51
|
Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C. Regulation of peroxisomal matrix protein import by ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:838-49. [PMID: 26367801 DOI: 10.1016/j.bbamcr.2015.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
52
|
Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation. Biosci Rep 2015; 35:BSR20150103. [PMID: 26182377 PMCID: PMC4613714 DOI: 10.1042/bsr20150103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
Peroxisomal import receptors cycle between the peroxisomal membrane and the cytosol. A monoubiquitinated cysteine is required for efficient recycling of the peroxisomal import receptor Pex5p and prevents the protein from polyubiquitination, which leads to a rapid degradation of the protein. Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.
Collapse
|
53
|
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol 2015; 427:1176-90. [PMID: 25681696 PMCID: PMC4726662 DOI: 10.1016/j.jmb.2015.02.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. Peroxisomal membrane and matrix proteins require distinct factors for their transport. Matrix proteins fold in the cytosol prior to their import. Loaded targeting receptors form part of the matrix protein translocation pore. Many membrane proteins are directly inserted into the peroxisomal membrane. Some peroxisomal membrane proteins are transported via the ER to peroxisomes.
Collapse
Affiliation(s)
- P K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - E H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom.
| |
Collapse
|
54
|
Abstract
Pex7p is the cytosolic receptor for peroxisomal matrix proteins harbouring PTS2 (peroxisome-targeting signal type-2). Mutations in the PEX7 gene cause RCDP (rhizomelic chondrodysplasia punctata) type 1, a distinct PTS2-import-defective phenotype of peroxisome biogenesis disorders. The mechanisms by which the protein level and quality of Pex7p are controlled remain largely unknown. In the present study we show that dysfunctional Pex7p, including mutants from RCDP patients, is degraded by a ubiquitin-dependent proteasomal pathway involving the CRL4A (Cullin4A-RING ubiquitin ligase) complex. Furthermore, we demonstrate that the degradation of dysfunctional Pex7p is essential for maintaining normal PTS2 import, thereby suggesting that CRL4A functions as an E3 ligase in the quality control of Pex7p. Our results define a mechanism underlying Pex7p homoeostasis and highlight its importance for regulating PTS2 import. These findings may lead to a new approach to Pex7p-based therapies for the treatment of peroxisome biogenesis disorders such as RCDP.
Collapse
|
55
|
El Magraoui F, Schrötter A, Brinkmeier R, Kunst L, Mastalski T, Müller T, Marcus K, Meyer HE, Girzalsky W, Erdmann R, Platta HW. The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor. PLoS One 2014; 9:e105894. [PMID: 25162638 PMCID: PMC4146569 DOI: 10.1371/journal.pone.0105894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/25/2014] [Indexed: 01/08/2023] Open
Abstract
Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum, Germany
- Systembiochemie, Ruhr-Universität Bochum, Bochum, Germany
- Biomedizinische Forschung, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V., Dortmund, Germany
| | - Andreas Schrötter
- Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics, Medizinisches Proteom-Center, Bochum, Germany
- Biomedizinische Forschung, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V., Dortmund, Germany
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum, Germany
| | - Lena Kunst
- Systembiochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Mastalski
- Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics, Medizinisches Proteom-Center, Bochum, Germany
| | - Thorsten Müller
- Funktionelle Proteomik, Medizinisches Proteom-Center, Bochum, Germany
| | - Katrin Marcus
- Funktionelle Proteomik, Medizinisches Proteom-Center, Bochum, Germany
| | - Helmut E. Meyer
- Biomedizinische Forschung, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V., Dortmund, Germany
| | | | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail: (RE); (HWP)
| | - Harald W. Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail: (RE); (HWP)
| |
Collapse
|
56
|
Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S. Peroxisome biogenesis in mammalian cells. Front Physiol 2014; 5:307. [PMID: 25177298 PMCID: PMC4133648 DOI: 10.3389/fphys.2014.00307] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022] Open
Abstract
To investigate peroxisome assembly and human peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, thirteen different complementation groups (CGs) of Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis have been isolated and established as a model research system. Successful gene-cloning studies by a forward genetic approach utilized a rapid functional complementation assay of CHO cell mutants led to isolation of human peroxin (PEX) genes. Search for pathogenic genes responsible for PBDs of all 14 CGs is now completed together with the homology search by screening the human expressed sequence tag database using yeast PEX genes. Peroxins are divided into three groups: (1) peroxins including Pex3p, Pex16p, and Pex19p, are responsible for peroxisome membrane biogenesis via classes I and II pathways; (2) peroxins that function in matrix protein import; (3) those such as three forms of Pex11p, Pex11pα, Pex11pβ, and Pex11pγ, are involved in peroxisome proliferation where DLP1, Mff, and Fis1 coordinately function. In membrane assembly, Pex19p forms complexes in the cytosol with newly synthesized PMPs including Pex16p and transports them to the receptor Pex3p, whereby peroxisomal membrane is formed (Class I pathway). Pex19p likewise forms a complex with newly made Pex3p and translocates it to the Pex3p receptor, Pex16p (Class II pathway). In matrix protein import, newly synthesized proteins harboring peroxisome targeting signal type 1 or 2 are recognized by Pex5p or Pex7p in the cytoplasm and are imported to peroxisomes via translocation machinery. In regard to peroxisome-cytoplasmic shuttling of Pex5p, Pex5p initially targets to an 800-kDa docking complex consisting of Pex14p and Pex13p and then translocates to a 500-kDa RING translocation complex. At the terminal step, Pex1p and Pex6p of the AAA family mediate the export of Pex5p, where Cys-ubiquitination of Pex5p is essential for the Pex5p exit.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| |
Collapse
|
57
|
Hagstrom D, Ma C, Guha-Polley S, Subramani S. The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. Mol Biol Cell 2014; 25:2634-43. [PMID: 25009284 PMCID: PMC4148252 DOI: 10.1091/mbc.e13-12-0716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Pichia pastoris, the PTS2 receptor, Pex7, is selectively degraded in a regulated manner. The shuttling of Pex7, and consequently its degradation, depends on the receptor recycling pathways used by Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20. Peroxisomal matrix protein import uses two peroxisomal targeting signals (PTSs). Most matrix proteins use the PTS1 pathway and its cargo receptor, Pex5. The PTS2 pathway is dependent on another receptor, Pex7, and its coreceptor, Pex20. We found that during the matrix protein import cycle, the stability and dynamics of Pex7 differ from those of Pex5 and Pex20. In Pichia pastoris, unlike Pex5 and Pex20, Pex7 is constitutively degraded in wild-type cells but is stabilized in pex mutants affecting matrix protein import. Degradation of Pex7 is more prevalent in cells grown in methanol, in which the PTS2 pathway is nonessential, in comparison with oleate, suggesting regulation of Pex7 turnover. Pex7 must shuttle into and out of peroxisomes before it is polyubiquitinated and degraded by the proteasome. The shuttling of Pex7, and consequently its degradation, is dependent on the receptor recycling pathways of Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. We also found that blocking the export of Pex20 from peroxisomes inhibits PTS1-mediated import, suggesting sharing of limited components in the export of PTS receptors/coreceptors. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20, exemplifying a novel interdependence of the PTS1 and PTS2 pathways.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322 College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Soumi Guha-Polley
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| |
Collapse
|
58
|
Lectez B, Migotti R, Lee SY, Ramirez J, Beraza N, Mansfield B, Sutherland JD, Martinez-Chantar ML, Dittmar G, Mayor U. Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin. J Proteome Res 2014; 13:3016-26. [PMID: 24730562 DOI: 10.1021/pr5001913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ubiquitination is behind most cellular processes, with ubiquitin substrates being regulated variously according to the number of covalently conjugated ubiquitin molecules and type of chain formed. Here we report the first mammalian system for ubiquitin proteomics allowing direct validation of the MS-identified proteins. We created a transgenic mouse expressing biotinylated ubiquitin and demonstrate its use for the isolation of ubiquitinated proteins from liver and other tissues. The specificity and strength of the biotin-avidin interaction allow very stringent washes, so only proteins conjugated to ubiquitin are isolated. In contrast with recently available antibody-based approaches, our strategy allows direct validation by immunoblotting, therefore revealing the type of ubiquitin chains (mono or poly) formed in vivo. We also identify the conjugating E2 enzymes that are ubiquitin-loaded in the mouse tissue. Furthermore, our strategy allows the identification of candidate cysteine-ubiquitinated proteins, providing a strategy to identify those on a proteomic scale. The novel in vivo system described here allows broad access to tissue-specific ubiquitomes and can be combined with established mouse disease models to investigate ubiquitin-dependent therapeutical approaches.
Collapse
Affiliation(s)
- Benoît Lectez
- CIC bioGUNE, Bizkaia Teknologia Parkea , Building 801-A, 48160 Derio, Basque Country, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
X'avia Chan CY, Wang D, Cadeiras M, Deng MC, Ping P. S-nitrosylation of TRIM72 mends the broken heart: a molecular modifier-mediated cardioprotection. J Mol Cell Cardiol 2014; 72:292-5. [PMID: 24735828 DOI: 10.1016/j.yjmcc.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/16/2022]
Affiliation(s)
- C Y X'avia Chan
- NHLBI Proteomics Center at UCLA, Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | - Ding Wang
- NHLBI Proteomics Center at UCLA, Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | - Martin Cadeiras
- Ronald Reagan UCLA Medical Center, UCLA Medical Center, Santa Monica, USA.
| | - Mario C Deng
- Ronald Reagan UCLA Medical Center, UCLA Medical Center, Santa Monica, USA.
| | - Peipei Ping
- NHLBI Proteomics Center at UCLA, Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
60
|
Okumoto K, Noda H, Fujiki Y. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J Biol Chem 2014; 289:14089-108. [PMID: 24662292 DOI: 10.1074/jbc.m113.527937] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome targeting signal type-1 (PTS1) receptor, Pex5p, is a key player in peroxisomal matrix protein import. Pex5p recognizes PTS1 cargoes in the cytosol, targets peroxisomes, translocates across the membrane, unloads the cargoes, and shuttles back to the cytosol. Ubiquitination of Pex5p at a conserved cysteine is required for the exit from peroxisomes. However, any potential ubiquitin ligase (E3) remains unidentified in mammals. Here, we establish an in vitro ubiquitination assay system and demonstrate that RING finger Pex10p functions as an E3 with an E2, UbcH5C. The E3 activity of Pex10p is essential for its peroxisome-restoring activity, being enhanced by another RING peroxin, Pex12p. The Pex10p·Pex12p complex catalyzes monoubiquitination of Pex5p at one of multiple lysine residues in vitro, following the dissociation of Pex5p from Pex14p and the PTS1 cargo. Several lines of evidence with lysine-to-arginine mutants of Pex5p demonstrate that Pex10p RING E3-mediated ubiquitination of Pex5p is required for its efficient export from peroxisomes to the cytosol and peroxisomal matrix protein import. RING peroxins are required for both modes of Pex5p ubiquitination, thus playing a pivotal role in Pex5p shuttling.
Collapse
Affiliation(s)
- Kanji Okumoto
- From the Department of Biology, Faculty of Sciences, and the Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiromi Noda
- From the Department of Biology, Faculty of Sciences, and
| | - Yukio Fujiki
- From the Department of Biology, Faculty of Sciences, and
| |
Collapse
|
61
|
A disulphide bond in the E2 enzyme Pex4p modulates ubiquitin-conjugating activity. Sci Rep 2014; 3:2212. [PMID: 23896733 PMCID: PMC6505396 DOI: 10.1038/srep02212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/26/2013] [Indexed: 11/10/2022] Open
Abstract
The ubiquitin-conjugating enzyme Pex4p together with its binding partner, the peroxisomal membrane protein Pex22p, co-ordinates cysteine-dependent ubiquitination of the cycling receptor protein Pex5p. Unusually for an ubiquitin-conjugating enzyme, Saccharomyces cerevisiae Pex4p can form a disulphide bond between the cysteine residues at positions 105 and 146. We found that mutating the disulphide forming cysteine residues in Pex4p to serines does not disturb the secondary structure of the protein but does reduce the in vitro activity of Pex4p. From the crystal structure of Pex4p C105S, C146S in complex with the soluble domain of Pex22p, we observe a narrowing of the active site cleft, caused by loss of the disulphide bond. This modification of the active site microenvironment is likely to restrict access of ubiquitin to the active site cysteine, modulating Pex4p activity. Finally, based on sequence and structural alignments, we have identified other ubiquitin-conjugating enzymes that may contain disulphide bonds.
Collapse
|
62
|
Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2013; 98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Hagen
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
63
|
Shannon DA, Weerapana E. Orphan PTMs: Rare, yet functionally important modifications of cysteine. Biopolymers 2013; 101:156-64. [DOI: 10.1002/bip.22252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/01/2013] [Indexed: 12/16/2022]
Affiliation(s)
- D. Alexander Shannon
- Department of Chemistry; Merkert Chemistry Center, Boston College; Chestnut Hill MA 02467
| | - Eranthie Weerapana
- Department of Chemistry; Merkert Chemistry Center, Boston College; Chestnut Hill MA 02467
| |
Collapse
|
64
|
Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M, Dodt G, Azevedo JE, Fransen M. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 2013; 15:94-103. [PMID: 24118911 DOI: 10.1111/tra.12129] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/11/2023]
Abstract
Peroxisome maintenance depends on the import of nuclear-encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C-terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5. After docking at the peroxisomal membrane and release of the cargo into the organelle matrix, PEX5 is recycled to the cytosol through a process requiring monoubiquitination of an N-terminal, cytosolically exposed cysteine residue (Cys11 in the human protein). At present, the reason why a cysteine, and not a lysine residue, is the target of ubiquitination remains unclear. Here, we provide evidence that PTS1 protein import into human fibroblasts is a redox-sensitive process. We also demonstrate that Cys11 in human PEX5 functions as a redox switch that regulates PEX5 activity in response to intracellular oxidative stress. Finally, we show that exposure of human PEX5 to oxidized glutathione results in a ubiquitination-deficient PEX5 molecule, and that substitution of Cys11 by a lysine can counteract this effect. In summary, these findings reveal that the activity of PEX5, and hence PTS1 import, is controlled by the redox state of the cytosol. The potential physiological implications of these findings are discussed.
Collapse
Affiliation(s)
- Oksana Apanasets
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
El Magraoui F, Brinkmeier R, Schrötter A, Girzalsky W, Müller T, Marcus K, Meyer HE, Erdmann R, Platta HW. Distinct Ubiquitination Cascades Act on the Peroxisomal Targeting Signal Type 2 Co-receptor Pex18p. Traffic 2013; 14:1290-301. [DOI: 10.1111/tra.12120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Fouzi El Magraoui
- Biochemie Intrazellulärer Transportprozesse; Ruhr-Universität Bochum; Bochum 44780 Germany
- Systembiochemie; Ruhr-Universität Bochum; Bochum 44780 Germany
- Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse; Ruhr-Universität Bochum; Bochum 44780 Germany
| | - Andreas Schrötter
- Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics; Medizinisches Proteom-Center; Bochum 44801 Germany
| | | | - Thorsten Müller
- Funktionelle Proteomik; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Katrin Marcus
- Funktionelle Proteomik; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Helmut E. Meyer
- Medizinische Proteomik/Bioanalytik; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Ralf Erdmann
- Systembiochemie; Ruhr-Universität Bochum; Bochum 44780 Germany
| | - Harald W. Platta
- Biochemie Intrazellulärer Transportprozesse; Ruhr-Universität Bochum; Bochum 44780 Germany
| |
Collapse
|
66
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
67
|
Gualdrón-López M, Chevalier N, Van Der Smissen P, Courtoy PJ, Rigden DJ, Michels PAM. Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3076-3092. [PMID: 23994617 DOI: 10.1016/j.bbamcr.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ∆PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ∆PEX4 mutant.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Nathalie Chevalier
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Paul A M Michels
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium.
| |
Collapse
|
68
|
Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y. Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2013; 2:998-1006. [PMID: 24167709 PMCID: PMC3798195 DOI: 10.1242/bio.20135298] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/03/2013] [Indexed: 01/24/2023] Open
Abstract
Peroxisomal division comprises three steps: elongation, constriction, and fission. Translocation of dynamin-like protein 1 (DLP1), a member of the large GTPase family, from the cytosol to peroxisomes is a prerequisite for membrane fission; however, the molecular machinery for peroxisomal targeting of DLP1 remains unclear. This study investigated whether mitochondrial fission factor (Mff), which targets DLP1 to mitochondria, may also recruit DLP1 to peroxisomes. Results show that endogenous Mff is localized to peroxisomes, especially at the membrane-constricted regions of elongated peroxisomes, in addition to mitochondria. Knockdown of MFF abrogates the fission stage of peroxisomal division and is associated with failure to recruit DLP1 to peroxisomes, while ectopic expression of MFF increases the peroxisomal targeting of DLP1. Co-expression of MFF and PEX11β, the latter being a key player in peroxisomal elongation, increases peroxisome abundance. Overexpression of MFF also increases the interaction between DLP1 and Pex11pβ, which knockdown of MFF, but not Fis1, abolishes. Moreover, results show that Pex11pβ interacts with Mff in a DLP1-dependent manner. In conclusion, Mff contributes to the peroxisomal targeting of DLP1 and plays a key role in the fission of the peroxisomal membrane by acting in concert with Pex11pβ and DLP1.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 , Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Francisco T, Rodrigues TA, Pinto MP, Carvalho AF, Azevedo JE, Grou CP. Ubiquitin in the peroxisomal protein import pathway. Biochimie 2013; 98:29-35. [PMID: 23954799 DOI: 10.1016/j.biochi.2013.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
PEX5 is the shuttling receptor for newly synthesized peroxisomal matrix proteins. Alone, or with the help of an adaptor protein, this receptor binds peroxisomal matrix proteins in the cytosol and transports them to the peroxisomal membrane docking/translocation module (DTM). The interaction between cargo-loaded PEX5 and the DTM ultimately results in its insertion into the DTM with the concomitant translocation of the cargo protein across the organelle membrane. PEX5 is not consumed in this event; rather it is dislocated back into the cytosol so that it can promote additional rounds of protein transportation. Remarkably, the data collected in recent years indicate that dislocation is preceded by monoubiquitination of PEX5 at a conserved cysteine residue. This mandatory modification is not the only type of ubiquitination occurring at the DTM. Indeed, several findings suggest that defective receptors jamming the DTM are polyubiquitinated and targeted to the proteasome for degradation.
Collapse
Affiliation(s)
- Tânia Francisco
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tony A Rodrigues
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel P Pinto
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Andreia F Carvalho
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Jorge E Azevedo
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cláudia P Grou
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal.
| |
Collapse
|
70
|
Ma C, Hagstrom D, Polley SG, Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 2013; 288:27220-27231. [PMID: 23902771 DOI: 10.1074/jbc.m113.492694] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1-110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Soumi Guha Polley
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322.
| |
Collapse
|
71
|
Kim DY, Scalf M, Smith LM, Vierstra RD. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. THE PLANT CELL 2013; 25:1523-40. [PMID: 23667124 PMCID: PMC3694690 DOI: 10.1105/tpc.112.108613] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 05/18/2023]
Abstract
The posttranslational addition of ubiquitin (Ub) profoundly controls the half-life, interactions, and/or trafficking of numerous intracellular proteins. Using stringent two-step affinity methods to purify Ub-protein conjugates followed by high-sensitivity mass spectrometry, we identified almost 950 ubiquitylation substrates in whole Arabidopsis thaliana seedlings. The list includes key factors regulating a wide range of biological processes, including metabolism, cellular transport, signal transduction, transcription, RNA biology, translation, and proteolysis. The ubiquitylation state of more than half of the targets increased after treating seedlings with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-Leu-al), strongly suggesting that Ub addition commits many to degradation by the 26S proteasome. Ub-attachment sites were resolved for a number of targets, including six of the seven Lys residues on Ub itself with a Lys-48>Lys-63>Lys-11>>>Lys-33/Lys-29/Lys-6 preference. However, little sequence consensus was detected among conjugation sites, indicating that the local environment has little influence on global ubiquitylation. Intriguingly, the level of Lys-11-linked Ub polymers increased substantially upon MG132 treatment, revealing that they might be important signals for proteasomal breakdown. Taken together, this proteomic analysis illustrates the breadth of plant processes affected by ubiquitylation and provides a deep data set of individual targets from which to explore the roles of Ub in various physiological and developmental pathways.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry,University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M. Smith
- Department of Chemistry,University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
72
|
Noguchi M, Okumoto K, Fujiki Y. System to quantify the import of peroxisomal matrix proteins by fluorescence intensity. Genes Cells 2013; 18:476-92. [PMID: 23573963 DOI: 10.1111/gtc.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
Fourteen distinct peroxins are essential for peroxisome biogenesis in mammals, of which ten are involved in the import of matrix proteins into peroxisomes. Peroxisomal matrix protein import is regulated by various cellular factors; however, the mechanisms underlying this regulation are poorly understood. This is primarily because no quantitative detection method with high resolution is available to study the import of peroxisomal matrix proteins. Here, we developed a monitoring system that uses a fluorescent reporter that is stabilized in peroxisomes but is degraded in the cytosol. An FK506 binding protein 12 variant, termed destabilization domain (DD), is rapidly and constitutively degraded by proteasomes when expressed in mammalian cells. DD is reversibly protected by the addition of a specific synthetic ligand. In the absence of the ligand, a reporter molecule, enhanced GFP (EGFP) fused with DD and peroxisomal targeting signal 1 (DD-EGFP-PTS1), is largely degraded in the cytosol. By contrast, in the presence of the ligand, the reporter is stabilized and translocates into peroxisomes. Upon withdrawal of the ligand, the reporter in peroxisomes remains intact, whereas that in the cytosol is rapidly degraded. Thus, peroxisomal protein import can be readily quantified by measuring the fluorescence intensity of whole cells.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
73
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
74
|
Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101. Biochem J 2013; 449:195-207. [PMID: 23009329 DOI: 10.1042/bj20120911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pex5p [PTS (peroxisome-targeting signal) type 1 receptor] plays an essential role in peroxisomal matrix protein import. In the present study, we isolated a novel PEX5-deficient CHO (Chinese-hamster ovary) cell mutant, termed ZPEG101, showing typical peroxisomal import defects of both PTS1 and PTS2 proteins. ZPEG101 is distinct from other known pex5 CHO mutants in its Pex5p expression. An undetectable level of Pex5p in ZPEG101 results in unstable Pex14p, which is due to inefficient translocation to the peroxisomal membrane. All of the mutant phenotypes of ZPEG101 are restored by expression of wild-type Pex5pL, a longer form of Pex5p, suggesting a role for Pex5p in sustaining the levels of Pex14p in addition to peroxisomal matrix protein import. Complementation analysis using various Pex5p mutants revealed that in the seven pentapeptide WXXXF/Y motifs in Pex5pL, known as the multiple binding sites for Pex14p, the fifth motif is an auxiliary binding site for Pex14p and is required for Pex14p stability. Furthermore, we found that Pex5p-Pex13p interaction is essential for the import of PTS1 proteins as well as catalase, but not for that of PTS2 proteins. Therefore ZPEG101 with no Pex5p would be a useful tool for investigating Pex5p function and delineating the mechanisms underlying peroxisomal matrix protein import.
Collapse
|
75
|
Gualdrón-López M, Michels PA. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei. Biochem Biophys Res Commun 2013; 431:98-103. [DOI: 10.1016/j.bbrc.2012.12.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
76
|
Liu X, Subramani S. Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. J Biol Chem 2013; 288:7230-40. [PMID: 23344950 DOI: 10.1074/jbc.m112.424911] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Pichia pastoris, the peroxisomal targeting signal 2 (PTS2)-dependent peroxisomal matrix protein import pathway requires the receptor, Pex7, and its co-receptor Pex20. A conserved lysine (Lys(19)) near the N terminus of Pex20 is required for its polyubiquitination and proteasomal degradation, whereas a conserved cysteine (Cys(8)) is essential for its recycling. In this study, we found that Cys(8) is required for the DTT-sensitive mono- and diubiquitination of Pex20. We also show that the PTS2 cargo receptor, Pex7, is required for Pex20 polyubiquitination. Pex4, the E2 ubiquitin-conjugation enzyme, is required for monoubiquitination of Pex20. However, it is also necessary for polyubiquitination of Pex20, making its behavior distinct from the ubiquitination described for other PTS receptors. Unlike the roles of specific RING peroxins in Pex5 ubiquitination, we found that all the RING peroxins (Pex2, Pex10, and Pex12) are required as E3 ubiquitin ligases for Pex20 mono- and polyubiquitination. A model for Pex20 ubiquitination is proposed based on these observations. This is the first description of the complete ubiquitination pathway of Pex20, which provides a better understanding of the recycling and degradation of this PTS2 cargo co-receptor.
Collapse
Affiliation(s)
- Xueqian Liu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | |
Collapse
|
77
|
Kaur N, Zhao Q, Xie Q, Hu J. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins(F). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:108-20. [PMID: 23336935 DOI: 10.1111/jipb.12014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Peroxisomes are essential eukaryotic organelles that mediate various metabolic processes. Peroxisome import depends on a group of peroxisome biogenesis factors called peroxins, many of which are evolutionarily conserved. PEX2, PEX10, and PEX12 are three RING-finger-domain-containing integral membrane peroxins crucial for protein import. In yeast (Saccharomyces cerevisae), RING peroxins act as E3 ligases, facilitating the recycling of the peroxisome import receptor protein PEX5 through ubiquitination. In plants, RING peroxins are essential to plant vitality. To elucidate the mode of action of the plant RING peroxins, we employed in vitro assays to show that the Arabidopsis RING peroxins also have E3 ligase activities. We also identified a PEX2-interacting protein, DSK2b, which is a member of the ubiquitin receptor family known to function as shuttle factors ferrying polyubiquitinated substrates to the proteasome for degradation. DSK2b and its tandem duplicate DSK2a are localized in the cytosol and the nucleus, and both interact with the RING domain of PEX2 and PEX12. DSK2 artificial microRNA lines did not display obvious defects in plant growth or peroxisomal processes, indicating functional redundancies among Arabidopsis ubiquitin receptor proteins. Our results suggest that Arabidopsis RING peroxins can function as E3 ligases and act together with the ubiquitin receptor protein DSK2 in the peroxisomal membrane-associated protein degradation system.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
78
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
79
|
Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. PLANT PHYSIOLOGY 2012; 160:2-14. [PMID: 22693286 PMCID: PMC3440198 DOI: 10.1104/pp.112.200667] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 05/18/2023]
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
80
|
Recent advances in peroxisomal matrix protein import. Curr Opin Cell Biol 2012; 24:484-9. [PMID: 22683191 DOI: 10.1016/j.ceb.2012.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022]
Abstract
Peroxisomes are essential organelles responsible for many metabolic reactions, such as the oxidation of very long chain and branched fatty acids, D-amino acids and polyamines, as well as the production and turnover of hydrogen peroxide. They comprise a class of organelles called microbodies, including glycosomes, glyoxysomes and Woronin bodies. Dysfunction of human peroxisomes causes severe and often fatal peroxisome biogenesis disorders (PBDs). Peroxisomal matrix protein import is mediated by receptors that shuttle between the cytosol and peroxisomal matrix using ubiquitination/deubiquitination reactions and ATP hydrolysis for receptor recycling. We focus on the machinery involved in the peroxisomal matrix protein import cycle, highlighting recent advances in peroxisomal matrix protein import, cargo release and receptor recycling/degradation.
Collapse
|
81
|
Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1326-36. [PMID: 22617146 DOI: 10.1016/j.bbadis.2012.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/26/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022]
Abstract
Peroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways. Most enzymes in the peroxisomal matrix are linked to lipid metabolism and detoxification of reactive oxygen species. Proper assembly of peroxisomes and thus also import of their enzymes relies on specific peroxisomal biogenesis factors, so called peroxins with PEX being the gene acronym. To date, 13 PEX genes are known to cause PBDs when mutated. Studies of the cellular and molecular defects in cells derived from PBD patients have significantly contributed to the understanding of the functional role of the corresponding peroxins in peroxisome assembly. In this review, we discuss recent data derived from both human cell culture as well as model organisms like yeasts and present an overview on the molecular mechanism underlying peroxisomal biogenesis disorders with emphasis on disorders caused by defects in the peroxisomal matrix protein import machinery.
Collapse
|
82
|
El Magraoui F, Bäumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R. The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J 2012; 279:2060-70. [PMID: 22471590 DOI: 10.1111/j.1742-4658.2012.08591.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The RING finger peroxins Pex2p, Pex10p and Pex12p are central components of the peroxisomal matrix protein import machinery. The RING domain enables each of these proteins to exhibit ubiquitin-protein ligase activity, which has been linked to ubiquitin-dependent regulation of the peroxisomal import receptor Pex5p. The RING peroxins are considered to form a heteromeric complex in vivo, although the elucidation of the structural assembly, as well as the functional interplay of the RING domains, has remained elusive. Using in vitro approaches, we show that the RING domains form a heteromeric complex with Pex10p(RING) as a central component that directly binds the Pex2p(RING) and Pex12p(RING). The RING domains proved to function as heteromeric pairs that display an Pex10p-dependent enhanced ligase activity in an ubiquitin conjugating enzyme-selective manner.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 2012; 287:12815-27. [PMID: 22371489 DOI: 10.1074/jbc.m112.340158] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates.
Collapse
Affiliation(s)
- Cláudia P Grou
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y. AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 2011; 13:168-83. [PMID: 21980954 DOI: 10.1111/j.1600-0854.2011.01298.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.
Collapse
Affiliation(s)
- Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
85
|
Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K. New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:145-9. [PMID: 22079764 DOI: 10.1016/j.bbamcr.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 01/25/2023]
Abstract
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
86
|
López T, Silva-Ayala D, López S, Arias CF. Replication of the rotavirus genome requires an active ubiquitin-proteasome system. J Virol 2011; 85:11964-71. [PMID: 21900156 PMCID: PMC3209302 DOI: 10.1128/jvi.05286-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/31/2011] [Indexed: 01/13/2023] Open
Abstract
Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication.
Collapse
Affiliation(s)
- Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| | | | | | | |
Collapse
|
87
|
Hensel A, Beck S, El Magraoui F, Platta HW, Girzalsky W, Erdmann R. Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 2011; 286:43495-505. [PMID: 22021076 DOI: 10.1074/jbc.m111.286104] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisomal matrix protein import is facilitated by cycling receptor molecules that shuttle between the cytosol and the peroxisomal membrane. In the yeast Saccharomyces cerevisiae, the import of proteins harboring a peroxisomal targeting signal of type II (PTS2) is mediated by the receptor Pex7p and its co-receptor Pex18p. Here we demonstrate that Pex18p undergoes two kinds of ubiquitin modifications. One of these ubiquitination events depends on lysines 13 and 20 and forces rapid Pex18p turnover by proteasomal degradation. A cysteine residue near the extreme Pex18p amino-terminus is required for the second type of ubiquitination. It turned out that this cysteine residue at position 6 is essential for the function of Pex18p in peroxisomal protein import but does not contribute to receptor-cargo association and binding to the peroxisomal import apparatus. However, in contrast to the wild-type protein, cysteine 6-mutated Pex18p is arrested in a membrane-protected state, whereas Pex7p is accessible in a protease protection assay. This finding indicates that Pex18p export is linked to cargo translocation, which supports the idea of an export-driven import of proteins into peroxisomes.
Collapse
Affiliation(s)
- Astrid Hensel
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, Grou CP, Carvalho AF, Fransen M, Sá-Miranda C, Azevedo JE. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J Biol Chem 2011; 286:40509-19. [PMID: 21976670 DOI: 10.1074/jbc.m111.287201] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5. PEX5 has a dual role in this process. First, it acts as a soluble receptor recognizing these proteins in the cytosol. Subsequently, at the peroxisomal docking/translocation machinery, PEX5 promotes their translocation across the organelle membrane. Despite significant advances made in recent years, several aspects of this pathway remain unclear. Two important ones regard the formation and disruption of the PEX5-cargo protein interaction in the cytosol and at the docking/translocation machinery, respectively. Here, we provide data on the interaction of PEX5 with catalase, a homotetrameric enzyme in its native state. We found that PEX5 interacts with monomeric catalase yielding a stable protein complex; no such complex was detected with tetrameric catalase. Binding of PEX5 to monomeric catalase potently inhibits its tetramerization, a property that depends on domains present in both the N- and C-terminal halves of PEX5. Interestingly, the PEX5-catalase interaction is disrupted by the N-terminal domain of PEX14, a component of the docking/translocation machinery. One or two of the seven PEX14-binding diaromatic motifs present in the N-terminal half of PEX5 are probably involved in this phenomenon. These results suggest the following: 1) catalase domain(s) involved in the interaction with PEX5 are no longer accessible upon tetramerization of the enzyme; 2) the catalase-binding interface in PEX5 is not restricted to its C-terminal peroxisomal targeting sequence type 1-binding domain and also involves PEX5 N-terminal domain(s); and 3) PEX14 participates in the cargo protein release step.
Collapse
Affiliation(s)
- Marta O Freitas
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Post-translational modification by ubiquitination determines intracellular location and fate of numerous proteins, thus impacting a diverse array of physiologic functions. Past dogma has been that ubiquitin was only coupled to substrates by isopeptide bonds to internal lysine residues or less frequently peptide bonds to the N-terminus. Enigmatically, however, several proteins lacking lysines had been reported to retain ubiquitin-dependent fates. Resolution of this paradox was afforded by recent observations that ubiquitination of substrates can also occur on cysteine or serine and threonine residues by thio- or oxy-ester bond formation, respectively (collectively called esterification). Although chemically possible, these bonds were considered too labile to be of physiological relevance. In this review we discuss recent evidence for the ubiquitination of protein substrates by esterification and speculate on its mechanism and its physiological importance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|