51
|
Yang G, Suo L, Hu S, Liu H, Wang X, Xiao X, Liu J, Zeng X, Hong J, Guan L, Xue J, Yang P. Characterization of the immune regulatory property of CD22 + CD9 + B cells. Immunol Suppl 2022; 167:328-339. [PMID: 35754150 DOI: 10.1111/imm.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Immunodisruptive homeostasis is recognized in allergic disorders. The mechanism of restoration of immunologic homeostasis in the body is not fully understood. Galectin-9 (Gal9) and CD22 have immune regulatory functions. The goal of this study is to test the role of CD22+ CD9+ B regulatory cells in immune homeostasis the body. A much smaller amount of IL-10 in B10 cells was detected in patients with AR in contrast to healthy subjects. The IL-10 expression levels in B10 cells were positively correlated with the CD22 expression. CD22 mediated the effects of Gal9 on the enhanced expression of IL-10 in AR B10 cells. Gal9 overcame the refractory induction of IL-10 in B-cells of AR subjects. The immune regulatory ability of AR B10 cells could be restored by Gal9. Combination of Gal9 and SIT induced and activated antigen-specific B10 cells. The B10 cells of Gal9/specific immunotherapy-treated AR mice showed immunosuppressive functions on T-cell activities and induction of type 1 regulatory T cells in an antigen-specific manner. Administration of Gal9 potentiated the effects of specific immunotherapy in mice with AR. In summary, a fraction of regulatory B cells, the CD19+ CD22+ CD9+ B cells, was characterized in the present study. CD22 mediates the effects of Gal9 to promote immunotherapy for allergic diseases by inducing B10 cells. In an antigen specific manner, the B10 cells suppressed CD4+ T cell activities, and alleviated experimental AR.
Collapse
Affiliation(s)
- Gui Yang
- Department of Otolaryngology & Allergy, Longgang Central Hospital, Shenzhen, China
| | - Limin Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Suqing Hu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Huazhen Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiaojun Xiao
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Jie Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xianhai Zeng
- Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Jingyi Hong
- Department of Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Li Guan
- Department of Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.,Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| |
Collapse
|
52
|
Ramírez Hernández E, Alanis Olvera B, Carmona González D, Guerrero Marín O, Pantoja Mercado D, Valencia Gil L, Hernández-Zimbrón LF, Sánchez Salgado JL, Limón ID, Zenteno E. Neuroinflammation and galectins: a key relationship in neurodegenerative diseases. Glycoconj J 2022; 39:685-699. [PMID: 35653015 DOI: 10.1007/s10719-022-10064-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is a pathological condition that is associated with the loss of neuronal function and structure. In neurodegenerative diseases, mounting evidence indicates that neuroinflammation is a common factor that contributes to neuronal damage and neurodegeneration. Neuroinflammation is characterized by the activation of microglia, the neuroimmune cells of the central nervous system (CNS), which have been implicated as active contributors to neuronal damage. Glycan structure modification is defining the outcome of neuroinflammation and neuronal regeneration; moreover, the expression of galectins, a group of lectins that specifically recognize β-galactosides, has been proposed as a key factor in neuronal regeneration and modulation of the inflammatory response. Of the different galectins identified, galectin-1 stimulates the secretion of neurotrophic factors in astrocytes and promotes neuronal regeneration, whereas galectin-3 induces the proliferation of microglial cells and modulates cell apoptosis. Galectin-8 emerged as a neuroprotective factor, which, in addition to its immunosuppressive function, could generate a neuroprotective environment in the brain. This review describes the role of galectins in the activation and modulation of astrocytes and microglia and their anti- and proinflammatory functions within the context of neuroinflammation. Furthermore, it discusses the potential use of galectins as a therapeutic target for the inflammatory response and remodeling in damaged tissues in the central nervous system.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Beatriz Alanis Olvera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Carmona González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Guerrero Marín
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Denisse Pantoja Mercado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lucero Valencia Gil
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
53
|
Arias de la Rosa I, López-Montilla MD, Román-Rodríguez C, Pérez-Sánchez C, Gómez-García I, López-Medina C, Ladehesa-Pineda ML, Ábalos-Aguilera MDC, Ruiz D, Patiño-Trives AM, Luque-Tévar M, Añón-Oñate I, Pérez-Galán MJ, Guzmán-Ruiz R, Malagón MM, López-Pedrera C, Escudero-Contreras A, Collantes-Estévez E, Barbarroja N. The clinical and molecular cardiometabolic fingerprint of an exploratory psoriatic arthritis cohort is associated with the disease activity and differentially modulated by methotrexate and apremilast. J Intern Med 2022; 291:676-693. [PMID: 35233860 PMCID: PMC9310593 DOI: 10.1111/joim.13447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES (1) To evaluate clinical and molecular cardiovascular disease (CVD) signs and their relationship with psoriatic arthritis (PsA) features and (2) to identify a clinical patient profile susceptible to benefit from methotrexate (MTX) and/or apremilast regarding CVD risk. METHODS This cross-sectional study included 100 patients with PsA and 100 age-matched healthy donors. In addition, an exploratory cohort of 45 biologically naïve patients treated for 6 months with apremilast, MTX or combined therapy according to routine clinical practice was recruited. Extensive clinical and metabolic profiles were obtained. Ninety-nine surrogate CVD-related molecules were analysed in plasma and peripheral blood mononuclear cells (PBMCs). Hard cluster analysis was performed to identify the clinical and molecular phenotypes. Mechanistic studies were performed on adipocytes. RESULTS Cardiometabolic comorbidities were associated with disease activity and long-term inflammatory status. Thirty-five CVD-related proteins were altered in the plasma and PBMCs of PsA patients and were associated with the key clinical features of the disease. Plasma levels of some of the CVD-related molecules might distinguish insulin-resistant patients (MMP-3, CD163, FABP-4), high disease activity (GAL-3 and FABP-4) and poor therapy outcomes (CD-163, LTBR and CNTN-1). Hard cluster analysis identified two phenotypes of patients according to the rates of cardiometabolic comorbidities with distinctive clinical and molecular responses to each treatment. CONCLUSIONS (1) Novel CVD-related proteins associated with clinical features could be emerging therapeutic targets in the context of PsA and (2) the pleiotropic action of apremilast could make it an excellent choice for the management of PsA patients with high CVD risk, targeting metabolic alterations and CVD-related molecules.
Collapse
Affiliation(s)
- Ivan Arias de la Rosa
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Maria Dolores López-Montilla
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Cristobal Román-Rodríguez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Ignacio Gómez-García
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Clementina López-Medina
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Maria Lourdes Ladehesa-Pineda
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Maria Del Carmen Ábalos-Aguilera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Desiree Ruiz
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Alejandra Maria Patiño-Trives
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Maria Luque-Tévar
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | | | | | - Rocio Guzmán-Ruiz
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria M Malagón
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chary López-Pedrera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Eduardo Collantes-Estévez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Nuria Barbarroja
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
54
|
Boutin L, Dépret F, Gayat E, Legrand M, Chadjichristos CE. Galectin-3 in Kidney Diseases: From an Old Protein to a New Therapeutic Target. Int J Mol Sci 2022; 23:ijms23063124. [PMID: 35328545 PMCID: PMC8952808 DOI: 10.3390/ijms23063124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Galectin-3 (Gal-3) is a 30KDa lectin implicated in multiple pathophysiology pathways including renal damage and fibrosis. Gal-3 binds β-galactoside through its carbohydrate-recognition domain. From intra-cellular to extra-cellular localization, Gal-3 has multiple roles including transduction signal pathway, cell-to-cell adhesion, cell to extracellular matrix adhesion, and immunological chemoattractant protein. Moreover, Gal-3 has also been linked to kidney disease in both preclinical models and clinical studies. Gal-3 inhibition appears to improve renal disease in several pathological conditions, thus justifying the development of multiple drug inhibitors. This review aims to summarize the latest literature regarding Gal-3 in renal pathophysiology, from its role as a biomarker to its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - François Dépret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - Matthieu Legrand
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
- Department of Anesthesiology and Peri-Operative Medicine, Division of Critical Care Medicine, University of California—UCSF Medical Center, 500 Parnassus Ave, San Francisco, CA 94143, USA
- INI-CRCT Network, 54500 Nancy, France
| | | |
Collapse
|
55
|
Raics M, Balogh ÁK, Kishor C, Timári I, Medrano FJ, Romero A, Go RM, Blanchard H, Szilágyi L, E. Kövér K, Fehér K. Investigation of the Molecular Details of the Interactions of Selenoglycosides and Human Galectin-3. Int J Mol Sci 2022; 23:2494. [PMID: 35269646 PMCID: PMC8910297 DOI: 10.3390/ijms23052494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022] Open
Abstract
Human galectin-3 (hGal-3) is involved in a variety of biological processes and is implicated in wide range of diseases. As a result, targeting hGal-3 for clinical applications has become an intense area of research. As a step towards the development of novel hGal-3 inhibitors, we describe a study of the binding of two Se-containing hGal-3 inhibitors, specifically that of di(β-D-galactopyranosyl)selenide (SeDG), in which two galactose rings are linked by one Se atom and a di(β-D-galactopyranosyl)diselenide (DSeDG) analogue with a diseleno bond between the two sugar units. The binding affinities of these derivatives to hGal-3 were determined by 15N-1H HSQC NMR spectroscopy and fluorescence anisotropy titrations in solution, indicating a slight decrease in the strength of interaction for SeDG compared to thiodigalactoside (TDG), a well-known inhibitor of hGal-3, while DSeDG displayed a much weaker interaction strength. NMR and FA measurements showed that both seleno derivatives bind to the canonical S face site of hGal-3 and stack against the conserved W181 residue also confirmed by X-ray crystallography, revealing canonical properties of the interaction. The interaction with DSeDG revealed two distinct binding modes in the crystal structure which are in fast exchange on the NMR time scale in solution, explaining a weaker interaction with hGal-3 than SeDG. Using molecular dynamics simulations, we have found that energetic contributions to the binding enthalpies mainly differ in the electrostatic interactions and in polar solvation terms and are responsible for weaker binding of DSeDG compared to SeDG. Selenium-containing carbohydrate inhibitors of hGal-3 showing canonical binding modes offer the potential of becoming novel hydrolytically stable scaffolds for a new class of hGal-3 inhibitors.
Collapse
Affiliation(s)
- Mária Raics
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| | - Álex Kálmán Balogh
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| | - Chandan Kishor
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (L.S.)
| | - Francisco J. Medrano
- Structural and Chemical Biology, Centro de Investigaciones Biolόgicas, Margarita Salas, CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; (F.J.M.); (A.R.)
| | - Antonio Romero
- Structural and Chemical Biology, Centro de Investigaciones Biolόgicas, Margarita Salas, CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; (F.J.M.); (A.R.)
| | - Rob Marc Go
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (L.S.)
| | - Katalin E. Kövér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Krisztina Fehér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| |
Collapse
|
56
|
Regulatory T Cell Apoptosis during Preeclampsia May Be Prevented by Gal-2. Int J Mol Sci 2022; 23:ijms23031880. [PMID: 35163802 PMCID: PMC8836599 DOI: 10.3390/ijms23031880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
There are several open questions to be answered regarding the pathophysiology of the development of preeclampsia (PE). Numerous factors are involved in its genesis, such as defective placentation, vascular impairment, and an altered immune response. The activation of the adaptive and innate immune system represents an immunologic, particularity during PE. Proinflammatory cytokines are predominantly produced, whereas immune regulatory and immune suppressive factors are diminished in PE. In the present study, we focused on the recruitment of regulatory T cells (Tregs) which are key players in processes mediating immune tolerance. To identify Tregs in the decidua, an immunohistochemical staining of FoxP3 of 32 PE and 34 control placentas was performed. A clearly reduced number of FoxP3-positive cells in the decidua of preeclamptic women could be shown in our analysis (p = 0.036). Furthermore, CCL22, a well-known Treg chemoattractant, was immunohistochemically evaluated. Interestingly, CCL22 expression was increased at the maternal-fetal interface in PE-affected pregnancies (psyncytiotrophoblast = 0.035, pdecidua = 0.004). Therefore, the hypothesis that Tregs undergo apoptosis at the materno-fetal interface during PE was generated, and verified by FoxP3/TUNEL (TdT-mediated dUTP-biotin nick end labeling) staining. Galectin-2 (Gal-2), a member of the family of carbohydrate-binding proteins, which is known to be downregulated during PE, seems to play a pivotal role in T cell apoptosis. By performing a cell culture experiment with isolated Tregs, we could identify Gal-2 as a factor that seems to prevent the apoptosis of Tregs. Our findings point to a cascade of apoptosis of Tregs at the materno-fetal interface during PE. Gal-2 might be a potential therapeutic target in PE to regulate immune tolerance.
Collapse
|
57
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
58
|
Timári I, Balla S, Fehér K, Kövér KE, Szilágyi L. 77Se-Enriched Selenoglycoside Enables Significant Enhancement in NMR Spectroscopic Monitoring of Glycan-Protein Interactions. Pharmaceutics 2022; 14:201. [PMID: 35057096 PMCID: PMC8779653 DOI: 10.3390/pharmaceutics14010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Detailed investigation of ligand-protein interactions is essential for better understanding of biological processes at the molecular level. Among these binding interactions, the recognition of glycans by lectins is of particular importance in several diseases, such as cancer; therefore, inhibition of glycan-lectin/galectin interactions represents a promising perspective towards developing therapeutics controlling cancer development. The recent introduction of 77Se NMR spectroscopy for monitoring the binding of a selenoglycoside to galectins prompted interest to optimize the sensitivity by increasing the 77Se content from the natural 7.63% abundance to 99%. Here, we report a convenient synthesis of 77Se-enriched selenodigalactoside (SeDG), which is a potent ligand of the medically relevant human galectin-3 protein, and proof of the expected sensitivity gain in 2D 1H, 77Se correlation NMR experiments. Our work opens perspectives for adding isotopically enriched selenoglycans for rapid monitoring of lectin-binding of selenated as well as non-selenated ligands and for ligand screening in competition experiments.
Collapse
Affiliation(s)
- István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (S.B.)
| | - Sára Balla
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (S.B.)
| | - Krisztina Fehér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Katalin E. Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (S.B.)
| |
Collapse
|
59
|
Galectin-8, cytokines, and the storm. Biochem Soc Trans 2022; 50:135-149. [PMID: 35015084 PMCID: PMC9022973 DOI: 10.1042/bst20200677] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Galectin-8 (Gal-8) belongs to a family of animal lectins that modulate cell adhesion, cell proliferation, apoptosis, and immune responses. Recent studies have shown that mammalian Gal-8 induces in an autocrine and paracrine manner, the expression and secretion of cytokines and chemokines such as RANKL, IL-6, IL-1β, SDF-1, and MCP-1. This involves Gal-8 binding to receptor complexes that include MRC2/uPAR/LRP1, integrins, and CD44. Receptors ligation triggers FAK, ERK, Akt, and the JNK signaling pathways, leading to induction of NF-κB that promotes cytokine expression. Indeed, immune-competent Gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for Gal-8 transgenic animals. Cytokine and chemokine secretion, induced by Gal-8, promotes the migration of cancer cells toward cells expressing this lectin. Accordingly, Gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These observations suggest the existence of a ‘vicious cycle’ whereby Gal-8 expression and secretion promotes the secretion of cytokines and chemokines that further promote Gal-8 expression. This ‘vicious cycle’ could enhance the development of a ‘cytokine storm’ which is a key contributor to the poor prognosis of COVID-19 patients.
Collapse
|
60
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Yoon KT, Liu H, Zhang J, Han S, Lee SS. Galectin-3 inhibits cardiac contractility via a TNFα-dependent mechanism in cirrhotic rats. Clin Mol Hepatol 2022; 28:232-241. [PMID: 34986297 PMCID: PMC9013610 DOI: 10.3350/cmh.2021.0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background/Aims Galectin-3 plays a key pathogenic role in cardiac hypertrophy and heart failure. The present study aimed to investigate the effects of galectin-3 on cardiomyopathy – related factors and cardiac contractility in a rat model of cirrhotic cardiomyopathy. Methods Rats were divided into two sets, one for a functional study, the other for cardiac contractile-related protein evaluation. There were four groups in each set: sham operated and sham plus N-acetyllactosamine (N-Lac, a galectin-3 inhibitor; 5 mg/kg); bile duct ligated (BDL) and BDL plus N-Lac. Four weeks after surgery, ventricular level of galectin-3, collagen I and III ratio, tumor necrosis factor alpha (TNFα), and brain natriuretic peptide (BNP) were measured either by Western blots or immunohistochemistry or enzyme-linked immunosorbent assay. Blood pressure was measured by polygraph recorder. Cardiomyocyte contractility was measured by inverted microscopy. Results Galectin-3 and collagen I/III ratio were significantly increased in cirrhotic hearts. TNFα and BNP were significantly increased in BDL serum and heart compared with sham controls. Galectin-3 inhibitor significantly decreased galectin-3, TNFα, and BNP in cirrhotic hearts but not in sham controls. N-Lac also significantly improved the blood pressure, and systolic and diastolic cardiomyocyte contractility in cirrhotic rats but had no effect on sham controls. Conclusion Increased galectin-3 in the cirrhotic heart significantly inhibited contractility via TNFα. Inhibition of galectin-3 decreased the cardiac content of TNFα and BNP and reversed the decreased blood pressure and depressed contractility in the cirrhotic heart. Galectin-3 appears to play a pathogenic role in cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- Ki Tae Yoon
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Canada.,During these studies, Dr. Yoon was the recipient of a sabbatical leave from Pusan National University Faculty of Medicine, Yangsan Hospital. His current address is: Division of Gastroenterology, Pusan National University, Yangsan Hospital, Yangsan, South Korea
| | - Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Jing Zhang
- Dept of Hepatology and Infectious Disease, Youan Hospital, Capital Medical University, Beijing, China
| | - Sojung Han
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Canada.,Current address: Division of Gastroenterology, Dept of Internal Medicine, Uijeongbu Eulji Medical Center, Uijeongbu-si, South Korea
| | - Samuel S Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Canada
| |
Collapse
|
62
|
Kamili NA, Paul A, Wu SC, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Evaluation of the Bactericidal Activity of Galectins. Methods Mol Biol 2022; 2442:517-531. [PMID: 35320543 DOI: 10.1007/978-1-0716-2055-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over a century ago, Karl Landsteiner discovered that blood group antigens could predict the immunological outcome of red blood cell transfusion. While the discovery of ABO(H) blood group antigens revolutionized transfusion medicine, many questions remain regarding the development and regulation of naturally occurring anti-blood group antibody formation. Early studies suggested that blood group antibodies develop following stimulation by bacteria that express blood group antigens. While this may explain the development of anti-blood group antibodies in blood group-negative individuals, how blood group-positive individuals protect themselves against blood group-positive microbes remained unknown. Recent studies suggest that several members of the galectin family specifically target blood group-positive microbes, thereby providing innate immune protection against blood group antigen-positive microbes regardless of the blood group status of an individual. Importantly, subsequent studies suggest that this unique form of immunity may not be limited to blood group expressing microbes, but may reflect a more generalized form of innate immunity against molecular mimicry. As this form of antimicrobial activity represents a unique and unprecedented form of immunity, we will examine important considerations and methodological approaches that can be used when seeking to ascertain the potential antimicrobial activity of various members of the galectin family.
Collapse
Affiliation(s)
- Nourine A Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
63
|
Leppänen A, Arthur CM, Stowell SR, Cummings RD. Examination of Whole-Cell Galectin Binding by Solid Phase and Flow Cytometric Analysis. Methods Mol Biol 2022; 2442:187-203. [PMID: 35320527 DOI: 10.1007/978-1-0716-2055-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have utilized simple flow cytometric and fluorescence-based solid phase assays to study the interaction of glycan binding proteins (GBP) to cell surface glycoconjugates. These methods utilize commonly employed flow cytometry techniques and commercially available streptavidin-coated microplates to immobilize various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells. Using this approach, fluorescently labeled GBPs, in particular, members of the galectin family, can be interrogated for potential interactions with cell surface carbohydrates, including elucidation of the potential impact of alterations in glycosylation on carbohydrate recognition. Using these approaches, we present examples of flow cytometric and fluorescence-based solid phase assays to study galectin-carbohydrate interactions.
Collapse
Affiliation(s)
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
64
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
65
|
Potential Roles of Modified Pectin Targeting Galectin-3 against Severe Acute Respiratory Syndrome Coronavirus-2. J 2021. [DOI: 10.3390/j4040056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modified pectin (MP) is a bioactive complex polysaccharide that is broken down into smaller fragments of units and used as an oral dietary supplement for cell proliferation. MP is safe and non-toxic with promising therapeutic properties with regard to targeting galectin-3 (GAL-3) toward the prevention and inhibition of viral infections through the modulation of the immune response and anti-inflammatory cytokine effects. This effect of MP as a GAL-3 antagonism, which has shown benefits in preclinical and clinical models, may be of relevance to the progression of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in coronavirus disease 2019 patients. The outbreak of emerging infectious diseases continues to pose a threat to human health. Further to the circulation of multiple variants of SARS-CoV-2, an effective and alternative therapeutic approach to combat it has become pertinent. The use of MP as a GAL-3 inhibitor could serve as an antiviral agent blocking against the SARS-CoV-2-binding spike protein. This review highlights the potential effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated function concerning a SARS-CoV-2 infection.
Collapse
|
66
|
Jofre BL, Eliçabe RJ, Silva JE, Pérez Sáez JM, Paez MD, Callegari E, Mariño KV, Di Genaro MS, Rabinovich GA, Davicino RC. Galectin-1 Cooperates with Yersinia Outer Protein (Yop) P to Thwart Protective Immunity by Repressing Nitric Oxide Production. Biomolecules 2021; 11:1636. [PMID: 34827634 PMCID: PMC8615707 DOI: 10.3390/biom11111636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) inserts outer proteins (Yops) into cytoplasm to infect host cells. However, in spite of considerable progress, the mechanisms implicated in this process, including the association of Yops with host proteins, remain unclear. Here, we evaluated the functional role of Galectin-1 (Gal1), an endogenous β-galactoside-binding protein, in modulating Yop interactions with host cells. Our results showed that Gal1 binds to Yops in a carbohydrate-dependent manner. Interestingly, Gal1 binding to Yops protects these virulence factors from trypsin digestion. Given that early control of Ye infection involves activation of macrophages, we evaluated the role of Gal1 and YopP in the modulation of macrophage function. Although Gal1 and YopP did not influence production of superoxide anion and/or TNF by Ye-infected macrophages, they coordinately inhibited nitric oxide (NO) production. Notably, recombinant Gal1 (rGal1) did not rescue NO increase observed in Lgals1-/- macrophages infected with the YopP mutant Ye ∆yopP. Whereas NO induced apoptosis in macrophages, no significant differences in cell death were detected between Gal1-deficient macrophages infected with Ye ∆yopP, and WT macrophages infected with Ye wt. Strikingly, increased NO production was found in WT macrophages treated with MAPK inhibitors and infected with Ye wt. Finally, rGal1 administration did not reverse the protective effect in Peyer Patches (PPs) of Lgals1-/- mice infected with Ye ∆yopP. Our study reveals a cooperative role of YopP and endogenous Gal1 during Ye infection.
Collapse
Affiliation(s)
- Brenda Lucila Jofre
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Ricardo Javier Eliçabe
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Manuel Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
| | - Maria Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Karina Valeria Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina;
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
- Roberto Davicino, División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, San Luis CP5700, Argentina
| |
Collapse
|
67
|
Brandini DA, Takamiya AS, Thakkar P, Schaller S, Rahat R, Naqvi AR. Covid-19 and oral diseases: Crosstalk, synergy or association? Rev Med Virol 2021; 31:e2226. [PMID: 33646645 PMCID: PMC8014590 DOI: 10.1002/rmv.2226] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (Covid-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that clinically affects multiple organs of the human body. Cells in the oral cavity express viral entry receptor angiotensin-converting enzyme 2 that allows viral replication and may cause tissue inflammation and destruction. Recent studies have reported that Covid-19 patients present oral manifestations with multiple clinical aspects. In this review, we aim to summarise main signs and symptoms of Covid-19 in the oral cavity, its possible association with oral diseases, and the plausible underlying mechanisms of hyperinflammation reflecting crosstalk between Covid-19 and oral diseases. Ulcers, blisters, necrotising gingivitis, opportunistic coinfections, salivary gland alterations, white and erythematous plaques and gustatory dysfunction were the most reported clinical oral manifestations in patients with Covid-19. In general, the lesions appear concomitant with the loss of smell and taste. Multiple reports show evidences of necrotic/ulcerative gingiva, oral blisters and hypergrowth of opportunistic oral pathogens. SARS-CoV-2 exhibits tropism for endothelial cells and Covid-19-mediated endotheliitis can not only promote inflammation in oral tissues but can also facilitate virus spread. In addition, elevated levels of proinflammatory mediators in patients with Covid-19 and oral infectious disease can impair tissue homeostasis and cause delayed disease resolution. This suggests potential crosstalk of immune-mediated pathways underlying pathogenesis. Interestingly, few reports suggest recurrent herpetic lesions and higher bacterial growth in Covid-19 subjects, indicating SARS-CoV-2 and oral virus/bacteria interaction. Larger cohort studies comparing SARS-CoV-2 negative and positive subjects will reveal oral manifestation of the virus on oral health and its role in exacerbating oral infection.
Collapse
Affiliation(s)
- Daniela A. Brandini
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Aline S. Takamiya
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Pari Thakkar
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samantha Schaller
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Rani Rahat
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
68
|
Wu SC, Ho AD, Kamili NA, Wang J, Murdock KL, Cummings RD, Arthur CM, Stowell SR. Full-Length Galectin-3 Is Required for High Affinity Microbial Interactions and Antimicrobial Activity. Front Microbiol 2021; 12:731026. [PMID: 34690972 PMCID: PMC8531552 DOI: 10.3389/fmicb.2021.731026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
While adaptive immunity enables the recognition of a wide range of microbial antigens, immunological tolerance limits reactively toward self to reduce autoimmunity. Some bacteria decorate themselves with self-like antigens as a form of molecular mimicry to limit recognition by adaptive immunity. Recent studies suggest that galectin-4 (Gal-4) and galectin-8 (Gal-8) may provide a unique form of innate immunity against molecular mimicry by specifically targeting microbes that decorate themselves in self-like antigens. However, the binding specificity and antimicrobial activity of many human galectins remain incompletely explored. In this study, we defined the binding specificity of galectin-3 (Gal-3), the first galectin shown to engage microbial glycans. Gal-3 exhibited high binding toward mammalian blood group A, B, and αGal antigens in a glycan microarray format. In the absence of the N-terminal domain, the C-terminal domain of Gal-3 (Gal-3C) alone exhibited a similar overall binding pattern, but failed to display the same level of binding for glycans over a range of concentrations. Similar to the recognition of mammalian glycans, Gal-3 and Gal-3C also specifically engaged distinct microbial glycans isolated and printed in a microarray format, with Gal-3 exhibiting higher binding at lower concentrations toward microbial glycans than Gal-3C. Importantly, Gal-3 and Gal-3C interactions on the microbial microarray accurately predicted actual interactions toward intact microbes, with Gal-3 and Gal-3C displaying carbohydrate-dependent binding toward distinct strains of Providentia alcalifaciens and Klebsiella pneumoniae that express mammalian-like antigens, while failing to recognize similar strains that express unrelated antigens. While both Gal-3 and Gal-3C recognized specific strains of P. alcalifaciens and K. pneumoniae, only Gal-3 was able to exhibit antimicrobial activity even when evaluated at higher concentrations. These results demonstrate that while Gal-3 and Gal-3C specifically engage distinct mammalian and microbial glycans, Gal-3C alone does not possess antimicrobial activity.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianmei Wang
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Kaleb L Murdock
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
69
|
Gadwal A, Modi A, Khokhar M, Vishnoi JR, Choudhary R, Elhence P, Banerjee M, Purohit P. Critical appraisal of epigenetic regulation of galectins in cancer. Int J Clin Oncol 2021; 27:35-44. [PMID: 34652614 DOI: 10.1007/s10147-021-02048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
Galectins are defined as the glycan-binding protein containing either one or two carbohydrate-binding domains and participate in various biological functions such as developmental processes, vascularisation programs, cell migration, and immune-regulation and apoptosis. Galectins are also linked to many diseases, including cancer. They are widely spread in extracellular and intracellular spaces, and their altered expression in cancer leads to tumor progression, metastasis, angiogenesis and stemness through different signalling pathways. Promoter methylation, microRNA, and histone modification constitute the epigenetic changes that regulate galectin activity in cancer. Our review discusses the concept of epigenetics in cancer and how the aforementioned factors i.e., promoter methylation, histone modification, change in miRNAs expression affect the glycomic changes in malignancies.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
70
|
Schlichtner S, Meyer NH, Yasinska IM, Aliu N, Berger SM, Gibbs BF, Fasler-Kan E, Sumbayev VV. Functional role of galectin-9 in directing human innate immune reactions to Gram-negative bacteria and T cell apoptosis. Int Immunopharmacol 2021; 100:108155. [PMID: 34543981 DOI: 10.1016/j.intimp.2021.108155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Galectin-9 is a member of the galectin family of proteins, which were first identified to specifically bind to carbohydrates containing β-galactosides. Galectin-9 is conserved through evolution and recent evidence demonstrated its involvement in innate immune reactions to bacterial infections as well as the suppression of cytotoxic immune responses of T and natural killer cells. However, the molecular mechanisms underlying such differential immunological functions of galectin-9 remain largely unknown. In this work we confirmed that soluble galectin-9 derived from macrophages binds to Gram-negative bacteria by interacting with lipopolysaccharide (LPS), which forms their cell wall. This opsonisation effect most likely interferes with the mobility of bacteria leading to their phagocytosis by innate immune cells. Galectin-9-dependent opsonisation also promotes the innate immune reactions of macrophages to these bacteria and significantly enhances the production of pro-inflammatory cytokines - interleukin (IL) 6, IL-1β and tumour necrosis factor alpha (TNF-α). In contrast, galectin-9 did not bind peptidoglycan (PGN), which forms the cell wall of Gram-positive bacteria. Moreover, galectin-9 associated with cellular surfaces (studied in primary human embryonic cells) was not involved in the interaction with bacteria or bacterial colonisation. However, galectin-9 expressed on the surface of primary human embryonic cells, as well as soluble forms of galectin-9, were able to target T lymphocytes and caused apoptosis in T cells expressing granzyme B. Furthermore, "opsonisation" of T cells by galectin-9 led to the translocation of phosphatidylserine onto the cell surface and subsequent phagocytosis by macrophages through Tim-3, the receptor, which recognises both galectin-9 and phosphatidylserine as ligands.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
71
|
Perez SJLP, Fu CW, Li WS. Sialyltransferase Inhibitors for the Treatment of Cancer Metastasis: Current Challenges and Future Perspectives. Molecules 2021; 26:5673. [PMID: 34577144 PMCID: PMC8470674 DOI: 10.3390/molecules26185673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Potent, cell-permeable, and subtype-selective sialyltransferase inhibitors represent an attractive family of substances that can potentially be used for the clinical treatment of cancer metastasis. These substances operate by specifically inhibiting sialyltransferase-mediated hypersialylation of cell surface glycoproteins or glycolipids, which then blocks the sialic acid recognition pathway and leads to deterioration of cell motility and invasion. A vast amount of evidence for the in vitro and in vivo effects of sialyltransferase inhibition or knockdown on tumor progression and tumor cell metastasis or colonization has been accumulated over the past decades. In this regard, this review comprehensively discusses the results of studies that have led to the recent discovery and development of sialyltransferase inhibitors, their potential biomedical applications in the treatment of cancer metastasis, and their current limitations and future opportunities.
Collapse
Affiliation(s)
- Ser John Lynon P. Perez
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (S.J.L.P.P.); (C.-W.F.)
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chih-Wei Fu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (S.J.L.P.P.); (C.-W.F.)
- Department of Chemistry, National Central University, Taoyuan City 32001, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (S.J.L.P.P.); (C.-W.F.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, College of Science, Tamkang University, New Taipei City 251, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
72
|
Qiu H, Liu C, Huang M, Shen S, Wang W. Prognostic Value of Combined CA19-9 with Aspartate Aminotransferase to Lymphocyte Ratio in Patients with Intrahepatic Cholangiocarcinoma After Hepatectomy. Cancer Manag Res 2021; 13:5969-5980. [PMID: 34377017 PMCID: PMC8349206 DOI: 10.2147/cmar.s320380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose The prognosis of intrahepatic cholangiocarcinoma (ICC) patients after surgical resection remains poor. Effective prognostic biomarkers are expected to stratify ICC patients and optimize their treatment strategies. To investigate the prognostic value of carbohydrate antigen 19-9 (CA19-9), aspartate aminotransferase to lymphocyte ratio index (ALRI), and their combination (CAC) in predicting long-term outcomes in ICC patients after hepatectomy. Patients and Methods ICC patients underwent initial hepatectomy for curative purpose from January 2009 to September 2017 were reviewed retrospectively. Area under the receiver operating characteristics curve (AUC) was used to distinguish the identification effectiveness of three different measures. Kaplan–Meier curves and Cox proportional hazards regression were used to assess the value of preoperative CAC grade in predicting overall survival (OS) and disease-free survival (DFS). Results A total of 530 patients were included and randomly divided into two groups (derivation cohort and validation cohort). During a median follow-up of 18 months (1–115.4 months), 317 patients (59.8%) died and 381 patients (71.9%) developed tumor recurrence. Lower ALRI, decreased serum CA19-9 level and CAC grade were found to be associated with better OS and DFS (both P<0.001). Importantly, the AUC for CAC grade was significantly greater than ALRI and CA19-9. In addition, results from Cox proportional hazards regression from both cohorts suggest that tumor number, node invasion, and CAC grade as independent prognostic factors for both OS and DFS. Conclusion This study demonstrated that CAC grade is a valuable biomarker for the prognosis of ICC patients. Specifically, patients with elevated CAC grades were correlated to worse long-term outcome after the hepatectomy. Our data suggest that increased CAC grades can be used to stratify patients and help to decide their treatment strategies.
Collapse
Affiliation(s)
- Haizhou Qiu
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Chang Liu
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Huang
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Shu Shen
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Wentao Wang
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| |
Collapse
|
73
|
Caldararu O, Ekberg V, Logan DT, Oksanen E, Ryde U. Exploring ligand dynamics in protein crystal structures with ensemble refinement. Acta Crystallogr D Struct Biol 2021; 77:1099-1115. [PMID: 34342282 PMCID: PMC8329865 DOI: 10.1107/s2059798321006513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Understanding the dynamics of ligands bound to proteins is an important task in medicinal chemistry and drug design. However, the dominant technique for determining protein-ligand structures, X-ray crystallography, does not fully account for dynamics and cannot accurately describe the movements of ligands in protein binding sites. In this article, an alternative method, ensemble refinement, is used on six protein-ligand complexes with the aim of understanding the conformational diversity of ligands in protein crystal structures. The results show that ensemble refinement sometimes indicates that the flexibility of parts of the ligand and some protein side chains is larger than that which can be described by a single conformation and atomic displacement parameters. However, since the electron-density maps are comparable and Rfree values are slightly increased, the original crystal structure is still a better model from a statistical point of view. On the other hand, it is shown that molecular-dynamics simulations and automatic generation of alternative conformations in crystallographic refinement confirm that the flexibility of these groups is larger than is observed in standard refinement. Moreover, the flexible groups in ensemble refinement coincide with groups that give high atomic displacement parameters or non-unity occupancy if optimized in standard refinement. Therefore, the conformational diversity indicated by ensemble refinement seems to be qualitatively correct, indicating that ensemble refinement can be an important complement to standard crystallographic refinement as a tool to discover which parts of crystal structures may show extensive flexibility and therefore are poorly described by a single conformation. However, the diversity of the ensembles is often exaggerated (probably partly owing to the rather poor force field employed) and the ensembles should not be trusted in detail.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Vilhelm Ekberg
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- European Spallation Source Consortium ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
74
|
Meggyes M, Nagy DU, Balassa T, Godony K, Peterfalvi A, Szereday L, Polgar B. Influence of Galectin-9 Treatment on the Phenotype and Function of NK-92MI Cells in the Presence of Different Serum Supplements. Biomolecules 2021; 11:biom11081066. [PMID: 34439744 PMCID: PMC8391477 DOI: 10.3390/biom11081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Galectins are one of the critical players in the tumor microenvironment-tumor crosstalk and the regulation of local immunity. Galectin-9 has been in the limelight in tumor immunology. Galectin-9 possesses its multiplex biological functions both extracellularly and intracellularly, plays a pivotal role in the modulation of adaptive and innate immunity, and induces immune tolerance. NK-92MI cell lines against different malignancies were extensively studied, and recently published trials used genetically chimeric antigen receptor-transfected NK-92MI cells in tumor immunotherapy. Besides the intensive research in tumor immunotherapy, limited information is available on their immune-checkpoint expression and the impact of checkpoint ligands on their effector functions. To uncover the therapeutic potential of modulating Galectin-9-related immunological pathways in NK-cell-based therapy, we investigated the dose-dependent effect of soluble Galectin-9 on the TIM-3 checkpoint receptor and NKG2D, CD69, FasL, and perforin expression of NK-92MI cells. We also examined how their cytotoxicity and cytokine production was altered after Gal-9 treatment and in the presence of different serum supplements using flow cytometric analysis. Our study provides evidence that the Galectin-9/TIM-3 pathway plays an important role in the regulation of NK cell function, and about the modulatory role of Galectin-9 on the cytotoxicity and cytokine production of NK-92MI cells in the presence of different serum supplements. We hope that our results will aid the development of novel NK-cell-based strategies that target Galectin-9/TIM-3 checkpoint in tumors resistant to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence: ; Tel.: +3672-536001/1907
| | - David U Nagy
- Medical Centre, Cochrane Hungary, University of Pecs, 7623 Pecs, Hungary;
| | - Timea Balassa
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
| | - Krisztina Godony
- Department of Obstetrics and Gynaecology, Medical School, University of Pecs, 17 Edesanyak Street, 7624 Pecs, Hungary;
| | - Agnes Peterfalvi
- Department of Laboratory Medicine, Medical School, University of Pecs, 13 Ifjusag Street, 7624 Pecs, Hungary;
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
75
|
Cerri DG, Rodrigues LC, Alves VM, Machado J, Bastos VAF, Carmo Kettelhut I, Alberici LC, Costa MCR, Stowell SR, Cummings RD, Dias-Baruffi M. Endogenous Galectin-3 is required for skeletal muscle repair. Glycobiology 2021; 31:1295-1307. [PMID: 34224566 DOI: 10.1093/glycob/cwab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 11/14/2022] Open
Abstract
Skeletal muscle has the intrinsic ability to self-repair through a multifactorial process, but many aspects of its cellular and molecular mechanisms are not fully understood. There is increasing evidence that some members of the mammalian β-galactoside-binding protein family (galectins) are involved in the muscular repair process (MRP), including galectin-3 (Gal-3). However, there are many questions about the role of this protein on muscle self-repair. Here, we demonstrate that endogenous Gal-3 is required for: i) muscle repair in vivo using a chloride-barium myolesion mouse model, and ii) mouse primary myoblasts myogenic programming. Injured muscle from Gal-3 knockout mice (GAL3KO) showed persistent inflammation associated with compromised muscle repair and the formation of fibrotic tissue on the lesion site. In GAL3KO mice, osteopontin expression remained high even after 7 and 14 days of the myolesion, while MyoD and myogenin had decreased their expression. In GAL3KO mouse primary myoblast cell culture, Pax7 detection seems to sustain even when cells are stimulated to differentiation and MyoD expression is drastically reduced. The detection and temporal expression levels of these transcriptional factors appear to be altered in Gal-3-deficient myoblast. Gal-3 expression in WT states, both in vivo and in vitro, in sarcoplasm/cytoplasm and myonuclei; as differentiation proceeds, Gal-3 expression is drastically reduced, and its location is confined to the sarcolemma/plasma cell membrane. We also observed a change in the temporal-spatial profile of Gal-3 expression and muscle transcription factors levels during the myolesion. Overall, these results demonstrate that endogenous Gal-3 is required for the skeletal muscle repair process.
Collapse
Affiliation(s)
- Daniel Giuliano Cerri
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Cataldi Rodrigues
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vani Maria Alves
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Víctor Alexandre Félix Bastos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis Carmo Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Sean R Stowell
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
76
|
Mendelman N, Meirovitch E. Structural Dynamics from NMR Relaxation by SRLS Analysis: Local Geometry, Potential Energy Landscapes, and Spectral Densities. J Phys Chem B 2021; 125:6130-6143. [PMID: 34100625 DOI: 10.1021/acs.jpcb.1c02502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have developed the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics by nuclear magnetic resonance (NMR) relaxation. The rotators are represented by diffusion tensors D1 for overall protein tumbling and D2 for locally ordered probe motion. D1 and D2 are coupled dynamically by a potential, u, typically given by linear combinations of the Wigner functions D002 and (D022 + D0-22). Until now, our SRLS analyses provided the tensors, D1 and D2, the potential, u, and the geometric link between SRLS and NMR. Here we enhance this description by also examining the SRLS spectral densities obtained by solving the SRLS Smoluchowski equation. In addition, we show that the form of u specified above complies with two NMR-detected potential energy landscapes representing preferential ordering along N-H or Cα-Cα. Pictorial illustrations thereof are provided. The extended SRLS analysis is applied to 15N-H relaxation from the carbohydrate recognition domain of galectin-3 (Gal3C) in complex with two diastereomeric ligands, S and R. We find that D2 is isotropic with a principal value, D2, of 1010 s-1 on average, and it is faster in the strands β3, β5, and β8. The potential, u, is strong (∼20 kT); it is slightly rhombic when N-H is the main ordering axis and highly rhombic when Cα-Cα is the main ordering axis. Gal3C-S exhibits primarily preferential ordering along Cα-Cα; Gal3C-R exhibits both types of ordering. The binding-associated polypeptide chain segment of Gal3C-S is homogeneous, whereas that of Gal3C-R is diversified, with regard to D2 and ordering preference. We associate these features with the previously determined diminished binding constant of Gal3C-R in comparison with Gal3C-S. Thus, the present study enhances the SRLS analysis, in general, and provides new insights into the dynamic structure and binding properties of Gal3C-S and Gal3C-R, in particular.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| |
Collapse
|
77
|
Reprogramming the tumor metastasis cascade by targeting galectin-driven networks. Biochem J 2021; 478:597-617. [PMID: 33600595 DOI: 10.1042/bcj20200167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of β-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.
Collapse
|
78
|
Papa-Gobbi R, Muglia CI, Rocca A, Curciarello R, Sambuelli AM, Yantorno M, Correa G, Morosi LG, Di Sabatino A, Biancheri P, MacDonald TT, Toscano MA, Mariño KV, Rabinovich GA, Docena GH. Spatiotemporal regulation of galectin-1-induced T-cell death in lamina propria from Crohn's disease and ulcerative colitis patients. Apoptosis 2021; 26:323-337. [PMID: 33978920 DOI: 10.1007/s10495-021-01675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is characterized by chronic, relapsing intestinal inflammation. Galectin-1 (Gal-1) is an endogenous lectin with key pro-resolving roles, including induction of T-cell apoptosis and secretion of immunosuppressive cytokines. Despite considerable progress, the relevance of Gal-1-induced T-cell death in inflamed tissue from human IBD patients has not been ascertained. Intestinal biopsies and surgical specimens from control patients (n = 52) and patients with active or inactive IBD (n = 97) were studied. Gal-1 expression was studied by RT-qPCR, immunoblotting, ELISA and immunohistochemistry. Gal-1-specific ligands and Gal-1-induced apoptosis of lamina propria (LP) T-cells were determined by TUNEL and flow cytometry. We found a transient expression of asialo core 1-O-glycans in LP T-cells from inflamed areas (p < 0.05) as revealed by flow cytometry using peanut agglutinin (PNA) binding and assessing dysregulation of the core-2 β 1-6-N-acetylglucosaminyltransferase 1 (C2GNT1), an enzyme responsible for elongation of core 2 O-glycans. Consequently, Gal-1 binding was attenuated in CD3+CD4+ and CD3+CD8+ LP T-cells isolated from inflamed sites (p < 0.05). Incubation with recombinant Gal-1 induced apoptosis of LP CD3+ T-cells isolated from control subjects and non-inflamed areas of IBD patients (p < 0.05), but not from inflamed areas. In conclusion, our findings showed that transient regulation of the O-glycan profile during inflammation modulates Gal-1 binding and LP T-cell survival in IBD patients.
Collapse
Affiliation(s)
- Rodrigo Papa-Gobbi
- Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
| | - Cecilia I Muglia
- Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Andrés Rocca
- Servicio de Colonoscopia, Hospital de Gastroenterología Dr. Bonorino Udaondo, Buenos Aires, Argentina
| | - Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Alicia M Sambuelli
- Servicio de Enfermedades Inflamatorias, Hospital Dr. Bonorino Udaondo, Buenos Aires, Argentina
| | - Martín Yantorno
- Servicio de Colonoscopia, Hospital San Martin, La Plata, Argentina
| | - Gustavo Correa
- Servicio de Colonoscopia, Hospital San Martin, La Plata, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Antonio Di Sabatino
- First Department of Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Paolo Biancheri
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Thomas T MacDonald
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, London, UK
| | - Marta A Toscano
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.
| |
Collapse
|
79
|
Isola G, Polizzi A, Alibrandi A, Williams RC, Lo Giudice A. Analysis of galectin-3 levels as a source of coronary heart disease risk during periodontitis. J Periodontal Res 2021; 56:597-605. [PMID: 33641161 DOI: 10.1111/jre.12860] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Different evidence has shown that Galectins have a key role as modulators of cell surface functions and signaling in a wide range of inflammatory diseases during their preclinical stages. The aim of this study was to analyze the association and impact of periodontitis and coronary heart disease (CHD) on salivary and serum Galectin-3 in patients with periodontitis and CHD. MATERIALS AND METHODS For the present study, healthy controls (n = 38), periodontitis (n = 40), CHD (n = 39), and a combination of periodontitis +CHD (n = 38) patients were enrolled and analyzed. In each patient, demographic characteristics and a full-mouth clinical periodontal examination were achieved. Moreover, serum and salivary samples were collected to assess Galectin-3 and Endothelin-1 (ET-1) levels. The Jonckheere-Terpstra p-trend and Spearman's correlation tests as well as uni- and linear regression analyses were used to analyze the study data. RESULTS Patients with periodontitis (serum, p = .003; saliva, p < .001) and periodontitis + CHD groups (serum p = .004; saliva, p < .001) had higher median serum and salivary concentrations of Galectin-3 in comparison with CHD and healthy controls. Serum (p = .006) and salivary (p = .009) Galectin-3 levels were significantly correlated with serum ET-1. The multivariate regression analysis highlighted that periodontitis (p = .047) was the significant predictor of serum Galectin-3 levels while ET-1 (p = .028) was the significant predictor of salivary Galectin-3 levels. CONCLUSION The results showed that patients with periodontitis and periodontitis + CHD presented significant higher serum and salivary Galectin-3 levels in comparison with CHD patients and healthy subjects. Periodontitis and ET-1 were the significant predictors of serum and salivary Galectin-3 levels, respectively.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Catania, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Ray C Williams
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Catania, Italy
| |
Collapse
|
80
|
Lightfoot A, McGettrick HM, Iqbal AJ. Vascular Endothelial Galectins in Leukocyte Trafficking. Front Immunol 2021; 12:687711. [PMID: 34140956 PMCID: PMC8204101 DOI: 10.3389/fimmu.2021.687711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment to the site of injury is a crucial event in the regulation of an inflammatory response. Tight regulation of interactions between the endothelium and circulating leukocytes is necessary to ensure a protective response to injury does not result in inflammatory disease. Rising interest in the broad immunoregulatory roles displayed by members of the glycan-binding galectin family suggests that these proteins could be an attractive target for therapeutic intervention, since their expression is significantly altered in disease. The focus of this review is to summarize current knowledge on the role of galectins in leukocyte trafficking during inflammation and the clinical approaches being taken to target these interactions for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Abbey Lightfoot
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
81
|
Xu L, Hartz RA, Beno BR, Ghosh K, Shukla JK, Kumar A, Patel D, Kalidindi N, Lemos N, Gautam SS, Kumar A, Ellsworth BA, Shah D, Sale H, Cheng D, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel Tetrahydropyran-Based Thiodisaccharide Mimics as Galectin-3 Inhibitors. J Med Chem 2021; 64:6634-6655. [PMID: 33988358 DOI: 10.1021/acs.jmedchem.0c02001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Galectin-3 is a member of a family of β-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents. In our efforts to identify novel galectin-3 disaccharide mimics to improve drug-like properties, we found that one of the monosaccharide subunits can be replaced with a suitably functionalized tetrahydropyran ring. Optimization of the structure-activity relationships around the tetrahydropyran-based scaffold led to the discovery of potent galectin-3 inhibitors. Compounds 36, 40, and 45 were selected for further in vivo evaluation. The synthesis, structure-activity relationships, and in vivo evaluation of novel tetrahydropyran-based galectin-3 inhibitors are described.
Collapse
Affiliation(s)
- Li Xu
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Brett R Beno
- Department of Computer-Aided Drug Design & Molecular Analytics, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kaushik Ghosh
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Jinal K Shukla
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Amit Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Dipal Patel
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Narasimharaju Kalidindi
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Nadine Lemos
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Shashyendra Singh Gautam
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anoop Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Bruce A Ellsworth
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Harinath Sale
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Dong Cheng
- Department of Cardiovascular and Fibrosis Discovery Biology, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Alicia Regueiro-Ren
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
82
|
Cunha EGC, de Lima CAD, Vilar KDM, Nóbrega MFD, Almeida ARD, Pereira MC, Dantas AT, Gonçalves RSG, Rêgo MJBDM, Duarte ALBP, Pitta MGDR. Genetic variants in LGALS3 are related to lower galectin-3 serum levels and clinical outcomes in systemic sclerosis patients: A case-control study. Autoimmunity 2021; 54:187-194. [PMID: 33973825 DOI: 10.1080/08916934.2021.1919881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a rare complex disease characterized by vascular damage, autoimmunity, and extensive skin and internal organs fibrosis. Galectin-3 (Gal-3) is encoded by gene LGALS3 (Lectin, Galactoside-Binding, Soluble, 3; 14q22.3) and it has been reported to play a central role in self-tolerance, inflammation, and fibrosis. OBJECTIVE To investigate associations among LGALS3 single nucleotide polymorphisms (SNPs) and serum levels Gal-3 and SSc susceptibility and their clinical features. METHODS A case-control study with 88 patients and 151 matched controls was performed. LGALS3 variants were analyzed by the TaqMan real-time polymerase chain reaction (PCR) system whereas Gal-3 serum levels were measured by sandwich enzyme linked immunosorbent assay (ELISA). Associations among genotypes, clinical features, and Gal-3 levels were performed by univariable and multivariable analysis through statistical packages. RESULTS The LGALS3 rs4652 A/C genotype was more frequent in SSc patients than controls according to overdominant model [OR 1.89 (CI 95% 1.01 - 3.52); p = .046]. Also, LGALS3 rs4652 C/C polymorphic genotype was associated with lower patient Gal-3 levels (p = .03) and control group (p = 0.005), as noted by generalized linear model (GLM). The LGALS3 rs1009977 G/T controls showed higher Gal-3 levels than wild-type and polymorphic genotypes (p = .03); however, in SSc patients, no difference was found. None of the LGALS3 SNPs or Gal-3 levels was associated with clinical manifestations in SSc patients. Considering only the SSc group, GLM analysis pointed LGALS3 rs4652 and rs2075601, pulmonary arterial hypertension (PAH), myopathy, and health assessment questionnaire (HAQ) and scleroderma health assessment questionnaire (SHAQ) as important predictors for Gal-3 levels. CONCLUSION The LGALS3 rs4652 A/C was more frequent in SSc patients and related to lower Gal-3 levels. These findings were corroborated through a GLM to estimate Gal-3 values. Also, by model equations, Gal-3 levels may be predicted by HAQ, SHAQ, PAH, myopathy, and LGALS3 rs4652 and rs2075601 factors. In these ways, we suggest that galectins may be promising biomarkers to identify susceptibility to SSc as well as to identify HAQ, SHAQ, PAH, and myopathy outcomes.
Collapse
Affiliation(s)
- Eudes Gustavo Constantino Cunha
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Terapêutica - Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Kamila de Melo Vilar
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Terapêutica - Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Terapêutica - Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Terapêutica - Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Andréa Tavares Dantas
- Departmento de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco (HC-UFPE), Recife, PE, Brazil
| | | | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Terapêutica - Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Terapêutica - Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
83
|
Wallerstein J, Ekberg V, Ignjatović MM, Kumar R, Caldararu O, Peterson K, Wernersson S, Brath U, Leffler H, Oksanen E, Logan DT, Nilsson UJ, Ryde U, Akke M. Entropy-Entropy Compensation between the Protein, Ligand, and Solvent Degrees of Freedom Fine-Tunes Affinity in Ligand Binding to Galectin-3C. JACS AU 2021; 1:484-500. [PMID: 34467311 PMCID: PMC8395690 DOI: 10.1021/jacsau.0c00094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 06/13/2023]
Abstract
Molecular recognition is fundamental to biological signaling. A central question is how individual interactions between molecular moieties affect the thermodynamics of ligand binding to proteins and how these effects might propagate beyond the immediate neighborhood of the binding site. Here, we investigate this question by introducing minor changes in ligand structure and characterizing the effects of these on ligand affinity to the carbohydrate recognition domain of galectin-3, using a combination of isothermal titration calorimetry, X-ray crystallography, NMR relaxation, and computational approaches including molecular dynamics (MD) simulations and grid inhomogeneous solvation theory (GIST). We studied a congeneric series of ligands with a fluorophenyl-triazole moiety, where the fluorine substituent varies between the ortho, meta, and para positions (denoted O, M, and P). The M and P ligands have similar affinities, whereas the O ligand has 3-fold lower affinity, reflecting differences in binding enthalpy and entropy. The results reveal surprising differences in conformational and solvation entropy among the three complexes. NMR backbone order parameters show that the O-bound protein has reduced conformational entropy compared to the M and P complexes. By contrast, the bound ligand is more flexible in the O complex, as determined by 19F NMR relaxation, ensemble-refined X-ray diffraction data, and MD simulations. Furthermore, GIST calculations indicate that the O-bound complex has less unfavorable solvation entropy compared to the other two complexes. Thus, the results indicate compensatory effects from ligand conformational entropy and water entropy, on the one hand, and protein conformational entropy, on the other hand. Taken together, these different contributions amount to entropy-entropy compensation among the system components involved in ligand binding to a target protein.
Collapse
Affiliation(s)
- Johan Wallerstein
- Biophysical
Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Vilhelm Ekberg
- Theoretical
Chemistry, Department of Chemistry, Lund
University, 221 00 Lund, Sweden
| | | | - Rohit Kumar
- Biochemistry
and Structural Biology, Center for Molecular Protein Science, Department
of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Octav Caldararu
- Theoretical
Chemistry, Department of Chemistry, Lund
University, 221 00 Lund, Sweden
| | - Kristoffer Peterson
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Sven Wernersson
- Biophysical
Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ulrika Brath
- The
Swedish NMR Center, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hakon Leffler
- Microbiology,
Immunology, and Glycobiology, Department of Experimental Medicine, Lund University, 221 00 Lund, Sweden
| | - Esko Oksanen
- European
Spallation Source ESS ERIC, 225 92 Lund, Sweden
| | - Derek T. Logan
- Biochemistry
and Structural Biology, Center for Molecular Protein Science, Department
of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ulf Ryde
- Theoretical
Chemistry, Department of Chemistry, Lund
University, 221 00 Lund, Sweden
| | - Mikael Akke
- Biophysical
Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
84
|
Corrêa MP, Areias LL, Correia-Silva RD, D’Ávila SCGP, Leopoldino AM, Greco KV, Gil CD. The Role of Galectin-9 as Mediator of Atopic Dermatitis: Effect on Keratinocytes. Cells 2021; 10:947. [PMID: 33923930 PMCID: PMC8073283 DOI: 10.3390/cells10040947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Galectin-9 (Gal-9) is a beta-galactoside-binding protein with a variety of biological functions related to immune response. However, in allergic diseases, its mechanism of action is not fully understood. This study evaluates the expression pattern of Gal-9 in patients with atopic dermatitis (AD), in ovalbumin (OVA)-induced experimental atopic dermatitis (AD) in mice, as well as its effect on human keratinocytes. The skin of OVA-immunized BALB/c mice was challenged with drops containing OVA on days 11, 14-18, and 21-24. HaCaT cells were cultured in the following experimental conditions: control (growth medium only) or stimulated with TNF-α/IFN-γ, or IL-4, or IL-17 with or without Gal-9 treatment. AD was characterized by increased levels of Gal-9 in mouse and human skin, especially in the epidermis, and with a marked influx of Gal-9 positive eosinophils and mast cells compared to the control group. Gal-9 showed an immunomodulatory effect on keratinocytes by decreasing the release of IL-6 by IL-4-stimulated keratinocytes or increasing the IL-6 and RANTES levels by IL-17- or TNF-α/IFN-γ-stimulated cells, respectively. Under IL-17, Gal-9 treatment also altered the proliferation rate of cells. Overall, increased levels of Gal-9 in AD skin contribute to the control of inflammatory response and the proliferative process of keratinocytes, suggesting this lectin as a relevant therapeutic target.
Collapse
Affiliation(s)
- Mab P. Corrêa
- Programa de Pós-Graduação em Biociências, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil;
| | - Libnah L. Areias
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; (L.L.A.); (R.D.C.-S.)
| | - Rebeca D. Correia-Silva
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; (L.L.A.); (R.D.C.-S.)
| | - Solange C. G. P. D’Ávila
- Departamento de Patologia e Medicina Forense, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil;
| | - Andréia M. Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP 14040-903, Brazil;
| | - Karin V. Greco
- Division of Surgery and Interventional Science, The Griffin Institute, University College London (UCL), London HA13UJ, UK;
| | - Cristiane D. Gil
- Programa de Pós-Graduação em Biociências, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil;
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; (L.L.A.); (R.D.C.-S.)
| |
Collapse
|
85
|
Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules 2021; 11:biom11040595. [PMID: 33919637 PMCID: PMC8074145 DOI: 10.3390/biom11040595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins bind various pathogens through recognition of distinct carbohydrate structures. In this work, we examined the binding of four human galectins to the Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an O-chain-containing lipopolysaccharide (LPS), whereas NTHi is not capsulated and its LPS, termed lipooligosacccharide (LOS), does not contain O-chain. Binding assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not galectin-1, bind to Kpn and NTHi cells, and confocal microscopy attested binding to bacterial cells in suspension. The three galectins bound to array-printed Kpn LPS. Moreover, analysis of galectin binding to mutant Kpn cells evidenced that the O-chain is the docking point for galectins on wild type Kpn. Galectins-3, -4, and -8 also bound the NTHi LOS. Microarray-assisted comparison of the binding to full-length and truncated LOSs, as well as to wild type and mutant cells, supported LOS involvement in galectin binding to NTHi. However, deletion of the entire LOS oligosaccharide chain actually increased binding to NTHi cells, indicating the availability of other ligands on the bacterial surface, as similarly inferred for Kpn cells devoid of both O-chain and capsule. Altogether, the results illustrate galectins’ versatility for recognizing different bacterial structures, and point out the occurrence of so far overlooked galectin ligands on bacterial surfaces.
Collapse
|
86
|
Liebscher L, Weißenborn C, Langwisch S, Gohlke BO, Preissner R, Rabinovich GA, Christiansen N, Christiansen H, Zenclussen AC, Fest S. A minigene DNA vaccine encoding peptide epitopes derived from Galectin-1 has protective antitumoral effects in a model of neuroblastoma. Cancer Lett 2021; 509:105-114. [PMID: 33848518 DOI: 10.1016/j.canlet.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022]
Abstract
We recently identified Galectin-1 (Gal-1), a β-galactoside-binding lectin, as a novel immune regulator in neuroblastoma (NB). Here, we characterized the tolerogenic function of Gal-1 within the CD8+ T cell compartment and further evaluated its relevance as an antigen for effective DNA vaccination against NB in a mouse model. NB cells with Gal-1 knockdown (NXS-2L) exhibited significantly reduced tumor growth compared to NXS-2 NB cells. Administration of anti-CD8 antibodies prevented this antitumor effect, with primary tumor growth comparable to that from Gal-1 (G1)-sufficient NB cells. Peptide epitope screening with online databases and in silico docking experiments predicted the sequences "FDQADLTI" (#1), "GDFKIKCV" (#2), and "AHGDANTI" (#3) to have superior H2-KK binding affinities and "KFPNRLNM" (#4), "DGDFKIKCV" (#5), and "LGKDSNNL" (#6) to have superior H2-DD binding affinities. Minigenes encoding G1-KK (#1-#2-#3), G1-DD (#4-#5-#6) and the triplet with the highest affinity, G1-H (#1-#2-#4), were generated and cloned into a ubiquitin-containing plasmid (pU). Mice receiving pU-G1-KK or pU-G-1H presented a reduction in the s.c. tumor volume and weight of up to 80% compared to control mice; this reduction was associated with increased cytotoxicity of isolated splenocytes from vaccinated animals. Vaccination with pUG1-DD showed a lower capability to suppress primary tumor progression. In conclusion, Gal-1 expression by NB negatively regulates CD8+ T cells. Vaccination with DNA plasmids encoding Gal-1 epitopes overcomes immune escape, enhances CD8+ T cell-dependent immunity and displays effective antitumor activity against NB.
Collapse
Affiliation(s)
- Laura Liebscher
- Department of Pediatric Oncology, Hematology and Hemostaseology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Christine Weißenborn
- Pediatric Immunotherapy Group, Medical Faculty, Otto-von Guericke University of Magdeburg, Germany; Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von Guericke University of Magdeburg, Germany
| | - Stefanie Langwisch
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von Guericke University of Magdeburg, Germany
| | - Björn-Oliver Gohlke
- Department of Information Technology, Science-IT, Charité - Universitätsmedizin Berlin, Germany
| | - Robert Preissner
- Department of Information Technology, Science-IT, Charité - Universitätsmedizin Berlin, Germany
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Research Council (CONICET), Buenos Aires, Argentina; Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Nina Christiansen
- Department of Pediatric Oncology, Hematology and Hemostaseology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Holger Christiansen
- Department of Pediatric Oncology, Hematology and Hemostaseology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von Guericke University of Magdeburg, Germany; Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Stefan Fest
- Pediatric Immunotherapy Group, Medical Faculty, Otto-von Guericke University of Magdeburg, Germany; Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany; Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg, Dessau, Germany.
| |
Collapse
|
87
|
Indispensable role of Galectin-3 in promoting quiescence of hematopoietic stem cells. Nat Commun 2021; 12:2118. [PMID: 33837181 PMCID: PMC8035175 DOI: 10.1038/s41467-021-22346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/14/2021] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in adult bone marrow (BM) are usually maintained in a state of quiescence. The cellular mechanism coordinating the balance between HSC quiescence and differentiation is not fully understood. Here, we report that galactose-binding lectin-3 (galectin-3; Gal-3) is upregulated by Tie2 or Mpl activation to maintain quiescence. Conditional overexpression of Gal-3 in mouse HSCs under the transcriptional control of Tie2 or Vav1 promoters (Gal-3 Tg) causes cell cycle retardation via induction of p21. Conversely, the cell cycle of long-term repopulating HSCs (LT-HSCs) in Gal-3-deficient (Gal-3-/-) mice is accelerated, resulting in their exhaustion. Mechanistically, Gal-3 regulates p21 transcription by forming a complex with Sp1, thus blocking cell cycle entry. These results demonstrate that Gal-3 is a negative regulator of cell-cycling in HSCs and plays a crucial role in adult hematopoiesis to prevent HSC exhaustion. Long term haematopoitic stem cells (LT-HSCs) are in a quiescent state during homeostasis, which is critical for their maintenance. Here, the authors show that Gal-3 expression in LT-HSCs is induced in response to Tie2 and Mpl and is both necessary and sufficient for LT-HSC quiescence through regulation of p21.
Collapse
|
88
|
Galectin-1 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the inactivation of PI3K/Akt signaling pathway. Biosci Rep 2021; 40:225155. [PMID: 32495835 PMCID: PMC7295633 DOI: 10.1042/bsr20193899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Childhood asthma is one of the most common chronic childhood diseases. Platelet-derived growth factor BB (PDGF-BB) induced airway smooth muscle cell (ASMC) proliferation and migration are involved in the pathogenesis of asthma. Galectin-1 (Gal-1) is a glycan-binding protein that has been found to be involved in the progression of asthma. However, the mechanism remains unclear. In the current study, we aimed to evaluate the role of Gal-1 in regulating the phenotype switching of ASMCs, which is an important mechanism in the pathogenesis of asthma. Our results showed that Gal-1 was markedly down-regulated in the samples from asthma patients. In vitro study also proved that Gal-1 expression was decreased in PDGF-BB-stimulated ASMCs. In addition, Gal-1 overexpression significantly inhibited PDGF-BB-induced ASMCs proliferation and migration, while Gal-1 knockdown exhibits opposite effects of Gal-1 overexpression. The PDGF-BB-caused reductions in expressions of α-smooth muscle actin (α-SMA), specific muscle myosin heavy chain (SM-MHC), and calponin were elevated by Gal-1 overexpression, but were deteriorated by Gal-1 knockdown in ASMCs. Furthermore, overexpression of Gal-1 inhibited PDGF-BB-stimulated PI3K/Akt activation in ASMCs. Notably, treatment with IGF-1, an activator of PI3K, reversed the effects of Gal-1 on ASMCs proliferation, migration, and phenotype switching. In conclusion, these findings showed that Gal-1 exerted inhibitory effects on PDGF-BB-stimulated proliferation, migration, and phenotype switching of ASMCs via inhibiting the PI3K/Akt signaling pathway. Thus, Gal-1 might be a promising target for the treatment of asthma.
Collapse
|
89
|
Fernandes F, Moreira CHV, Oliveira LC, Souza-Basqueira M, Ianni BM, Lorenzo CD, Ramires FJA, Nastari L, Cunha-Neto E, Ribeiro AL, Lopes RD, Keating SM, Sabino EC, Mady C. Galectin-3 Associated with Severe Forms and Long-term Mortality in Patients with Chagas Disease. Arq Bras Cardiol 2021; 116:248-256. [PMID: 33656072 PMCID: PMC7909980 DOI: 10.36660/abc.20190403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/27/2019] [Indexed: 11/19/2022] Open
Abstract
Fundamento As características histopatológicas da doença de Chagas (DCC) são: presença de miocardite, destruição das fibras cardíacas e fibrose miocárdica. A Galectina-3 (Gal-3) é um biomarcador envolvido no mecanismo de fibrose e inflamação que pode ser útil para a estratificação de indivíduos com DCC por risco. Objetivos Nosso objetivo foi avaliar se níveis elevados de Gal-3 estão associados a formas graves de cardiomiopatia chagásica (CC) e são preditivos de mortalidade. Métodos Estudamos doadores de sangue (DS) positivos para anti-T. cruzi: não-CC-DS (187 DS sem CC com eletrocardiograma [ECG] e fração de ejeção do ventrículo esquerdo [FEVE] normais); CC-Não-Dis-DS (46 DS com CC e apresentando ECG anormal, mas FEVE normal); e 153 controles negativos correspondentes. Esta amostra foi composta por 97 pacientes com CC grave (CC-Dis). Usamos as correlações de Kruskall-Wallis e Spearman para testar a hipótese de associações, assumindo um p bicaudal <0,05 como significativo. Resultados O nível de Gal-3 foi de 12,3 ng/mL para não-CC-DS, 12,0 ng/mL para CC-Não-Dis-DS, 13,8 ng/mL para controles e 15,4 ng/mL para CC-Dis. FEVE <50 foi associada a níveis mais elevados de Gal-3 (p=0,0001). Em nosso modelo de regressão linear ajustado, encontramos associação entre os níveis de Gal-3 e os parâmetros do ecocardiograma em indivíduos positivos para T. cruzi. Nos pacientes CC-Dis, encontramos uma associação significativa de níveis mais elevados de Gal-3 (≥15,3 ng/mL) e morte ou transplante cardíaco em acompanhamento de cinco anos (Hazard ratio – HR 3,11; IC95% 1,21– 8,04; p=0,019). Conclusões Em pacientes com CC, níveis mais elevados de Gal-3 estiveram significativamente associados a formas graves da doença e maior taxa de mortalidade em longo prazo, o que significa que pode ser um meio efetivo para identificar pacientes de alto risco. (Arq Bras Cardiol. 2021; 116(2):248-256)
Collapse
Affiliation(s)
- Fábio Fernandes
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | | | | | | | - Barbara Maria Ianni
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | | | - Felix José Alvarez Ramires
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | - Luciano Nastari
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | - Edecio Cunha-Neto
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | - Antonio L Ribeiro
- Universidade Federal de Minas Gerais - Centro de Telessaúde - Hospital das Clínicas, Belo Horizonte, MG - Brasil
| | | | - Sheila M Keating
- Blood Systems Research Institute, San Francisco, Califórnia - EUA
| | | | - Charles Mady
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| |
Collapse
|
90
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
91
|
Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood 2021; 136:183-198. [PMID: 32305041 DOI: 10.1182/blood.2019003910] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cell (HSC) aging correlates with an increasing risk of myeloproliferative disease and immunosenescence. In this study, we show that aging-related inflammation promotes HSC aging through tumor necrosis factor-α (TNF-α)→ERK→ETS1→interleukin27Ra (IL27Ra) pathway. TNF-α, a well-known biomarker of inflammation, increases during aging and induces the expression of IL27Ra on HSCs via ERK-ETS1 signaling. Deletion of IL27Ra rescues the functional decline and myeloid bias of HSCs and also reverses the inhibitory effect of TNF-α on HSCs. Aged IL27Ra-/- mice had a reduced proportion of myeloid-biased HSCs and did not display the biased myeloid differentiation that occurs in aged wild-type mice. IL27Ra+ HSCs exhibit impaired reconstitution capacity and myeloid-bias compared with IL27Ra- HSCs and serve as a myeloid-recovery pool upon inflammatory insult. Inflammation-related genes were enriched in IL27Ra+ HSCs and this enrichment increases with aging. Our study demonstrates that age-induced IL27Ra signaling impairs HSCs and raises the possibility that interfering with IL27Ra signaling can counter the physiologically deleterious effect of aging on hematopoietic capacity.
Collapse
|
92
|
Arciniegas E, Carrillo LM, Salgado A. Potential Role of Galectin-glycan Lattices in SARS-CoV-2 Infection and Pathogenesis: A Hypothesis. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2020.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
93
|
Tian M, Xu D, Fu Q, Zhang L, Yang N, Xue T, Gao C, Zhu Q, Ren Y, Cao M, Tan F, Song L, Li C. Galectins in turbot (Scophthalmus maximus L.): Characterization and expression profiling in mucosal tissues. FISH & SHELLFISH IMMUNOLOGY 2021; 109:71-81. [PMID: 33316369 DOI: 10.1016/j.fsi.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Galectins, a family of evolutionary conserved β-galactoside-binding proteins, have been characterized in a wide range of species. Many reports have indicated vital roles of galectins in innate immunity, especially in the mucosal tissues against infection. However, the systematic identification of galectin gene family is still lacking in teleost. Here, we characterized the galectin gene family and investigated their expression profiles post bacterial challenge in turbot (Scophthalmus maximus L.). In this study, a total of 13 galectin genes were characterized in turbot, phylogenetic analyses revealed their strong relationships to half smooth tongue sole and puffer fish, and syntenic analyses confirmed the orthology suggested by the phylogenetic analysis. In addition, the copy number of galectin genes is similar across a broad spectrum of species from fish to amphibians, birds, and mammals, ranging from 8 to 16 genes. Furthermore, the galectin genes were widely expressed in all the examined turbot tissues, and most of the galectin genes were strongly expressed in mucosal tissues (skin, gill and intestine). Moreover, majority of the galectin genes were significantly regulated after Vibrio anguillarum infection in the intestine, gill and skin, suggesting that galectins were involved in the mucosal immune response to V. anguillarum infection in turbot. In addition, subcellular localization analysis showed lgals3a was distributed in the cytoplasm and nucleus. However, the knowledge of galectins are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
94
|
Stenström O, Diehl C, Modig K, Nilsson UJ, Akke M. Mapping the energy landscape of protein-ligand binding via linear free energy relationships determined by protein NMR relaxation dispersion. RSC Chem Biol 2021; 2:259-265. [PMID: 34458786 PMCID: PMC8341105 DOI: 10.1039/d0cb00229a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Biochemical signaling is mediated by complexes between macromolecular receptors and their ligands, with the duration of the signal being directly related to the lifetime of the ligand-receptor complex. In the field of drug design, the recognition that drug efficacy in vivo depends on the lifetime of the drug-protein complex has spawned the concept of designing drugs with particular binding kinetics. To advance this field it is critical to investigate how the molecular details of designed ligands might affect the binding kinetics, as well as the equilibrium binding constant. Here we use protein NMR relaxation dispersion to determine linear free energy relationships involving the on- and off-rates and the affinity for a series of congeneric ligands targeting the carbohydrate recognition domain of galectin-3. Using this approach we determine the energy landscape and the position of the transition state along the reaction coordinate of protein-ligand binding. The results show that ligands exhibiting reduced off-rates achieve this by primarily stabilizing the bound state, but do not affect the transition state to any greater extent. The transition state forms early, that is, it is located significantly closer to the free state than to the bound state, suggesting a critical role of desolvation. Furthermore, the data suggest that different subclasses of ligands show different behavior with respect to these characteristics.
Collapse
Affiliation(s)
- Olof Stenström
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Carl Diehl
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Kristofer Modig
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| |
Collapse
|
95
|
AbuSamra DB, Panjwani N, Argüeso P. Induction of CXCL10-Mediated Cell Migration by Different Types of Galectins. Cells 2021; 10:cells10020274. [PMID: 33573183 PMCID: PMC7910898 DOI: 10.3390/cells10020274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Chemokines are an extended group of chemoattractant cytokines responsible for the recruitment of leukocytes into tissues. Among them, interferon-γ-inducible protein 10 (CXCL10) is abundantly expressed following inflammatory stimuli and participates in the trafficking of monocytes and activated T cells into sites of injury. Here, we report that different members of the galectin family of carbohydrate-binding proteins promote the expression and synthesis of CXCL10 independently of interferon-γ. Interestingly, CXCL10 induction was observed when galectins came in contact with stromal fibroblasts isolated from human cornea but not other cell types such as epithelial, monocytic or endothelial cells. Induction of CXCL10 by the tandem repeat galectin-8 was primarily associated with the chemotactic migration of THP-1 monocytic cells, whereas the prototype galectin-1 promoted the CXCL10-dependent migration of Jurkat T cells. These results highlight the potential importance of the galectin signature in dictating the recruitment of specific leukocyte populations into precise tissue locations.
Collapse
Affiliation(s)
- Dina B. AbuSamra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
- Correspondence:
| | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology, Tufts University Medical School, Boston, MA 02111, USA;
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
96
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
97
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
98
|
Arciniegas E, Carrillo LM, Rojas H, Pineda J, Ramírez R, Reyes O, Chopite M, Rocheta A. Plump endothelial cells integrated into pre-existing venules contribute to the formation of 'mother' and 'daughter' vessels in pyogenic granuloma: possible role of galectin-1, -3 and -8. Scars Burn Heal 2021; 7:2059513120986687. [PMID: 33796337 PMCID: PMC7841855 DOI: 10.1177/2059513120986687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Pyogenic granuloma (PG) is a reactive inflammatory vascular lesion of the skin and mucous membranes, characterised by the presence of enlarged venules and seamed and seamless capillaries with plump endothelial cells (EC), and numerous macrophages. EC activation upregulates the synthesis of galectins and induces their translocation to the EC surface promoting angiogenesis and lymphangiogenesis, particularly galectin-1 (Gal-1), Gal-3 and Gal-8. However, the presence and distribution of Gal-1, -3 and -8, as well as their implications in the pathogenesis of PG, has not been considered. MATERIALS AND METHODS Eight biopsies from patients diagnosed with PG were selected. The presence of PECAM-1/CD31, IL-1β, VEGF-C, VEGFR-2, VEGFR-3, integrin β1, CD44, fibronectin and Gal-1, -3 and -8 was assessed by immunofluorescence staining using confocal laser scanning microscopy. RESULTS AND DISCUSSION Immunostaining revealed that these molecules were present in the enlarged venules with plump ECs, in some macrophages and other immune cells. We propose that macrophages release VEGF-A and VEGF-C inducing VEGFR-2/VEGFR-3 expression and activation, leading macrophages to transdifferentiate into plump ECs that might integrate into pre-existing venules, contributing to the formation of enlarged venules with transluminal bridges and capillaries. EC activation, induced by certain cytokines, has been shown to stimulate galectin expression and changes in the cellular localisation through association and activation of specific EC surface glycoproteins. Therefore, it is plausible that Gal-1, -3 and -8, acting in a concerted manner, could be mediating the transdifferentiation of macrophages into plump ECs and facilitating their migration and incorporation into the new vessels. LAY SUMMARY In this study, immunostaining of pyogenic granuloma (PG) tissue sections showed immunoreactivity for PECAM-1/CD31, IL-1β, VEGF-C, VEGFR-2 and VEGFR-3, and galectin-1, -3 and -8 in enlarged venules with plump endothelial cells (EC), as well as in some macrophages and other immune cells. Interestingly, enlarged and thin-walled transient vessels lined by PECAM-1/CD31 and VEGFR-2 immunopositive ECs that form from pre-existing normal venules in response to VEGF-A (called 'mother' vessels [MV]) and that undergo intraluminal bridging evolving into various types of capillaries (called 'daughter' vessels [DV]) have been observed in benign and malignant tumours, in physiological and pathological angiogenesis as well as in vascular malformations, suggesting an important role for VEGF-A and VEGFR-2 in such a process. However, it is not only the mechanisms by which the MVs evolve in different types of DVs that remains to be elucidated, but also whether the cells that form intraluminal bridges proceed from locally activated ECs or whether they are derived from bone marrow precursors or from resident macrophages.Given that the formation of homodimers by Gal-1 and Gal-8 and pentamers by Gal-3 to generate gal-glycan lattices at the cell surface and in the extracellular space has been shown, it is possible that in PG tissue Gal-1, -3 and -8, through their binding partners, form a supramolecular structure at the surface of ECs and plump ECs, macrophages and in the extracellular space that might be mediating the transdifferentiation of macrophages into plump ECs and facilitating the migration and incorporation of these cells into the pre-existing venules, thus contributing to the formation of MVs and DVs.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Institute of Biomedicine, Central University of Venezuela, Caracas, Venezuela
| | - Luz Marina Carrillo
- Institute of Biomedicine, Central University of Venezuela, Caracas, Venezuela
- Autonomus Service Institute of Biomedicine, Caracas, Venezuela
| | - Héctor Rojas
- Institute of Immunology, Central University of Venezuela, Caracas, Venezuela
| | - Jacinto Pineda
- Institute of Anatomy and Pathology, Central University of Venezuela, Caracas, Venezuela
| | - Richard Ramírez
- Autonomus Service Institute of Biomedicine, Caracas, Venezuela
| | - Oscar Reyes
- Autonomus Service Institute of Biomedicine, Caracas, Venezuela
| | - Marina Chopite
- Autonomus Service Institute of Biomedicine, Caracas, Venezuela
| | - Albani Rocheta
- Autonomus Service Institute of Biomedicine, Caracas, Venezuela
| |
Collapse
|
99
|
Galectins in allergic inflammatory diseases. Mol Aspects Med 2020; 79:100925. [PMID: 33203547 DOI: 10.1016/j.mam.2020.100925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Allergic inflammatory diseases are a global public health concern affecting millions of people. Although there are several potential hypotheses, details regarding their molecular mechanisms are still ambiguous. Recently, a group of β-galactoside-binding proteins, galectins, have been revealed as important factors in altering allergic chronic inflammatory diseases. In this review, we describe the molecular and cellular basis of how galectins modulate inflammatory reactions. We also provide an overview of clinical features related to galectins. Finally, we discuss the potential issues that might lead to misrepresentation of the exact biological functions of galectins.
Collapse
|
100
|
Castillo-González R, Cibrian D, Fernández-Gallego N, Ramírez-Huesca M, Saiz ML, Navarro MN, Fresno M, de la Fuente H, Sánchez-Madrid F. Galectin-1 Expression in CD8 + T Lymphocytes Controls Inflammation in Contact Hypersensitivity. J Invest Dermatol 2020; 141:1522-1532.e3. [PMID: 33181141 DOI: 10.1016/j.jid.2020.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic contact dermatitis, also known as contact hypersensitivity, is a frequent T-cell‒mediated inflammatory skin disease characterized by red, itchy, swollen, and cracked skin. It is caused by the direct contact with an allergen and/or irritant hapten. Galectin-1 (Gal-1) is a β-galactoside‒binding lectin, which is highly expressed in several types of immune cells. The role of endogenous Gal-1 in contact hypersensitivity is not known. We found that Gal-1‒deficient mice display more sustained and prolonged skin inflammation than wild-type mice after oxazolone treatment. Gal-1‒deficient mice have increased CD8+ T cells and neutrophilic infiltration in the skin. After the sensitization phase, Gal-1‒depleted mice showed an increased frequency of central memory CD8+ T cells and IFN-γ secretion by CD8+ T cells. The absence of Gal-1 does not affect the migration of transferred CD4+ and CD8+ T cells from the blood to the lymph nodes or to the skin. The depletion of CD4+ T lymphocytes as well as adoptive transfer experiments demonstrated that endogenous expression of Gal-1 on CD8+ T lymphocytes exerts a major role in the control of contact hypersensitivity model. These data underscore the protective role of endogenous Gal-1 in CD8+ but not CD4+ T cells in the development of allergic contact dermatitis.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Danay Cibrian
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Nieves Fernández-Gallego
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Marta Ramírez-Huesca
- Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María Laura Saiz
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María N Navarro
- Department of Immune System Development and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Manuel Fresno
- Department of Immune System Development and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|