoiesis led to considerable advances in understanding pathophysiology of ITs, thus providing the background for proposing new treatments. Thrombopoietin-receptor agonists (TPO-RAs) represent an appealing therapeutic hypothesis for ITs and have been tested in a limited number of patients. In this review, we provide an updated description of pathogenetic mechanisms of thrombocytopenia in the different forms of ITs and recapitulate the current management of these disorders. Moreover, we report the available clinical and preclinical data about the role of TPO-RAs in ITs and discuss the rationale for the use of these molecules in view of pathogenesis of the different forms of thrombocytopenia of genetic origin.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| |
Collapse
|
83
|
Schachtner H, Calaminus SDJ, Sinclair A, Monypenny J, Blundell MP, Leon C, Holyoake TL, Thrasher AJ, Michie AM, Vukovic M, Gachet C, Jones GE, Thomas SG, Watson SP, Machesky LM. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 2013; 121:2542-52. [PMID: 23305739 DOI: 10.1182/blood-2012-07-443457] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes give rise to platelets via extension of proplatelet arms, which are released through the vascular sinusoids into the bloodstream. Megakaryocytes and their precursors undergo varying interactions with the extracellular environment in the bone marrow during their maturation and positioning in the vascular niche. We demonstrate that podosomes are abundant in primary murine megakaryocytes adherent on multiple extracellular matrix substrates, including native basement membrane. Megakaryocyte podosome lifetime and density, but not podosome size, are dependent on the type of matrix, with podosome lifetime dramatically increased on collagen fibers compared with fibrinogen. Podosome stability and dynamics depend on actin cytoskeletal dynamics but not matrix metalloproteases. However, podosomes degrade matrix and appear to be important for megakaryocytes to extend protrusions across a native basement membrane. We thus demonstrate for the first time a fundamental requirement for podosomes in megakaryocyte process extension across a basement membrane, and our results suggest that podosomes may have a role in proplatelet arm extension or penetration of basement membrane.
Collapse
Affiliation(s)
- Hannah Schachtner
- University of Glasgow College of Medical, Veterinary and Life Sciences and Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem 2013; 288:16738-16746. [PMID: 23530036 DOI: 10.1074/jbc.m112.431528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Cristian Gruppi
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Diana Rubel
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Remigio Moratti
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Balduini
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
85
|
High doses of romiplostim induce proliferation and reduce proplatelet formation by human megakaryocytes. PLoS One 2013; 8:e54723. [PMID: 23359807 PMCID: PMC3554640 DOI: 10.1371/journal.pone.0054723] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
Background Romiplostim (AMG531) is a Thrombopoietin (TPO) receptor agonist with no homology with the endogenous TPO that has been used to treat patients affected by immune thrombocytopenia (ITP). Despite the use of TPO mimetics in the clinical practice, the mechanisms underlying their impact on megakaryocyte function is still unknown. Methodology/Principal Findings In this project we took advantage of an in vitro human model, that we have established in our laboratory for long time to study megakaryocyte development from human cord blood-derived progenitor cells, and we demonstrated that increasing doses of AMG531 (100 to 2000 ng/mL) determine a progressive increase of megakaryocyte proliferation with a parallel decrease in megakaryocyte ploidy and capacity of extending proplatelets. Most importantly, these differences in megakaryocyte function seemed to be correlated to modulation of AKT phosphorylation. Conclusions/Significance Overall our results shed new light on the mechanisms and on the relevance of dosage related to AMG531 impact on megakaryocyte function.
Collapse
|
86
|
Jiang J, Papoutsakis ET. Stem-cell niche based comparative analysis of chemical and nano-mechanical material properties impacting ex vivo expansion and differentiation of hematopoietic and mesenchymal stem cells. Adv Healthc Mater 2013. [PMID: 23184458 DOI: 10.1002/adhm.201200169] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of stem cells to self-renew with minimal or no differentiation and, when appropriately cued, to give rise to many types of progenitor and mature cells, is the basis for applications in regenerative and transfusion medicine, but also in drug discovery and in vitro toxicology. Inspired by the complex interactions between stem cells and their microenvironment, the so-called stem-cell niche, the properties of supporting biomaterials, including surface biochemistry, topography (type, size, organization, and geometry of nanostructures), and mechanical properties, have been identified as important determinants of stem-cell fate in vitro. 3D culture environments that could recapitulate the complexity of the in vivo stem-cell microenvironment could further expand the complexity and repertoire of engineered environments with exciting translational applications. Herein, the material aspects that affect the expansion and differentiation fate of adult hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), two powerful cell types that co-reside in the bone-marrow niche, but with distinct, sometime complementary, differentiation fates, properties, and translational applications, are examined. Although MSCs are adherent cells and, in contrast, HSPCs are non- or weakly adherent cells, both can sense and respond to material properties, including surface (bio)chemistry, ECM composition, topography, and matrix elasticity, possibly through similar molecular mechanisms.
Collapse
Affiliation(s)
- Jinlin Jiang
- Dept. of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
87
|
Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias: the evolving spectrum. Hamostaseologie 2012; 32:259-70. [PMID: 22972471 DOI: 10.5482/ha12050001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
The chapter of inherited thrombocytopenias has expanded greatly over the last decade and many "new" forms deriving from mutations in "new" genes have been identified. Nevertheless, nearly half of patients remain without a definite diagnosis because their illnesses have not yet been described. The diagnostic approach to these diseases can still take advantage of the algorithm proposed by the Italian Platelet Study Group in 2003, although an update is required to include the recently described disorders. So far, transfusions of platelet concentrates have represented the main tool for preventing or treating bleedings, while haematopoietic stem cell transplantation has been reserved for patients with very severe forms. However, recent disclosure that an oral thrombopoietin mimetic is effective in increasing platelet count in patients with MYH9-related thrombocytopenia opened new therapeutic perspectives. This review summarizes the general aspects of inherited thrombocytopenias and describes in more detail MYH9-related diseases (encompassing four thrombocytopenias previously recognized as separate diseases) and the recently described ANKRD26-related thrombocytopenia, which are among the most frequent forms of inherited thrombocytopenia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia – IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
88
|
Genetics of familial forms of thrombocytopenia. Hum Genet 2012; 131:1821-32. [DOI: 10.1007/s00439-012-1215-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022]
|
89
|
Perdomo J, Yan F, Chong BH. A megakaryocyte with no platelets: Anti-platelet antibodies, apoptosis, and platelet production. Platelets 2012; 24:98-106. [DOI: 10.3109/09537104.2012.669508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
90
|
Balduini A, Di Buduo CA, Malara A, Lecchi A, Rebuzzini P, Currao M, Pallotta I, Jakubowski JA, Cattaneo M. Constitutively released adenosine diphosphate regulates proplatelet formation by human megakaryocytes. Haematologica 2012; 97:1657-65. [PMID: 22689668 DOI: 10.3324/haematol.2011.059212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The interaction of adenosine diphosphate with its P2Y(1) and P2Y(12) receptors on platelets is important for platelet function. However, nothing is known about adenosine diphosphate and its function in human megakaryocytes. DESIGN AND METHODS We studied the role of adenosine diphosphate and P2Y receptors on proplatelet formation by human megakaryocytes in culture. RESULTS Megakaryocytes expressed all the known eight subtypes of P2Y receptors, and constitutively released adenosine diphosphate. Proplatelet formation was inhibited by the adenosine diphosphate scavengers apyrase and CP/CPK by 60-70% and by the P2Y(12) inhibitors cangrelor and 2-MeSAMP by 50-60%, but was not inhibited by the P2Y(1) inhibitor MRS 2179. However, the active metabolites of the anti-P2Y(12) drugs, clopidogrel and prasugrel, did not inhibit proplatelet formation. Since cangrelor and 2-MeSAMP also interact with P2Y(13), we hypothesized that P2Y(13), rather than P2Y(12) is involved in adenosine diphosphate-regulated proplatelet formation. The specific P2Y(13) inhibitor MRS 2211 inhibited proplatelet formation in a concentration-dependent manner. Megakaryocytes from a patient with severe congenital P2Y(12) deficiency showed normal proplatelet formation, which was inhibited by apyrase, cangrelor or MRS 2211 by 50-60%. The platelet count of patients with congenital delta-storage pool deficiency, who lack secretable adenosine diphosphate, was significantly lower than that of patients with other platelet function disorders, confirming the important role of secretable adenosine diphosphate in platelet formation. CONCLUSIONS This is the first demonstration that adenosine diphosphate released by megakaryocytes regulates their function by interacting with P2Y(13). The clinical relevance of this not previously described physiological role of adenosine diphosphate and P2Y(13) requires further exploration.
Collapse
Affiliation(s)
- Alessandra Balduini
- Biotechnology Laboratories, Department of Molecular Medicine, IRCCS San Matteo Foundation, Università degli Studi di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Merico V, Zuccotti M, Carpi D, Baev D, Mulas F, Sacchi L, Bellazzi R, Pastorelli R, Redi CA, Moratti R, Garagna S, Balduini A. The genomic and proteomic blueprint of mouse megakaryocytes derived from embryonic stem cells. J Thromb Haemost 2012; 10:907-15. [PMID: 22372922 DOI: 10.1111/j.1538-7836.2012.04673.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Platelets are specialized cells, produced by megakaryocytes (MKs) in the bone marrow, which represent the first defense against hemorrhage. There are many diseases where platelet production or function is impaired, with severe consequences for patients. Therefore, new insights into the process of MK differentiation and platelet formation would have a major impact on both basic and clinical research. OBJECTIVES Embryonic stem (ES) cells represent a good in vitro model to study the differentiation of MKs, with the possibility of being genetically engineered and constituting an unlimited source of MKs. However, lack of knowledge about the molecular identity of ES-derived MKs (ES-MKs) may prevent any further development and application of this model. METHODS This paper presents the first comprehensive transcriptional and proteome profile analyses of mouse ES-MKs in comparison with MKs derived from mouse fetal liver progenitors (FL-MKs). RESULTS In ES-MKs we found a down-regulation of cytoskeleton proteins, specific transcription factors and membrane receptors at both transcriptional and protein levels. At the phenotypic level, this molecular blueprint was displayed by ES-MKs' lower polyploidy, lower nuclear/cytoplasm ratio and reduced capacity to form proplatelets and releasing platelets. CONCLUSIONS Overall our data demonstrate that ES-MKs represent a useful model to clarify many aspects of both MK physiology and pathological conditions where impaired MK functions are related to defective MK development, as in inherited thrombocytopenias and primary myelofibrosis.
Collapse
Affiliation(s)
- V Merico
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bury L, Malara A, Gresele P, Balduini A. Outside-in signalling generated by a constitutively activated integrin αIIbβ3 impairs proplatelet formation in human megakaryocytes. PLoS One 2012; 7:e34449. [PMID: 22539947 PMCID: PMC3335122 DOI: 10.1371/journal.pone.0034449] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/02/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The interaction of megakaryocytes with matrix proteins of the osteoblastic and vascular niche is essential for megakaryocyte maturation and proplatelet formation. Fibrinogen is present in the vascular niche and the fibrinogen receptor α(IIb)β(3) is abundantly expressed on megakaryocytes, however the role of the interaction between fibrinogen and α(IIb)β(3) in proplatelet formation in humans is not yet fully understood. We have recently reported a novel congenital macrothrombocytopenia associated with a heterozygous mutation of the β(3) subunit of α(IIb)β(3). The origin of thrombocytopenia in this condition remains unclear and this may represent an interesting natural model to get further insight into the role of the megakaryocyte fibrinogen receptor in megakaryopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Patients' peripheral blood CD45+ cells in culture were differentiated into primary megakaryocytes and their maturation, spreading on different extracellular matrix proteins, and proplatelet formation were analyzed. Megakaryocyte maturation was normal but proplatelet formation was severely impaired, with tips decreased in number and larger in size than those of controls. Moreover, megakaryocyte spreading on fibrinogen was abnormal, with 50% of spread cells showing disordered actin distribution and more evident focal adhesion points than stress fibres. Integrin α(IIb)β(3) expression was reduced but the receptor was constitutively activated and a sustained, and substrate-independent, activation of proteins of the outside-in signalling was observed. In addition, platelet maturation from preplatelets was impaired. CONCLUSIONS/SIGNIFICANCE Our data show that constitutive activation of α(IIb)β(3)-mediated outside-in signalling in human megakaryocytes negatively influences proplatelet formation, leading to macrothombocytopenia.
Collapse
Affiliation(s)
- Loredana Bury
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
- Biotechnology Laboratories, Department of Biochemistry, University of Pavia, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Malara
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
- Biotechnology Laboratories, Department of Biochemistry, University of Pavia, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo Gresele
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Balduini
- Biotechnology Laboratories, Department of Biochemistry, University of Pavia, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
93
|
Abstract
Dynamic interactions between hematopoietic cells and their specialized bone marrow microenvironments, namely the vascular and osteoblastic 'niches', regulate hematopoiesis. The vascular niche is conducive for thrombopoiesis and megakaryocytes may, in turn, regulate the vascular niche, especially in supporting vascular and hematopoietic regeneration following irradiation or chemotherapy. A role for platelets in tumor growth and metastasis is well established and, more recently, the vascular niche has also been implicated as an area for preferential homing and engraftment of malignant cells. This article aims to provide an overview of the dynamic interactions between cellular and molecular components of the bone marrow vascular niche and the potential role of megakaryocytes in bone marrow malignancy.
Collapse
Affiliation(s)
- B Psaila
- Department of Haematology, Imperial College School of Medicine, London, UK.
| | | | | |
Collapse
|
94
|
Blood platelet production and morphology. Thromb Res 2012; 129:241-4. [PMID: 22226434 DOI: 10.1016/j.thromres.2011.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/02/2023]
Abstract
Circulating platelets are highly specialized cells produced by megakaryocytes (Mks) that participate in hemostatic and inflammatory functions. Despite their critical role little is known about the molecular mechanisms involved in their production from megakaryocytes, or about the pathogenesis of platelet disorders. Megakaryopoiesis occurs in a complex microenvironment within the bone marrow. The underlying relationships between Mk maturation and bone marrow components are key factors in this process. Mk interactions with extracellular matrices (ECM) via specific surface receptors control many functions, with chemistry, physical parameters and membrane elasticity as fundamental elements of the processes involved. Alteration of Mk-ECM interactions in the bone marrow environment may lead to pathophysiologic situations, such as myelofibrosis and congenital thrombocytopenia. Searching the mechanisms related to Mks-bone marrow environment interactions, will provide novel insight into fundamental control of Mk function, leading to new concepts in the study of Mk-related disease states and future modes for therapeutic inquiry.
Collapse
|
95
|
Abstract
Platelets are anucleate, discoid cells, roughly 2-3 μm in diameter that function primarily as regulators of hemostasis, but also play secondary roles in angiogensis and innate immunity. Although human adults contain nearly one trillion platelets in circulation that are turned over every 8-10 days, our understanding of the mechanisms involved in platelet production is still incomplete. Platelets stem from large (30-100 μm) nucleated cells called megakaryocytes that reside primarily in the bone marrow. During maturation megakaryocytes extend long proplatelet elongations into sinusoidal blood vessels from which platelets ultimately release. During this process, platelets develop a number of distinguishable structural elements including: a delimited plasma membrane; invaginations of the surface membrane that form the open canalicular system (OCS); a closed-channel network of residual endoplasmic reticulum that form the dense tubular system (DTS); a spectrin-based membrane skeleton; an actin-based cytoskeletal network; a peripheral band of microtubules; and numerous organelles including α-granules, dense-granules, peroxisomes, lysosomes, and mitochondria. Proplatelet elongation and platelet production is an elaborate and complex process that defines the morphology and ultrastructure of circulating platelets, and is critical in understanding their increasingly numerous and varied biological functions.
Collapse
Affiliation(s)
- Jonathan N Thon
- Department of Medicine, Brigham and Women's Hospital, 1 Blackfan Circle, Karp 6, Boston, MA, USA
| | | |
Collapse
|
96
|
Pallotta I, Lovett M, Kaplan DL, Balduini A. Three-dimensional system for the in vitro study of megakaryocytes and functional platelet production using silk-based vascular tubes. Tissue Eng Part C Methods 2011; 17:1223-32. [PMID: 21895494 DOI: 10.1089/ten.tec.2011.0134] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelets are specialized cells produced by megakaryocytes in the bone marrow that represent the first defense against hemorrhage, yet they also play a pathological role in thrombosis, inflammation, and cancer. Millions of platelet transfusions are conducted each year, and the supply of this blood component is limited. There are many diseases where platelet production or function is impaired with severe consequences for patients. With such clinical need, new insight into the formation of platelets would have a major impact on patients and healthcare. We developed an innovative 3D system to study platelet production that represents the first spatial reconstruction of the bone marrow environment. In this system human megakaryocytes were able to migrate toward the vascular niche, extend proplatelets, and release functional platelets into vascular tubes. The combination of different bone marrow components and the compliance of silk-based vascular tubes makes this model a unique tool for the study of platelet formation and production for use in healthcare needs.
Collapse
Affiliation(s)
- Isabella Pallotta
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | | | | | | |
Collapse
|
97
|
Abstract
Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis.
Collapse
|
98
|
Balduini A, Badalucco S, Pugliano MT, Baev D, De Silvestri A, Cattaneo M, Rosti V, Barosi G. In vitro megakaryocyte differentiation and proplatelet formation in Ph-negative classical myeloproliferative neoplasms: distinct patterns in the different clinical phenotypes. PLoS One 2011; 6:e21015. [PMID: 21698292 PMCID: PMC3115954 DOI: 10.1371/journal.pone.0021015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/16/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Ph-negative myeloproliferative neoplasms (MPNs) are clonal disorders that include primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET). Although the pathogenesis of MPNs is still incompletely understood, an involvement of the megakaryocyte lineage is a distinctive feature. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the in vitro megakaryocyte differentiation and proplatelet formation in 30 PMF, 8 ET, 8 PV patients, and 17 healthy controls (CTRL). Megakaryocytes were differentiated from peripheral blood CD34(+) or CD45(+) cells in the presence of thrombopoietin. Megakaryocyte output was higher in MPN patients than in CTRL with no correlation with the JAK2 V617F mutation. PMF-derived megakaryocytes displayed nuclei with a bulbous appearance, were smaller than ET- or PV-derived megakaryocytes and formed proplatelets that presented several structural alterations. In contrast, ET- and PV-derived megakaryocytes produced more proplatelets with a striking increase in bifurcations and tips compared to both control and PMF. Proplatelets formation was correlated with platelet counts in patient peripheral blood. Patients with pre-fibrotic PMF had a pattern of megakaryocyte proliferation and proplatelet formation that was similar to that of fibrotic PMF and different from that of ET. CONCLUSIONS/SIGNIFICANCE In conclusion, MPNs are associated with high megakaryocyte proliferative potential. Profound differences in megakaryocyte morphology and proplatelet formation distinguish PMF, both fibrotic and prefibrotic, from ET and PV.
Collapse
|
99
|
Panuganti S, Papoutsakis ET, Miller WM. Bone marrow niche-inspired, multiphase expansion of megakaryocytic progenitors with high polyploidization potential. Cytotherapy 2011; 12:767-82. [PMID: 20482285 DOI: 10.3109/14653241003786148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Megakaryopoiesis encompasses hematopoietic stem and progenitor cell (HSPC) commitment to the megakaryocytic cell (Mk) lineage, expansion of Mk progenitors and mature Mks, polyploidization and platelet release. pH and pO2 increase from the endosteum to sinuses, and different cytokines are important for various stages of differentiation. We hypothesized that mimicking the changing conditions during Mk differentiation in the bone marrow would facilitate expansion of progenitors that could generate many high-ploidy Mks. METHODS CD34+ HSPCs were cultured at pH 7.2 and 5% O2 with stem cell factor (SCF), thrombopoietin (Tpo) and all combinations of Interleukin (IL)-3, IL-6, IL-11 and Flt-3 ligand to promote Mk progenitor expansion. Cells cultured with selected cytokines were shifted to pH 7.4 and 20% O2 to generate mature Mks, and treated with nicotinamide (NIC) to enhance polyploidization. RESULTS Using Tpo + SCF + IL-3 + IL-11, we obtained 3.5 CD34+ CD41+ Mk progenitors per input HSPC, while increasing purity from 1% to 17%. Cytokine cocktails with IL-3 yielded more progenitors and mature Mks, although the purities were lower. Mk production was much greater at higher pH and pO2. Although fewer progenitors were present, shifting to 20% O2 /pH 7.4 at day 5 (versus days 7 or 9) yielded the greatest mature Mk production, 14 per input HSPC. NIC more than doubled the percentage of high-ploidy Mks to 40%. CONCLUSIONS We obtained extensive Mk progenitor expansion, while ensuring that the progenitors could produce high-ploidy Mks. We anticipate that subsequent optimization of cytokines for mature Mk production and delayed NIC addition will greatly increase high-ploidy Mk production.
Collapse
Affiliation(s)
- Swapna Panuganti
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
100
|
D'Atri LP, Pozner RG, Nahmod KA, Landoni VI, Isturiz M, Negrotto S, Schattner M. Paracrine regulation of megakaryo/thrombopoiesis by macrophages. Exp Hematol 2011; 39:763-72. [PMID: 21549176 DOI: 10.1016/j.exphem.2011.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/11/2011] [Accepted: 03/30/2011] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Megakaryo/thrombopoiesis is a complex process regulated by multiple signals provided by the bone marrow microenvironment. Because macrophages are relevant components of the bone marrow stroma and their activation induces an upregulation of molecules that can regulate hematopoiesis, we analyzed the impact of these cells on the control of megakaryocyte development and platelet biogenesis. MATERIALS AND METHODS The different stages of megakaryo/thrombopoiesis were analyzed by flow cytometry using an in vitro model of human cord blood CD34(+) cells stimulated with thrombopoietin in either a transwell system or conditioned media from monocyte-derived macrophages isolated from peripheral blood. Cytokines secreted from macrophages were characterized by protein array and enzyme-linked immunosorbent assay. RESULTS Resting macrophages released soluble factors that promoted megakaryocyte growth, cell ploidy, a size increase, proplatelet production, and platelet release. Lipopolysaccharide stimulation triggered the secretion of cytokines that exerted opposite effects together with a dramatic switch of CD34(+) commitment to the megakaryocytic lineage toward the myeloid lineage. Neutralization of interleukin-8 released by stimulated macrophages partially reversed the inhibition of megakaryocyte growth. Activation of nuclear factor κB had a major role in the synthesis of molecules involved in the megakaryocyte inhibition mediated by lipopolysaccharide-stimulated macrophages. CONCLUSIONS Our study extends our understanding about the role of the bone marrow microenvironment in the regulation of megakaryo/thrombopoiesis by showing that soluble factors derived from macrophages positively or negatively control megakaryocyte growth, differentiation, maturation, and their ability to produce platelets.
Collapse
Affiliation(s)
- Lina Paola D'Atri
- Thrombosis I Laboratory, Hematological Research Institute Mariano R Castex, National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|