51
|
Brown AP, Arias-Rodriguez L, Yee MC, Tobler M, Kelley JL. Concordant Changes in Gene Expression and Nucleotides Underlie Independent Adaptation to Hydrogen-Sulfide-Rich Environments. Genome Biol Evol 2018; 10:2867-2881. [PMID: 30215710 PMCID: PMC6225894 DOI: 10.1093/gbe/evy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
The colonization of novel environments often involves changes in gene expression, protein coding sequence, or both. Studies of how populations adapt to novel conditions, however, often focus on only one of these two processes, potentially missing out on the relative importance of different parts of the evolutionary process. In this study, our objectives were 1) to better understand the qualitative concordance between conclusions drawn from analyses of differential expression and changes in genic sequence and 2) to quantitatively test whether differentially expressed genes were enriched for sites putatively under positive selection within gene regions. To achieve this, we compared populations of fish (Poecilia mexicana) that have independently adapted to hydrogen-sulfide-rich environments in southern Mexico to adjacent populations residing in nonsulfidic waters. Specifically, we used RNA-sequencing data to compare both gene expression and DNA sequence differences between populations. Analyzing these two different data types led to similar conclusions about which biochemical pathways (sulfide detoxification and cellular respiration) were involved in adaptation to sulfidic environments. Additionally, we found a greater overlap between genes putatively under selection and differentially expressed genes than expected by chance. We conclude that considering both differential expression and changes in DNA sequence led to a more comprehensive understanding of how these populations adapted to extreme environmental conditions. Our results imply that changes in both gene expression and DNA sequence-sometimes at the same loci-may be involved in adaptation.
Collapse
Affiliation(s)
- Anthony P Brown
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Stanford Functional Genomics Facility, CCSR 0120, Stanford, CA 94305
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| |
Collapse
|
52
|
Dalziel AC, Laporte M, Guderley H, Bernatchez L. Do differences in the activities of carbohydrate metabolism enzymes between Lake Whitefish ecotypes match predictions from transcriptomic studies? Comp Biochem Physiol B Biochem Mol Biol 2018; 224:138-149. [DOI: 10.1016/j.cbpb.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
|
53
|
Huang BH, Lin YC, Huang CW, Lu HP, Luo MX, Liao PC. Differential genetic responses to the stress revealed the mutation-order adaptive divergence between two sympatric ginger species. BMC Genomics 2018; 19:692. [PMID: 30241497 PMCID: PMC6150995 DOI: 10.1186/s12864-018-5081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Divergent genetic responses to the same environmental pressures may lead sympatric ecological speciation possible. Such speciation process possibly explains rapid sympatric speciation of island species. Two island endemic ginger species Zingiber kawagoii and Z. shuanglongensis was suggested to be independently originated from inland ancestors, but their island endemism and similar morphologies and habitats lead another hypothesis of in situ ecological speciation. For understanding when and how these two species diverged, intraspecific variation was estimated from three chloroplast DNA fragments (cpDNA) and interspecific genome-wide SNPs and expression differences after saline treatment were examined by transcriptomic analyses. RESULTS Extremely low intraspecific genetic variation was estimated by cpDNA sequences in both species: nucleotide diversity π = 0.00002 in Z. kawagoii and no nucleotide substitution but only indels found in Z. shuanglongensis. Nonsignificant inter-population genetic differentiation suggests homogenized genetic variation within species. Based on 53,683 SNPs from 13,842 polymorphic transcripts, in which 10,693 SNPs are fixed between species, Z. kawagoii and Z. shuanglongensis were estimated to be diverged since 218~ 238 thousand generations ago (complete divergence since 41.5~ 43.5 thousand generations ago). This time is more recent than the time of Taiwan Island formation. In addition, high proportion of differential expression genes (DEGs) is non-polymorphic or non-positively selected, suggesting key roles of plastic genetic divergence in broaden the selectability in incipient speciation. While some positive selected DEGs were mainly the biotic and abiotic stress-resistance genes, emphasizing the importance of adaptive divergence of stress-related genes in sympatric ecological speciation. Furthermore, the higher proportional expression of functional classes in Z. kawagoii than in Z. shuanglongensis explains the more widespread distribution of Z. kawagoii in Taiwan. CONCLUSIONS Our results contradict the previous hypothesis of independent origination of these two island endemic ginger species from SE China and SW China. Adaptive divergent responses to the stress explain how these gingers maintain genetic differentiation in sympatry. However, the recent speciation and rapid expansion make extremely low intraspecific genetic variation in these two species. This study arise a more probable speciation hypothesis of sympatric speciation within an island via the mutation-order mechanism underlying the same environmental pressure.
Collapse
Affiliation(s)
- Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Wenshan Dist, Taipei, 11677, Taiwan
| | - Yuan-Chien Lin
- Department of Forestry, National Chung-Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Chih-Wei Huang
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Wenshan Dist, Taipei, 11677, Taiwan
| | - Hsin-Pei Lu
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Wenshan Dist, Taipei, 11677, Taiwan
| | - Min-Xin Luo
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Wenshan Dist, Taipei, 11677, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Wenshan Dist, Taipei, 11677, Taiwan.
| |
Collapse
|
54
|
Li X, Shi L, Dai X, Chen Y, Xie H, Feng M, Chen Y, Wang H. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Mol Ecol 2018; 27:2858-2870. [PMID: 29752760 DOI: 10.1111/mec.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimize the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order, whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects and located around the 1-DNJ-binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Czypionka T, Goedbloed DJ, Steinfartz S, Nolte AW. Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol Ecol 2018; 27:2698-2713. [PMID: 29742304 DOI: 10.1111/mec.14713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Transcriptomes of organisms reveal differentiation associated with the use of different habitats. However, this leaves open how much of the observed differentiation can be attributed to genetic differences or to transcriptional plasticity. In this study, we disentangle causes of differential gene expression in larvae of the European fire salamander from the Kottenforst forest in Germany. Larvae inhabit permanent streams and ephemeral ponds and represent an example of a young evolutionary split associated with contrasting ecological conditions. We hypothesized that adaptation towards differences in water temperature plays a role because the thermal regime between stream and pond habitats differs notably. Tissue samples from tail fins of larvae were collected to study gene expression using microarrays. We found ample evidence for differentiation among larvae occupying different habitats in nature with 2,800 of 11,797 genes being differentially expressed. We then quantified transcriptional plasticity towards temperature and genetic differentiation based on controlled temperature laboratory experiments. Gene-by-environment interactions modelling revealed that 28% of the gene expression divergence observed among samples in nature could be attributed to plasticity related to water temperature. Expression patterns of only a small number of 101 genes were affected by the genotype. Our analysis demonstrates that effects of environmental factors must be taken into account to explain variation of gene expression in salamanders in nature. Notwithstanding, it provides first evidence that genetic factors determined gene expression divergence between pond and stream ecotypes and could be involved in adaptive evolution.
Collapse
Affiliation(s)
- Till Czypionka
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Daniel J Goedbloed
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arne W Nolte
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Ecological Genomics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
56
|
Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep 2018; 8:6594. [PMID: 29700344 PMCID: PMC5920108 DOI: 10.1038/s41598-018-24923-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species.
Collapse
|
57
|
McGirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett 2018; 2:62-75. [PMID: 30283665 PMCID: PMC6089502 DOI: 10.1002/evl3.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Parallel evolution of gene expression commonly underlies convergent niche specialization, but parallel changes in expression could also underlie divergent specialization. We investigated divergence in gene expression and whole-genome genetic variation across three sympatric Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist and two derived specialists adapted to novel niches: a scale-eating and a snail-eating pupfish. We sampled total mRNA from all three species at two early developmental stages and compared gene expression with whole-genome genetic differentiation among all three species in 42 resequenced genomes. Eighty percent of genes that were differentially expressed between snail-eaters and generalists were up or down regulated in the same direction between scale-eaters and generalists; however, there were no fixed variants shared between species underlying these parallel changes in expression. Genes showing parallel evolution of expression were enriched for effects on metabolic processes, whereas genes showing divergent expression were enriched for effects on cranial skeleton development and pigment biosynthesis, reflecting the most divergent phenotypes observed between specialist species. Our findings reveal that even divergent niche specialists may exhibit convergent adaptation to higher trophic levels through shared genetic pathways. This counterintuitive result suggests that parallel evolution in gene expression can accompany divergent ecological speciation during adaptive radiation.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| | - Christopher H. Martin
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| |
Collapse
|
58
|
Adaptive Transcriptome Profiling of Subterranean Zokor, Myospalax baileyi, to High- Altitude Stresses in Tibet. Sci Rep 2018; 8:4671. [PMID: 29549310 PMCID: PMC5856782 DOI: 10.1038/s41598-018-22483-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Animals living at high altitudes have evolved distinct phenotypic and genotypic adaptations against stressful environments. We studied the adaptive patterns of altitudinal stresses on transcriptome turnover in subterranean plateau zokors (Myospalax baileyi) in the high-altitude Qinghai-Tibetan Plateau. Transcriptomes of zokors from three populations with distinct altitudes and ecologies (Low: 2846 m, Middle: 3282 m, High: 3,714 m) were sequenced and compared. Phylogenetic and principal component analyses classified them into three divergent altitudinal population clusters. Genetic polymorphisms showed that the population at H, approaching the uppermost species boundary, harbors the highest genetic polymorphism. Moreover, 1056 highly up-regulated UniGenes were identified from M to H. Gene ontologies reveal genes like EPAS1 and COX1 were overexpressed under hypoxia conditions. EPAS1, EGLN1, and COX1 were convergent in high-altitude adaptation against stresses in other species. The fixation indices (FST and GST)-based outlier analysis identified 191 and 211 genes, highly differentiated among L, M, and H. We observed adaptive transcriptome changes in Myospalax baileyi, across a few hundred meters, near the uppermost species boundary, regardless of their relatively stable underground burrows’ microclimate. The highly variant genes identified in Myospalax were involved in hypoxia tolerance, hypercapnia tolerance, ATP-pathway energetics, and temperature changes.
Collapse
|
59
|
Leal L, Talla V, Källman T, Friberg M, Wiklund C, Dincă V, Vila R, Backström N. Gene expression profiling across ontogenetic stages in the wood white (Leptidea sinapis) reveals pathways linked to butterfly diapause regulation. Mol Ecol 2018; 27:935-948. [DOI: 10.1111/mec.14501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Luis Leal
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
- Department of Plant Ecology and Evolution; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Venkat Talla
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology; Uppsala Biomedical Centre (BMC); Uppsala Sweden
| | - Magne Friberg
- Department of Biology; Biodiversity Unit; Lund University; Lund Sweden
| | - Christer Wiklund
- Department of Zoology; Division of Ecology; Stockholm University; Stockholm Sweden
| | - Vlad Dincă
- Department of Ecology and Genetics; University of Oulu; Oulu Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF); Barcelona Spain
| | - Niclas Backström
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
60
|
Rubin IN, Doebeli M. Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity. J Theor Biol 2017; 435:248-264. [PMID: 28943404 DOI: 10.1016/j.jtbi.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ilan N Rubin
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Michael Doebeli
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada; Department of Mathematics, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
61
|
Hanson D, Hu J, Hendry AP, Barrett RDH. Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity (Edinb) 2017; 119:339-348. [PMID: 28832577 PMCID: PMC5637370 DOI: 10.1038/hdy.2017.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
The repeated phenotypic patterns that characterize populations undergoing parallel evolution provide support for a deterministic role of adaptation by natural selection. Determining the level of parallelism also at the genetic level is thus central to our understanding of how natural selection works. Many studies have looked for repeated genomic patterns in natural populations, but work on gene expression is less common. The studies that have examined gene expression have found some support for parallelism, but those studies almost always used samples collected from the wild that potentially confounds the effects of plasticity with heritable differences. Here we use two independent pairs of lake and stream threespine stickleback (Gasterosteus aculeatus) raised in common garden conditions to assess both parallel and antiparallel (that is, similar versus different directions of lake–stream expression divergence in the two watersheds) heritable gene expression differences as measured by total RNA sequencing. We find that more genes than expected by chance show either parallel (22 genes, 0.18% of expressed genes) or antiparallel (24 genes, 0.20% of expressed genes) lake–stream expression differences. These results correspond well with previous genomic studies in stickleback ecotype pairs that found similar levels of parallelism. We suggest that parallelism might be similarly constrained at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
62
|
Kocabaş M, Kutluyer F, Başçinar N. Phenotypic differentiation analysis: A case study in hybridizing Çoruh trout (Salmo coruhensis
), Rize trout (Salmo rizeensis
) and brown trout (Salmo trutta fario
). ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmet Kocabaş
- Department of Wildlife Ecology and Management; Faculty of Forestry; Karadeniz Technical University; Trabzon Turkey
| | | | - Nadir Başçinar
- Department of Fisheries Technology Engineering; Faculty of Marine Sciences; Karadeniz Technical University; Trabzon Turkey
| |
Collapse
|
63
|
Levis NA, Serrato‐Capuchina A, Pfennig DW. Genetic accommodation in the wild: evolution of gene expression plasticity during character displacement. J Evol Biol 2017; 30:1712-1723. [DOI: 10.1111/jeb.13133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- N. A. Levis
- Department of Biology University of North Carolina Chapel Hill NC USA
| | | | - D. W. Pfennig
- Department of Biology University of North Carolina Chapel Hill NC USA
| |
Collapse
|
64
|
Ishikawa A, Kusakabe M, Yoshida K, Ravinet M, Makino T, Toyoda A, Fujiyama A, Kitano J. Different contributions of local- and distant-regulatory changes to transcriptome divergence between stickleback ecotypes. Evolution 2017; 71:565-581. [PMID: 28075479 DOI: 10.1111/evo.13175] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Differential gene expression can play an important role in phenotypic evolution and divergent adaptation. Although differential gene expression can be caused by both local- and distant-regulatory changes, we know little about their relative contribution to transcriptome evolution in natural populations. Here, we conducted expression quantitative trait loci (eQTL) analysis to investigate the genetic architecture underlying transcriptome divergence between marine and stream ecotypes of threespine sticklebacks (Gasterosteus aculeatus). We identified both local and distant eQTLs, some of which constitute hotspots, regions with a disproportionate number of significant eQTLs relative to the genomic background. The majority of local eQTLs including those in the hotspots caused expression changes consistent with the direction of transcriptomic divergence between ecotypes. Genome scan analysis showed that many local eQTLs overlapped with genomic regions of high differentiation. In contrast, nearly half of the distant eQTLs including those in the hotspots caused opposite expression changes, and few overlapped with regions of high differentiation, indicating that distant eQTLs may act as a constraint of transcriptome evolution. Finally, a comparison between two salinity conditions revealed that nearly half of eQTL hotspots were environment specific, suggesting that analysis of genetic architecture in multiple conditions is essential for predicting response to selection.
Collapse
Affiliation(s)
- Asano Ishikawa
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Makoto Kusakabe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.,Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Kohta Yoshida
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Mark Ravinet
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Takashi Makino
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan
| |
Collapse
|
65
|
Dattolo E, Marín-Guirao L, Ruiz JM, Procaccini G. Long-term acclimation to reciprocal light conditions suggests depth-related selection in the marine foundation species Posidonia oceanica. Ecol Evol 2017; 7:1148-1164. [PMID: 28303185 PMCID: PMC5306012 DOI: 10.1002/ece3.2731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/18/2016] [Indexed: 01/09/2023] Open
Abstract
Phenotypic differences among populations of the same species reflect selective responses to ecological gradients produced by variations in abiotic and biotic factors. Moreover, they can also originate from genetic differences among populations, due to a reduced gene flow. In this study, we examined the extent of differences in photo‐acclimative traits of Posidonia oceanica (L.) Delile clones collected above and below the summer thermocline (i.e., −5 and −25 m) in a continuous population extending along the water depth gradient. During a reciprocal light exposure and subsequent recovery in mesocosms, we assessed degree of phenotypic plasticity and local adaptation of plants collected at different depths, by measuring changes in several traits, such as gene expression of target genes, photo‐physiological features, and other fitness‐related traits (i.e., plant morphology, growth, and mortality rates). Samples were also genotyped, using microsatellite markers, in order to evaluate the genetic divergence among plants of the two depths. Measures collected during the study have shown a various degree of phenotypic changes among traits and experimental groups, the amount of phenotypic changes observed was also dependent on the type of light environments considered. Overall plants collected at different depths seem to be able to acclimate to reciprocal light conditions in the experimental time frame, through morphological changes and phenotypic buffering, supported by the plastic regulation of a reduced number of genes. Multivariate analyses indicated that plants cluster better on the base of their depth origin rather than the experimental light conditions applied. The two groups were genetically distinct, but the patterns of phenotypic divergence observed during the experiment support the hypothesis that ecological selection can play a role in the adaptive divergence of P. oceanica clones along the depth gradient.
Collapse
Affiliation(s)
| | | | - Juan M Ruiz
- Instituto Español de Oceanografía (IEO) San Pedro del Pinatar Murcia Spain
| | | |
Collapse
|
66
|
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus. G3-GENES GENOMES GENETICS 2017; 7:165-178. [PMID: 27836907 PMCID: PMC5217106 DOI: 10.1534/g3.116.033241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.
Collapse
|
67
|
Hasan MM, DeFaveri J, Kuure S, Dash SN, Lehtonen S, Merilä J, McCairns RJS. Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. J Exp Biol 2017; 220:2175-2186. [DOI: 10.1242/jeb.146027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023]
Abstract
Novel physiological challenges in different environments can promote the evolution of divergent phenotypes, either through plastic or genetic changes. Environmental salinity serves as a key barrier to the distribution of nearly all aquatic organisms, and species diversification is likely to be enabled by adaptation to alternative osmotic environments. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations found both in marine and freshwater environments. It has evolved both highly plastic and locally adapted phenotypes due to salinity-derived selection, but the physiological and genetic basis of adaptation to salinity is not fully understood. We integrated comparative cellular morphology of the kidney, a key organ for osmoregulation, and candidate gene expression to explore the underpinnings of evolved variation in osmotic plasticity within two populations of sticklebacks from distinct salinity zones in the Baltic Sea: the high salinity Kattegat, representative of the ancestral marine habitat, and the low salinity Bay of Bothnia. A common-garden experiment revealed that kidney morphology in the ancestral high salinity population had a highly plastic response to salinity conditions, whereas this plastic response was reduced in the low salinity population. Candidate gene expression in kidney tissue revealed a similar pattern of population-specific differences, with a higher degree of plasticity in the native high salinity population. Together these results suggest that renal cellular morphology has become canalized to low salinity, and that these structural differences may have functional implications for osmoregulation.
Collapse
Affiliation(s)
- M. Mehedi Hasan
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- Institute of Biotechnology & Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R. J. Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 35042 Rennes, France
| |
Collapse
|
68
|
Turner KG, Nurkowski KA, Rieseberg LH. Gene expression and drought response in an invasive thistle. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1308-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Kusakabe M, Ishikawa A, Ravinet M, Yoshida K, Makino T, Toyoda A, Fujiyama A, Kitano J. Genetic basis for variation in salinity tolerance between stickleback ecotypes. Mol Ecol 2016; 26:304-319. [DOI: 10.1111/mec.13875] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Makoto Kusakabe
- Atmosphere and Ocean Research Institute; The University of Tokyo; Kashiwanoha 5-1-5 Kashiwa Chiba 277-8564 Japan
- Department of Biological Science; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Mark Ravinet
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box 1066 Blindern Oslo NO-0316 Oslo Norway
| | - Kohta Yoshida
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| |
Collapse
|
70
|
Eyres I, Jaquiéry J, Sugio A, Duvaux L, Gharbi K, Zhou JJ, Legeai F, Nelson M, Simon JC, Smadja CM, Butlin R, Ferrari J. Differential gene expression according to race and host plant in the pea aphid. Mol Ecol 2016; 25:4197-215. [PMID: 27474484 DOI: 10.1111/mec.13771] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022]
Abstract
Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change.
Collapse
Affiliation(s)
- Isobel Eyres
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Julie Jaquiéry
- CNRS UMR 6553 ECOBIO, Université de Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Akiko Sugio
- INRA, Institut de Génétique, Environnement et Protection des Plantes, UMR 1349 IGEPP, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Ludovic Duvaux
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Fabrice Legeai
- INRA, Institut de Génétique, Environnement et Protection des Plantes, UMR 1349 IGEPP, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | | | - Jean-Christophe Simon
- INRA, Institut de Génétique, Environnement et Protection des Plantes, UMR 1349 IGEPP, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Carole M Smadja
- Institut des Sciences de l'Evolution (UMR 5554 CNRS-IRD-CIRAD-Université de Montpellier), Université Montpellier 2, cc065, Place Bataillon, 34095, Montpellier Cedex 05, France
| | - Roger Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
71
|
Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax. Proc Natl Acad Sci U S A 2016; 113:7584-9. [PMID: 27339131 DOI: 10.1073/pnas.1607497113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.
Collapse
|
72
|
Dunning LT, Hipperson H, Baker WJ, Butlin RK, Devaux C, Hutton I, Igea J, Papadopulos AST, Quan X, Smadja CM, Turnbull CGN, Savolainen V. Ecological speciation in sympatric palms: 1. Gene expression, selection and pleiotropy. J Evol Biol 2016; 29:1472-87. [PMID: 27177130 PMCID: PMC6680112 DOI: 10.1111/jeb.12895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA‐Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential ‘ecological speciation genes’ and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow.
Collapse
Affiliation(s)
- L T Dunning
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - H Hipperson
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - W J Baker
- Royal Botanic Gardens, Kew, Richmond, UK
| | - R K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Sven Lovén Centre for Marine Sciences, Tjärnö, University of Gothenburg, Stromstäd, Sweden
| | - C Devaux
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - I Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, Australia
| | - J Igea
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - A S T Papadopulos
- Department of Life Sciences, Imperial College London, Ascot, UK.,Royal Botanic Gardens, Kew, Richmond, UK
| | - X Quan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - C M Smadja
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - C G N Turnbull
- Department of Life Sciences, Imperial College London, London, UK
| | - V Savolainen
- Department of Life Sciences, Imperial College London, Ascot, UK.,Royal Botanic Gardens, Kew, Richmond, UK
| |
Collapse
|
73
|
Franchini P, Xiong P, Fruciano C, Meyer A. The Role of microRNAs in the Repeated Parallel Diversification of Lineages of Midas Cichlid Fish from Nicaragua. Genome Biol Evol 2016; 8:1543-55. [PMID: 27189980 PMCID: PMC4898811 DOI: 10.1093/gbe/evw097] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cichlid fishes are an ideal model system for studying biological diversification because they provide textbook examples of rapid speciation. To date, there has been little focus on the role of gene regulation during cichlid speciation. However, in recent years, gene regulation has been recognized as a powerful force linking diversification in gene function to speciation. Here, we investigated the potential role of miRNA regulation in the diversification of six cichlid species of the Midas cichlid lineage (Amphilophus spp.) inhabiting the Nicaraguan crater lakes. Using several genomic resources, we inferred 236 Midas miRNA genes that were used to predict the miRNA target sites on 8,232 Midas 3′-UTRs. Using population genomic calculations of SNP diversity, we found the miRNA genes to be more conserved than protein coding genes. In contrast to what has been observed in other cichlid fish, but similar to what has been typically found in other groups, we observed genomic signatures of purifying selection on the miRNA targets by comparing these sites with the less conserved nontarget portion of the 3′-UTRs. However, in one species pair that has putatively speciated sympatrically in crater Lake Apoyo, we recovered a different pattern of relaxed purifying selection and high genetic divergence at miRNA targets. Our results suggest that sequence evolution at miRNA binding sites could be a critical genomic mechanism contributing to the rapid phenotypic evolution of Midas cichlids.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany School of Earth Environmental & Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
74
|
Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males. Heredity (Edinb) 2016; 117:100-8. [PMID: 27220308 DOI: 10.1038/hdy.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/18/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.
Collapse
|
75
|
Uebbing S, Künstner A, Mäkinen H, Backström N, Bolivar P, Burri R, Dutoit L, Mugal CF, Nater A, Aken B, Flicek P, Martin FJ, Searle SMJ, Ellegren H. Divergence in gene expression within and between two closely related flycatcher species. Mol Ecol 2016; 25:2015-28. [PMID: 26928872 PMCID: PMC4879514 DOI: 10.1111/mec.13596] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
Relatively little is known about the character of gene expression evolution as species diverge. It is for instance unclear if gene expression generally evolves in a clock‐like manner (by stabilizing selection or neutral evolution) or if there are frequent episodes of directional selection. To gain insights into the evolutionary divergence of gene expression, we sequenced and compared the transcriptomes of multiple organs from population samples of collared (Ficedula albicollis) and pied flycatchers (F. hypoleuca), two species which diverged less than one million years ago. Ordination analysis separated samples by organ rather than by species. Organs differed in their degrees of expression variance within species and expression divergence between species. Variance was negatively correlated with expression breadth and protein interactivity, suggesting that pleiotropic constraints reduce gene expression variance within species. Variance was correlated with between‐species divergence, consistent with a pattern expected from stabilizing selection and neutral evolution. Using an expression PST approach, we identified genes differentially expressed between species and found 16 genes uniquely expressed in one of the species. For one of these, DPP7, uniquely expressed in collared flycatcher, the absence of expression in pied flycatcher could be associated with a ≈20‐kb deletion including 11 of 13 exons. This study of a young vertebrate speciation model system expands our knowledge of how gene expression evolves as natural populations become reproductively isolated.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Axel Künstner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Hannu Mäkinen
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Paulina Bolivar
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
76
|
Huang Y, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, Samonte IE, Stoll M, Bornberg-Bauer E, Reusch TBH, Milinski M, Feulner PGD. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol Ecol 2016; 25:943-58. [PMID: 26749022 PMCID: PMC4790908 DOI: 10.1111/mec.13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022]
Abstract
The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Frédéric J J Chain
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1
| | - Mahesh Panchal
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Bioinformatics Infrastructures for Life Sciences (BILS), Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden.,Institute of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, UK
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Irene E Samonte
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Thorsten B H Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105, Kiel, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Philine G D Feulner
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047, Kastanienbaum, Switzerland
| |
Collapse
|
77
|
Nonaka E, Svanbäck R, Thibert-Plante X, Englund G, Brännström Å. Mechanisms by Which Phenotypic Plasticity Affects Adaptive Divergence and Ecological Speciation. Am Nat 2015; 186:E126-43. [DOI: 10.1086/683231] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
78
|
Guo J, Liu R, Huang L, Zheng XM, Liu PL, Du YS, Cai Z, Zhou L, Wei XH, Zhang FM, Ge S. Widespread and Adaptive Alterations in Genome-Wide Gene Expression Associated with Ecological Divergence of Two Oryza Species. Mol Biol Evol 2015; 33:62-78. [PMID: 26362653 DOI: 10.1093/molbev/msv196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological speciation is a common mechanism by which new species arise. Despite great efforts, the role of gene expression in ecological divergence and speciation is poorly understood. Here, we conducted a genome-wide gene expression investigation of two Oryza species that are evolutionarily young and distinct in ecology and morphology. Using digital gene expression technology and the paired-end RNA sequencing method, we obtained 21,415 expressed genes across three reproduction-related tissues. Of them, approximately 8% (1,717) differed significantly in expression levels between the two species and these differentially expressed genes are randomly distributed across the genome. Moreover, 62% (1,064) of the differentially expressed genes exhibited a signature of directional selection in at least one species. Importantly, the genes with differential expression between species evolved more rapidly at the 5' flanking sequences than the genes without differential expression relative to coding sequences, suggesting that cis-regulatory changes are likely adaptive and play an important role in the ecological divergence of the two species. Finally, we showed evidence of significant differentiation between species in phenotype traits and observed that genes with differential expression were overrepresented with functional terms involving phenotypic and ecological differentiation between the two species, including reproduction- and stress-related characteristics. Our findings demonstrate that ecological speciation is associated with widespread and adaptive alterations in genome-wide gene expression and provide new insights into the importance of regulatory evolution in ecological speciation in plants.
Collapse
Affiliation(s)
- Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ping-Li Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
79
|
Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 2015; 6:445-464. [PMID: 25937885 PMCID: PMC4409029 DOI: 10.1111/2041-210x.12324] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022]
Abstract
1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature.
Collapse
Affiliation(s)
- Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of CambridgeDowning Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
80
|
Mason NA, Taylor SA. Differentially expressed genes match bill morphology and plumage despite largely undifferentiated genomes in a Holarctic songbird. Mol Ecol 2015; 24:3009-25. [DOI: 10.1111/mec.13140] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/27/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Nicholas A. Mason
- Department of Ecology and Evolutionary Biology; Cornell University; 215 Tower Rd. Ithaca NY 14853 USA
- Fuller Evolutionary Biology Program; Laboratory of Ornithology; Cornell University; 159 Sapsucker Woods Road Ithaca NY 14850 USA
| | - Scott A. Taylor
- Department of Ecology and Evolutionary Biology; Cornell University; 215 Tower Rd. Ithaca NY 14853 USA
- Fuller Evolutionary Biology Program; Laboratory of Ornithology; Cornell University; 159 Sapsucker Woods Road Ithaca NY 14850 USA
| |
Collapse
|
81
|
Cini A, Patalano S, Segonds-Pichon A, Busby GBJ, Cervo R, Sumner S. Social parasitism and the molecular basis of phenotypic evolution. Front Genet 2015; 6:32. [PMID: 25741361 PMCID: PMC4332356 DOI: 10.3389/fgene.2015.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/23/2015] [Indexed: 11/21/2022] Open
Abstract
Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.
Collapse
Affiliation(s)
- Alessandro Cini
- Dipartimento di Biologia, Università di FirenzeFirenze, Italy
| | - Solenn Patalano
- Institute of Zoology, Zoological Society of LondonLondon, UK
- The Babraham Institute, Babraham Research Campus – CambridgeCambridge, UK
| | | | - George B. J. Busby
- Institute of Zoology, Zoological Society of LondonLondon, UK
- Wellcome Trust Centre for Human GeneticsOxford, UK
| | - Rita Cervo
- Dipartimento di Biologia, Università di FirenzeFirenze, Italy
| | - Seirian Sumner
- Institute of Zoology, Zoological Society of LondonLondon, UK
- School of Biological Sciences, University of BristolBristol, UK
| |
Collapse
|
82
|
Alvarez M, Schrey AW, Richards CL. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol 2015; 24:710-25. [PMID: 25604587 DOI: 10.1111/mec.13055] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Molecular ecology has moved beyond the use of a relatively small number of markers, often noncoding, and it is now possible to use whole-genome measures of gene expression with microarrays and RNAseq (i.e. transcriptomics) to capture molecular response to environmental challenges. While transcriptome studies are shedding light on the mechanistic basis of traits as complex as personality or physiological response to catastrophic events, these approaches are still challenging because of the required technical expertise, difficulties with analysis and cost. Still, we found that in the last 10 years, 575 studies used microarrays or RNAseq in ecology. These studies broadly address three questions that reflect the progression of the field: (i) How much variation in gene expression is there and how is it structured? (ii) How do environmental stimuli affect gene expression? (iii) How does gene expression affect phenotype? We discuss technical aspects of RNAseq and microarray technology, and a framework that leverages the advantages of both. Further, we highlight future directions of research, particularly related to moving beyond correlation and the development of additional annotation resources. Measuring gene expression across an array of taxa in ecological settings promises to enrich our understanding of ecology and genome function.
Collapse
Affiliation(s)
- Mariano Alvarez
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | | | | |
Collapse
|
83
|
Ruan R, Guo AH, Hao YJ, Zheng JS, Wang D. De novo assembly and characterization of narrow-ridged finless porpoise renal transcriptome and identification of candidate genes involved in osmoregulation. Int J Mol Sci 2015; 16:2220-38. [PMID: 25608655 PMCID: PMC4307359 DOI: 10.3390/ijms16012220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 01/13/2015] [Indexed: 02/04/2023] Open
Abstract
During the evolutionary transition from land to water, cetaceans have undergone numerous critical challenges, with osmoregulation being the major one. Two subspecies of the narrow-ridged finless porpoise (Neophocaena asiaeorientalis), the freshwater Yangtze finless porpoise (N. a. asiaeorientalis, NAA) and the marine East Asian finless porpoise (N. a. sunameri, NAS), provide excellent subjects to understand the genetic basis of osmoregulatory divergence between freshwater and marine mammals. The kidney plays an important and well-established role in osmoregulation in marine mammals and thus, herein, we utilized RNA-seq to characterize the renal transcriptome and preliminarily analyze the divergence between the NAA and the NAS. Approximately 48.98 million clean reads from NAS and 49.40 million clean reads from NAA were obtained by RNA-Seq. And 73,449 (NAS) and 68,073 (NAA) unigenes were assembled. Among these annotations, 22,231 (NAS) and 21,849 (NAA) unigenes were annotated against the NCBI nr protein database. The ion channel complex GO term and four pathways were detected as relevant to osmoregulation by GO and KEGG pathway classification of these annotated unigenes. Although the endangered status of the study species prevented analysis of biological replicates, we identified nine differentially expressed genes (DEGs) that may be vital in the osmoregulation of the narrow-ridged finless porpoise and worthwhile for future studies. Of these DEGs, the differential expression and distribution of the aquaporin-2 (AQP2) in the collecting duct were verified using immunohistochemical experiments. Together, this work is the first report of renal transcriptome sequencing in cetaceans, and it will provide a valuable resource for future molecular genetics studies on cetacean osmoregulation.
Collapse
Affiliation(s)
- Rui Ruan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ai-Huan Guo
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yu-Jiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jin-Song Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
84
|
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 2014; 7:1008-25. [PMID: 25553064 PMCID: PMC4231592 DOI: 10.1111/eva.12149] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| | | | - Paul Sunnucks
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| |
Collapse
|
85
|
Dattolo E, Ruocco M, Brunet C, Lorenti M, Lauritano C, D'Esposito D, De Luca P, Sanges R, Mazzuca S, Procaccini G. Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. MARINE ENVIRONMENTAL RESEARCH 2014; 101:225-236. [PMID: 25129449 DOI: 10.1016/j.marenvres.2014.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 05/03/2023]
Abstract
Here we investigated mechanisms underlying the acclimation to light in the marine angiosperm Posidonia oceanica, along its bathymetric distribution (at -5 m and -25 m), combining molecular and photo-physiological approaches. Analyses were performed during two seasons, summer and autumn, in a meadow located in the Island of Ischia (Gulf of Naples, Italy), where a genetic distinction between plants growing above and below the summer thermocline was previously revealed. At molecular level, analyses carried out using cDNA-microarray and RT-qPCR, revealed the up-regulation of genes involved in photoacclimation (RuBisCO, ferredoxin, chlorophyll binding proteins), and photoprotection (antioxidant enzymes, xanthophyll-cycle related genes, tocopherol biosynthesis) in the upper stand of the meadow, indicating that shallow plants are under stressful light conditions. However, the lack of photo-damage, indicates the successful activation of defense mechanisms. This conclusion is also supported by several responses at physiological level as the lower antenna size, the higher number of reaction centers and the higher xanthophyll cycle pigment pool, which are common plant responses to high-light adaptation/acclimation. Deep plants, despite the lower available light, seem to be not light-limited, thanks to some shade-adaptation strategies (e.g. higher antenna size, lower Ek values). Furthermore, also at the molecular level there were no signs of stress response, indicating that, although the lower energy available, low-light environments are more favorable for P. oceanica growth. Globally, results of whole transcriptome analysis displayed two distinct gene expression signatures related to depth distribution, reflecting the different light-adaptation strategies adopted by P. oceanica along the depth gradient. This observation, also taking into account the genetic disjunction of clones along the bathymetry, might have important implications for micro-evolutionary processes happening at meadow scale. Further investigations in controlled conditions must be performed to respond to these questions.
Collapse
Affiliation(s)
- E Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - M Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Brunet
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - M Lorenti
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - D D'Esposito
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - P De Luca
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - R Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - S Mazzuca
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende 87036, Italy
| | - G Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
86
|
Windisch HS, Frickenhaus S, John U, Knust R, Pörtner HO, Lucassen M. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Mol Ecol 2014; 23:3469-82. [DOI: 10.1111/mec.12822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/13/2014] [Accepted: 05/26/2014] [Indexed: 01/07/2023]
Affiliation(s)
- H. S. Windisch
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - S. Frickenhaus
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
- Hochschule Bremerhaven; Biotechnology; An der Karlstadt 8 27568 Bremerhaven Germany
| | - U. John
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - R. Knust
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - H.-O. Pörtner
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - M. Lucassen
- Alfred Wegener Institute; Helmholtz Center for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| |
Collapse
|
87
|
Morris MRJ, Richard R, Leder EH, Barrett RDH, Aubin-Horth N, Rogers SM. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol Ecol 2014; 23:3226-40. [DOI: 10.1111/mec.12820] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew R. J. Morris
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Romain Richard
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Erica H. Leder
- Division of Genetics and Physiology, Vesilinnantie; Department of Biological Sciences; University of Turku; 20014 Turku Finland
| | - Rowan D. H. Barrett
- Redpath Museum and Department of Biology; McGill University; 859 Sherbrooke Street West Montreal QC Canada H2J 3G5
| | - Nadia Aubin-Horth
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes; Université Laval; 1030 avenue de la Médecine Québec QC Canada G1V 0A6
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| |
Collapse
|
88
|
Evans ML, Praebel K, Peruzzi S, Amundsen PA, Bernatchez L. Phenotype-environment association of the oxygen transport system in trimorphic European whitefish (Coregonus lavaretus) populations. Evolution 2014; 68:2197-210. [PMID: 24766154 DOI: 10.1111/evo.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/17/2014] [Indexed: 01/20/2023]
Abstract
Replicated adaptive radiation events, typified by phenotypic divergence across resource axes, provide important insight into the eco-evolutionary dynamics that lead to the formation of new species. Here, we show that in trimorphic adaptive radiations of European whitefish (Coregonus lavaretus), divergence of the oxygen transport system has occurred across the pelagic/littoral (shallow)-profundal (deep) resource axis, and at multiple biological scales. Profundal whitefish exhibited significantly larger red blood cells (RBCs), a greater proportion of cathodic hemoglobin protein components, and higher hemoglobin transcript abundance in kidney compared to littoral and pelagic morphs. Hemoglobin transcript abundance in brain and gill, but not kidney, and anodic hemoglobin protein component diversity in blood were also linked to variation at an intronic single nucleotide polymorphism (SNP). As the whitefish morphs differ in population genetic structure at this SNP, hemoglobin transcript and protein divergence between profundal and pelagic/littoral morphs is likely being driven by genetic divergence. Our findings, along with our previous work on lake whitefish, highlight the importance of the oxygen transport system to the postglacial colonization of novel lacustrine environments by whitefish throughout the northern hemisphere.
Collapse
Affiliation(s)
- Melissa L Evans
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Université Laval, Québec, Québec, G1V 0A6 Canada; Present Address: Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Dr, Newport, Oregon 97365.
| | | | | | | | | |
Collapse
|
89
|
Morris M, Rogers SM. Integrating phenotypic plasticity within an Ecological Genomics framework: recent insights from the genomics, evolution, ecology, and fitness of plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:73-105. [PMID: 24277296 DOI: 10.1007/978-94-007-7347-9_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
E.B. Ford's 1964 book Ecological Genetics was a call for biologists to engage in multidisciplinary work in order to elucidate the link between genotype, phenotype, and fitness for ecologically relevant traits. In this review, we argue that the integration of an ecological genomics framework in studies of phenotypic plasticity is a promising approach to elucidate the causal links between genes and the environment, particularly during colonization of novel environments, environmental change, and speciation. This review highlights some of the questions and hypotheses generated from a mechanistic, evolutionary, and ecological perspective, in order to direct the continued and future use of genomic tools in the study of phenotypic plasticity.
Collapse
Affiliation(s)
- Matthew Morris
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,
| | | |
Collapse
|
90
|
Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes. PLoS One 2013; 8:e82438. [PMID: 24340028 PMCID: PMC3855484 DOI: 10.1371/journal.pone.0082438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.
Collapse
|
91
|
Wurmser F, Mary-Huard T, Daudin JJ, Joly D, Montchamp-Moreau C. Variation of gene expression associated with colonisation of an anthropized environment: comparison between African and European populations of Drosophila simulans. PLoS One 2013; 8:e79750. [PMID: 24260296 PMCID: PMC3832527 DOI: 10.1371/journal.pone.0079750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
The comparison of transcriptome profiles among populations is a powerful tool for investigating the role of gene expression change in adaptation to new environments. In this study, we use massively parallel sequencing of 3' cDNAs obtained from large samples of adult males, to compare a population of Drosophila simulans from a natural reserve within its ancestral range (eastern Africa) with a derived population collected in the strongly anthropized Rhône valley (France). The goal was to scan for adaptation linked to the invasion of new environments by the species. Among 15,090 genes retained for the analysis, 794 were found to be differentially expressed between the two populations. We observed an increase in expression of reproduction-related genes in eastern Africa, and an even stronger increase in expression of Cytochrome P450, Glutathione transferase and Glucuronosyl transferase genes in the derived population. These three gene families are involved in detoxification processes, which suggests that pesticides are a major environmental pressure for the species in this area. The survey of the Cyp6g1 upstream region revealed the insertion of a transposable element, Juan, in the regulatory sequence that is almost fixed in the Rhône Valley, but barely present in Mayotte. This shows that Cyp6g1 has undergone parallel evolution in derived populations of D. simulans as previously shown for D. melanogaster. The increasing amount of data produced by comparative population genomics and transcriptomics should permit the identification of additional genes associated with functional divergence among those differentially expressed.
Collapse
Affiliation(s)
- François Wurmser
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, and Université Paris-Sud, Orsay, France
| | - Tristan Mary-Huard
- INRA UMR 518 MIA, Paris, France
- AgroParisTech, UMR 518 MIA, Paris, France
- UMR de Génétique Végétale, INRA, Université Paris-sud, CNRS, Gif-sur-Yvette, France
| | | | - Dominique Joly
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, and Université Paris-Sud, Orsay, France
| | - Catherine Montchamp-Moreau
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, and Université Paris-Sud, Orsay, France
| |
Collapse
|
92
|
Chapman MA, Hiscock SJ, Filatov DA. Genomic divergence during speciation driven by adaptation to altitude. Mol Biol Evol 2013; 30:2553-67. [PMID: 24077768 PMCID: PMC3840311 DOI: 10.1093/molbev/mst168] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Even though Darwin's "On the Origin of Species" implied selection being the main driver of species formation, the role of natural selection in speciation remains poorly understood. In particular, it remains unclear how selection at a few genes can lead to genomewide divergence and the formation of distinct species. We used a particularly attractive clear-cut case of recent plant ecological speciation to investigate the demography and genomic bases of species formation driven by adaptation to contrasting conditions. High-altitude Senecio aethnensis and low-altitude S. chrysanthemifolius live at the extremes of a mountain slope on Mt. Etna, Sicily, and form a hybrid zone at intermediate altitudes but remain morphologically distinct. Genetic differentiation of these species was analyzed at the DNA polymorphism and gene expression levels by high-throughput sequencing of transcriptomes from multiple individuals. Out of ≈ 18,000 genes analyzed, only a small number (90) displayed differential expression between the two species. These genes showed significantly elevated species differentiation (FST and Dxy), consistent with diversifying selection acting on these genes. Genomewide genetic differentiation of the species is surprisingly low (FST = 0.19), while ≈ 200 genes showed significantly higher (false discovery rate < 1%; mean outlier FST > 0.6) interspecific differentiation and evidence for local adaptation. Diversifying selection at only a handful of loci may be enough for the formation and maintenance of taxonomically well-defined species, despite ongoing gene flow. This provides an explanation of why many closely related species (in plants, in particular) remain phenotypically and ecologically distinct despite ongoing hybridization, a question that has long puzzled naturalists and geneticists alike.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
93
|
Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity (Edinb) 2013; 111:456-66. [PMID: 23963343 DOI: 10.1038/hdy.2013.75] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/09/2022] Open
Abstract
Increasing acceptance that evolution can be 'rapid' (or 'contemporary') has generated growing interest in the consequences for ecology. The genetics and genomics of these 'eco-evolutionary dynamics' will be--to a large extent--the genetics and genomics of organismal phenotypes. In the hope of stimulating research in this area, I review empirical data from natural populations and draw the following conclusions. (1) Considerable additive genetic variance is present for most traits in most populations. (2) Trait correlations do not consistently oppose selection. (3) Adaptive differences between populations often involve dominance and epistasis. (4) Most adaptation is the result of genes of small-to-modest effect, although (5) some genes certainly have larger effects than the others. (6) Adaptation by independent lineages to similar environments is mostly driven by different alleles/genes. (7) Adaptation to new environments is mostly driven by standing genetic variation, although new mutations can be important in some instances. (8) Adaptation is driven by both structural and regulatory genetic variation, with recent studies emphasizing the latter. (9) The ecological effects of organisms, considered as extended phenotypes, are often heritable. Overall, the study of eco-evolutionary dynamics will benefit from perspectives and approaches that emphasize standing genetic variation in many genes of small-to-modest effect acting across multiple traits and that analyze overall adaptation or 'fitness'. In addition, increasing attention should be paid to dominance, epistasis and regulatory variation.
Collapse
|
94
|
Wang YL, Wang YJ, Luan JB, Yan GH, Liu SS, Wang XW. Analysis of the transcriptional differences between indigenous and invasive whiteflies reveals possible mechanisms of whitefly invasion. PLoS One 2013; 8:e62176. [PMID: 23667457 PMCID: PMC3648516 DOI: 10.1371/journal.pone.0062176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/18/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The whitefly Bemisa tabaci is a species complex of more than 31 cryptic species which include some of the most destructive invasive pests of crops worldwide. Among them, Middle East-Asia Minor 1 (MEAM1) and Mediterranean have invaded many countries and displaced the native whitefly species. The successful invasion of the two species is largely due to their wide range of host plants, high resistance to insecticides and remarkable tolerance to environmental stresses. However, the molecular differences between invasive and indigenous whiteflies remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Here the global transcriptional difference between the two invasive whitefly species (MEAM1, MED) and one indigenous whitefly species (Asia II 3) were analyzed using the Illumina sequencing. Our analysis indicated that 2,422 genes between MEAM1 and MED; 3,073 genes between MEAM1 and Asia II 3; and 3,644 genes between MED and Asia II 3 were differentially expressed. Gene Ontology enrichment analysis revealed that the differently expressed genes between the invasive and indigenous whiteflies were significantly enriched in the term of 'oxidoreductase activity'. Pathway enrichment analysis showed that carbohydrate, amino acid and glycerolipid metabolisms were more active in MEAM1 and MED than in Asia II 3, which may contribute to their differences in biological characteristics. Our analysis also illustrated that the majority of genes involved in 'drug metabolic pathway' were expressed at a higher level in MEAM1 and MED than in Asia II 3. Taken together, these results revealed that the genes related to basic metabolism and detoxification were expressed at an elevated level in the invasive whiteflies, which might be responsible for their higher resistance to insecticides and environmental stresses. CONCLUSIONS/SIGNIFICANCE The extensive comparison of MEAM1, MED and Asia II 3 gene expression may serve as an invaluable resource for revealing the molecular mechanisms underlying their biological differences and the whitefly invasion.
Collapse
Affiliation(s)
- Yong-Liang Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Jun Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Bo Luan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gen-Hong Yan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (SSL); (XWW)
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (SSL); (XWW)
| |
Collapse
|
95
|
Renn SC, Schumer ME. Genetic accommodation and behavioural evolution: insights from genomic studies. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
96
|
Filteau M, Pavey SA, St-Cyr J, Bernatchez L. Gene coexpression networks reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evol 2013; 30:1384-96. [PMID: 23519315 DOI: 10.1093/molbev/mst053] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A functional understanding of processes involved in adaptive divergence is one of the awaiting opportunities afforded by high-throughput transcriptomic technologies. Functional analysis of coexpressed genes has succeeded in the biomedical field in identifying key drivers of disease pathways. However, in ecology and evolutionary biology, functional interpretation of transcriptomic data is still limited. Here, we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify modules of coexpressed genes in muscle and brain tissue of a lake whitefish backcross progeny. Modules were connected to gradients of known adaptive traits involved in the ecological speciation process between benthic and limnetic ecotypes. Key drivers, that is, hub genes of functional modules related to reproduction, growth, and behavior were identified, and module preservation was assessed in natural populations. Using this approach, we identified modules of coexpressed genes involved in phenotypic divergence and their key drivers, and further identified a module part specifically rewired in the backcross progeny. Functional analysis of transcriptomic data can significantly contribute to the understanding of the mechanisms underlying ecological speciation. Our findings point to bone morphogenetic protein and calcium signaling as common pathways involved in coordinated evolution of trophic behavior, trophic morphology (gill rakers), and reproduction. Results also point to pathways implicating hemoglobins and constitutive stress response (HSP70) governing growth in lake whitefish.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
97
|
Smith G, Fang Y, Liu X, Kenny J, Cossins AR, de Oliveira CC, Etges WJ, Ritchie MG. Transcriptome-wide expression variation associated with environmental plasticity and mating success in cactophilic Drosophila mojavensis. Evolution 2013; 67:1950-63. [PMID: 23815652 DOI: 10.1111/evo.12082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/23/2013] [Indexed: 01/03/2023]
Abstract
Ecological speciation occurs with the adaptation of populations to different environments and concurrent evolution of reproductive isolation. Phenotypic plasticity might influence both ecological adaptation and reproductive traits. We examined environment-specific gene expression and male mating success in cactophilic Drosophila mojavensis using transcriptome sequencing. This species exhibits cactus-dependent mating success across different species of host plants, with genotype-by-environment interactions for numerous traits. We cultured flies from egg to eclosion on two natural cactus hosts and surveyed gene expression in adult males that were either successful or unsuccessful in achieving copulation in courtship trials. We identified gene expression differences that included functions involved with metabolism, most likely related to chemical differences between host cactus species. Several epigenetic-related functions were identified that might play a role in modulating gene expression in adults due to host cactus effects on larvae, and mating success. Cactus-dependent mating success involved expression differences of genes implicated in translation, transcription, and nervous system development. This suggests a role of neurological function genes in the mating success of D. mojavensis males. Together, these results suggest that the influence of environmental variation on mating success via regulation of gene expression might be an important aspect of ecological speciation.
Collapse
Affiliation(s)
- Gilbert Smith
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, U.K.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Gagnaire PA, Normandeau E, Pavey SA, Bernatchez L. Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish(Coregonus clupeaformis). Mol Ecol 2012. [DOI: 10.1111/mec.12127] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre-Alexandre Gagnaire
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| | - Scott A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| |
Collapse
|
99
|
Lamaze FC, Garant D, Bernatchez L. Stocking impacts the expression of candidate genes and physiological condition in introgressed brook charr (Salvelinus fontinalis) populations. Evol Appl 2012; 6:393-407. [PMID: 23467764 PMCID: PMC3586627 DOI: 10.1111/eva.12022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/19/2012] [Indexed: 01/09/2023] Open
Abstract
Translocation of plants and animal populations between environments is one of the major forms of anthropogenic perturbation experienced by pristine populations, and consequently, human-mediated hybridization by stocking practices between wild and exogenous conspecifics is of increasing concern. In this study, we compared the expression of seven candidate genes involved in multifactorial traits and regulatory pathways for growth as a function of level of introgressive hybridization between wild and domestic brook charr to test the null hypothesis of no effect of introgression on wild fish. Our analyses revealed that the expression of two of the genes tested, cytochrome c oxidase VIIa and the growth hormone receptor isoform I, was positively correlated with the level of introgression. We also observed a positive relationship between the extent of introgression and physiological status quantified by the Fulton's condition index. The expression of other genes was influenced by other variables, including year of sampling (reflecting different thermal conditions), sampling method and lake of origin. This is the first demonstration in nature that introgression from stocked populations has an impact on the expression of genes playing a role in important biological functions that may be related with fitness in wild introgressed populations.
Collapse
Affiliation(s)
- Fabien C Lamaze
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| | | | | |
Collapse
|
100
|
Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, Harrod C, Elmer KR, Meyer A. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol Ecol 2012; 22:650-69. [DOI: 10.1111/mec.12034] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 07/26/2012] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Gonzalo Machado-Schiaffino
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | | | - Kathryn R. Elmer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | | |
Collapse
|