51
|
Hsu CT, Hsiao PJ, Liu CH, Chou YL, Chen BH, Liou JT. Acute myocarditis complicated with permanent complete atrioventricular block caused by Escherichia coli bacteremia: A rare case report. Medicine (Baltimore) 2019; 98:e17833. [PMID: 31689871 PMCID: PMC6946433 DOI: 10.1097/md.0000000000017833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Acute myocarditis complicated with complete atrioventricular block (CAVB) is rare in clinical scenario. We report an uncommon case of myocarditis complicated with permanent CAVB caused by Escherichia coli (E coli) bacteremia. PATIENT CONCERNS A 77-year-old woman presented at the emergency department with chest pain, dizziness, nausea, and cold sweats of 1-day duration. She had histories of type 2 diabetes mellitus, hyperlipidemia, and chronic kidney disease with regular medical therapy. DIAGNOSIS Both blood and urine cultures were positive for E coli. Regional inferior wall motion abnormalities on echocardiography, unexplained life-threatening arrhythmias, newly abnormal electrocardiogram, elevated cardiac troponins, and healthy coronary arteries on angiography were consistent with E coli-induced myocarditis. INTERVENTIONS The patient received implantation of a dual-chamber pacemaker because of irreversible CAVB. OUTCOMES The patient was discharged on day 8 and remained asymptomatic at 15 months of follow-up, with ST-segment normalization and normal left ventricular function. LESSONS This extremely rare case of E coli-induced myocarditis masquerading as acute STEMI and with permanent CAVB sequelae, highlights the importance of sensitivity to non-ischemia etiologies of ST-segment elevation and the potential impact of E coli sepsis on the cardiac conduction system.
Collapse
Affiliation(s)
- Ching-Tsai Hsu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Division of Cardiology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Department of Life Sciences, National Central University, Taoyuan City
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City
| | - Ching-Han Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung
| | - Yen-Lien Chou
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Jun-Ting Liou
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| |
Collapse
|
52
|
Lei L, Yang F, Zou J, Jing H, Zhang J, Xu W, Zou Q, Zhang J, Wang X. DNA vaccine encoding OmpA and Pal from Acinetobacter baumannii efficiently protects mice against pulmonary infection. Mol Biol Rep 2019; 46:5397-5408. [PMID: 31342294 DOI: 10.1007/s11033-019-04994-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen that causes serious infections in the lungs, blood, and brain in critically ill hospital patients, resulting in considerable mortality rates every year. Due to the rapid appearance of multi-drug resistance or even pan-drug resistance isolates, it is becoming more and more difficult to cure A. baumannii infection by traditional antibiotic treatment, alternative strategies are urgently required to combat A. baumannii infection. In this study, we developed a DNA vaccine encoding two antigens from A. baumannii, OmpA and Pal, and the immunogenicity and protective efficacy was further evaluated. The results showed that the DNA vaccine exhibited significant immune protective efficacy against acute A. baumannii infection in a mouse pneumonia model, and cross protective efficacy was observed when immunized mice were challenged with clinical strains of A. baumannii. DNA vaccine immunization induced high level of humoral response and a mixed Th1/Th2/Th17 cellular response, which protect against lethal bacterial challenges by decreased bacterial loads and pathology in the lungs, and reduced level of inflammatory cytokines expression and inflammatory cell infiltration in BALF. These results demonstrated that it is possible to prevent A. baumannii infection by DNA vaccine and both OmpA and Pal could be serve as promising candidate antigens.
Collapse
Affiliation(s)
- Langhuan Lei
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Feng Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jintao Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jin Zhang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wanting Xu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Xingyong Wang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
53
|
Wang Y, Yin X, Zhou Z, Hu S, Li S, Liu M, Wang X, Xiao Y, Shi D, Bi D, Li Z. Cas9 regulated gene expression and pathogenicity in Riemerella anatipestifer. Microb Pathog 2019; 136:103706. [PMID: 31491547 DOI: 10.1016/j.micpath.2019.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Riemerellosis, a Riemerella anatipestifer infection, can cause meningitis, pericarditis, parahepatitis, and airsacculitis in ducks, leading to serious economic losses in the duck meat industry. However, the molecular mechanism of the pathogenesis and virulence factors of this infection are poorly understood. In the present study, we created a mutant strain RA-YMΔCas9 using trans-conjugation. Bacterial virulence tests indicated that the median lethal dose (LD50) of RA-YMΔCas9 was 5.01 × 107 CFU, significantly lower than that of the RA-YM strain, which was 1.58 × 105 CFU. The distribution and blood bacterial load from the infection groups showed no significant difference in the brain between the RA-YMΔCas9 mutant and the wild-type RA-YM strains, however, the number of mutant strains were significantly reduced in the liver, heart, and blood. Animal immunization experiments demonstrated that the intranasal administration of RA-YMΔCas9 in ducklings provided 80% protection after challenge with the wild-type strain, showing potential use as a live mucosal vaccine. RNAseq analysis indicated that Cas9 protein played a regulatory role in gene expression. This study is the first to report on the involvement of Cas9 in the regulation and pathogenesis of R. anatipestifer, and provides a theoretical basis for the development of relevant genetic engineering vaccines.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Xuehuan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
54
|
Taboada H, Dunn MF, Meneses N, Vargas-Lagunas C, Buchs N, Andrade-Domínguez A, Encarnación S. Qualitative changes in proteins contained in outer membrane vesicles produced by Rhizobium etli grown in the presence of the nod gene inducer naringenin. Arch Microbiol 2019; 201:1173-1194. [DOI: 10.1007/s00203-019-01682-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
|
55
|
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019; 20:e47427. [PMID: 30952693 PMCID: PMC6549030 DOI: 10.15252/embr.201847427] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
Collapse
Affiliation(s)
- Iain D Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
56
|
Santos CA, Souza AP. Solubilization, Folding, and Purification of a Recombinant Peptidoglycan-Associated Lipoprotein (PAL) Expressed in Escherichia coli. ACTA ACUST UNITED AC 2019; 92:e53. [PMID: 30040210 DOI: 10.1002/cpps.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies aiming at heterologous expression of highly hydrophobic proteins, such as outer membrane proteins in general and peptidoglycan-associated lipoprotein (PAL) in particular, are not trivial due to difficulties in obtaining recombinant protein in a soluble state, which is desired because it allows purification by traditional chromatographic methods. PAL is associated with the integrity of the cellular envelope in Gram-negative bacteria and interacts strongly with the peptidoglycan layer. However, it is incorporated into inclusion bodies in studies focusing on its heterologous production. This protocol describes an efficient protein refolding method to solubilize and purify a recombinant PAL. Initially, recombinant PAL-enriched inclusion bodies obtained after the induction of PAL expression in Escherichia coli are treated with 8 M urea and then undergo buffer exchange via dialysis. Afterward, the soluble, recombinant PAL is purified using standard chromatographic methods. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Clelton A Santos
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anete P Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil.,Department of Plant Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
57
|
Mobarez AM, Rajabi RA, Salmanian AH, Khoramabadi N, Hosseini Doust SR. Induction of protective immunity by recombinant peptidoglycan associated lipoprotein (rPAL) protein of Legionella pneumophila in a BALB/c mouse model. Microb Pathog 2018; 128:100-105. [PMID: 30550844 DOI: 10.1016/j.micpath.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila causes a severe form of pneumonia known as Legionnaires' disease especially in patients with impaired cellular immune response. In order to prevent the disease, immunogenicity and the level of the induction of protective immunity from the recombinant peptidoglycan-associated lipoprotein (rPAL) against Legionella pneumophila in BALB/c mice was examined. Mice immunized with (rPAL) rapidly increased an antibody response in serum and also displayed a strong activation of both innate and adaptive cell-mediated immunity as determined by antigen-specific splenocyte proliferation, an early production of pro-inflammatory cytokines in the serum and in the splenocyte cultures. Infection with a primary sublethal does of Legionella pneumophila serogroup 1, strain paris, caused resistance to a lethal challenge infection in the animals with 100% survival rate. However, mice treated with rPAL survived with 60% rate in 10 days after a lethal i.v challenge with L. pneumophila. All of the control animals receiving PBS died within 24 h. The present study indicates that recombinant protein PAL of Legionella pneumophila is strongly immunogenic and capable to elicit early innate and adaptive immune responses and lasting immunity against a lethal dose of Legionella pneumophila challenge. Antigenic characterization and immune protection of recombinant protein PAL would be of considerable value in comprehension the immune-pathogenesis of the disease and in development possible vaccine against the Legionella.
Collapse
Affiliation(s)
- Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Roya Ahamad Rajabi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institutes for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Hosseini Doust
- Department of Microbiology, Faculty of Advanced Sciences, Medical Sciences University Islamic Azad, Tehran, Iran
| |
Collapse
|
58
|
Ilgrande C, Leroy B, Wattiez R, Vlaeminck SE, Boon N, Clauwaert P. Metabolic and Proteomic Responses to Salinity in Synthetic Nitrifying Communities of Nitrosomonas spp. and Nitrobacter spp. Front Microbiol 2018; 9:2914. [PMID: 30555445 PMCID: PMC6284046 DOI: 10.3389/fmicb.2018.02914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Typically, nitrification is a two-stage microbial process and is key in wastewater treatment and nutrient recovery from waste streams. Changes in salinity represent a major stress factor that can trigger response mechanisms, impacting the activity and the physiology of bacteria. Despite its pivotal biotechnological role, little information is available on the specific response of nitrifying bacteria to varying levels of salinity. In this study, synthetic communities of ammonia-oxidizing bacteria (AOB Nitrosomonas europaea and/or Nitrosomonas ureae) and nitrite-oxidizing bacteria (NOB Nitrobacter winogradskyi and/or Nitrobacter vulgaris) were tested at 5, 10, and 30 mS cm-1 by adding sodium chloride to the mineral medium (0, 40, and 200 mM NaCl, respectively). Ammonia oxidation activity was less affected by salinity than nitrite oxidation. AOB, on their own or in combination with NOB, showed no significant difference in the ammonia oxidation rate among the three conditions. However, N. winogradskyi improved the absolute ammonia oxidation rate of both N. europaea and N. ureae. N. winogradskyi’s nitrite oxidation rate decreased to 42% residual activity upon exposure to 30 mS cm-1, also showing a similar behavior when tested with Nitrosomonas spp. The nitrite oxidation rate of N. vulgaris, as a single species, was not affected when adding sodium chloride up to 30 mS cm-1, however, its activity was completely inhibited when combined with Nitrosomonas spp. in the presence of ammonium/ammonia. The proteomic analysis of a co-culture of N. europaea and N. winogradskyi revealed the production of osmolytes, regulation of cell permeability and an oxidative stress response in N. europaea and an oxidative stress response in N. winogradskyi, as a result of increasing the salt concentration from 5 to 30 mS cm-1. A specific metabolic response observed in N. europaea suggests the role of carbon metabolism in the production of reducing power, possibly to meet the energy demands of the stress response mechanisms, induced by high salinity. For the first time, metabolic modifications and response mechanisms caused by the exposure to salinity were described, serving as a tool toward controllability and predictability of nitrifying systems exposed to salt fluctuations.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Siegfried Elias Vlaeminck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
59
|
Egan AJF, Maya-Martinez R, Ayala I, Bougault CM, Banzhaf M, Breukink E, Vollmer W, Simorre JP. Induced conformational changes activate the peptidoglycan synthase PBP1B. Mol Microbiol 2018; 110:335-356. [PMID: 30044025 PMCID: PMC6220978 DOI: 10.1111/mmi.14082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/25/2022]
Abstract
Bacteria surround their cytoplasmic membrane with an essential, stress‐bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh‐like structure. Growing and dividing cells expand their PG layer using inner‐membrane anchored PG synthases, including Penicillin‐binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram‐negative bacteria, growth of the mainly single layered PG is regulated by outer membrane‐anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi‐functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross‐linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.
Collapse
Affiliation(s)
- Alexander J F Egan
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Roberto Maya-Martinez
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Catherine M Bougault
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Manuel Banzhaf
- European Molecular Biology Laboratory Heidelberg, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.,Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham , B15 2TT, UK
| | - Eefjan Breukink
- Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
60
|
Ishida T. Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/mojt.2018.04.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Shahin K, Thompson KD, Inglis NF, Mclean K, Ramirez-Paredes JG, Monaghan SJ, Hoare R, Fontaine M, Metselaar M, Adams A. Characterization of the outer membrane proteome of Francisella noatunensis subsp. orientalis. J Appl Microbiol 2018; 125:686-699. [PMID: 29777634 DOI: 10.1111/jam.13918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 11/28/2022]
Abstract
AIMS The aims of the current study were to characterize the outer membrane proteins (OMPs) of Francisella noatunensis subsp. orientalis (Fno) STIR-GUS-F2f7, and identify proteins recognized by sera from tilapia, Oreochromis niloticus, (L) that survived experimental challenge with Fno. METHODS AND RESULTS The composition of the OMPs of a virulent strain of Fno (STIR-GUS-F2f7), isolated from diseased red Nile tilapia in the United Kingdom, was examined. The sarcosine-insoluble OMPs fraction was screened with tilapia hyperimmune sera by western blot analysis following separation of the proteins by 1D SDS-PAGE. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to identify the various proteins present in the OMP profile. Two hundred and thirty-nine proteins were identified, of which 44 were found in the immunogenic band recognized by the tilapia hyperimmune serum. In silico analysis was performed to predict the function and location of the OMPs identified by MS. CONCLUSIONS Using a powerful proteomic-based approach in conjugation with western immunoblotting, proteins comprising the outer membrane fraction of Fno STIR-GUS-F2f7 were identified, catalogued and screened for immune recognition by tilapia sera. SIGNIFICANCE AND IMPACT OF THE STUDY The current study is the first report on the characterization of Fno-OMPs. The findings here provide preliminary data on bacterial surface proteins that exist in direct contact with the host's immune defences during infection and offer an insight into the pathogenesis of Fno.
Collapse
Affiliation(s)
- K Shahin
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.,Aquatic Animals Diseases Lab, Aquaculture Division, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - N F Inglis
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - K Mclean
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - J G Ramirez-Paredes
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - S J Monaghan
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - R Hoare
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - M Fontaine
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Edinburgh, Midlothian, UK
| | - M Metselaar
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Edinburgh, Midlothian, UK
| | - A Adams
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
62
|
Alimohammadi F, Sharifian Gh M, Attanayake NH, Thenuwara AC, Gogotsi Y, Anasori B, Strongin DR. Antimicrobial Properties of 2D MnO 2 and MoS 2 Nanomaterials Vertically Aligned on Graphene Materials and Ti 3C 2 MXene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7192-7200. [PMID: 29782792 DOI: 10.1021/acs.langmuir.8b00262] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Two-dimensional (2D) nanomaterials have attracted considerable attention in biomedical and environmental applications due to their antimicrobial activity. In the interest of investigating the primary antimicrobial mode-of-action of 2D nanomaterials, we studied the antimicrobial properties of MnO2 and MoS2, toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were treated individually with 100 μg/mL of randomly oriented and vertically aligned nanomaterials for ∼3 h in the dark. The vertically aligned 2D MnO2 and MoS2 were grown on 2D sheets of graphene oxide, reduced graphene oxide, and Ti3C2 MXene. Measurements to determine the viability of bacteria in the presence of the 2D nanomaterials performed by using two complementary techniques, flow cytometry, and fluorescence imaging showed that, while MnO2 and MoS2 nanosheets show different antibacterial activities, in both cases, Gram-positive bacteria show a higher loss in membrane integrity. Scanning electron microscopy images suggest that the 2D nanomaterials, which have a detrimental effect on bacteria viability, compromise the cell wall, leading to significant morphological changes. We propose that the peptidoglycan mesh (PM) in the bacterial wall is likely the primary target of the 2D nanomaterials. Vertically aligned 2D MnO2 nanosheets showed the highest antimicrobial activity, suggesting that the edges of the nanosheets were likely compromising the cell walls upon contact.
Collapse
Affiliation(s)
- Farbod Alimohammadi
- Department of Chemistry , Temple University , 1901 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
- Center for Computational Design of Functional Layered Materials (CCDM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Mohammad Sharifian Gh
- Department of Chemistry , Temple University , 1901 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Nuwan H Attanayake
- Department of Chemistry , Temple University , 1901 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
- Center for Computational Design of Functional Layered Materials (CCDM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Akila C Thenuwara
- Department of Chemistry , Temple University , 1901 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
- Center for Computational Design of Functional Layered Materials (CCDM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Yury Gogotsi
- Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Babak Anasori
- Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Daniel R Strongin
- Department of Chemistry , Temple University , 1901 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
- Center for Computational Design of Functional Layered Materials (CCDM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
63
|
Evans SM, Adcox HE, VieBrock L, Green RS, Luce-Fedrow A, Chattopadhyay S, Jiang J, Marconi RT, Paris D, Richards AL, Carlyon JA. Outer Membrane Protein A Conservation among Orientia tsutsugamushi Isolates Suggests Its Potential as a Protective Antigen and Diagnostic Target. Trop Med Infect Dis 2018; 3:E63. [PMID: 30274459 PMCID: PMC6073748 DOI: 10.3390/tropicalmed3020063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/28/2023] Open
Abstract
Scrub typhus threatens one billion people in the Asia-Pacific area and cases have emerged outside this region. It is caused by infection with any of the multitude of strains of the bacterium Orientia tsutsugamushi. A vaccine that affords heterologous protection and a commercially-available molecular diagnostic assay are lacking. Herein, we determined that the nucleotide and translated amino acid sequences of outer membrane protein A (OmpA) are highly conserved among 51 O. tsutsugamushi isolates. Molecular modeling revealed the predicted tertiary structure of O. tsutsugamushi OmpA to be very similar to that of the phylogenetically-related pathogen, Anaplasma phagocytophilum, including the location of a helix that contains residues functionally essential for A. phagocytophilum infection. PCR primers were developed that amplified ompA DNA from all O. tsutsugamushi strains, but not from negative control bacteria. Using these primers in quantitative PCR enabled sensitive detection and quantitation of O. tsutsugamushi ompA DNA from organs and blood of mice that had been experimentally infected with the Karp or Gilliam strains. The high degree of OmpA conservation among O. tsutsugamushi strains evidences its potential to serve as a molecular diagnostic target and justifies its consideration as a candidate for developing a broadly-protective scrub typhus vaccine.
Collapse
Affiliation(s)
- Sean M Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA 23298, USA.
| | - Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA 23298, USA.
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA 23298, USA.
| | - Alison Luce-Fedrow
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Department of Biology, Shippensburg University, Shippensburg, PA 17257, USA.
| | - Suschsmita Chattopadhyay
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA 23298, USA.
| | - Daniel Paris
- Department of Medicine, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
64
|
Complete Genome Sequencing of Acinetobacter baumannii Strain K50 Discloses the Large Conjugative Plasmid pK50a Encoding Carbapenemase OXA-23 and Extended-Spectrum β-Lactamase GES-11. Antimicrob Agents Chemother 2018; 62:AAC.00212-18. [PMID: 29463529 DOI: 10.1128/aac.00212-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii strains appeared as serious emerging nosocomial pathogens in clinical environments and especially in intensive care units (ICUs). A. baumannii strain K50, recovered from a hospitalized patient in Kuwait, exhibited resistance to carbapenems and additionally to ciprofloxacin, chloramphenicol, sulfonamides, amikacin, and gentamicin. Genome sequencing revealed that the strain possesses two plasmids, pK50a (79.6 kb) and pK50b (9.5 kb), and a 3.75-Mb chromosome. A. baumannii K50 exhibits an average nucleotide identity (ANI) of 99.98% to the previously reported Iraqi clinical isolate AA-014, even though the latter strain lacked plasmid pK50a. Strain K50 belongs to sequence type 158 (ST158) (Pasteur scheme) and ST499 (Oxford scheme). Plasmid pK50a is a member of the Aci6 (replication group 6 [RG6]) group of Acinetobacter plasmids and carries a conjugative transfer module and two antibiotic resistance gene regions. The transposon Tn2008 carries the carbapenemase gene blaOXA-23, whereas a class 1 integron harbors the resistance genes blaGES-11, aacA4, dfrA7, qacEΔ1, and sul1, conferring resistance to all β-lactams and reduced susceptibility to carbapenems and resistance to aminoglycosides, trimethoprim, quaternary ammonium compounds, and sulfamethoxazole, respectively. The class 1 integron is flanked by MITEs (miniature inverted-repeat transposable elements) delimiting the element at its insertion site.
Collapse
|
65
|
Shehata HR, Raizada MN. A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets. FEMS Microbiol Lett 2018; 364:3898815. [PMID: 28679171 DOI: 10.1093/femsle/fnx138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Chapalote is a maize (corn) landrace grown continuously by subsistence farmers in the Americas since 1000 BC, valued in part for its broad-spectrum pathogen resistance. Previously, we showed that Chapalote possesses a bacterial endophyte, Burkholderia gladioli strain 3A12, which suppresses growth of Sclerotinia homoeocarpa, a fungal pathogen of a maize relative, used as a model system. Ten mutants that lost the anti-pathogen activities were identified, corresponding to five genes. However, S. homoeocarpa is not a known maize pathogen; hence, the relevance of these anti-fungal mechanisms to its ancient host has not been clear. Here, the strain 3A12 mutants were tested against a known pathogen of maize and many crops, Rhizoctonia solani. Microscopy established that wild-type 3A12 swarms towards, and attaches onto, the pathogen, forming microcolonies, resulting in hyphal cleavage. Analysis of the mutants revealed that 3A12 uses common downstream gene products (e.g. fungicides) to suppress the growth of both S. homoeocarpa and R. solani, but apparently different upstream regulatory machinery, with the former, but not latter pathogen, requiring YajQ, a receptor for the secondary messenger c-di-GMP. We conclude that B. gladioli strain 3A12, an endophyte of an ancient maize, employs both c-di-GMP-dependent and independent signaling to target diverse fungal pathogens.
Collapse
Affiliation(s)
- Hanan R Shehata
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
66
|
Song X, Zhang H, Zhang D, Xie W, Zhao G. Bioinformatics analysis and epitope screening of a potential vaccine antigen TolB from Acinetobacter baumannii outer membrane protein. INFECTION GENETICS AND EVOLUTION 2018; 62:73-79. [PMID: 29673984 DOI: 10.1016/j.meegid.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
The clinical isolation rate of multidrug-resistant or pan-resistant Acinetobacter baumannii (A. baumannii) is increasing, resulting that optional antibiotics are very limited in clinical practice. To deal with such a dilemma in treatment, the development of effective vaccines serves as a good strategy. Outer membrane proteins (Omp) often contain potential excellent vaccine antigens, and NCBI has published >300 Omp sequences of A. baumannii (including the duplicates). To accurately screen out the potential excellent antigen molecules from a large number of sequences, and avoid repetitive experimental processes is of great significance. In this study, we used the bioinformatics software to give extensive predictions of TolB protein. Results suggest it is a potential vaccine antigen. We then cloned the TolB gene fragments and confirmed it was highly conserved among the strains. Finally, we designed a good recombinant epitopes and conducted experimental verification. These findings provided grounds for animal immunology experiments in the future, and showed an orientation for the efficient development of A. baumannii vaccine.
Collapse
Affiliation(s)
- Xiaojie Song
- Department of Respiratory, Qilu Hospital of Shandong University, Qingdao, Shandong Province 255036, People's Republic of China
| | - Hua Zhang
- Department of Geriatric, Qingdao Municipal Hospital, Qingdao, Shandong Province 266011, People's Republic of China
| | - Dongsheng Zhang
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong Province 266011, People's Republic of China
| | - Weifeng Xie
- Department of ICU, Qingdao Municipal Hospital, Qingdao, Shandong Province 266011, People's Republic of China
| | - Guanghui Zhao
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, People's Republic of China.
| |
Collapse
|
67
|
Maki-Yonekura S, Matsuoka R, Yamashita Y, Shimizu H, Tanaka M, Iwabuki F, Yonekura K. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. eLife 2018; 7:35419. [PMID: 29661272 PMCID: PMC5903867 DOI: 10.7554/elife.35419] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023] Open
Abstract
Gram-negative bacteria import essential nutrients such as iron and vitamin B12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force. Many biological processes that are essential for life are powered by the flow of ions across the membranes of cells. Similar to how energy is stored in the water behind a dam, energy is also stored when the concentration of ions on one side of a biological membrane is higher than it is on the other. When these ions then flow down this concentration gradient, the energy can be harnessed to power other processes. In many bacteria, the concentration of hydrogen ions, or protons, is higher on the outside of the cell. When the protons flow down the concentration gradient, a protein complex called the Ton system in the bacteria’s inner membrane harnesses the energy to transport various compounds, including essential nutrients, across the outer membrane, which is about 20 nanometres away. Toxins, and viruses that infect bacteria, can also hijack the Ton system to gain entry into these cells. This means that the Ton system could perhaps be targeted via drugs to treat bacterial infections. Though the Ton system is important, structural information on this protein family is limited. The Ton complex is composed of three proteins – ExbB, ExbD and TonB – located in the bacteria’s inner membrane. ExbB and ExbD together form a channel for the protons and the complex made from these two proteins can be thought of as the system’s engine. Maki-Yonekura et al. wanted to understand how the ExbB / ExbD complex works, which was challenging because the complex was not well suited to any single structural biology technique. To get around this issue, a combination of two techniques called X-ray crystallography and single particle cryo-EM were used. This approached revealed that the two proteins form complexes made up of either five or six ExbB subunits with one or three ExbD subunits, respectively. It also showed that the proteins transition between the two forms in a cell’s membrane. More of the larger six-unit complex (also called a “hexamer”) formed at higher pH. This is consistent with the increased flow of protons through the channel when the local conditions inside the cell become less acidic. Based on these results, Maki-Yonekura et al. propose that some subunits in the core of the complex rotate to harness the energy from the flow of protons, and the number of subunits in the complex changes when it switches to become active or inactive. The discoveries may provide a new vision of dynamic membrane biology. Further studies are now needed to see how general this mechanism is in biology, and the new structural information could also be used to help develop more anti-bacterial drugs.
Collapse
Affiliation(s)
| | - Rei Matsuoka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Yoshiki Yamashita
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maiko Tanaka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Fumie Iwabuki
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| |
Collapse
|
68
|
Wang X, Wang Z, Bai X, Zhao Y, Zhang W, Lu X. Deletion of a Gene Encoding a Putative Peptidoglycan-Associated Lipoprotein Prevents Degradation of the Crystalline Region of Cellulose in Cytophaga hutchinsonii. Front Microbiol 2018; 9:632. [PMID: 29666619 PMCID: PMC5891637 DOI: 10.3389/fmicb.2018.00632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/19/2018] [Indexed: 01/04/2023] Open
Abstract
Cytophaga hutchinsonii is a gliding Gram-negative bacterium in the phylum Bacteroidetes with the capability to digest crystalline cellulose rapidly, but the mechanism is unclear. In this study, deletion of chu_0125, encoding a homolog of the peptidoglycan-associated lipoprotein (Pal), was determined to prevent degradation of the crystalline region of cellulose. We found that the chu_0125 deletion mutant grew normally in regenerated amorphous cellulose medium but displayed defective growth in crystalline cellulose medium and increased the degree of crystallinity of Avicel. The endoglucanase and β-glucosidase activities on the cell surface were reduced by 60 and 30% without chu_0125, respectively. Moreover, compared with the wild type, the chu_0125 deletion mutant was found to be more sensitive to some harmful compounds and to release sixfold more outer membrane vesicles (OMVs) whose protein varieties were dramatically increased. These results indicated that CHU_0125 played a critical role in maintaining the integrity of the outer membrane. Further study showed that the amounts of some outer membrane proteins were remarkably decreased in the chu_0125 deletion mutant. Western blotting revealed that CHU_3220, the only reported outer membrane protein that was necessary and specialized for degradation of the crystalline region of cellulose, was largely leaked from the outer membrane and packaged into OMVs. We concluded that the deletion of chu_0125 affected the integrity of outer membrane and thus influenced the localization of some outer membrane proteins including CHU_3220. This might be the reason why deletion of chu_0125 prevented degradation of the crystalline region of cellulose.
Collapse
Affiliation(s)
- Xifeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zhiquan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xinfeng Bai
- Key Laboratory for Biosensors of Shandong Province, Biology Institute of Shandong Academy of Sciences, Jinan, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
69
|
Capelli R, Matterazzo E, Amabili M, Peri C, Gori A, Gagni P, Chiari M, Lertmemongkolchai G, Cretich M, Bolognesi M, Colombo G, Gourlay LJ. Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting Burkholderia Infections. ACS Infect Dis 2017; 3:736-743. [PMID: 28707874 DOI: 10.1021/acsinfecdis.7b00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structure-based epitope prediction drives the design of diagnostic peptidic probes to reveal specific antibodies elicited in response to infections. We previously identified a highly immunoreactive epitope from the peptidoglycan-associated lipoprotein (Pal) antigen from Burkholderia pseudomallei, which could also diagnose Burkholderia cepacia infections. Here, considering the high phylogenetic conservation within Burkholderia species, we ask whether cross-reactivity can be reciprocally displayed by the synthetic epitope from B. cenocepacia. We perform comparative analyses of the conformational preferences and diagnostic performances of the corresponding epitopes from the two Burkholderia species when presented in the context of the full-length proteins or as isolated peptides. The effects of conformation on the diagnostic potential and cross-reactivity of Pal peptide epitopes are rationalized on the basis of the 1.8 Å crystal structure of B. cenocepacia Pal and through computational analyses. Our results are discussed in the context of designing new diagnostic molecules for the early detection of infectious diseases.
Collapse
Affiliation(s)
- Riccardo Capelli
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
- Center
for Complexity and Biosystems and Dipartimento di Fisica, Università degli Studi di Milano and INFN, Via Celoria 16, 20133 Milano, Italy
| | - Elena Matterazzo
- Department
of Biosciences, Università degli Studi di Milano, Via
Celoria 26, Milano, 20133, Italy
| | - Marco Amabili
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
- Department
of Biosciences, Università degli Studi di Milano, Via
Celoria 26, Milano, 20133, Italy
| | - Claudio Peri
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
| | - Alessandro Gori
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
| | - Paola Gagni
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
| | - Marcella Chiari
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ganjana Lertmemongkolchai
- Center
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Marina Cretich
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
| | - Martino Bolognesi
- Department
of Biosciences, Università degli Studi di Milano, Via
Celoria 26, Milano, 20133, Italy
- Pediatric
Clinical Research Center “Romeo ed Enrica Invernizzi”,
Cryo Electron-Microscopy Laboratory, Università degli Studi di Milano, Milano, 20133, Italy
| | - Giorgio Colombo
- Istituto
di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy
| | - Louise J. Gourlay
- Department
of Biosciences, Università degli Studi di Milano, Via
Celoria 26, Milano, 20133, Italy
| |
Collapse
|
70
|
Mohabati Mobarez A, Ahmadrajabi R, Khoramabadi N, Salmanian AH. Recombinant flagellin-PAL fusion protein of Legionella pneumophila induced cell-mediated and protective immunity against bacteremia in BALB/c mice. World J Microbiol Biotechnol 2017; 33:175. [PMID: 28887725 DOI: 10.1007/s11274-017-2315-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/19/2017] [Indexed: 11/24/2022]
Abstract
We report a new recombinant fusion protein composed of full-length Legionella pneumophila flagellin A and peptidoglycan-associated lipoprotein (PAL), rFLA-PAL, capable of inducing protective immunity against L. pneumophila. The recombinant protein was over expressed in Escherichia coli strain BL21 (DE3) using pET-28a (+) expression vector (pET28a-flaA-pal) and purified by Ni2+ exchange chromatography. Immunological properties of rFLA-PAL were assessed in a mouse model. Female BALB/c mice, immunized with rFLA-PAL, exhibited a rapid increase in serum antibody concentration against each of its protein portions. Furthermore, a strong activation of both innate and adaptive cell-mediated immunity was observed as indicated by antigen-specific splenocyte proliferation, IFN-γ and IL-12 production, and early production of TNF-α in the serum and in splenocyte cultures which were separately assessed against PAL and FLA. BALB/c mice were challenged with a lethal dose of L. pneumophila intravenously. In a 10-days follow-up after intravenous lethal challenge with L. pneumophila, a 100% survival rate was observed for mice immunized with rFLA-PAL, same as for those immunized with a sublethal dose of L. pneumophila. Based on the potent immune responses observed in mice immunized with rFLA-PAL, this recombinant fusion protein could be a potential vaccine candidate against the intracellular pathogen L. pneumophila.
Collapse
Affiliation(s)
- Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
71
|
Shrivastava R, Jiang X, Chng SS. Outer membrane lipid homeostasis via retrograde phospholipid transport in Escherichia coli. Mol Microbiol 2017; 106:395-408. [PMID: 28815827 DOI: 10.1111/mmi.13772] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 01/21/2023]
Abstract
Biogenesis of the outer membrane (OM) in Gram-negative bacteria, which is essential for viability, requires the coordinated transport and assembly of proteins and lipids, including lipopolysaccharides (LPS) and phospholipids (PLs), into the membrane. While pathways for LPS and OM protein assembly are well-studied, how PLs are transported to and from the OM is not clear. Mechanisms that ensure OM stability and homeostasis are also unknown. The trans-envelope Tol-Pal complex, whose physiological role has remained elusive, is important for OM stability. Here, we establish that the Tol-Pal complex is required for PL transport and OM lipid homeostasis in Escherichia coli. Cells lacking the complex exhibit defects in lipid asymmetry and accumulate excess PLs in the OM. This imbalance in OM lipids is due to defective retrograde PL transport in the absence of a functional Tol-Pal complex. Thus, cells ensure the assembly of a stable OM by maintaining an excess flux of PLs to the OM only to return the surplus to the inner membrane. Our findings also provide insights into the mechanism by which the Tol-Pal complex may promote OM invagination during cell division.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Xiang'Er Jiang
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore 117456
| |
Collapse
|
72
|
Volgers C, Savelkoul PHM, Stassen FRM. Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick? Crit Rev Microbiol 2017; 44:258-273. [PMID: 28741415 DOI: 10.1080/1040841x.2017.1353949] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteria are confronted with a multitude of stressors when occupying niches within the host. These stressors originate from host defense mechanisms, other bacteria during niche competition or result from physiological challenges such as nutrient limitation. To counteract these stressors, bacteria have developed a stress-induced network to mount the adaptations required for survival. These stress-induced adaptations include the release of membrane vesicles from the bacterial envelope. Membrane vesicles can provide bacteria with a plethora of immediate and ultimate benefits for coping with environmental stressors. This review addresses how membrane vesicles aid Gram-negative bacteria to cope with host-associated stress factors, focusing on vesicle biogenesis and the physiological functions. As many of the pathways, that drive vesicle biogenesis, confer we propose that shedding of membrane vesicles by Gram-negative bacteria entails an integrated part of general stress responses.
Collapse
Affiliation(s)
- Charlotte Volgers
- a Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Paul H M Savelkoul
- a Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) , Maastricht University Medical Centre , Maastricht , The Netherlands.,b Department of Medical Microbiology and Infection Control , VU University Medical Center , Amsterdam , The Netherlands
| | - Frank R M Stassen
- a Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) , Maastricht University Medical Centre , Maastricht , The Netherlands
| |
Collapse
|
73
|
Tan K, Deatherage Kaiser BL, Wu R, Cuff M, Fan Y, Bigelow L, Jedrzejczak RP, Adkins JN, Cort JR, Babnigg G, Joachimiak A. Insights into PG-binding, conformational change, and dimerization of the OmpA C-terminal domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi. Protein Sci 2017; 26:1738-1748. [PMID: 28580643 DOI: 10.1002/pro.3209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022]
Abstract
Salmonella enterica serovar Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded β-barrel transmembrane domain and a C-terminal domain (OmpACTD ). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD ) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD ), in closed form. In the open form of STOmpACTD , an aspartate residue from a long β2-α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD , a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD , suggest a large conformational change that includes an extension of α3 helix by ordering a part of β2-α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG-anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD , or possibly that of full length STOmpA.
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, 60439
| | | | - Ruiying Wu
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Marianne Cuff
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Yao Fan
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Robert P Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - John R Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, 60439
| |
Collapse
|
74
|
Patel HK, Ferrante P, Xianfa M, Javvadi SG, Subramoni S, Scortichini M, Venturi V. Identification of Loci of Pseudomonas syringae pv. actinidiae Involved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves. PHYTOPATHOLOGY 2017; 107:645-653. [PMID: 28112597 DOI: 10.1094/phyto-10-16-0360-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae, an emerging pathogen of kiwifruit plants, has recently brought about major economic losses worldwide. Genetic studies on virulence functions of P. syringae pv. actinidiae have not yet been reported and there is little experimental data regarding bacterial genes involved in pathogenesis. In this study, we performed a genetic screen in order to identify transposon mutants altered in the lipolytic activity because it is known that mechanisms of regulation, production, and secretion of enzymes often play crucial roles in virulence of plant pathogens. We aimed to identify the set of secretion and global regulatory loci that control lipolytic activity and also play important roles in in planta fitness. Our screen for altered lipolytic activity phenotype identified a total of 58 Tn5 transposon mutants. Mapping all these Tn5 mutants revealed that the transposons were inserted in genes that play roles in cell division, chemotaxis, metabolism, movement, recombination, regulation, signal transduction, and transport as well as a few unknown functions. Several of these identified P. syringae pv. actinidiae Tn5 mutants, notably the functions affected in phosphomannomutase AlgC, lipid A biosynthesis acyltransferase, glutamate-cysteine ligase, and the type IV pilus protein PilI, were also found affected in in planta survival and/or growth in kiwifruit plants. The results of the genetic screen and identification of novel loci involved in in planta fitness of P. syringae pv. actinidiae are presented and discussed.
Collapse
Affiliation(s)
- Hitendra Kumar Patel
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Patrizia Ferrante
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Meng Xianfa
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sree Gowrinadh Javvadi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sujatha Subramoni
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Marco Scortichini
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Vittorio Venturi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| |
Collapse
|
75
|
Planchon M, Léger T, Spalla O, Huber G, Ferrari R. Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS One 2017; 12:e0178437. [PMID: 28570583 PMCID: PMC5453534 DOI: 10.1371/journal.pone.0178437] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/13/2017] [Indexed: 11/18/2022] Open
Abstract
In a previous study, it was demonstrated that the toxic impact of titanium dioxide nanoparticles on Escherichia coli starts at 10 ppm and is closely related to the presence of little aggregates. It was also assumed that only a part of the bacterial population is able to adapt to this stress and attempts to survive. Proteomic analyses, supported by results from metabolomics, reveal that exposure of E. coli to nano-TiO2 induces two main effects on bacterial metabolism: firstly, the up-regulation of proteins and the increase of metabolites related to energy and growth metabolism; secondly, the down-regulation of other proteins resulting in an increase of metabolites, particularly amino acids. Some proteins, e.g. chaperonin 1 or isocitrate dehydrogenase, and some metabolites, e.g. phenylalanine or valine, might be used as biomarkers of nanoparticles stress. Astonishingly, the ATP content gradually rises in relation with the nano-TiO2 concentration in the medium, indicating a dramatic release of ATP by the damaged cells. These apparently contradictory results accredit the thesis of a heterogeneity of the bacterial population. This heterogeneity is also confirmed by SEM images which show that while some bacteria are fully covered by nano-TiO2, the major part of the bacterial population remains free from nanoparticles, resulting in a difference of proteome and metabolome. The use of combined-omics has allowed to better understand the heterogeneous bacterial response to nano-TiO2 stress due to heterogeneous contacts between the protagonists under environmental conditions.
Collapse
Affiliation(s)
- Mariane Planchon
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
- Université Paris Diderot, Sorbonne Paris Cité, IPGP, UMR 7154, Paris Cedex 13 France
- iCEINT, International Consortium for the Environmental Implications of Nanotechnology
| | - Thibaut Léger
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, Paris, France
| | - Olivier Spalla
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
- iCEINT, International Consortium for the Environmental Implications of Nanotechnology
| | - Gaspard Huber
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
- * E-mail: (GH); (RF)
| | - Roselyne Ferrari
- Université Paris Diderot, Sorbonne Paris Cité, IPGP, UMR 7154, Paris Cedex 13 France
- Université Paris Diderot, Sorbonne Paris Cité, LIED, UMR 8236, Paris, France
- * E-mail: (GH); (RF)
| |
Collapse
|
76
|
Yeo KJ, Lee WC, Lee S, Hwang E, Park JS, Choi IG, Kim SI, Lee JC, Jeon YH, Cheong C, Kim HY. d-Stereoisomer preference of the OmpA-like domain of Pal in peptidoglycan of Acinetobacter baumannii. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
77
|
Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol 2017; 26:1432-1451. [PMID: 28036141 DOI: 10.1111/mec.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023]
Abstract
Eukaryotic-like proteins (ELPs) are classes of proteins that are found in prokaryotes, but have a likely evolutionary origin in eukaryotes. ELPs have been postulated to mediate host-microbiome interactions. Recent work has discovered that prokaryotic symbionts of sponges contain abundant and diverse genes for ELPs, which could modulate interactions with their filter-feeding and phagocytic host. However, the extent to which these ELP genes are actually used and expressed by the symbionts is poorly understood. Here, we use metatranscriptomics to investigate ELP expression in the microbiomes of three different sponges (Cymbastella concentrica, Scopalina sp. and Tedania anhelens). We developed a workflow with optimized rRNA removal and in silico subtraction of host sequences to obtain a reliable symbiont metatranscriptome. This showed that between 1.3% and 2.3% of all symbiont transcripts contain genes for ELPs. Two classes of ELPs (cadherin and tetratricopeptide repeats) were abundantly expressed in the C. concentrica and Scopalina sp. microbiomes, while ankyrin repeat ELPs were predominant in the T. anhelens metatranscriptome. Comparison with transcripts that do not encode ELPs indicated a constitutive expression of ELPs across a range of bacterial and archaeal symbionts. Expressed ELPs also contained domains involved in protein secretion and/or were co-expressed with proteins involved in extracellular transport. This suggests these ELPs are likely exported, which could allow for direct interaction with the sponge. Our study shows that ELP genes in sponge symbionts represent actively expressed functions that could mediate molecular interaction between symbiosis partners.
Collapse
Affiliation(s)
- C Díez-Vives
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - L Moitinho-Silva
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - S Nielsen
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - D Reynolds
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - T Thomas
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
78
|
SHIVACHANDRA SB, KUMAR A, MOHANTY NN, YOGISHARADHYA R. Immunogenicity of recombinant Omp16 protein of Pasteurella multocida B:2 in mouse model. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i1.66834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Bacterial peptidoglycan-associated lipoproteins (PAL) are potential targets for the development of diagnostics/subunit vaccines for infectious diseases. Most commonly prevalent Omp16 lipoprotein is absolutely conserved among Pasteurella multocida strains, which are involved in multiple infectious diseases of livestock worldwide. In the present study, we cloned omp16 gene encoding for mature Omp16 of P. multocida B:2 strain P52 and overexpressed as a fusion protein in Escherichia coli. Mice immunized with purified recombinant non-lipidated Omp16 fusion protein (~32 kDa) resulted in elicitation of significant antigen specific serum antibody titres (total IgG and subtypes). A more pronounced increase in Th2 response (IgG1) was noticed. The study indicated the potential possibilities to use lipidated recombinant Omp16 protein in developing a composite subunit vaccine along with suitable adjuvant for haemorrhagic septicaemia/ pasteurellosis in livestock.
Collapse
|
79
|
Dennehy R, Romano M, Ruggiero A, Mohamed YF, Dignam SL, Mujica Troncoso C, Callaghan M, Valvano MA, Berisio R, McClean S. The Burkholderia cenocepacia peptidoglycan-associated lipoprotein is involved in epithelial cell attachment and elicitation of inflammation. Cell Microbiol 2016; 19. [PMID: 27886433 DOI: 10.1111/cmi.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic pathogens causing infections in people with cystic fibrosis (CF). Bcc is highly antibiotic resistant, making conventional antibiotic treatment problematic. The identification of novel targets for anti-virulence therapies should improve therapeutic options for infected CF patients. We previously identified that the peptidoglycan-associated lipoprotein (Pal) was immunogenic in Bcc infected CF patients; however, its role in Bcc pathogenesis is unknown. The virulence of a pal deletion mutant (Δpal) in Galleria mellonella was 88-fold reduced (p < .001) compared to wild type. The lipopolysaccharide profiles of wild type and Δpal were identical, indicating no involvement of Pal in O-antigen transport. However, Δpal was more susceptible to polymyxin B. Structural elucidation by X-ray crystallography and calorimetry demonstrated that Pal binds peptidoglycan fragments. Δpal showed a 1.5-fold reduced stimulation of IL-8 in CF epithelial cells relative to wild type (p < .001), demonstrating that Pal is a significant driver of inflammation. The Δpal mutant had reduced binding to CFBE41o- cells, but adhesion of Pal-expressing recombinant E. coli to CFBE41o- cells was enhanced compared to wild-type E. coli (p < .0001), confirming that Pal plays a direct role in host cell attachment. Overall, Bcc Pal mediates host cell attachment and stimulation of cytokine secretion, contributing to Bcc pathogenesis.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Maria Romano
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Alessia Ruggiero
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Yasmine F Mohamed
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland.,Faculty of Pharmacy, Department of Microbiology, Alexandria University, Alexandria, Egypt
| | - Simon L Dignam
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Miguel A Valvano
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Rita Berisio
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| |
Collapse
|
80
|
Shehata HR, Ettinger CL, Eisen JA, Raizada MN. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC. Front Microbiol 2016; 7:1548. [PMID: 27757101 PMCID: PMC5047915 DOI: 10.3389/fmicb.2016.01548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize) landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming toward its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defense for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.
Collapse
Affiliation(s)
- Hanan R. Shehata
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
- Department of Microbiology, School of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Cassandra L. Ettinger
- Genome Center, University of California Davis, DavisCA, USA
- Department of Evolution and Ecology, University of California Davis, DavisCA, USA
| | - Jonathan A. Eisen
- Genome Center, University of California Davis, DavisCA, USA
- Department of Evolution and Ecology, University of California Davis, DavisCA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, DavisCA, USA
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| |
Collapse
|
81
|
Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, Johnson JG, DiRita VJ, Vollmer W, Clarke AJ, Gaynor EC. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. J Biol Chem 2016; 291:22686-22702. [PMID: 27474744 PMCID: PMC5077204 DOI: 10.1074/jbc.m116.746404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.
Collapse
Affiliation(s)
- Reuben Ha
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emilisa Frirdich
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David Sychantha
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacob Biboy
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Michael E Taveirne
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeremiah G Johnson
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Victor J DiRita
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Waldemar Vollmer
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Anthony J Clarke
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Erin C Gaynor
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| |
Collapse
|
82
|
Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis. Appl Environ Microbiol 2016; 82:4371-4378. [PMID: 27208096 DOI: 10.1128/aem.00977-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. IMPORTANCE In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide. E. coli O104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis.
Collapse
|
83
|
Kowata H, Tochigi S, Kusano T, Kojima S. Quantitative measurement of the outer membrane permeability in Escherichia coli lpp and tol-pal mutants defines the significance of Tol-Pal function for maintaining drug resistance. J Antibiot (Tokyo) 2016; 69:863-870. [PMID: 27168313 DOI: 10.1038/ja.2016.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 02/05/2023]
Abstract
Ensuring the stability of the outer membrane permeability barrier is crucial for maintaining drug resistance in Gram-negative bacteria. Lpp protein and Tol-Pal complex are responsible for this function and are widely distributed among Gram-negative bacteria. Thus, these proteins are potential targets to permeabilize the outer membrane barrier. Although deleting these proteins is known to impair the outer membrane stability, the effect of the deletion on the outer membrane barrier property and on the drug resistance has not been fully characterized and evaluated in a quantitative manner. Here, we determined the outer membrane permeability of Escherichia coli Δlpp and Δtol-pal mutants by the assay using intact cells and liposomes reconstituted with the outer membrane proteins. We determined that there was 3- to 5-fold increase of the permeability in Δtol-pal mutants, but not in Δlpp mutant, compared with that in the parental strain. The permeability increase in Δtol-pal mutants occurred without affecting the function of outer membrane diffusion channels, and was most pronounced in the cells at exponential growth phase. The impact of tol-pal deletion on the drug resistance was revealed to be almost comparable with that of deletion of acrAB, a major multidrug efflux transporter of E. coli that makes a predominant contribution to drug resistance. Our observations highlight the importance of Tol-Pal as a possible target to combat multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Hikaru Kowata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Saeko Tochigi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
84
|
Torres‐Barceló C, Franzon B, Vasse M, Hochberg ME. Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol Appl 2016; 9:583-95. [PMID: 27099623 PMCID: PMC4831460 DOI: 10.1111/eva.12364] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022] Open
Abstract
With escalating resistance to antibiotics, there is an urgent need to develop alternative therapies against bacterial pathogens and pests. One of the most promising is the employment of bacteriophages (phages), which may be highly specific and evolve to counter antiphage resistance. Despite an increased understanding of how phages interact with bacteria, we know very little about how their interactions may be modified in antibiotic environments and, reciprocally, how phage may affect the evolution of antibiotic resistance. We experimentally evaluated the impacts of single and combined applications of antibiotics (different doses and different types) and phages on in vitro evolving populations of the opportunistic pathogen Pseudomonas aeruginosa PAO1. We also assessed the effects of past treatments on bacterial virulence in vivo, employing larvae of Galleria mellonella to survey the treatment consequences for the pathogen. We find a strong synergistic effect of combining antibiotics and phages on bacterial population density and in limiting their recovery rate. Our long-term study establishes that antibiotic dose is important, but that effects are relatively insensitive to antibiotic type. From an applied perspective, our results indicate that phages can contribute to managing antibiotic resistance levels, with limited consequences for the evolution of bacterial virulence.
Collapse
Affiliation(s)
| | - Blaise Franzon
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Marie Vasse
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Michael E. Hochberg
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
- Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
85
|
Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. PROTOPLASMA 2016; 253:477-486. [PMID: 25952083 DOI: 10.1007/s00709-015-0826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Azospirillum is a plant growth-promoting rhizobacteria (PGPR) able to enhance the growth of wheat. The aim of this study was to test the effect of Azospirillum brasilense cell wall components on superoxide (O2·(-)) production in wheat roots and the effect of oxidative stress on A. brasilense viability. We found that inoculation with A. brasilense reduced O2·(-) levels by approx. 30 % in wheat roots. Inoculation of wheat with papain-treated A. brasilense, a Cys protease, notably increased O2·(-) production in all root tissues, as was observed by the nitro blue tetrazolium (NBT) reduction. However, a 24-h treatment with rhizobacteria lipopolysaccharides (50 and 100 μg/mL) alone did not affect the pattern of O2·(-) production. Analysis of the effect of plant cell wall components on A. brasilense oxidative enzyme activity showed no changes in catalase activity but a decrease in superoxide dismutase activity in response to polygalacturonic acid treatment. Furthermore, A. brasilense growth was only affected by high concentrations of H2O2 or paraquat, but not by sodium nitroprusside. Our results suggest that rhizobacterial cell wall components play an important role in controlling plant cell responses and developing tolerance of A. brasilense to oxidative stress produced by the plant.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Gladys Alexandre
- Department of Biology and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico.
| |
Collapse
|
86
|
Sidhu-Muñoz RS, Sancho P, Vizcaíno N. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties. Vet Microbiol 2016; 186:59-66. [PMID: 27016758 DOI: 10.1016/j.vetmic.2016.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae.
Collapse
Affiliation(s)
- Rebeca S Sidhu-Muñoz
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
87
|
Kobierecka PA, Olech B, Książek M, Derlatka K, Adamska I, Majewski PM, Jagusztyn-Krynicka EK, Wyszyńska AK. Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis. Front Microbiol 2016; 7:165. [PMID: 26925040 PMCID: PMC4757695 DOI: 10.3389/fmicb.2016.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein - CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type C. jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analyzed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ Lactic Acid Bacteria (LAB) strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered as an alternative vector to deliver heterologous antigens to the bird immune system. Additionally, the analysis of the structure and immunogenicity of the generated rCjaAD hybrid protein showed that the CjaA antigen can be considered as a starting point to construct multiepitope anti-Campylobacter vaccines.
Collapse
Affiliation(s)
- Patrycja A. Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Barbara Olech
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Monika Książek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna Derlatka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Paweł M. Majewski
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | | | - Agnieszka K. Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| |
Collapse
|
88
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
89
|
Jacquier N, Frandi A, Viollier PH, Greub G. Disassembly of a Medial Transenvelope Structure by Antibiotics during Intracellular Division. ACTA ACUST UNITED AC 2015; 22:1217-27. [PMID: 26364930 DOI: 10.1016/j.chembiol.2015.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Department of Laboratories, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne 1011, Switzerland
| | - Antonio Frandi
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Geneva 1211, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Geneva 1211, Switzerland.
| | - Gilbert Greub
- Department of Laboratories, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
90
|
Wilhelm MJ, Sheffield JB, Sharifian Gh. M, Wu Y, Spahr C, Gonella G, Xu B, Dai HL. Gram's Stain Does Not Cross the Bacterial Cytoplasmic Membrane. ACS Chem Biol 2015; 10:1711-7. [PMID: 25879387 DOI: 10.1021/acschembio.5b00042] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For well over a century, Hans Christian Gram's famous staining protocol has been the standard go-to diagnostic for characterizing unknown bacteria. Despite continuous and ubiquitous use, we now demonstrate that the current understanding of the molecular mechanism for this differential stain is largely incorrect. Using the fully complementary time-resolved methods: second-harmonic light-scattering and bright-field transmission microscopy, we present a real-time and membrane specific quantitative characterization of the bacterial uptake of crystal-violet (CV), the dye used in Gram's protocol. Our observations contradict the currently accepted mechanism which depicts that, for both Gram-negative and Gram-positive bacteria, CV readily traverses the peptidoglycan mesh (PM) and cytoplasmic membrane (CM) before equilibrating within the cytosol. We find that not only is CV unable to traverse the CM but, on the time-scale of the Gram-stain procedure, CV is kinetically trapped within the PM. Our results indicate that CV, rather than dyes which rapidly traverse the PM, is uniquely suited as the Gram stain.
Collapse
Affiliation(s)
- Michael J. Wilhelm
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Joel B. Sheffield
- Department
of Biology, Temple University, 1900 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Mohammad Sharifian Gh.
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Yajing Wu
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Christian Spahr
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Grazia Gonella
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Bolei Xu
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hai-Lung Dai
- Department
of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
91
|
Santos CA, Janissen R, Toledo MAS, Beloti LL, Azzoni AR, Cotta MA, Souza AP. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1372-81. [PMID: 26049080 DOI: 10.1016/j.bbapap.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Richard Janissen
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Adriano R Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Monica A Cotta
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
92
|
Brogaard L, Klitgaard K, Heegaard PMH, Hansen MS, Jensen TK, Skovgaard K. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genomics 2015; 16:417. [PMID: 26018580 PMCID: PMC4446954 DOI: 10.1186/s12864-015-1557-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Results Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. Conclusions Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1557-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise Brogaard
- Innate Immunology Group, Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Kirstine Klitgaard
- Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Peter M H Heegaard
- Innate Immunology Group, Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Mette Sif Hansen
- Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Tim Kåre Jensen
- Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Kerstin Skovgaard
- Innate Immunology Group, Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
93
|
Williams LE, Wernegreen JJ. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ 2015; 3:e881. [PMID: 25861561 PMCID: PMC4389277 DOI: 10.7717/peerj.881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA) of these six Blochmannia genomes is reduced (690 protein coding genes), consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri) encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled) and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of coresident symbionts other than Wolbachia. Although gene order is strictly conserved in four Blochmannia of Camponotus sensu stricto, comparisons with deeply divergent lineages revealed inversions in eight genomic regions, indicating ongoing recombination despite ancestral loss of recA. In sum, the addition of two Blochmannia genomes of divergent host lineages enables reconstruction of early events in evolution of this symbiosis and suggests that Blochmannia lineages may experience distinct, host-associated selective pressures. Understanding how evolutionary forces shape genome reduction in this system may help to clarify forces driving gene loss in other bacteria, including intracellular pathogens.
Collapse
Affiliation(s)
- Laura E Williams
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA
| | - Jennifer J Wernegreen
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA ; Nicholas School of the Environment, Duke University , Durham, NC , USA
| |
Collapse
|
94
|
Kaneko J, Yamada-Narita S, Abe N, Onodera T, Kan E, Kojima S, Miyazaki T, Yamamoto Y, Oguchi A, Ankai A, Ichikawa N, Nakazawa H, Fukui S, Takahashi M, Yamazaki S, Fujita N, Kamio Y. Complete genome sequence of Selenomonas ruminantium subsp. lactilytica will accelerate further understanding of the nature of the class Negativicutes. FEMS Microbiol Lett 2015; 362:fnv050. [PMID: 25837814 DOI: 10.1093/femsle/fnv050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2015] [Indexed: 01/14/2023] Open
Abstract
Selenomonas ruminantium subsp. lactilytica, a strictly anaerobic ruminal bacterium, possesses typical Gram-negative cell surface structure comprising cytoplasmic membrane, peptidoglycan layer and outer membrane, whereas its 16S rRNA-based taxonomy shows that the bacteria belongs to Gram-positive Firmicutes. Complete genome analysis showed that genes or gene clusters involved in Gram-negative cell structure were scattered in the S. ruminantium genome, and might provide the new insight of phylogenetic relationship between the bacterium and other bacterial species.
Collapse
Affiliation(s)
- Jun Kaneko
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Sachiko Yamada-Narita
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Naoki Abe
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Tomoko Onodera
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Eiichiro Kan
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Seiji Kojima
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Takao Miyazaki
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Yuji Yamamoto
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada 034-8628, Japan
| | - Akio Oguchi
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Akiho Ankai
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Natsuko Ichikawa
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Hidekazu Nakazawa
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Shigehiro Fukui
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Mikio Takahashi
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Syuji Yamazaki
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Nobuyuki Fujita
- Department of Biotechnology, National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shinjuku-ku, Tokyo 151-0066, Japan
| | - Yoshiyuki Kamio
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori, Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| |
Collapse
|
95
|
Michel LV, Shaw J, MacPherson V, Barnard D, Bettinger J, D'Arcy B, Surendran N, Hellman J, Pichichero ME. Dual orientation of the outer membrane lipoprotein Pal in Escherichia coli. MICROBIOLOGY-SGM 2015; 161:1251-9. [PMID: 25808171 DOI: 10.1099/mic.0.000084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptidoglycan associated lipoprotein (Pal) of Escherichia coli (E. coli) is a characteristic bacterial lipoprotein, with an N-terminal lipid moiety anchoring it to the outer membrane. Since its discovery over three decades ago, Pal has been well studied for its participation in the Tol-Pal complex which spans the periplasm and has been proposed to play important roles in bacterial survival, pathogenesis and virulence. Previous studies of Pal place the lipoprotein in the periplasm of E. coli, allowing it to interact with Tol proteins and the peptidoglycan layer. Here, we describe for the first time, a subpopulation of Pal which is present on the cell surface of E. coli. Flow cytometry and confocal microscopy detect anti-Pal antibodies on the surface of intact E. coli cells. Interestingly, Pal is surface exposed in an 'all or nothing' manner, such that most of the cells contain only internal Pal, with fewer cells ( < 20 %) exhibiting surface Pal.
Collapse
Affiliation(s)
- Lea Vacca Michel
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Juliana Shaw
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Victoria MacPherson
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - David Barnard
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - John Bettinger
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Brooke D'Arcy
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Naveen Surendran
- 2Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Judith Hellman
- 3Department of Anesthesia and Perioperative Care, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Michael E Pichichero
- 2Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| |
Collapse
|
96
|
Revisiting the Gram-negative lipoprotein paradigm. J Bacteriol 2015; 197:1705-15. [PMID: 25755189 DOI: 10.1128/jb.02414-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. IMPORTANCE This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria.
Collapse
|
97
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
98
|
Meloni E, Colucci AM, Micoli F, Sollai L, Gavini M, Saul A, Di Cioccio V, MacLennan CA. Simplified low-cost production of O-antigen from Salmonella Typhimurium Generalized Modules for Membrane Antigens (GMMA). J Biotechnol 2015; 198:46-52. [PMID: 25659926 DOI: 10.1016/j.jbiotec.2015.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
The Novartis Vaccines Institute for Global Health is developing vaccines using outer membrane particles, known as Generalized Modules for Membrane Antigens (GMMA). These are blebs of outer membrane and periplasm, shed from the surface of living Gram-negative bacteria following the targeted deletion of proteins involved in maintaining the integrity of the inner and outer membranes. The current study investigates the use of GMMA as starting material for extraction of membrane components, focusing on the O-antigen polysaccharide portion of lipopolysaccharide from Salmonella Typhimurium. We show that the amount of O-antigen extracted from GMMA by acid hydrolysis is comparable to the quantity extracted from whole wild type bacteria, but with less protein and DNA contaminants. Compared to conventional purification, GMMA enabled a reduction in the number of purification steps required to obtain the O-antigen polysaccharide with the same purity. Purification processes from GMMA and bacteria were characterised by similar final yields. Use of GMMA as starting material provides the possibility to simplify the purification process of O-antigen, with a consequent decrease in manufacturing costs of O-antigen-based glyconjugate vaccines against Salmonella strains and potentially other Gram-negative bacteria.
Collapse
Affiliation(s)
- Eleonora Meloni
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Anna Maria Colucci
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Micoli
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Luigi Sollai
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Massimiliano Gavini
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Allan Saul
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Vito Di Cioccio
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Calman A MacLennan
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
99
|
Kobierecka P, Wyszyńska A, Maruszewska M, Wojtania A, Żylińska J, Bardowski J, Jagusztyn-Krynicka EK. Lactic Acid Bacteria as a Surface Display Platform for Campylobacter jejuni Antigens. J Mol Microbiol Biotechnol 2015; 25:1-10. [DOI: 10.1159/000368780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Food poisoning and diarrheal diseases continue to pose serious health care and socioeconomic problems worldwide. <i>Campylobacter</i> spp. is a very widespread cause of gastroenteritis. Over the past decade there has been increasing interest in the use of lactic acid bacteria (LAB) as mucosal delivery vehicles. They represent an attractive opportunity for vaccination in addition to vaccination with attenuated bacterial pathogens. <b><i>Methods:</i></b> We examined the binding ability of hybrid proteins to nontreated or trichloroacetic acid (TCA)-pretreated LAB cells by immunofluorescence and Western blot analysis. <b><i>Results:</i></b> In this study we evaluated the possibility of using GEM (Gram-positive enhancer matrix) particles of <i>Lactobacillus salivarius</i> as a binding platform for 2 conserved, immunodominant, extracytoplasmic <i>Campylobacter jejuni</i> proteins: CjaA and CjaD. We analyzed the binding ability of recombinant proteins that contain <i>C. jejuni</i> antigens (CjaA or CjaD) fused with the protein anchor (PA) of the <i>L. lactis </i>peptidoglycan hydrolase AcmA, which comprises 3 LysM motifs and determines noncovalent binding to the cell wall peptidoglycan. Both fused proteins, i.e. 6HisxCjaAx3LysM and 6HisxCjaDx3LysM, were able to bind to nontreated or TCA-pretreated <i>L. salivarius</i> cells. <b><i>Conclusion:</i></b> Our results documented that the LysM-mediated binding system allows us to construct GEM particles that present 2 <i>C. jejuni</i> antigens.
Collapse
|
100
|
Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection. Vet Microbiol 2014; 174:448-455. [DOI: 10.1016/j.vetmic.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 11/23/2022]
|