51
|
Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy. PLoS One 2017; 12:e0185282. [PMID: 29023489 PMCID: PMC5638251 DOI: 10.1371/journal.pone.0185282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
Flexor tendinopathy is a common problem affecting humans and animals. Tendon healing is poorly understood and the outcomes of conservative and surgical management are often suboptimal. While often considered a localized injury, recent evidence indicates that in the short term, tendinopathic changes are distributed widely throughout the tendon, remote from the lesion itself. Whether these changes persist throughout healing is unknown. The aim of this study was to document gene expression, histopathological and biomechanical changes that occur throughout the superficial digital flexor tendon (SDFT) up to 16 weeks post-injury, using an ovine surgical model of tendinopathy. Partial tendon transection was associated with decreased gene expression for aggrecan, decorin, fibromodulin, tissue inhibitors of metalloproteinases (TIMPS 1, 2 and 3), collagen I and collagen II. Gene expression for collagen III, lumican and matrix metalloproteinase 13 (MMP13) increased locally around the lesion site. Expression of collagen III and MMP13 decreased with time, but compared to controls, collagen III, MMP13 and lumican expression remained regionally high throughout the study. An increase in TIMP3 was observed over time. Histologically, operated tendons had higher pathology scores than controls, especially around the injured region. A chondroid phenotype was observed with increased cellular rounding and marked proteoglycan accumulation which only partially improved with time. Biomechanically, partial tendon transection resulted in a localized decrease in elastic modulus (in compression) but only at 8 weeks postoperatively. This study improves our understanding of tendon healing, demonstrating an early ‘peak’ in pathology characterized by altered gene expression and notable histopathological changes. Many of these pathological changes become more localized to the region of injury during healing. Collagen III and MMP13 expression levels remained high close to the lesion throughout the study and may reflect the production of tendon tissue with suboptimal biomechanical properties. Further studies evaluating the long-term response of tendon to injury (6–12 months) are warranted to provide additional information on tendon healing and provide further understanding of the mechanisms underlying the pathology observed in this study.
Collapse
|
52
|
Garvican ER, Salavati M, Smith RKW, Dudhia J. Exposure of a tendon extracellular matrix to synovial fluid triggers endogenous and engrafted cell death: A mechanism for failed healing of intrathecal tendon injuries. Connect Tissue Res 2017; 58:438-446. [PMID: 27726447 DOI: 10.1080/03008207.2016.1245726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The purpose of this study was to investigate the effect of normal synovial fluid (SF) on exposed endogenous tendon-derived cells (TDCs) and engrafted mesenchymal stem cells (MSCs) within the tendon extracellular matrix. METHODS Explants from equine superficial digital flexor (extra-synovial) and deep digital flexor tendons (DDFTs) from the compressed, intra-synovial and the tensile, extra-synovial regions were cultured in allogeneic or autologous SF-media. Human hamstring explants were cultured in allogeneic SF. Explant viability was assessed by staining. Proliferation of equine monolayer MSCs and TDCs in SF-media and co-culture with DDFT explants was determined by alamarblue®. Non-viable Native Tendon matrices (NNTs) were re-populated with MSCs or TDCs and cultured in SF-media. Immunohistochemical staining of tendon sections for the apoptotic proteins caspase-3, -8, and -9 was performed. RESULTS Contact with autologous or allogeneic SF resulted in rapid death of resident tenocytes in equine and human tendon. SF did not affect the viability of equine epitenon cells, or of MSCs and TDCs in the monolayer or indirect explant co-culture. MSCs and TDCs, engrafted into NNTs, died when cultured in SF. Caspase-3, -8, and -9 expression was the greatest in SDFT explants exposed to allogeneic SF. CONCLUSIONS The efficacy of cells administered intra-synovially for tendon lesion repair is likely to be limited, since once incorporated into the matrix, cells become vlnerable to the adverse effects of SF. These observations could account for the poor success rate of intra-synovial tendon healing following damage to the epitenon and contact with SF, common with most soft tissue intra-synovial pathologies.
Collapse
Affiliation(s)
- Elaine R Garvican
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| | - Mazdak Salavati
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| | - Roger K W Smith
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| | - Jayesh Dudhia
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| |
Collapse
|
53
|
Godinho MSC, Thorpe CT, Greenwald SE, Screen HRC. Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing. Sci Rep 2017; 7:9713. [PMID: 28855560 PMCID: PMC5577209 DOI: 10.1038/s41598-017-09995-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy.
Collapse
Affiliation(s)
- Marta S C Godinho
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Steve E Greenwald
- Blizard Institute, Barts and London School of Medicine and Dentistry, Turner Street, London, E1 11BB, United Kingdom
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.
| |
Collapse
|
54
|
Dynamic weight bearing analysis is effective for evaluation of tendinopathy using a customized corridor with multi-directional force sensors in a rat model. Sci Rep 2017; 7:8708. [PMID: 28821728 PMCID: PMC5562883 DOI: 10.1038/s41598-017-07812-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/03/2017] [Indexed: 01/03/2023] Open
Abstract
Few studies discuss kinetic changes in tendinopathy models. We propose a customized corridor to evaluate dynamic weight bearing (DWB) and shearing forces. Sixty rats were randomly given ultrasound-assisted collagenase injections (Collagenase rats) or needle punctures (Control rats) in their left Achilles tendons, and then evaluated 1, 4, and 8 weeks later. The Collagenase rats always had significantly (p < 0.001) higher histopathological and ultrasound feature scores than did the Controls, significantly lower DWB values in the injured than in the right hindlimbs, and compensatorily higher (p < 0.05) DWB values in the contralateral than in the left forelimbs. The injured hindlimbs had lower outward shearing force 1 and 4 weeks later, and higher (p < 0.05) push-off shearing force 8 weeks later, than did the contralateral hindlimbs. Injured Control rat hindlimbs had lower DWB values than did the contralateral only at week 1. The Collagenase rats had only lower static weight bearing ratios (SWBRs) values than did the Controls at week 1 (p < 0.05). Our customized corridor showed changes in DWB compatible with histopathological and ultrasound feature changes in the rat tendinopathy model. The hindlimb SWBRs did not correspond with any tendinopathic changes.
Collapse
|
55
|
Lee SY, Chieh HF, Lin CJ, Jou IM, Sun YN, Kuo LC, Wu PT, Su FC. Characteristics of Sonography in a Rat Achilles Tendinopathy Model: Possible Non-invasive Predictors of Biomechanics. Sci Rep 2017; 7:5100. [PMID: 28698601 PMCID: PMC5506063 DOI: 10.1038/s41598-017-05466-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to investigate the dynamic changes of histopathology, biomechanical properties, echo intensity, and ultrasound features in a collagenase-induced tendinopathy model of rat Achilles tendons, and to examine the associations among biomechanical properties, echo intensity, and ultrasound features. Forty-two rats received an ultrasound-guided collagenase injection on their left Achilles tendons, and needle puncture on the right ones as the control. At four, eight, and twelve weeks post-injury, the tendons were examined via measurements of their biomechanical properties, histopathological and ultrasonographic characteristics. The injured tendons showed significantly higher histopathological scores, lower Young’s modulus, and higher ultrasound feature scores than the those of control ones throughout the study period. Up to week 12, all injured tendons showed defective healing. The neovascularization score had a significant negative linear association with the failure stress and Young’s modulus. Maximum normalized echo intensity had a significant positive linear association with maximum strain. Therefore, neovascularization and maximum normalized echo intensity are associated with mechanically altered tendinopathic tendons. Non-invasive ultrasound methodology, including echo intensity and ultrasound feature scores, may provide useful information about biomechanical properties of tendinopathic tendons.
Collapse
Affiliation(s)
- Su-Ya Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Feng Chieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Ju Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Nien Sun
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.,Department of Computer Science & Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan. .,Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
56
|
Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, Hellige M, Rohn K, Jagodzinski M, Welke B, Hurschler C, Conrad S, Skutella T, van de Lest C, van Weeren R, Stadler PM. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: a controlled experimental trial. Stem Cell Res Ther 2017; 8:129. [PMID: 28583184 PMCID: PMC5460527 DOI: 10.1186/s13287-017-0564-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background Adipose tissue is a promising source of mesenchymal stromal cells (MSCs) for the treatment of tendon disease. The goal of this study was to assess the effect of a single intralesional implantation of adipose tissue-derived mesenchymal stromal cells (AT-MSCs) on artificial lesions in equine superficial digital flexor tendons (SDFTs). Methods During this randomized, controlled, blinded experimental study, either autologous cultured AT-MSCs suspended in autologous inactivated serum (AT-MSC-serum) or autologous inactivated serum (serum) were injected intralesionally 2 weeks after surgical creation of centrally located SDFT lesions in both forelimbs of nine horses. Healing was assessed clinically and with ultrasound (standard B-mode and ultrasound tissue characterization) at regular intervals over 24 weeks. After euthanasia of the horses the SDFTs were examined histologically, biochemically and by means of biomechanical testing. Results AT-MSC implantation did not substantially influence clinical and ultrasonographic parameters. Histology, biochemical and biomechanical characteristics of the repair tissue did not differ significantly between treatment modalities after 24 weeks. Compared with macroscopically normal tendon tissue, the content of the mature collagen crosslink hydroxylysylpyridinoline did not differ after AT-MSC-serum treatment (p = 0.074) while it was significantly lower (p = 0.027) in lesions treated with serum alone. Stress at failure (p = 0.048) and the modulus of elasticity (p = 0.001) were significantly lower after AT-MSC-serum treatment than in normal tendon tissue. Conclusions The effect of a single intralesional injection of cultured AT-MSCs suspended in autologous inactivated serum was not superior to treatment of surgically created SDFT lesions with autologous inactivated serum alone in a surgical model of tendinopathy over an observation period of 22 weeks. AT-MSC treatment might have a positive influence on collagen crosslinking of remodelling scar tissue. Controlled long-term studies including naturally occurring tendinopathies are necessary to verify the effects of AT-MSCs on tendon disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0564-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Geburek
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Florian Roggel
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Hans T M van Schie
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Roberto Estrada
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Kathrin Weber
- Pferdeklink Kirchheim, Nürtinger Straße 200, 73230, Kirchheim unter Teck, Germany
| | - Maren Hellige
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Michael Jagodzinski
- Department of Orthopedic Trauma, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Chris van de Lest
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Peter M Stadler
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| |
Collapse
|
57
|
Tarafder S, Chen E, Jun Y, Kao K, Sim KH, Back J, Lee FY, Lee CH. Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. FASEB J 2017; 31:3991-3998. [PMID: 28533328 DOI: 10.1096/fj.201700071r] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Tendon stem/progenitor cells (TSCs) have been found in different anatomic locations and showed a promising regenerative potential. We identified a role of TSCs in the regulation of inflammation during healing of acute tendon injuries. Delivery of connective tissue growth factor (CTGF) into full-transected rat patellar tendons significantly increased the number of CD146+ TSCs, leading to enhanced healing. In parallel, CTGF delivery significantly reduced the number of iNOS+ M1 macrophages and increased the expression of anti-inflammatory IL-10 at 2 d after surgery, with over 85% CD146+ TSCs expressing IL-10. By 1 wk, the elevated IL-10 expression remained, and IL-6 expression was significantly attenuated in CTGF-delivered tendon healing. Matrix metalloproteinase (MMP)-3 expression in CTGF-delivered tendon was organized along with the reorienting collagen fibers by 1 wk after surgery, in comparison with the control group showing the abundant MMP-3 expression localized at healing junction. Tissue inhibitor of metalloprotease (TIMP)-3 was expressed in CD146+ TSCs at 1 wk with CTGF, in contrast to control with no TIMP-3 expression. In vitro, IL-10 expression was detected only when tendon cells were stimulated with IL-1β, and CTGF and significantly higher in CD146+ TSCs than CD146- tendon cells. Similarly, TIMP-3 expression was detected only when treated with CTGF or CTGF and IL-1β that is significantly higher in CD146+ TSCs compared to CD146- tendon cells. Signaling study with specific inhibitors and Western blot analysis demonstrated that CTGF-induced expression of IL-10 and TIMP-3 in CD146+ TSCs are regulated by JNK/signal transducer and activator of transcription 3 signaling. Taken together, these findings suggest anti-inflammatory roles of CTGF-stimulated TSCs that are likely associated with improved tendon healing.-Tarafder, S., Chen, E., Jun, Y., Kao, K., Sim, K. H., Back, J., Lee, F. Y., Lee, C. H. Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, New York, USA
| | - Esther Chen
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, New York, USA
| | - Yena Jun
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, New York, USA
| | - Kristy Kao
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, New York, USA
| | - Kun Hee Sim
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, New York, USA
| | - Jungho Back
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chang H Lee
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, New York, USA;
| |
Collapse
|
58
|
Gao S, Tang K, Zhang J, Li P, Yang Z, Cui H, Yang M, Tang H, Zhou M. [Effect of different intensity treadmill training on repair of micro-injured Achilles tendon in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:574-581. [PMID: 29798548 DOI: 10.7507/1002-1892.201611054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the effect of different intensity treadmill training on the repair of micro-injured Achilles tendon induced by collagenase in rats. Methods Seventy-two 8-week-old male Sprague Dawley rats (weighing, 200-250 g) were selected. After adaptive treadmill training for 1 week, rats were injected with 30 μL type I collagenase solution (10 mg/mL) into both Achilles tendons to make micro-injured Achilles tendon models. After 1 week of cage feeding, the rats were randomly divided into 3 groups: the control group, the low-intensity group, and the high-intensity group, 24 rats each group. The rats in control group could move freely, and the rats underwent daily treadmill training at the intensity of 13 m/min and 20 min/d in the low-intensity group and at the intensity of 17 m/min and 60 min/d in the high-intensity group. At immediate, 1 week, and 4 weeks after training, bilateral Achilles tendons were collected from 8 rats of each group for gross observation, histological analysis, and mechanical testing. Results At immediate after training, there was no significant difference in the gross observation, histological observation, and biomechanical properties of the Achilles tendon between groups ( P>0.05). The gross observation showed connective tissue hyperplasia near Achilles tendon and lackluster tendon in each group at 1 week; hyperplasia significantly reduced in the low-intensity group when compared with the control group, and there were more connective tissue and a large number of neovascularization in the high-intensity group at 4 weeks. At 1 week, there was no significant difference in the semi-quantitative histological total score between groups ( P>0.05), but there were significant differences in vascularity between low-intensity group or high-intensity group and control group ( P<0.05). At 4 weeks, the semi-quantitative histological total score was significantly higher in high-intensity group than control group and low-intensity group ( P<0.05), and in control group than low-intensity group ( P<0.05). There were significant differences in collagen arrangement, cell morphology, abnormal cells, and vascularity between low-intensity group and high-intensity group or control group ( P<0.05). And there was significant difference in abnormal cells between high-intensity group and control group ( P<0.05). The mechanical testing showed that there was no significant difference in cross-sectional area of the Achilles tendon, the ultimate force, tensile strength, and elastic modulus between groups at 1 week ( P>0.05); the low-intensity group was significantly higher than the control group in the ultimate force and the tensile strength ( P<0.05), and than high-intensity group in the ultimate force and elastic modulus ( P<0.05), but no significant difference was found in the other indexes between groups ( P>0.05) at 4 weeks. Conclusion Low-intensity treadmill training can promote the repair of rat micro-injured Achilles tendon induced by collagenase.
Collapse
Affiliation(s)
- Shang Gao
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Kanglai Tang
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038,
| | - Jiqiang Zhang
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Pao Li
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Zhijin Yang
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Haifeng Cui
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Mingyu Yang
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Hong Tang
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Mei Zhou
- Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| |
Collapse
|
59
|
Isometric Contractions Are More Analgesic Than Isotonic Contractions for Patellar Tendon Pain: An In-Season Randomized Clinical Trial. Clin J Sport Med 2017; 27:253-259. [PMID: 27513733 DOI: 10.1097/jsm.0000000000000364] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to compare the immediate analgesic effects of 2 resistance programs in in-season athletes with patellar tendinopathy (PT). Resistance training is noninvasive, a principle stimulus for corticospinal and neuromuscular adaptation, and may be analgesic. DESIGN Within-season randomized clinical trial. Data analysis was conducted blinded to group. SETTING Subelite volleyball and basketball competitions. PARTICIPANTS Twenty jumping athletes aged more than 16 years, participating in games/trainings 3 times per week with clinically diagnosed PT. INTERVENTIONS Two quadriceps resistance protocols were compared; (1) isometric leg extension holds at 60 degrees knee flexion (80% of their maximal voluntary isometric contraction) or (2) isotonic leg extension (at 80% of their 8 repetition maximum) 4 times per week for 4 weeks. Time under load and rest between sets was matched between groups. MAIN OUTCOME MEASURES (1) Pain (0-10 numerical rating score) during single leg decline squat (SLDS), measured preintervention and postintervention sessions. (2) VISA-P, a questionnaire about tendon pain and function, completed at baseline and after 4 weeks. RESULTS Twenty athletes with PT (18 men, mean 22.5 ± 4.7 years) participated (isotonic n = 10, isometric n = 10). Baseline median SLDS pain was 5/10 for both groups (isotonic range 1-8, isometric range 2-8). Isometric contractions produced significantly greater immediate analgesia (P < 0.002). Week one analgesic response positively correlated with improvements in VISA-P at 4 weeks (r = 0.64). CONCLUSIONS Both protocols appear efficacious for in-season athletes to reduce pain, however, isometric contractions demonstrated significantly greater immediate analgesia throughout the 4-week trial. Greater analgesia may increase the ability to load or perform.
Collapse
|
60
|
|
61
|
Fitzpatrick J, Bulsara M, Zheng MH. The Effectiveness of Platelet-Rich Plasma in the Treatment of Tendinopathy: A Meta-analysis of Randomized Controlled Clinical Trials. Am J Sports Med 2017; 45:226-233. [PMID: 27268111 DOI: 10.1177/0363546516643716] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendinopathy is very common in the general population. There are increasing numbers of clinical studies referring to platelet-rich plasma (PRP) and platelet-poor plasma (PPP) as treatments for tendinopathy. PURPOSE To perform a meta-analysis of the outcomes of the PRP groups by preparation method and injection technique in tendinopathy. To determine the clinical effectiveness of the preparations and to evaluate the effect of controls used in the studies reviewed. STUDY DESIGN Systematic review and meta-analysis. METHODS The PubMed, EMBASE, CINAHL, and Medline databases were searched in March 2012, April 2014, and August 2015, and randomized controlled trials using autologous blood, PRP, PPP, or autologous conditioned plasma in tendinopathy with outcome measures of pain and follow-up time of 3 months were included in this review. Trials including surgery, tendon tears, and muscle or ligament injuries were excluded. Study quality was assessed using the Cochrane Collaboration risk-of-bias tool by 2 reviewers. Data were pooled using random-effects meta-analysis. The primary outcome measure was a change in pain intensity. Where more than 1 pain scale was included, a functional score was selected ahead of a visual analog scale score. RESULTS A total of 18 studies (1066 participants) were included. Eight studies were deemed to be at low risk of bias. The most significant outcomes in the PRP groups were seen in those treated with highly cellular leukocyte-rich PRP (LR-PRP) preparations: GPS kit (standardized mean difference [SMD], 35.75; 95% CI, 28.40-43.10), MyCells kit (SMD, 31.84; 95% CI, 17.56-46.13), Prosys kit (SMD, 42.99; 95% CI, 37.73-48.25), and unspecified LR-PRP (SMD, 34.62; 95% CI, 31.69-37.55). When the LR-PRP system types were grouped, there was a strongly positive effect (SMD, 36.38; 95% CI, 34.00-38.77) when compared with leukocyte-poor PRP (SMD, 26.77; 95% CI, 18.31-35.22). In assessing the control groups, there was no clear difference between different types of control injections: saline (SMD, 14.62; 95% CI, 10.74-18.50), local anesthetic (SMD, 15.00; 95% CI, 7.66-22.34), corticosteroid (SMD, 23.82; 95% CI, 10.74-18.50), or dry needling (SMD, 25.22; 95% CI, 21.27-29.16). CONCLUSION There is good evidence to support the use of a single injection of LR-PRP under ultrasound guidance in tendinopathy. Both the preparation and intratendinous injection technique of PRP appear to be of great clinical significance.
Collapse
Affiliation(s)
| | - Max Bulsara
- University of Notre Dame Australia, Freemantle, Australia
| | - Ming H Zheng
- University of Western Australia, Perth, Australia
| |
Collapse
|
62
|
Haslerud S, Lopes-Martins RAB, Frigo L, Bjordal JM, Marcos RL, Naterstad IF, Magnussen LH, Joensen J. Low-Level Laser Therapy and Cryotherapy as Mono- and Adjunctive Therapies for Achilles Tendinopathy in Rats. Photomed Laser Surg 2017; 35:32-42. [DOI: 10.1089/pho.2016.4150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sturla Haslerud
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Lúcio Frigo
- Centro de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Jan Magnus Bjordal
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Labat Marcos
- Programa de Pós-Graduação em Biofotônica Aplicada as Ciências da Saúde, Universidade Nove de Julho, São Paulo, Brazil
| | - Ingvill Fjell Naterstad
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Liv Heide Magnussen
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Therapy, Physiotherapy and Radiography, Faculty of Health and Social Sciences, Bergen University College, Bergen, Norway
| | - Jon Joensen
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Therapy, Physiotherapy and Radiography, Faculty of Health and Social Sciences, Bergen University College, Bergen, Norway
| |
Collapse
|
63
|
Burk J, Berner D, Brehm W, Hillmann A, Horstmeier C, Josten C, Paebst F, Rossi G, Schubert S, Ahrberg AB. Long-Term Cell Tracking following Local Injection of Mesenchymal Stromal Cells in the Equine Model of Induced Tendon Disease. Cell Transplant 2016; 25:2199-2211. [DOI: 10.3727/096368916x692104] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tendon disease has been treated with multipotent mesenchymal stromal cells (MSCs) in the equine large-animal model with promising success. The aim of this study was to gain more insight into the fate and biodistribution of MSCs after local application into tendon lesions by long-term cell tracking in this large-animal model. Superficial digital flexor tendon lesions were induced in all limbs in six horses and injected with 10 × 10 6 Molday ION Rhodamine B™-labeled MSCs suspended in serum or serum alone. Follow-up was performed using low-field magnetic resonance imaging (MRI), flow cytometry, and histology. Cell tracking based on the hypointense artifacts induced by the superparamagnetic iron oxide (SPIO) labeling agent in MRI as well as based on Rhodamine B fluorescence was feasible. However, Prussian blue staining for assessment of histology was not entirely specific for SPIO. Labeled cells could be traced at their injection site by MRI as well as histology for the whole follow-up period of 24 weeks. Although the numbers of labeled cells within the injected tendon lesions decreased over time, part of the applied cells appeared to remain viable and integrated within the injured tissue. Furthermore, small numbers of labeled cells were identified in peripheral blood within the first 24 h after cell injection and could also be found until week 24 within the contralateral control tendon lesions that had been injected with serum. The present findings unveil details on MSC biodistribution and persistence after their local application, which are of clinical relevance with regard to MSC safety and mechanisms of action.
Collapse
Affiliation(s)
- Janina Burk
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
- Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
| | - Dagmar Berner
- Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | - Walter Brehm
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
- Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | - Aline Hillmann
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Carolin Horstmeier
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
- Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | - Christoph Josten
- Department of Orthopedics, Traumatology and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Felicitas Paebst
- Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | - Giacomo Rossi
- University of Camerino, School of Biosciences and Veterinary Medicine, Matelica (MC), Italy
| | - Susanna Schubert
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Annette B. Ahrberg
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
- Department of Orthopedics, Traumatology and Plastic Surgery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
64
|
Morita W, Snelling SJB, Dakin SG, Carr AJ. Profibrotic mediators in tendon disease: a systematic review. Arthritis Res Ther 2016; 18:269. [PMID: 27863509 PMCID: PMC5116130 DOI: 10.1186/s13075-016-1165-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Background Tendon disease is characterized by the development of fibrosis. Transforming growth factor beta (TGF-β), bone morphogenic proteins (BMPs) and connective tissue growth factor (CTGF) are key mediators in the pathogenesis of fibrotic disorders. The aim of this systematic review was to investigate the evidence for the expression of TGF-β, BMPs and CTGF along tendon disease progression and the response of tendon cells to these growth factors accordingly. Method We conducted a systematic screen of the scientific literature using the Medline database. The search terms used were “tendon AND TGF-β,” “tendon AND BMP” or “tendon AND CTGF.” Studies of human samples, animal tendon injury and overuse models were included. Results Thirty-three studies were included. In eight studies the expression of TGF-β, BMPs or CTGF was dysregulated in chronic tendinopathy and tendon tear patient tissues in comparison with healthy control tissues. The expression of TGF-β, BMPs and CTGF was increased and showed temporal changes in expression in tendon tissues from animal injury or overuse models compared with the healthy control (23 studies), but the pattern of upregulation was inconsistent between growth factors and also the type of animal model. No study investigated the differences in the effect of TGF-β, BMPs or CTGF treatment between patient-derived cells from healthy and diseased tendon tissues. Tendon cells derived from animal models of tendon injury showed increased expression of extracellular matrix protein genes and increased cell signaling response to TGF-β and BMP treatments compared with the control cells (two studies). Conclusion The expression of TGF-β, BMPs and CTGF in tendon tissues is altered temporally during healing in animal models of tendon injury or overuse, but the transition during the development of human tendon disease is currently unknown. Findings from this systematic review suggest a potential and compelling role for TGF-β, BMPs and CTGF in tendon disease; however, there is a paucity of studies analyzing their expression and stimulated cellular response in well-phenotyped human samples. Future work should investigate the dynamic expression of these fibrotic growth factors and their interaction with tendon cells using patient samples at different stages of human tendon disease. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1165-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK.
| | - Sarah Jane Bothwell Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK.,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK
| | - Stephanie Georgina Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK.,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK
| | - Andrew Jonathan Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK.,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK
| |
Collapse
|
65
|
Mallows A, Debenham J, Walker T, Littlewood C. Association of psychological variables and outcome in tendinopathy: a systematic review. Br J Sports Med 2016; 51:743-748. [DOI: 10.1136/bjsports-2016-096154] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2016] [Indexed: 12/23/2022]
|
66
|
Kuemmerle JM, Theiss F, Okoniewski MJ, Weber FA, Hemmi S, Mirsaidi A, Richards PJ, Cinelli P. Identification of Novel Equine (Equus caballus) Tendon Markers Using RNA Sequencing. Genes (Basel) 2016; 7:genes7110097. [PMID: 27834918 PMCID: PMC5126783 DOI: 10.3390/genes7110097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Although several tendon-selective genes exist, they are also expressed in other musculoskeletal tissues. As cell and tissue engineering is reliant on specific molecular markers to discriminate between cell types, tendon-specific genes need to be identified. In order to accomplish this, we have used RNA sequencing (RNA-seq) to compare gene expression between tendon, bone, cartilage and ligament from horses. We identified several tendon-selective gene markers, and established eyes absent homolog 2 (EYA2) and a G-protein regulated inducer of neurite outgrowth 3 (GPRIN3) as specific tendon markers using RT-qPCR. Equine tendon cells cultured as three-dimensional spheroids expressed significantly greater levels of EYA2 than GPRIN3, and stained positively for EYA2 using immunohistochemistry. EYA2 was also found in fibroblast-like cells within the tendon tissue matrix and in cells localized to the vascular endothelium. In summary, we have identified EYA2 and GPRIN3 as specific molecular markers of equine tendon as compared to bone, cartilage and ligament, and provide evidence for the use of EYA2 as an additional marker for tendon cells in vitro.
Collapse
Affiliation(s)
- Jan M Kuemmerle
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Felix Theiss
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Michal J Okoniewski
- Scientific IT Services, Swiss Federal Institute of Technology, CH 8092 Zurich, Switzerland.
| | - Fabienne A Weber
- Institute of Laboratory Animal Science, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Sonja Hemmi
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | - Ali Mirsaidi
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Peter J Richards
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Paolo Cinelli
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| |
Collapse
|
67
|
Lebaschi A, Deng XH, Zong J, Cong GT, Carballo CB, Album ZM, Camp C, Rodeo SA. Animal models for rotator cuff repair. Ann N Y Acad Sci 2016; 1383:43-57. [DOI: 10.1111/nyas.13203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Amir Lebaschi
- Tissue Engineering; Repair, and Regeneration Program
| | | | - Jianchun Zong
- Tissue Engineering; Repair, and Regeneration Program
| | | | | | - Zoe M. Album
- Tissue Engineering; Repair, and Regeneration Program
| | - Christopher Camp
- Tissue Engineering; Repair, and Regeneration Program
- Sports Medicine and Shoulder Service; Hospital for Special Surgery; New York New York
| | - Scott A. Rodeo
- Tissue Engineering; Repair, and Regeneration Program
- Sports Medicine and Shoulder Service; Hospital for Special Surgery; New York New York
| |
Collapse
|
68
|
Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR. Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons. Acta Biomater 2016; 42:308-315. [PMID: 27286677 PMCID: PMC5015572 DOI: 10.1016/j.actbio.2016.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/06/2016] [Accepted: 06/07/2016] [Indexed: 11/27/2022]
Abstract
Tendon is composed of rope-like fascicles, bound together by interfascicular matrix (IFM). Our previous work shows that the IFM is critical for tendon function, facilitating sliding between fascicles to allow tendons to stretch. This function is particularly important in energy storing tendons, which experience extremely high strains during exercise, and therefore require the capacity for considerable inter-fascicular sliding and recoil. This capacity is not required in positional tendons. Whilst we have previously described the quasi-static properties of the IFM, the fatigue resistance of the IFM in functionally distinct tendons remains unknown. We therefore tested the hypothesis that fascicles and IFM in the energy storing equine superficial digital flexor tendon (SDFT) are more fatigue resistant than those in the positional common digital extensor tendon (CDET). Fascicles and IFM from both tendon types were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results demonstrated that both fascicles and IFM from the energy storing SDFT were able to resist a greater number of cycles before failure than those from the positional CDET. Further, SDFT fascicles and IFM exhibited less hysteresis over the course of testing than their counterparts in the CDET. This is the first study to assess the fatigue resistance of the IFM, demonstrating that IFM has a functional role within tendon and contributes significantly to tendon mechanical properties. These data provide important advances into fully characterising tendon structure-function relationships. Statement of Significance Understanding tendon-structure function relationships is crucial for the development of effective preventative measures and treatments for tendon injury. In this study, we demonstrate for the first time that the interfascicular matrix is able to withstand a high degree of cyclic loading, and is specialised for improved fatigue resistance in energy storing tendons. These findings highlight the importance of the interfascicular matrix in the function of energy storing tendons, and potentially provide new avenues for the development of treatments for tendon injury which specifically target the interfascicular matrix.
Collapse
|
69
|
Perucca Orfei C, Lovati AB, Viganò M, Stanco D, Bottagisio M, Di Giancamillo A, Setti S, de Girolamo L. Dose-Related and Time-Dependent Development of Collagenase-Induced Tendinopathy in Rats. PLoS One 2016; 11:e0161590. [PMID: 27548063 PMCID: PMC4993508 DOI: 10.1371/journal.pone.0161590] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
Tendinopathy is a big burden in clinics and it represents 45% of musculoskeletal lesions. Despite the relevant social impact, both pathogenesis and development of the tendinopathy are still under-investigated, thus limiting the therapeutic advancement in this field. The purpose of this study was to evaluate the dose-dependent and time-related tissue-level changes occurring in a collagenase-induced tendinopathy in rat Achilles tendons, in order to establish a standardized model for future pre-clinical studies. With this purpose, 40 Sprague Dawley rats were randomly divided into two groups, treated by injecting collagenase type I within the Achilles tendon at 1 mg/mL (low dose) or 3 mg/mL (high dose). Tendon explants were histologically evaluated at 3, 7, 15, 30 and 45 days. Our results revealed that both the collagenase doses induced a disorganization of collagen fibers and increased the number of rounded resident cells. In particular, the high dose treatment determined a greater neovascularization and fatty degeneration with respect to the lower dose. These changes were found to be time-dependent and to resemble the features of human tendinopathy. Indeed, in our series, the acute phase occurred from day 3 to day 15, and then progressed towards the proliferative phase from day 30 to day 45 displaying a degenerative appearance associated with a very precocious and mild remodeling process. The model represents a good balance between similarity with histological features of human tendinopathy and feasibility, in terms of tendon size to create lesions and costs when compared to other animal models. Moreover, this model could contribute to improve the knowledge in this field, and it could be useful to properly design further pre-clinical studies to test innovative treatments for tendinopathy.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marco Viganò
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Deborah Stanco
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | | | | | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
70
|
Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:2987140. [PMID: 27379167 PMCID: PMC4917753 DOI: 10.1155/2016/2987140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023] Open
Abstract
Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs) conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.
Collapse
|
71
|
Johansson K, Lempainen L, Sarimo J, Laitala-Leinonen T, Orava S. Different distributions of operative diagnoses for Achilles tendon overuse injuries in Italian and Finnish athletes. Muscles Ligaments Tendons J 2016; 6:111-5. [PMID: 27331038 DOI: 10.11138/mltj/2016.6.1.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND the origin of chronic Achilles tendinopathy (AT) is currently unclear and epidemiological factors, such as ethnicity, may be associated. METHODS intraoperative findings from the treatment of 865 Finnish and 156 Italian athletic patients with chronic Achilles tendon related pain were evaluated, retrospectively. The mean age was 34 years (range, 18 to 65 years) in the Finnish and 29 years (range, 17-63 years) in the Italian patients. In total, 786 patients were males and 226 females of which 84 and 87% Finnish, respectively. Data were collected, retrospectively from patient records. The differences in the frequencies of operative findings were assessed for statistical significance. RESULTS retrocalcaneal bursitis, partial tear and chronic paratenonitis were the most prevalent findings in patients with chronic AT undergoing surgery. Tendinosis and chronic paratenonitis were significantly (p=0.011) more common in Finnish athletes. Italian patients exhibited significantly (p<0.001) more insertional calcific tendinopathy (heel spurs) and prominent posterosuperior calcaneal corners (Haglund's heel). CONCLUSION ethnicity appears to be associated with specific characteristics of overuse-related Achilles tendon pathology. This is an issue that should be considered in the planning of genetic research on AT.
Collapse
Affiliation(s)
| | | | | | - Tiina Laitala-Leinonen
- Skeletal Biology Consortium, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | | |
Collapse
|
72
|
Thorpe CT, Karunaseelan KJ, Ng Chieng Hin J, Riley GP, Birch HL, Clegg PD, Screen HRC. Distribution of proteins within different compartments of tendon varies according to tendon type. J Anat 2016; 229:450-8. [PMID: 27113131 PMCID: PMC4974547 DOI: 10.1111/joa.12485] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 01/20/2023] Open
Abstract
Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy‐storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy‐storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy‐storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy‐storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure–function relationships within tendon.
Collapse
Affiliation(s)
- Chavaunne T Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Kabelan J Karunaseelan
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Jade Ng Chieng Hin
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Graham P Riley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Helen L Birch
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Neston, UK
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
73
|
Wu YT, Wu PT, Jou IM. Peritendinous elastase treatment induces tendon degeneration in rats: A potential model of tendinopathy in vivo. J Orthop Res 2016; 34:471-7. [PMID: 26291184 DOI: 10.1002/jor.23030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/14/2015] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the role of elastase on tendinopathy, as well as to evaluate the potential for peritendinous injections of elastase into rats to cause tendinopathy. We first investigated the expression of elastase in the tendons of patients with tendinopathy, and then established the effects of elastase injection on the Achilles tendons of rats. Ultrasonographic and incapacitance testing was used to conduct tests for 8 weeks. Tendon tissues were collected for histological observation and protein levels of collagen type I and type III were detected using Western blotting. The percentage of elastase-positive cells increased in human specimens with grades II and III tendinopathy. The rat model demonstrated that the thickness of the tendon increased after elastase injection during Week 2-8. Hypercellularity and focal lesions were detected after Week 2. The expression of elastase was increased and elastin was decreased in Week 8. Collagen type I expression was decreased, but type III was increased in Week 4. These results suggested that elastase may be involved in the development of chronic tendinopathy, and that peritendinous injection of elastase may result in tendinopathy in rats.
Collapse
Affiliation(s)
- Yen-Ting Wu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
74
|
Frizziero A, Salamanna F, Della Bella E, Vittadini F, Gasparre G, Nicoli Aldini N, Masiero S, Fini M. The Role of Detraining in Tendon Mechanobiology. Front Aging Neurosci 2016; 8:43. [PMID: 26973517 PMCID: PMC4770795 DOI: 10.3389/fnagi.2016.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction: Several conditions such as training, aging, estrogen deficiency and drugs could affect the biological and anatomo-physiological characteristics of the tendon. Additionally, recent preclinical and clinical studies examined the effect of detraining on tendon, showing alterations in its structure and morphology and in tenocyte mechanobiology. However, few data evaluated the importance that cessation of training might have on tendon. Basically, we do not fully understand how tendons react to a phase of training followed by sudden detraining. Therefore, within this review, we summarize the studies where tendon detraining was examined. Materials and Methods: A descriptive systematic literature review was carried out by searching three databases (PubMed, Scopus and Web of Knowledge) on tendon detraining. Original articles in English from 2000 to 2015 were included. In addition, the search was extended to the reference lists of the selected articles. A public reference manager (www.mendeley.com) was adopted to remove duplicate articles. Results: An initial literature search yielded 134 references (www.pubmed.org: 53; www.scopus.com: 11; www.webofknowledge.com: 70). Fifteen publications were extracted based on the title for further analysis by two independent reviewers. Abstracts and complete articles were after that reviewed to evaluate if they met inclusion criteria. Conclusions: The revised literature comprised four clinical studies and an in vitro and three in vivo reports. Overall, the results showed that tendon structure and properties after detraining are compromised, with an alteration in the tissue structural organization and mechanical properties. Clinical studies usually showed a lesser extent of tendon alterations, probably because preclinical studies permit an in-depth evaluation of tendon modifications, which is hard to perform in human subjects. In conclusion, after a period of sudden detraining (e.g., after an injury), physical activity should be taken with caution, following a targeted rehabilitation program. However, further research should be performed to fully understand the effect of sudden detraining on tendons.
Collapse
Affiliation(s)
- Antonio Frizziero
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department, Rizzoli Orthopedic Institute Bologna, Italy
| | - Elena Della Bella
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic InstituteBologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of BolognaBologna, Italy
| | - Filippo Vittadini
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Giuseppe Gasparre
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Nicolò Nicoli Aldini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department, Rizzoli Orthopedic InstituteBologna, Italy; Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic InstituteBologna, Italy
| | - Stefano Masiero
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department, Rizzoli Orthopedic InstituteBologna, Italy; Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic InstituteBologna, Italy
| |
Collapse
|
75
|
A practical guide for the isolation and maintenance of stem cells from tendon. Methods Mol Biol 2016; 1212:127-40. [PMID: 25038747 DOI: 10.1007/7651_2014_92] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stem cells are unspecialized cells that can self-renew and have the ability to develop into cells of highly specialized functions. The study of stem cells holds enormous promise in the medical field ranging from their uses in cell therapies to their uses for greater understanding of tissue development and disease pathologies. Stem cells have been isolated from tendon tissue recently. These tendon-derived stem cells (TDSCs) are particularly relevant for tendon repair and the study of the potential roles of stem cells in tendon pathology as they are isolated from tendon tissues. This paper aims to describe the step-by-step protocol and the practical tips for the isolation and verification of stem cell characteristics of TDSCs. The cell seeding density and hence cell-cell contact has a significant impact on the isolation and expansion of TDSCs. Hence, I also describe our established protocol for the determination of the optimal seeding density for TDSC isolation and culture.
Collapse
|
76
|
Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 2016; 6:20455. [PMID: 26842662 PMCID: PMC4740843 DOI: 10.1038/srep20455] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Tendon is a simple aligned fibre composite, consisting of collagen-rich fascicles surrounded by a softer interfascicular matrix (IFM). The composition and interactions between these material phases are fundamental in ensuring tissue mechanics meet functional requirements. However the IFM is poorly defined, therefore tendon structure-function relationships are incompletely understood. We hypothesised that the IFM has a more complex proteome, with faster turnover than the fascicular matrix (FM). Using laser-capture microdissection and mass spectrometry, we demonstrate that the IFM contains more proteins, and that many proteins show differential abundance between matrix phases. The IFM contained more protein fragments (neopeptides), indicating greater matrix degradation in this compartment, which may act to maintain healthy tendon structure. Protein abundance did not alter with ageing, but neopeptide numbers decreased in the aged IFM, indicating decreased turnover which may contribute to age-related tendon injury. These data provide important insights into how differences in tendon composition and turnover contribute to tendon structure-function relationships and the effects of ageing.
Collapse
|
77
|
Souza MVD, Silva MOD. LASERTERAPIA EM AFECÇÕES LOCOMOTORAS: REVISÃO SISTEMÁTICA DE ESTUDOS EXPERIMENTAIS. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162201144326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Introdução: Ao longo dos anos a fisioterapia tem contribuído para o tratamento das lesões musculotendíneas e osteoarticulares pela utilização de diversos recursos eletrotermofototerapêuticos como, por exemplo, o laser de baixa potência. Objetivo: A finalidade desse estudo foi identificar mediante revisão sistemática, o efeito da laserterapia de baixa potência em afecções do sistema locomotor de ratos, com destaque para a dose de energia e o comprimento de onda utilizado, assim como para a resposta ao tratamento. Métodos: Foram consultadas as bases de dados Medline, Lilacs, PEDro e SciELO, entre janeiro de 2005 a maio de 2013, utilizando os termos "tendinopathy", "laser therapy", "rats", "tendon", "muscle", "bone", "low-level laser therapy", assim como "tendinopatia", "laserterapia", "ratos", "tendão", "músculo", "osso" e "laser de baixa potência". Apenas foram incluídos estudos experimentais publicados nos idiomas português e inglês, que induziram lesão em tendões, músculos, ossos e/ou articulação, tratada com laserterapia, associada ou não a outros tratamentos. Resultados: Foi encontrado um total de 30 estudos experimentais nas bases de dados consultadas, dos quais 15 (50%) foram realizados em tendão, 10 (33,33%) em músculo e cinco (16,66%) em osso e/ou articulação. As doses de energia mais comumente utilizadas foram de 3 J (26,66%) e 1 J (16,66%). Já os comprimentos de onda foram de 904 nm (21,21%) e 830 nm (21,21%). Conclusão: A informação mais expressiva obtida com a terapia foi a diminuição da resposta inflamatória (36,66%) em lesões ortopédicas agudas.
Collapse
|
78
|
Kim BS, Joo YC, Choi BH, Kim KH, Kang JS, Park SR. The effect of dry needling and treadmill running on inducing pathological changes in rat Achilles tendon. Connect Tissue Res 2015; 56:452-60. [PMID: 26076317 DOI: 10.3109/03008207.2015.1052876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Achilles tendinopathy is a common degenerative condition without a definitive treatment. An adequate chronic animal model of Achilles tendinopathy has not yet been developed. The purpose of this study was to evaluate the individual and combined effects of dry needling and treadmill running on the Achilles tendon of rats. Percutaneous dry needling, designed to physically replicate microrupture of collagen fibers in overloaded tendons, was performed on the right Achilles tendon of 80 Sprague-Dawley rats. The rats were randomly divided into two groups: a treadmill group, which included rats that underwent daily uphill treadmill running (n = 40), and a cage group, which included rats that could move freely within their cages (n = 40). At the end of weeks 1 and 4, 20 rats from each group were sacrificed, and bilateral Achilles tendons were collected. The harvested tendons were subjected to mechanical testing and histological analysis. Dry needling induced histological and mechanical changes in the Achilles tendons at week 1, and the changes persisted at week 4. The needled Achilles tendons of the treadmill group tended to show more severe histological and mechanical changes than those of the cage group, although these differences were not statistically significant. Dry needling combined with free cage activity or treadmill running produced tendinopathy-like changes in rat Achilles tendons up to 4 weeks after injury. Dry needling is an easy procedure with a short induction period and a high success rate, suggesting it may have relevance in the design of an Achilles tendinopathy model.
Collapse
Affiliation(s)
- Bom Soo Kim
- a Department of Orthopaedic Surgery , Inha University College of Medicine , Incheon , Korea
| | - Young Chae Joo
- b Department of Pathology , Inha University College of Medicine , Incheon , Korea
| | - Byung Hyune Choi
- c Division of Biomedical and Bioengineering Sciences , Inha University College of Medicine , Incheon , Korea , and
| | - Kil Hwan Kim
- d Department of Physiology , Inha University College of Medicine , Incheon , Korea
| | - Joon Soon Kang
- a Department of Orthopaedic Surgery , Inha University College of Medicine , Incheon , Korea
| | - So Ra Park
- d Department of Physiology , Inha University College of Medicine , Incheon , Korea
| |
Collapse
|
79
|
Sayegh ET, Sandy JD, Virk MS, Romeo AA, Wysocki RW, Galante JO, Trella KJ, Plaas A, Wang VM. Recent Scientific Advances Towards the Development of Tendon Healing Strategies. ACTA ACUST UNITED AC 2015; 4:128-143. [PMID: 26753125 DOI: 10.2174/2211542004666150713190231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - John D Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Mandeep S Virk
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anthony A Romeo
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Robert W Wysocki
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Jorge O Galante
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Katie J Trella
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anna Plaas
- Department of Rheumatology/Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Vincent M Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
80
|
Theiss F, Mirsaidi A, Mhanna R, Kümmerle J, Glanz S, Bahrenberg G, Tiaden AN, Richards PJ. Use of biomimetic microtissue spheroids and specific growth factor supplementation to improve tenocyte differentiation and adaptation to a collagen-based scaffold in vitro. Biomaterials 2015; 69:99-109. [PMID: 26283157 DOI: 10.1016/j.biomaterials.2015.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
Tenocytes represent a valuable source of cells for the purposes of tendon tissue engineering and regenerative medicine and as such, should possess a high degree of tenogenic differentiation prior to their use in vivo in order to achieve maximal efficacy. In the current report, we identify an efficient means by which to maintain differentiated tenocytes in vitro by employing the hanging drop technique in combination with defined growth media supplements. Equine tenocytes retained a more differentiated state when cultured as scaffold-free microtissue spheroids in low serum-containing medium supplemented with L-ascorbic acid 2-phosphate, insulin and transforming growth factor (TGF)-β1. This was made evident by significant increases in the expression levels of pro-tenogenic markers collagen type I (COL1A2), collagen type III (COL3A1), scleraxis (SCX) and tenomodulin (TNMD), as well as by enhanced levels of collagen type I and tenomodulin protein. Furthermore, tenocytes cultured under these conditions demonstrated a typical spindle-like morphology and when embedded in collagen gels, became highly aligned with respect to the orientation of the collagen structure following their migration out from the microtissue spheroids. Our findings therefore provide evidence to support the use of a biomimetic microtissue approach to culturing tenocytes and that in combination with the defined growth media described, can improve their differentiation status and functional repopulation of collagen matrix.
Collapse
Affiliation(s)
- Felix Theiss
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Equine Department, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ali Mirsaidi
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Rami Mhanna
- Cartilage Engineering and Regeneration, ETH Zurich, 8093 Zurich, Switzerland; American University of Beirut, Faculty of Engineering and Architecture, Riad El Solh, 1107 2020 Beirut, Lebanon
| | - Jan Kümmerle
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Equine Department, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stephan Glanz
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Gregor Bahrenberg
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - André N Tiaden
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter J Richards
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
81
|
Smith RK, Garvican ER, Fortier LA. The current 'state of play' of regenerative medicine in horses: what the horse can tell the human. Regen Med 2015; 9:673-85. [PMID: 25372081 DOI: 10.2217/rme.14.42] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horse is an attractive model for many human age-related degenerative diseases of the musculoskeletal system because it is a large animal species that both ages and exercises, and develops naturally occurring injuries with many similarities to the human counterpart. It therefore represents an ideal species to use as a 'proving ground' for new therapies, most notably regenerative medicine. Regenerative techniques using cell-based therapies for the treatment of equine musculoskeletal disease have been in use for over a decade. This review article provides a summary overview of the sources, current challenges and problems surrounding the use of stem cell and non-cell-based therapy in regenerative medicine in horses and is based on presentations from a recent Havemeyer symposium on equine regenerative medicine where speakers are selected from leading authorities in both equine and human regenerative medicine fields from 10 different countries.
Collapse
Affiliation(s)
- Roger Kw Smith
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | | | | |
Collapse
|
82
|
Kabuto Y, Morihara T, Sukenari T, Kida Y, Oda R, Arai Y, Sawada K, Matsuda KI, Kawata M, Tabata Y, Fujiwara H, Kubo T. Stimulation of Rotator Cuff Repair by Sustained Release of Bone Morphogenetic Protein-7 Using a Gelatin Hydrogel Sheet. Tissue Eng Part A 2015; 21:2025-33. [PMID: 25819324 DOI: 10.1089/ten.tea.2014.0541] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone morphogenetic protein-7 (BMP-7) promotes not only osteogenesis but also matrix production in chondrocytes and tenocytes. However, because of its short half-life, maintaining local concentrations of BMP-7 is difficult. We examined the use of a gelatin hydrogel sheet (GHS) for the sustained release of BMP-7 in stimulating rotator cuff repair at the tendon-to-bone insertion. Twelve-week-old male Sprague-Dawley rats were used. Radiolabeled BMP-7 ((125)I-BMP-7) was injected into the subacromial bursa in the (125)I-BMP-7 group, whereas a GHS impregnated with (125)I-BMP-7 was implanted on the tendon attached to the tendon-to-bone insertion in the (125)I-BMP-7+GHS group. Levels of (125)I-BMP-7 in the tendon-to-bone insertion were assessed at 1, 3, 7, 14, and 21 postoperative days. The BMP-7 concentrations were significantly higher in the (125)I-BMP-7+GHS group than in the (125)I-BMP-7 group. Next, the bilateral supraspinatus tendons were resected and sutured to the greater tuberosity of the humerus using the Mason-Allen technique. Treatment groups were created as follows: either phosphate-buffered saline (PBS) or BMP-7 was injected into the subacromial bursa in the PBS and BMP-7 groups, whereas a GHS impregnated with either PBS or BMP-7 was implanted on the repaired tendon attached to the tendon-to-bone insertion in the PBS+GHS and BMP-7+GHS groups. The resected specimens were stained at 2, 4, and 8 postoperative weeks with hematoxylin and eosin as well as Safranin O, and tissue repair was evaluated histologically by using the tendon-to-bone maturing score. Tissue repair was assessed biomechanically at 4 and 8 postoperative weeks. The BMP-7+GHS group at 8 postoperative weeks demonstrated a favorable cartilage matrix production and tendon orientation; moreover, the tendon-to-bone maturing score and the ultimate force-to-failure were the highest in this group. The ability of GHS to provide controlled release of various growth factors has been previously reported. We confirmed that the GHS releases BMP-7 in a sustained manner in the rat shoulder joint. At 8 postoperative weeks, the repaired tissue was mostly restored, both histologically and biomechanically, in the BMP-7+GHS group. We therefore conclude that the sustained release of BMP-7 from a GHS can stimulate rotator cuff repair.
Collapse
Affiliation(s)
- Yukichi Kabuto
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Toru Morihara
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Tsuyoshi Sukenari
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yoshikazu Kida
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ryo Oda
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yuji Arai
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Koshiro Sawada
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ken-Ichi Matsuda
- 2 Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Mitsuhiro Kawata
- 2 Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuhiko Tabata
- 3 Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Hiroyoshi Fujiwara
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Toshikazu Kubo
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| |
Collapse
|
83
|
Thorpe CT, Godinho MSC, Riley GP, Birch HL, Clegg PD, Screen HRC. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons. J Mech Behav Biomed Mater 2015; 52:85-94. [PMID: 25958330 PMCID: PMC4655227 DOI: 10.1016/j.jmbbm.2015.04.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 11/23/2022]
Abstract
While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. Fascicle sliding enables high levels of extension in energy storing tendons. Sliding mechanics are governed by the interfascicular matrix (IFM). We assessed IFM extension and recovery. IFM elasticity and recovery are greater in energy storing tendons. The IFM plays an important role in the function of energy storing tendons.
Collapse
Affiliation(s)
- Chavaunne T Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS UK.
| | - Marta S C Godinho
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS UK
| | - Graham P Riley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Helen L Birch
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS UK
| |
Collapse
|
84
|
Hillmann A, Ahrberg AB, Brehm W, Heller S, Josten C, Paebst F, Burk J. Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model. Cell Transplant 2015; 25:109-24. [PMID: 25853993 DOI: 10.3727/096368915x687822] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have gained tremendous attention as potential therapeutic agents for the treatment of orthopedic diseases. Promising results have been obtained after application of MSCs for treatment of tendon and joint disease in the equine model, making it appear favorable to use these results as a basis for the translational process of the therapy. However, while the horse is considered a highly suitable model for orthopedic diseases, knowledge is lacking regarding the level of analogy of equine MSCs and their human counterparts. Therefore, the aim of this study was to assess the properties of human and equine adipose- and tendon-derived MSCs in a direct comparison. Basic properties of human and equine MSCs from both tissues were similar. The cells expressed CD29, CD44, CD90, and CD105 and lacked expression of CD73, CD14, CD34, CD45, CD79α, and MCHII/HLA-DR. No significant differences were found between proliferation potential of human and equine MSCs in early passages, but recovery of nucleated cells after tissue digestion as well as proliferation in later passages was higher in equine samples (p < 0.01). All samples showed a good migration capacity and multilineage differentiation potential. However, while osteogenic differentiation was achieved in all equine samples, it was only evident in five out of nine human tendon-derived samples. Human MSCs further showed a higher expression of collagen IIIA1 and tenascin-C, but lower expression of decorin and scleraxis (p < 0.01). Although revealing some potentially relevant differences, the study demonstrates a high level of analogy between human and equine MSCs, providing a basis for translational research in the equine model according to the guidelines issued by the authorities.
Collapse
Affiliation(s)
- Aline Hillmann
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
85
|
Jacobsen E, Dart AJ, Mondori T, Horadogoda N, Jeffcott LB, Little CB, Smith MM. Focal experimental injury leads to widespread gene expression and histologic changes in equine flexor tendons. PLoS One 2015; 10:e0122220. [PMID: 25837713 PMCID: PMC4383631 DOI: 10.1371/journal.pone.0122220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023] Open
Abstract
It is not known how extensively a localised flexor tendon injury affects the entire tendon. This study examined the extent of and relationship between histopathologic and gene expression changes in equine superficial digital flexor tendon after a surgical injury. One forelimb tendon was hemi-transected in six horses, and in three other horses, one tendon underwent a sham operation. After euthanasia at six weeks, transected and control (sham and non-operated contralateral) tendons were regionally sampled (medial and lateral halves each divided into six 3 cm regions) for histologic (scoring and immunohistochemistry) and gene expression (real time PCR) analysis of extracellular matrix changes. The histopathology score was significantly higher in transected tendons compared to control tendons in all regions except for the most distal (P ≤ 0.03) with no differences between overstressed (medial) and stress-deprived (lateral) tendon halves. Proteoglycan scores were increased by transection in all but the most proximal region (P < 0.02), with increased immunostaining for aggrecan, biglycan and versican. After correcting for location within the tendon, gene expression for aggrecan, versican, biglycan, lumican, collagen types I, II and III, MMP14 and TIMP1 was increased in transected tendons compared with control tendons (P < 0.02) and decreased for ADAMTS4, MMP3 and TIMP3 (P < 0.001). Aggrecan, biglycan, fibromodulin, and collagen types I and III expression positively correlated with all histopathology scores (P < 0.001), whereas lumican, ADAMTS4 and MMP14 expression positively correlated only with collagen fiber malalignment (P < 0.001). In summary, histologic and associated gene expression changes were significant and widespread six weeks after injury to the equine SDFT, suggesting rapid and active development of tendinopathy throughout the entire length of the tendon. These extensive changes distant to the focal injury may contribute to poor functional outcomes and re-injury in clinical cases. Our data suggest that successful treatments of focal injuries will need to address pathology in the entire tendon, and that better methods to monitor the development and resolution of tendinopathy are required.
Collapse
Affiliation(s)
- Else Jacobsen
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Andrew J. Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Takamitsu Mondori
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research (University of Sydney) at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Neil Horadogoda
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Leo B. Jeffcott
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research (University of Sydney) at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Margaret M. Smith
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research (University of Sydney) at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- * E-mail:
| |
Collapse
|
86
|
Abstract
Tendon is a crucial component of the musculoskeletal system. Tendons connect muscle to bone and transmit forces to produce motion. Chronic and acute tendon injuries are very common and result in considerable pain and disability. The management of tendon injuries remains a challenge for clinicians. Effective treatments for tendon injuries are lacking because the understanding of tendon biology lags behind that of the other components of the musculoskeletal system. Animal and cellular models have been developed to study tendon-cell differentiation and tendon repair following injury. These studies have highlighted specific growth factors and transcription factors involved in tenogenesis during developmental and repair processes. Mechanical factors also seem to be essential for tendon development, homeostasis and repair. Mechanical signals are transduced via molecular signalling pathways that trigger adaptive responses in the tendon. Understanding the links between the mechanical and biological parameters involved in tendon development, homeostasis and repair is prerequisite for the identification of effective treatments for chronic and acute tendon injuries.
Collapse
Affiliation(s)
- Geoffroy Nourissat
- Service de chirurgie orthopédique et traumatologique, INSERM UMR_S938, DHU i2B, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Francis Berenbaum
- Service de rhumatologie, INSERM UMR_S938, DHU i2B, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Delphine Duprez
- Centre national de la recherche scientifique UMR 7622, IBPS Developmental Biology Laboratory, F-75005, Paris 5005, France
| |
Collapse
|
87
|
Patterson-Kane JC, Rich T. Achilles tendon injuries in elite athletes: lessons in pathophysiology from their equine counterparts. ILAR J 2015; 55:86-99. [PMID: 24936032 DOI: 10.1093/ilar/ilu004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Superficial digital flexor tendon (SDFT) injury in equine athletes is one of the most well-accepted, scientifically supported companion animal models of human disease (i.e., exercise-induced Achilles tendon [AT] injury). The SDFT and AT are functionally and clinically equivalent (and important) energy-storing structures for which no equally appropriate rodent, rabbit, or other analogues exist. Access to equine tissues has facilitated significant advances in knowledge of tendon maturation and aging, determination of specific exercise effects (including early life), and definition of some of the earliest stages of subclinical pathology. Access to human surgical biopsies has provided complementary information on more advanced phases of disease. Importantly, equine SDFT injuries are only a model for acute ruptures in athletes, not the entire spectrum of human tendonopathy (including chronic tendon pain). In both, pathology begins with a potentially prolonged phase of accumulation of (subclinical) microdamage. Recent work has revealed remarkably similar genetic risk factors, including further evidence that tenocyte dysfunction plays an active role. Mice are convenient but not necessarily accurate models for multiple diseases, particularly at the cellular level. Mechanistic studies, including tendon cell responses to combinations of exercise-associated stresses, require a more thorough investigation of cross-species conservation of key stress pathway auditors. Molecular evidence has provided some context for the poor performance of mouse models; equines may provide better systems at this level. The use of horses may be additionally justifiable based on comparable species longevity, lifestyle factors, and selection pressure by similar infectious agents (e.g., herpesviruses) on general cell stress pathway evolution.
Collapse
|
88
|
Garvican ER, Dudhia J, Alves AL, Clements LE, Plessis FD, Smith RKW. Mesenchymal stem cells modulate release of matrix proteins from tendon surfaces in vitro: a potential beneficial therapeutic effect. Regen Med 2015; 9:295-308. [PMID: 24935042 DOI: 10.2217/rme.14.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM Injury of tendons contained within a synovial environment, such as joint, bursa or tendon sheath, frequently fails to heal and releases matrix proteins into the synovial fluid, driving inflammation. This study investigated the effectiveness of cells to seal tendon surfaces and provoke matrix synthesis as a possible effective injectable therapy. MATERIALS & METHODS Equine flexor tendon explants were cultured overnight in suspensions of bone marrow and synovium-derived mesenchymal stems cells and, as controls, two sources of fibroblasts, derived from tendon and skin, which adhered to the explants. Release of the most abundant tendon extracellular matrix proteins into the media was assayed, along with specific matrix proteins synthesis by real-time PCR. RESULTS Release of extracellular matrix proteins was influenced by the coating cell type. Fibroblasts from skin and tendon appeared less capable of preventing the release of matrix proteins than mesenchymal stems cells. CONCLUSION The source of cell is an important consideration for cell therapy.
Collapse
Affiliation(s)
- Elaine R Garvican
- The Royal Veterinary College, Department of Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | | | | | | | | | | |
Collapse
|
89
|
Jafari L, Vachon P, Beaudry F, Langelier E. Histopathological, biomechanical, and behavioral pain findings of Achilles tendinopathy using an animal model of overuse injury. Physiol Rep 2015; 3:3/1/e12265. [PMID: 25602018 PMCID: PMC4387767 DOI: 10.14814/phy2.12265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animal models of forced running are used to study overuse tendinopathy, a common health problem for which clear evidence for effective and accessible treatments is still lacking. In these models, pain evaluation is necessary to better understand the disease, help design and evaluate therapies, and ensure humane treatment of the animals. Therefore, the main objective of this study was to evaluate pain and pathologic findings in an animal model of moderate Achilles tendinopathy induced by treadmill running. Air puffs, instead of electrical shocks, were used to stimulate running so that pain associated with stimulation would be avoided. Pressure pain sensitivity was evaluated in vivo using a new instrumented plier, whereas spinal cord peptides were analyzed ex vivo with high‐performance liquid chromatography tandem mass spectrometry. Tendon histologic slides were semiquantitatively evaluated, using the Bonar score technique and biomechanical properties, using the traction test. After 8 weeks of treadmill running (2 weeks for adaptation and 6 weeks for the lesion protocol), the protocol was stopped because the air puffs became ineffective to stimulate running. We, nevertheless, observed some histologic changes characteristic of overuse tendinopathy as well as decreased mechanical properties, increased Substance P and dynorphin A peptides but without pressure pain sensitivity. These results suggest that air‐puffs stimulation is sufficient to induce an early stage tendinopathy to study new therapeutic drugs without inducing unnecessary pain. They also indicate that pain‐associated peptides could be related with movement evoked pain and with the sharp breakdown of the running performance. The main objective of this study was to correlate pain and pathologic findings in an animal model of moderate Achilles tendinopathy induced by treadmill running. We observed some histologic changes characteristic of overuse tendinopathy as well as decreased mechanical properties, increased Substance P and dynorphin A peptides but without pressure pain sensitivity.
Collapse
Affiliation(s)
- Leila Jafari
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascal Vachon
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Eve Langelier
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
90
|
Thorpe CT, Chaudhry S, Lei II, Varone A, Riley GP, Birch HL, Clegg PD, Screen HRC. Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation. Scand J Med Sci Sports 2014; 25:e381-91. [DOI: 10.1111/sms.12333] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- C. T. Thorpe
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; London UK
| | - S. Chaudhry
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; London UK
| | - I. I. Lei
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; London UK
| | - A. Varone
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; London UK
| | - G. P. Riley
- School of Biological Sciences; University of East Anglia; Norwich UK
| | - H. L. Birch
- Institute of Orthopaedics and Musculoskeletal Science; University College London; Stanmore UK
| | - P. D. Clegg
- Department of Musculoskeletal Biology; Institute of Ageing and Chronic Disease; University of Liverpool; Neston UK
| | - H. R. C. Screen
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; London UK
| |
Collapse
|
91
|
Johansson K, Lempainen L, Sarimo J, Laitala-Leinonen T, Orava S. Macroscopic Anomalies and Pathological Findings in and Around the Achilles Tendon: Observations From 1661 Operations During a 40-Year Period. Orthop J Sports Med 2014; 2:2325967114562371. [PMID: 26535293 PMCID: PMC4555527 DOI: 10.1177/2325967114562371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Nonsurgical treatments for chronic Achilles tendinopathy (AT) results in unpredictable success rates. Surgical treatment may be chosen as reports show mostly encouraging but variable success rates depending on the pathology. The distribution of surgically confirmed pathologies in AT is largely unknown. PURPOSE To ascertain the distributions of macroscopically observed anomalies in participants undergoing surgical treatment for chronic AT. STUDY DESIGN Case series; Level of evidence, 4. METHODS The main macroscopic pathologies of 1661 chronic Achilles tendon overuse injuries, which were diagnosed and surgically treated by a single surgeon, were reviewed. The surgeries were performed on professional and recreational athletes during the years 1976-1980, 1986-1990, 1996-2000, and 2006-2010. Surgical diagnoses, along with age- and sport-specific characteristics, were collected retrospectively from patient records. RESULTS The relative proportion of tendinosis increased during the study period from 4.2% to 21%, and paratenonitis decreased from 50% to 26%. Retrocalcaneal pathologies were the most common surgically confirmed lesions at 30%, while the mean age at surgery increased by 11 years over the entire study period. CONCLUSION Surgically confirmed pathologies in and around the Achilles tendon showed coherent changes, chronic paratenonitis, and retrocalcaneal problems as the most prevalent findings. The classification of midportion and insertional tendinopathy and retrocalcaneal bursitis in AT should strictly be used as a clinical diagnosis. During surgical evaluations, the diagnosis is further clarified as more specific pathologies may be identified.
Collapse
Affiliation(s)
- Kristian Johansson
- Department of Surgery, Satakunta Health Care District, Pori, Finland. ; Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Lasse Lempainen
- Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland. ; Department of Surgery, Turunmaan District Hospital, Turku, Finland. ; Hospital Neo, Turku, Finland
| | - Janne Sarimo
- Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland. ; Hospital Neo, Turku, Finland
| | - Tiina Laitala-Leinonen
- Skeletal Biology Consortium, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | | |
Collapse
|
92
|
Ho JO, Sawadkar P, Mudera V. A review on the use of cell therapy in the treatment of tendon disease and injuries. J Tissue Eng 2014; 5:2041731414549678. [PMID: 25383170 PMCID: PMC4221986 DOI: 10.1177/2041731414549678] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/28/2014] [Indexed: 12/28/2022] Open
Abstract
Tendon disease and injuries carry significant morbidity worldwide in both athletic and non-athletic populations. It is estimated that tendon injuries account for 30%−50% of all musculoskeletal injuries globally. Current treatments have been inadequate in providing an accelerated process of repair resulting in high relapse rates. Modern concepts in tissue engineering and regenerative medicine have led to increasing interest in the application of cell therapy for the treatment of tendon disease. This review will explore the use of cell therapy, by bringing together up-to-date evidence from in vivo human and animal studies, and discuss the issues surrounding the safety and efficacy of its use in the treatment of tendon disease.
Collapse
Affiliation(s)
- Jasmine Oy Ho
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| | - Prasad Sawadkar
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| | - Vivek Mudera
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
93
|
Peffers MJ, Thorpe CT, Collins JA, Eong R, Wei TKJ, Screen HRC, Clegg PD. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation. J Biol Chem 2014; 289:25867-78. [PMID: 25077967 PMCID: PMC4162187 DOI: 10.1074/jbc.m114.566554] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging.
Collapse
Affiliation(s)
- Mandy J Peffers
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| | - Chavaunne T Thorpe
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, and
| | - John A Collins
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| | - Robin Eong
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, School of Life Sciences, Ngee Ann Polytechnic, Singapore 599489
| | - Timothy K J Wei
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, School of Life Sciences, Ngee Ann Polytechnic, Singapore 599489
| | - Hazel R C Screen
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, and
| | - Peter D Clegg
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| |
Collapse
|
94
|
Molecular repair mechanisms using the Intratissue Percutaneous Electrolysis technique in patellar tendonitis. Rev Esp Cir Ortop Traumatol (Engl Ed) 2014. [DOI: 10.1016/j.recote.2014.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
95
|
Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR. Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons. Acta Biomater 2014; 10:3217-24. [PMID: 24747261 DOI: 10.1016/j.actbio.2014.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/07/2014] [Accepted: 04/08/2014] [Indexed: 11/26/2022]
Abstract
Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury.
Collapse
|
96
|
Abstract
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202.
Collapse
Affiliation(s)
- M W Hast
- University of Pennsylvania, McKay Orthopaedic Research Laboratory, 424 Stemmler Hall 36th Street and Hamilton Walk, Philadelphia, 19104-6081, USA
| | - A Zuskov
- University of Pennsylvania, McKay Orthopaedic Research Laboratory, 424 Stemmler Hall 36th Street and Hamilton Walk, Philadelphia, 19104-6081, USA
| | - L J Soslowsky
- University of Pennsylvania, McKay Orthopaedic Research Laboratory, 424 Stemmler Hall 36th Street and Hamilton Walk, Philadelphia, 19104-6081, USA
| |
Collapse
|
97
|
Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tárnok A, Burk J. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A 2014; 85:678-87. [PMID: 24894974 DOI: 10.1002/cyto.a.22491] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Horses are an approved large animal model for therapies of the musculoskeletal system. Especially for tendon disease where cell-based therapy is commonly used in equine patients, the translation of achieved results to human medicine would be a great accomplishment. Immunophenotyping of equine mesenchymal stromal cells (MSCs) remains the last obstacle to meet the criteria of the International Society for Cellular Therapy (ISCT) definition of human MSCs. Therefore, the surface antigen expression of CD 29, CD 44, CD 73, CD 90, CD 105, CD 14, CD 34, CD 45, CD 79α, and MHC II in equine MSCs from adipose tissue, bone marrow, umbilical cord blood, umbilical cord tissue, and tendon tissue was analyzed using flow cytometry. Isolated cells from the different sources and donors varied in their expression pattern of MSC-defining antigens. In particular, CD 90 and 105 showed most heterogeneity. However, cells from all samples were robustly positive for CD 29 and CD 44, while being mostly negative for CD 73 and the exclusion markers CD 14, CD 34, CD 45, CD 79α and MHC II. Furthermore, it was evident that enzymes used for cell detachment after in vitro-culture affected the detection of antigen expression. These results emphasize the need of standardization of MSC isolation, culturing, and harvesting techniques. As the equine MSCs did not meet all criteria the ISCT defined for human MSCs, further investigations for a better characterization of the cell type should be conducted.
Collapse
Affiliation(s)
- Felicitas Paebst
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
[Molecular repair mechanisms using the Intratissue Percutaneous Electrolysis technique in patellar tendonitis]. Rev Esp Cir Ortop Traumatol (Engl Ed) 2014; 58:201-5. [PMID: 24821478 DOI: 10.1016/j.recot.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/05/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To investigate the molecular mechanisms of tissue response after treatment with the Intratissue Percutaneous Electrolysis (EPI(®)) technique in collagenase-induced tendinopathy in Sprague-Dawley rats. METHODS Tendinopathy was induced by injecting 50 μg of type i collagenase into the patellar tendon of 24 Sprague Dawley rats of 7 months of age and weighting 300 g. The sample was divided into 4 groups: the control group, collagenase group, and two EPI(®) technique treatment groups of 3 and 6 mA, respectively. An EPI(®) treatment session was applied, and after 3 days, the tendons were analysed using immunoblotting and electrophoresis techniques. An analysis was also made of cytochrome C protein, Smac/Diablo, vascular endothelial growth factor and its receptor 2, as well as the nuclear transcription factor peroxisome proliferator-activated receptor gamma. RESULTS A statistically significant increase, compared to the control group, was observed in the expression of cytochrome C, Smac/Diablo, vascular endothelial growth factor, its receptor 2 and peroxisome proliferator-activated receptor gamma in the groups in which the EPI(®) technique was applied. CONCLUSIONS EPI(®) technique produces an increase in anti-inflammatory and angiogenic molecular mechanisms in collagenase-induced tendon injury in rats.
Collapse
|
99
|
Zhou B, Zhou Y, Tang K. An overview of structure, mechanical properties, and treatment for age-related tendinopathy. J Nutr Health Aging 2014; 18:441-8. [PMID: 24676328 DOI: 10.1007/s12603-014-0026-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tendons transfer tensile loads from muscle to bone, which enable joint motions and stabilize joints. Tendons sustain large mechanical loads in vivo and as a result, tendons were frequently injured. Aging has been confirmed as a predisposing factor of tendinopathy and bad recovery quality following tendon repair. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal antiinflammatory drugs and physical therapy or surgery when conservative treatments failed. The limitation in treatment options is due to our incomplete knowledge of age-related tendinopathy. Studies over the past decades have uncovered a number of important mechanical and cellular changes of aging tendon. However, the basis of aging as a major risk factor for tendon injury and impaired tendon healing remained poorly understood. The objectives of this review are to provide an overview of the current knowledge about the aging-associated changes of structure, mechanical properties and treatment in tendon and highlight causes and therapies for age-related tendinopathy.
Collapse
Affiliation(s)
- B Zhou
- Kanglai Tang, MD/PhD; E-mail:
| | | | | |
Collapse
|
100
|
Dakin SG, Dudhia J, Smith RKW. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy. Vet Immunol Immunopathol 2014; 158:121-7. [PMID: 24556326 PMCID: PMC3991845 DOI: 10.1016/j.vetimm.2014.01.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023]
Abstract
Injuries to the superficial digital flexor tendon (SDFT) are an important cause of morbidity and mortality in equine athletes, but the healing response is poorly understood. One important drive for the healing of connective tissues is the inflammatory cascade, but the role of inflammation in tendinopathy has been contentious in the literature. This article reviews the processes involved in the healing of tendon injuries in natural disease and experimental models. The importance of inflammatory processes known to be active in tendon disease is discussed with particular focus on recent findings related specifically to the horse. Whilst inflammation is necessary for debridement after injury, persistent inflammation is thought to drive fibrosis, a perceived adverse consequence of tendon healing. Therefore the ability to resolve inflammation by the resident cell populations in tendons at an appropriate time would be crucial for successful outcome. This review summarises new evidence for the importance of resolution of inflammation after tendon injury. Given that many anti-inflammatory drugs suppress both inflammatory and resolving components of the inflammatory response, prolonged use of these drugs may be contraindicated as a therapeutic approach. We propose that these findings have profound implications not only for current treatment strategies but also for the possibility of developing novel therapeutic approaches involving modulation of the inflammatory process.
Collapse
Affiliation(s)
- Stephanie G Dakin
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | - Jayesh Dudhia
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Roger K W Smith
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|