51
|
Sotthibundhu A, Phansuwan-Pujito P, Govitrapong P. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res 2010; 49:291-300. [PMID: 20663047 DOI: 10.1111/j.1600-079x.2010.00794.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, a circadian rhythm-promoting molecule secreted mainly by the pineal gland, has a variety of biological functions and neuroprotective effects including control of sleep-wake cycle, seasonal reproduction, and body temperature as well as preventing neuronal cell death induced by neurotoxic substances. Melatonin also modulates neural stem cell (NSC) function including proliferation and differentiation in embryonic brain tissue. However, the involvement of melatonin in adult neurogenesis is still not clear. Here, we report that precursor cells from adult mouse subventricular zone (SVZ) of the lateral ventricle, the main neurogenic area of the adult brain, express melatonin receptors. In addition, precursor cells derived from this area treated with melatonin exhibited increased proliferative activity. However, when cells were treated with luzindole, a competitive inhibitor of melatonin receptors, or pertussis toxin, an uncoupler of Gi from adenylate cyclase, melatonin-induced proliferation was reduced. Under these conditions, melatonin induced the differentiation of precursor cells to neuronal cells without an upregulation of the number of glia cells. Because stem cell replacement is thought to play an important therapeutic role in neurodegenerative diseases, melatonin might be beneficial for stimulating endogenous neural stem cells.
Collapse
|
52
|
Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8:228-42. [PMID: 21358973 PMCID: PMC3001216 DOI: 10.2174/157015910792246155] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/25/2010] [Accepted: 05/08/2010] [Indexed: 12/15/2022] Open
Abstract
Melatonin is mainly produced in the mammalian pineal gland during the dark phase. Its secretion from the pineal gland has been classically associated with circadian and circanual rhythm regulation. However, melatonin production is not confined exclusively to the pineal gland, but other tissues including retina, Harderian glands, gut, ovary, testes, bone marrow and lens also produce it. Several studies have shown that melatonin reduces chronic and acute inflammation. The immunomodulatory properties of melatonin are well known; it acts on the immune system by regulating cytokine production of immunocompetent cells. Experimental and clinical data showing that melatonin reduces adhesion molecules and pro-inflammatory cytokines and modifies serum inflammatory parameters. As a consequence, melatonin improves the clinical course of illnesses which have an inflammatory etiology. Moreover, experimental evidence supports its actions as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes, enhancing the activities of other antioxidants or protecting other antioxidant enzymes from oxidative damage. Several encouraging clinical studies suggest that melatonin is a neuroprotective molecule in neurodegenerative disorders where brain oxidative damage has been implicated as a common link. In this review, the authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries (traumatic brain and spinal cord injury).
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
53
|
Bimonte-Nelson HA, Acosta JI, Talboom JS. Neuroscientists as cartographers: mapping the crossroads of gonadal hormones, memory and age using animal models. Molecules 2010; 15:6050-105. [PMID: 20877209 PMCID: PMC3126862 DOI: 10.3390/molecules15096050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 11/17/2022] Open
Abstract
Cognitive function is multidimensional and complex, and research in multiple species indicates it is considerably impacted by age and gonadal hormone milieu. One domain of cognitive function particularly susceptible to age-related decrements is spatial memory. Gonadal hormones can alter spatial memory, and they are potent modulators of brain microstructure and function in many of the same brain areas affected by aging. In this paper, we review decades of animal and human literature to support a tertiary model representing interactions between gonadal hormones, spatial cognition and age given that: 1) gonadal hormones change with age, 2) age impacts spatial learning and memory, and 3) gonadal hormones impact spatial learning and memory. While much has been discovered regarding these individual tenets, the compass for future aging research points toward clarifying the interactions that exist between these three points, and understanding mediating variables. Indeed, identifying and aligning the various components of the complex interactions between these tenets, including evaluations using basic science, systems, and clinical perspectives, is the optimal approach to attempt to converge the many findings that may currently appear contradictory. In fact, as discoveries are being made it is becoming clear that the findings across studies that appear contradictory are not contradictory at all. Rather, there are mediating variables that are influencing outcome and affecting the extent, and even the direction, of the effects that gonadal hormones have on cognition during aging. These mediating variables are just starting to be understood. By aligning basic scientific discoveries with clinical interpretations, we can maximize the opportunities for discoveries and subsequent interventions to allow individuals to "optimize their aging" and find their own map to cognitive health as aging ensues.
Collapse
Affiliation(s)
- Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| | - Jazmin I. Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| | - Joshua S. Talboom
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| |
Collapse
|
54
|
Impact of the Hypothalamic–pituitary–adrenal/gonadal Axes on Trajectory of Age-Related Cognitive Decline. PROGRESS IN BRAIN RESEARCH 2010; 182:31-76. [DOI: 10.1016/s0079-6123(10)82002-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Engler-Chiurazzi E, Tsang C, Nonnenmacher S, Liang WS, Corneveaux JJ, Prokai L, Huentelman MJ, Bimonte-Nelson HA. Tonic Premarin dose-dependently enhances memory, affects neurotrophin protein levels and alters gene expression in middle-aged rats. Neurobiol Aging 2009; 32:680-97. [PMID: 19883953 DOI: 10.1016/j.neurobiolaging.2009.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 08/26/2009] [Accepted: 09/27/2009] [Indexed: 01/19/2023]
Abstract
Premarin™ is the most commonly prescribed estrogenic component of hormone therapy, given since 1942. The current study is the first examining cognitive effects of tonic Premarin treatment in an animal model. Middle-aged ovariectomized (Ovx) rats received vehicle or one of three doses of Premarin (12, 24 or 36μg daily). Rats were tested on a spatial working and reference memory maze battery. Both medium- and high-dose Premarin enhanced memory retention, while low-dose Premarin impaired learning and memory retention. Correlations with serum hormone levels showed that as the ratio of estrone:17β-estradiol increased, animals tended to show better working memory performance. Taken together with the dissociation of dose-specific estrogenic profiles, results suggest that higher levels of estrone, in the presence of 17β-estradiol concentrations higher than that of Ovx levels, may be beneficial for memory. Moreover, Premarin exerted dose and brain-region specific effects on BDNF and NGF protein levels, with most marked changes in cingulate and perirhinal cortices. Hippocampal gene expression profiling demonstrated significant Premarin-induced transcriptional changes in genes linked to plasticity and cognition. These findings indicate that Premarin can impact memory and the brain, and that dosing should be recognized as a clinically relevant factor possibly affecting the direction and efficacy of cognitive outcome.
Collapse
|
56
|
Abstract
Melatonin plays a neuroprotective role in models of neurodegenerative diseases. However, the molecular mechanisms underlying neuroprotection by melatonin are not well understood. Apoptotic cell death in the central nervous system is a feature of neurodegenerative diseases. The intrinsic and extrinsic apoptotic pathways and the antiapoptotic survival signal pathways play critical roles in neurodegeneration. This review summarizes the reports to date showing inhibition by melatonin of the intrinsic apoptotic pathways in neurodegenerative diseases including stroke, Alzheimer disease, Parkinson disease, Huntington disease, and amyotrophic lateral sclerosis. Furthermore, the activation of survival signal pathways by melatonin in neurodegenerative diseases is discussed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
57
|
Saxena G, Bharti S, Kamat PK, Sharma S, Nath C. Melatonin alleviates memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pharmacol Biochem Behav 2009; 94:397-403. [PMID: 19808044 DOI: 10.1016/j.pbb.2009.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/18/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022]
Abstract
In the present study the effect of melatonin on intracerebroventricularly administered streptozotocin (STZ)-induced neurodegeneration was investigated in rats. STZ (3mg/kg), administered twice with an interval of 48 h between the two doses, showed impairment in spatial memory tested by water maze test after 14 days of 1st dose. Administration of melatonin (2.5, 5.0 and 10mg/kg, i.p.) was started 1h prior to 1st dose of STZ and continued up to 14 days. Glutathione and malondialdehyde were used as biochemical markers of oxidative stress in different brain regions. Histopathological changes were examined by using hematoxylin and eosin stain. STZ administration caused significant decrease in glutathione and increase in malondialdehyde as compared to control and artificial Cerebrospinal Fluid treated rats indicating oxidative stress. Brain sections of STZ-treated rats showed increased vacuoles in the periventricular cortical area, damaged periventricular cells and damaged cells in the hippocampal CA4 region as compared to control and artificial Cerebrospinal Fluid treated groups. Melatonin treatment significantly attenuated the effect of STZ-induced oxidative stress and histopathological changes. The results indicate that melatonin is effective in providing protection against memory deficit, oxidative stress and neuronal damage induced by STZ.
Collapse
Affiliation(s)
- Gunjan Saxena
- Division of Pharmacology, Central Drug Research Institute (CDRI), CSIR, Lucknow (U.P.) 226001, India
| | | | | | | | | |
Collapse
|
58
|
Acosta JI, Mayer L, Talboom JS, Tsang CWS, Smith CJ, Enders CK, Bimonte-Nelson HA. Transitional versus surgical menopause in a rodent model: etiology of ovarian hormone loss impacts memory and the acetylcholine system. Endocrinology 2009; 150:4248-59. [PMID: 19470706 PMCID: PMC2736080 DOI: 10.1210/en.2008-1802] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clinical research suggests that type of ovarian hormone loss at menopause influences cognition. Until recently ovariectomy (OVX) has been the primary rodent model to examine effects of ovarian hormone loss on cognition. This model limits evaluations to abrupt and complete ovarian hormone loss, modeling less than 13% of women who receive surgical menopause. The majority of women do not have their ovaries surgically removed and undergo transitional hormone loss via ovarian follicular depletion. 4-Vinylcyclohexene-diepoxide (VCD) produces gradual ovarian follicular depletion in the rodent, with hormone profiles more similar to naturally menopausal women vs. OVX. We directly compared VCD and OVX models to examine whether type of hormone loss (transitional vs. surgical) impacted cognition as assessed on a maze battery as well as the cholinergic system tested via scopolamine mnemonic challenge and brain acetylcholinesterase activity. Middle-aged rats received either sham surgery, OVX surgery, VCD, or VCD then OVX to assess effects of removal of residual ovarian output after transitional menopause and follicular depletion. VCD-induced transitional menopause impaired learning of a spatial recent memory task; surgical removal of residual ovarian hormones by OVX abolished this negative effect of transitional menopause. Furthermore, transitional menopause before OVX was better for memory than an abrupt loss of hormones via OVX only. Surgical ovarian hormone loss, regardless of menopause history, increased hippocampal acetylcholinesterase activity. Circulating gonadotropin and androstenedione levels were related to cognitive competence. Collectively, findings suggest that in the rat, initiation of transitional menopause before surgical ovary removal can benefit mnemonic function and could obviate some negative cognitive consequences of surgical menopause alone.
Collapse
Affiliation(s)
- Jazmin I Acosta
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
The severity of many diseases varies across the day and night. For example, adverse cardiovascular incidents peak in the morning, asthma is often worse at night and temporal lobe epileptic seizures are most prevalent in the afternoon. These patterns may be due to the day/night rhythm in environment and behavior, and/or endogenous circadian rhythms in physiology. Furthermore, chronic misalignment between the endogenous circadian timing system and the behavioral cycles could be a cause of increased risk of diabetes, obesity, cardiovascular disease and certain cancers in shift workers. Here we describe the magnitude, relevance and potential biological basis of such daily changes in disease severity and of circadian/behavioral misalignment, and present how these insights may help in the development of appropriate chronotherapy.
Collapse
Affiliation(s)
- Mikhail Litinski
- Clinical Fellow, Division of Sleep Medicine, Brigham & Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA. Tel. 617-732 5778, Fax 617-279 0683,
| | - Frank AJL Scheer
- Instructor in Medicine, Harvard Medical School and Division of Sleep Medicine, Brigham & Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA. Tel. 617-732 7014, Fax 617-732 7337,
| | - Steven A Shea
- Associate Professor of Medicine, Harvard Medical School and Division of Sleep Medicine, Brigham & Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA. Tel. 617-732 5778, Fax 617-279 0683,
| |
Collapse
|
60
|
Acosta JI, Mayer L, Talboom JS, Zay C, Scheldrup M, Castillo J, Demers LM, Enders CK, Bimonte-Nelson HA. Premarin improves memory, prevents scopolamine-induced amnesia and increases number of basal forebrain choline acetyltransferase positive cells in middle-aged surgically menopausal rats. Horm Behav 2009; 55:454-64. [PMID: 19101559 PMCID: PMC2775815 DOI: 10.1016/j.yhbeh.2008.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/15/2008] [Accepted: 11/19/2008] [Indexed: 11/28/2022]
Abstract
Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 microg), CEE-Medium (20 microg) or CEE-High (30 microg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 beta-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.
Collapse
Affiliation(s)
- Jazmin I. Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287
| | - Loretta Mayer
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | | | - Cynthia Zay
- Department of Psychology, Arizona State University, Tempe, AZ 85287
| | | | | | - Laurence M. Demers
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, PA
| | - Craig K. Enders
- Department of Psychology, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
61
|
Monteiro SC, de Mattos CB, Ben J, Netto CA, Wyse ATS. Ovariectomy impairs spatial memory: prevention and reversal by a soy isoflavone diet. Metab Brain Dis 2008; 23:243-53. [PMID: 18648916 DOI: 10.1007/s11011-008-9093-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/01/2008] [Indexed: 02/05/2023]
Abstract
Since a previous study has shown that ovariectomy impairs spatial memory, we, herein, investigate the influence of pre- and post-treatment with a soy diet on the effects elicited by ovariectomy on spatial memory. In the pre-treatment, 20-day-old female Wistar rats were first fed for 60 days on a standard diet with casein (control) or a soy diet. At 80 days of age, the animals were assigned to one of the following groups: sham (submitted to surgery without removal of ovaries) and ovariectomized. One week after surgery, the rats were submitted to behavioral testing. In the post-treatment, 80-day-old female rats were assigned to one of the following groups: sham and ovariectomized. One week after surgery, animals were fed for 30 days with the same diet described above. Then, rats were submitted to water maze testing. Pre-treatment for two months before ovariectomy with the soy diet effectively prevented the increase in latency in finding the platform on the fifth day of training in the ovariectomized group. Ovariectomized rats subjected to soy diet post-treatment reversed the increase in latency to find the platform in the ovariectomized group on the fifth day of training and, the decrease in the time spent in target quadrant, the increase in the time spent in opposite quadrant and the latency to cross the platform location. Results show that both pre- and post-treatment protected against the impairment of memory, caused by ovariectomy. Post-treatment reversed various parameters of memory reference, indicating that post-treatment was more efficient than pre-treatment. Based on these findings, we suggest that soy diet (rich in isoflavones) may represent a novel therapeutic strategy to prevent or to treat cognitive symptoms found in some menopausal women.
Collapse
Affiliation(s)
- Siomara C Monteiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcellos, 2600-Anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
62
|
Fu Y, Wang C, Wang J, Lei Y, Ma Y. LONG-TERM EXPOSURE TO EXTREMELY LOW-FREQUENCY MAGNETIC FIELDS IMPAIRS SPATIAL RECOGNITION MEMORY IN MICE. Clin Exp Pharmacol Physiol 2008; 35:797-800. [DOI: 10.1111/j.1440-1681.2008.04922.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Talboom JS, Williams BJ, Baxley ER, West SG, Bimonte-Nelson HA. Higher levels of estradiol replacement correlate with better spatial memory in surgically menopausal young and middle-aged rats. Neurobiol Learn Mem 2008; 90:155-63. [PMID: 18485753 DOI: 10.1016/j.nlm.2008.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/25/2022]
Abstract
The current study investigated whether, for spatial reference memory, age impacts (1) sensitivity to surgical ovarian hormone loss (Ovx), (2) response to estradiol therapy (ET), and (3) the relation between circulating estradiol levels and memory scores in ovary-intact sham and Ovx plus ET rats. Young, middle-aged and aged Fischer-344 rats received sham, Ovx or Ovx plus ET treatments, and were then tested on the Morris maze. After the last test trial, a probe trial was given whereby the platform was removed. Circulating estradiol levels were then determined and correlated with performance. In Study 1, Ovx facilitated learning on day one, but impaired performance after day one, in young rats. Ovx did not influence performance in middle-aged rats. In young and middle-aged Ovx rats, ET enhanced performance with higher exogenous estradiol levels correlating with better performance during testing and the probe trial. There was no relationship between endogenous estradiol levels and performance in sham young or middle-aged rats. Study 2 showed that, like middle-aged rats, aged rats were not impacted by Ovx. Further, for aged Ovx rats, the ET regimen that was beneficial at earlier ages was no longer effective during test trials, and had only minor benefits for platform localization as assessed by the probe trial. Collectively, the findings suggest that the effects of Ovx as well as responsivity to the currently utilized ET regimen changes with age. Further, there appears to be a distinction between sensitivity to Ovx and responsiveness to ET after Ovx for spatial reference memory performance.
Collapse
Affiliation(s)
- Joshua S Talboom
- Department of Psychology, Arizona State University, Behavioral Neuroscience Division, P.O. Box 871104, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
64
|
Effects of estrogen on intracellular signaling pathways linked to activation of muscarinic acetylcholine receptors and on acetylcholinesterase activity in rat hippocampus. Biochem Pharmacol 2008; 75:1827-34. [DOI: 10.1016/j.bcp.2008.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/20/2022]
|
65
|
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M. Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer's disease. Life Sci 2007; 80:1897-905. [PMID: 17391708 DOI: 10.1016/j.lfs.2007.02.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/22/2006] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Estrogen deprivation and oxidative stress have been well established as two main factors closely related to the pathological development of Alzheimer's disease (AD). The aim of the present study is to investigate whether these two components act synergistically to accelerate the pathophysiological course of AD. To do this, we examined the effect of long-term intraperitoneal administration of D-galactose (D-gal) into ovariectomized (OVX) rats. Six weeks later, the OVX and d-gal-injected rats exhibited a higher degree of cognitive and memory impairment. This was accompanied by cholinergic neuronal loss in the forebrain and synaptic degeneration in the hippocampus and cerebral cortex which was not observed in intact controls, animals receiving injections of d-gal alone, untreated OVX animals or OVX animals receiving both D-gal and 17-beta estradiol. The typical histopathological alterations associated with AD, including intracellular deposition of amyloid beta peptide and the appearance of intracellular neurofibrillary tangles and nuclear granulovacuolar bodies, were observed in the hippocampus of OVX and D-gal-injected rats but not in other control groups. These results strongly suggest that estrogen deprivation and oxidative stress behave synergistically to enhance the development and progression of AD. Long-term OVX combined with D-gal injection serves as an ideal AD rodent model capable of mimicking pathological, neurochemical and behavioral alterations in AD.
Collapse
Affiliation(s)
- Xiangdong Hua
- Department of Human Anatomy, Histology and Embryology, Institute of Neurosciences, Nanjing Medical University, Nanjing, 210029 China
| | | | | | | | | | | | | |
Collapse
|
66
|
Bimonte-Nelson HA, Francis KR, Umphlet CD, Granholm AC. Progesterone reverses the spatial memory enhancements initiated by tonic and cyclic oestrogen therapy in middle-aged ovariectomized female rats. Eur J Neurosci 2006; 24:229-42. [PMID: 16882019 DOI: 10.1111/j.1460-9568.2006.04867.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While some research has indicated that ovarian hormone therapy (HT) benefits memory and decreases risk of Alzheimer's disease in menopausal women, several newer studies have shown null or detrimental effects. Despite the null and negative cognitive findings, the numerous studies showing positive effects beg the question of what factors determine whether HT acts as a neuroprotectant or a risk factor for brain functioning. Using middle-aged female rats, we directly compared six HTs. We evaluated the effects of ovariectomy, tonic low-dose, tonic high-dose and biweekly cyclic estradiol treatment, as well as whether progesterone altered the effectiveness of any one of these oestrogen regimens. Animals were tested on spatial and complex cued (intramaze patterns) reference memory using variants of the Morris maze. The tonic low-dose and cyclic estradiol treatments improved spatial performance, while the addition of progesterone reversed these beneficial cognitive effects of estradiol. Additionally, all groups learned to locate the platform on the cued task; however, an egocentric circling strategy was used with sham ovary-intact and hormone-replacement groups showing the most efficient search strategy. Although the question of memory retention 8 weeks after the first cognitive assessment was addressed, a large number of animals died between the first and second test, rendering the retest uninterpretable for many group comparisons. Specifically, both doses of tonic estradiol dramatically increased the number of deaths during the 17-week experiment, while the cyclic estradiol treatment did not. Progesterone decreased the number of deaths due to tonic estradiol treatment. Our findings suggest that the dose of estradiol replacement as well as the presence of progesterone influences the cognitive outcome of estradiol treatment. Further, there appears to be a dissociation between HT effects on cognition and mortality rates.
Collapse
|
67
|
Feng Z, Qin C, Chang Y, Zhang JT. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer's disease. Free Radic Biol Med 2006; 40:101-9. [PMID: 16337883 DOI: 10.1016/j.freeradbiomed.2005.08.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 08/10/2005] [Accepted: 08/15/2005] [Indexed: 11/20/2022]
Abstract
Multiple lines of evidence demonstrated that increased brain oxidative stress is a key feature of Alzheimer's disease (AD). Melatonin is a potent endogenous antioxidant and free radical scavenger. A transgenic mouse model for AD mimics the accumulation of senile plaques, neuronal loss, and memory impairment. Four-month-old transgenic mice were administrated melatonin at 10 mg/kg for 4 months. We investigated the long-term influence of melatonin on these mice before amyloid plaques were deposited. We found an increase in the levels of brain thiobarbituric acid-reactive substances (TBARS) and a decrease in glutathione (GSH) content, as well as accelerated upregulation of the apoptotic-related factors, such as Bax, caspase-3, and prostate apoptosis response-4 (Par-4) in transgenic mice, but not in wild-type (WT) littermates. Significantly, the increase in TBARS levels, reduction in superoxide dismutase activity, and GSH content were reinstated by melatonin. In addition, transgenic mice administered melatonin (10 mg/kg) showed a significant reduction in upregulated expression of Bax, caspase-3 and Par-4, indicating inhibited triggering of neuronal apoptosis. These results supported the hypothesis that oxidative stress was an early event in AD pathogenesis and that antioxidant therapy may be beneficial only if given at this stage of the disease process. In sharp contrast to conventional antioxidants, melatonin crosses the blood-brain barrier, is relatively devoid of toxicity, and constitutes a potential therapeutic candidate in AD treatment.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannong Tan Street, Beijing 10050, Peoples's Republic of China.
| | | | | | | |
Collapse
|
68
|
Feng Z, Zhang JT. Long-term melatonin or 17beta-estradiol supplementation alleviates oxidative stress in ovariectomized adult rats. Free Radic Biol Med 2005; 39:195-204. [PMID: 15964511 DOI: 10.1016/j.freeradbiomed.2005.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/25/2005] [Accepted: 03/07/2005] [Indexed: 01/11/2023]
Abstract
Melatonin is an endogenously generated potent antioxidant. Our previous results indicated that melatonin improved learning and memory deficits in the transgenic mouse model of Alzheimer's disease (AD) and ovariectomized (OVX) rats by improving cholinergic nerve system dysfunction, preventing apoptosis. In this study we aim to investigate the antioxidative effects of melatonin or estradiol in the brains of ovariectomized rats. OVX Sprague-Dawley rats received daily injections of melatonin (5, 10, or 20 mg/kg), 17beta-estradiol (80 microg/kg), or sesame oil for 16 weeks. We found an increase in brain mitochondrial thiobarbituric acid-reactive substances (TBARS) levels, a decrease in mitochondrial glutathione (GSH) content as well as mitochondrial superoxide dismutase (SOD) activity and upregulation of the apoptotic-related factors, such as Bax, Caspase-3, and Prostate apoptosis response-4 (Par-4) in the frontal cortex of OVX rats. In addition to oxidative stress, OVX also caused decreased activities of mitochondrial respiration complex I and complex IV, which implicated mitochondrial dysfunction. Melatonin or 17beta-estradiol antagonized the detrimental effects induced by OVX. Furthermore, immunohistochemistry results revealed that the abnormal upregulation of the apoptotic related factor such as Bax, Caspase-3, and (Par-4) greatly reduced expression after melatonin or 17beta-estradiol supplement action. These findings demonstrate the important effects of melatonin or 17beta-estradiol on postmenopausal neuropathy and support the potential application of melatonin in the treatment of dementia in postmenopausal women. Early, long-term melatonin application is a promising strategy which could potentially be applied in a clinical setting.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Xiannong Tan Street, Beijing 10050, People's Republic of China
| | | |
Collapse
|
69
|
Monteiro SC, Matté C, Delwing D, Wyse ATS. Ovariectomy increases Na+, K+-ATPase, acetylcholinesterase and catalase in rat hippocampus. Mol Cell Endocrinol 2005; 236:9-16. [PMID: 15869839 DOI: 10.1016/j.mce.2005.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 03/11/2005] [Accepted: 03/23/2005] [Indexed: 11/30/2022]
Abstract
In the present work we investigated the effect of ovariectomy on Na+, K+-ATPase and acetylcholinesterase (AChE) activities in rat hippocampus. We also studied some parameters of oxidative stress, namely total radical-trapping antioxidant potential (TRAP), thiobarbituric acid-reactive substances (TBA-RS), as well as the antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Our hypothesis is that ovariectomy might cause alterations in essential enzyme activities necessary to brain normal functioning and that these chances could be caused by oxidative stress. Female adult Wistar rats were divided into three groups: (1) naive (control); (2) sham-operated; and (3) ovariectomized. Thirty days after ovariectomy rats were sacrificed. Results showed that rats subjected to ovariectomy presented a significant increase in Na+, K+-ATPase, AChE and CAT activities, but did not change the oxidative stress parameters studied when compared to sham or naive rats. Since ovariectomy mimics postmenopausal changes, our findings showing alteration in the activities of brain Na+, K+-ATPase, AChE and CAT may be related to problems in postmenopausal women.
Collapse
Affiliation(s)
- Siomara C Monteiro
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
70
|
Feng Z, Zhang JT. Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 2004; 37:1790-801. [PMID: 15528038 DOI: 10.1016/j.freeradbiomed.2004.08.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/29/2004] [Accepted: 08/26/2004] [Indexed: 12/22/2022]
Abstract
Astrocytosis is a common feature of amyloid plaques. The Abeta-astrocyte interaction produces a detrimental effect on neurons, which may contribute to neurodegeneration in Alzheimer disease (AD). The regulation of astrocyte apoptosis is essential to physiological and pathological processes in the CNS. Melatonin is a potent antioxidant and free radical scavenger. Previously, we showed that melatonin alleviated the learning and memory deficits in the APP 695 transgenic mouse model of AD. In this study, the importance of melatonin in the management of Abeta-induced apoptosis in an astrocyte-like cell is discussed. We found that rat astroglioma C6 cells treated with Abeta25-35 or Abeta1-42 undergo apoptosis and that melatonin pretreatment at 10(-5), 10(-6), and 10(-7) M significantly attenuates Abeta25-35- or Abeta1-42-induced apoptosis. The antiapoptotic effects of melatonin were extremely reproducible and corroborated by multiple quantitative methods, including an MTT cell viability assay, Hoechst 33342 nuclei staining, DNA fragmentation analysis, and flow cytometric analysis. In addition, melatonin effectively suppressed Abeta1-42-induced nitric oxide formation, remarkably prevented Abeta1-40-induced intracellular calcium overload, and significantly alleviated Abeta1-40-induced membrane rigidity. Our results demonstrate that, in addition to the beneficial effects of providing direct antioxidant protection to neurons, melatonin may enhance neuroprotection against Abeta-induced neurotoxicity by promoting the survival of glial cells.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, People's Republic of China.
| | | |
Collapse
|
71
|
Abstract
The finding that the amyloid beta protein (Abeta) has neurotoxic properties and that such effects are partly mediated by free radicals has provided insights into the mechanisms of cell death in Alzheimer's disease (AD) and an avenue to explore new therapeutic approaches. Melatonin is a potent antioxidant and free radical scavenger. Previously, we showed that long-term application of melatonin alleviated the learning and memory deficits in the APP695 transgenic mouse model of AD. In this study, the importance of melatonin in the management of Abeta-induced apoptosis was investigated. Rat pheochromocytoma (PC12) cells treated with either Abeta25-35 or Abeta1-42 underwent apoptosis. Melatonin pretreatment at 10(-5), 10(-6) and 10(-7) m significantly attenuated Abeta25-35- or Abeta1-42-induced apoptosis in PC12 cells. The anti-apoptotic effects of melatonin were highly reproducible and corroborated by multiple quantitative methods, including MTT cell viability assay, Hoechst 33342 nuclei staining, DNA fragmentation analysis, and flow cytometric analysis. In addition, melatonin effectively suppressed Abeta1-42-induced nitric oxide formation, potently prevented Abeta1-40-induced intracellular calcium overload and significantly alleviated Abeta1-40-induced membrane rigidity. These results suggest that the mechanism of Abeta neurotoxicity involves oxidative stress, and the neuroprotective effects of melatonin are, at least in part, associated with its antioxidant properties. The use of melatonin or its derived analogs should be explored as a therapeutic approach in AD.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Pharmacology, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannong Tan Street, Beijing, 10050, P.R. China.
| | | |
Collapse
|