51
|
Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2). Cells 2021; 10:cells10051033. [PMID: 33925682 PMCID: PMC8146469 DOI: 10.3390/cells10051033] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR expressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (FcεRI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reactions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE-mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 agonists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 an intriguing player in allergic diseases. In the present article, we reviewed the emerging role of MRGPRX2 as a non-IgE-mediated mechanism of mast cell activation in pseudo-allergic reactions. We have presented an overview of mast cells, their receptors, structural insight into MRGPRX2, MRGPRX2 agonists and antagonists, the crucial role of MRGPRX2 in pseudo-allergic reactions, current challenges, and the future research direction.
Collapse
|
52
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
53
|
Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, Roy S, Ali H. Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Curr Allergy Asthma Rep 2021; 21:3. [PMID: 33398613 DOI: 10.1007/s11882-020-00979-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) and allergic asthma are complex disorders with significant public health burden. This review provides an overview of the recent developments on Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse counterpart MrgprB2) as a potential candidate to target neuro-immune interaction in AD and allergic asthma. RECENT FINDINGS Domestic allergens directly activate sensory neurons to release substance P (SP), which induces mast cell degranulation via MrgprB2 and drives type 2 skin inflammation in AD. MRGPRX2 expression is upregulated in human lung mast cells and serum of asthmatic patients. Both SP and hemokinin-1 (HK-1 generated from macrophages, bronchial cells, and mast cells) cause degranulation of human mast cells via MRGPRX2. MrgprB2 contributes to mast cell-nerve interaction in the pathogenesis of AD. Furthermore, asthma severity is associated with increased MRGPRX2 expression in mast cells. Thus, MRGPRX2 could serve as a novel target for modulating AD and asthma.
Collapse
Affiliation(s)
- Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
54
|
Fan Y, Kim DH, Gwak YS, Ahn D, Ryu Y, Chang S, Lee BH, Bills KB, Steffensen SC, Yang CH, Kim HY. The role of substance P in acupuncture signal transduction and effects. Brain Behav Immun 2021; 91:683-694. [PMID: 32956833 PMCID: PMC7749828 DOI: 10.1016/j.bbi.2020.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acupuncture has been used to treat a wide variety of diseases, disorders, and conditions for more than 2500 years. While the anatomical structures of acupuncture points (or acupoints) are largely unknown, our previous studies have suggested that many acupoints can be identified as cutaneous neurogenic inflammatory spots (neurogenic spots or Neuro-Sps), arising from the release of neuropeptides from activated small diameter sensory afferents at topographically distinct body surfaces due to the convergence of visceral and somatic afferents. In turn, the neuropeptides released during neurogenic inflammation may play important roles in the effects of acupuncture as well as the formation of active acupoints. Thus, the present study has focused on the role of substance P (SP) in acupuncture signal transduction and effects. METHODS Neuro-Sps were detected by using in vivo fluorescence imaging after intravenous injection of Evans blue dye (EBD) and compared with traditional acupoints. Stimulatory effects of the Neuro-Sps were examined in a rat model of immobilization-induced hypertension (IMH). The roles of increased SP in Neuro-Sps were also investigated by using immunohistochemistry, in vivo single-fiber peripheral nerve recordings, and in vivo midbrain extracellular recordings. RESULTS Neurogenic inflammation quickly appeared at acupoints on the wrist and was fully developed within 15 min in IMH model. The Neuro-Sps showed an increased release of SP from afferent nerve terminals. Mechanical stimulation of these Neuro-Sps increased cell excitability in the midbrain (rostral ventrolateral medulla) and alleviated the development of hypertension, which was blocked by the local injection of the SP receptor antagonist CP-99994 into Neuro-Sps prior to acupuncture and mimicked by the local injection of capsaicin. Single fiber recordings of peripheral nerves showed that increased SP into the Neuro-Sps elevated the sensitivity of A- and C-fibers in response to acupuncture stimulation. In addition, the discharge rates of spinal wide dynamic response (WDR) neurons significantly increased following SP or acupuncture treatment in Neuro-Sps in normal rats, but decreased following the injection of CP-99994 into Neuro-Sps in IMH rats. CONCLUSIONS Our findings suggest that SP released during neurogenic inflammation enhances the responses of sensory afferents to the needling of acupoints and triggers acupuncture signaling to generate acupuncture effects.
Collapse
Affiliation(s)
- Yu Fan
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Do-Hee Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Young Seob Gwak
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Danbi Ahn
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Suchan Chang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Bong Hyo Lee
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Kyle B Bills
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT 84602, United States; Department of Biomedical Sciences, Noorda College of Osteopathic Medicine (P), Provo, UT 84604, United States
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT 84602, United States
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Hee Young Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea.
| |
Collapse
|
55
|
Neurokinin receptors and their implications in various autoimmune diseases. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:66-78. [PMID: 35492389 PMCID: PMC9040085 DOI: 10.1016/j.crimmu.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neurokinin receptors belong to the GPCRs family and are ubiquitously expressed throughout the nervous and immune systems. Neurokinin receptors in coordination with neurokinins playing an important role in many physiological processes, including smooth muscle contraction, secretion, proliferation, and nociception. They also contribute to various disease conditions such as inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, psoriasis, and cancer. Neurokinin receptors antagonist are potent and highly selective and showing success in treating chemotherapy-induced nausea and vomiting. In this review, discuss the various neurokinin receptor expression on immune cells and their importance in various inflammatory and autoimmune diseases and their therapeutic importance. The Neurokinin receptor is an important regulatory mechanism to control the neuronal and immune systems. Various neurokinin receptors (NK1R, NK2R, and NK3R) are expressed in neurons and cells of the immune system. Substance P (SP) controls the differentiation and function of immune cells. SP-NK1R receptor signaling shows substantial cross-talk between neuronal and immune systems in inflammation and autoimmunity.
Collapse
|
56
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
57
|
Khorasani S, Boroumand N, Lavi Arab F, Hashemy SI. The immunomodulatory effects of tachykinins and their receptors. J Cell Biochem 2020; 121:3031-3041. [PMID: 32115751 DOI: 10.1002/jcb.29668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
Abstract
Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.
Collapse
Affiliation(s)
- Sahar Khorasani
- Ferdows Paramedical School, Birjand University of Medical Sciences, Birjand, Iran
| | - Nadia Boroumand
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
58
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
59
|
Substance P enhances cellular migration and inhibits senescence in human dermal fibroblasts under hyperglycemic conditions. Biochem Biophys Res Commun 2019; 522:917-923. [PMID: 31806373 DOI: 10.1016/j.bbrc.2019.11.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
Diabetes induces cellular dysfunction in dermal fibroblasts, such as impairment in migration, which is a major cause of chronic wound. Here, we demonstrated that the migration of human dermal fibroblasts was impaired under a high glucose culture condition. Substance P (SP) rescued the impaired migration of the fibroblasts. The activity of Rac1, Rho-associated kinase (ROCK), and Src was required for SP-mediated rescue of fibroblast migration. SP activated Rac1 and Src, whereas, NSC23766, a Rac1 inhibitor, and PP1 and PP2, Src inhibitors, inhibited SP-mediated enhancement of fibroblast migration. Y-27632, a ROCK inhibitor, inhibited the SP-mediated rescue of fibroblast migration. Senescence-associated β-galactosidase activity increased in human dermal fibroblasts cultured in a high glucose environment, but SP inhibited the β-galactosidase activity of the fibroblasts. These results suggest that SP promotes the migration of human dermal fibroblasts in diabetic-condition-mimicking cultures via the activity of Rac1, ROCK, and Src, and inhibits fibroblast senescence in hyperglycemic cultures.
Collapse
|
60
|
Neurokinin-1 Receptor Antagonists against Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11091258. [PMID: 31466222 PMCID: PMC6770178 DOI: 10.3390/cancers11091258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor that occurs during childhood. The prognosis of children with HB is favorable when a complete surgical resection of the tumor is possible, but for high-risk patients, the prognosis is much worse. New anti-HB strategies must be urgently developed. The undecapeptide substance P (SP) after binding to the neurokinin-1 receptor (NK-1R), regulates cancer cell proliferation, exerts an antiapoptotic effect, induces cell migration for invasion/metastasis, and triggers endothelial cell proliferation for neoangiogenesis. HB samples and cell lines overexpress NK-1R (the truncated form) and SP elicits HB cell proliferation. One of these strategies could be the use of non-peptide NK-1R antagonists. These antagonists exert, in a concentration-dependent manner, an antiproliferative action against HB cells (inhibit cell proliferation and induce the death of HB cells by apoptosis). NK-1R antagonists exerted a dual effect in HB: Decreased both tumor volume and angiogenic activity. Thus, the SP/NK-1R system is an important target in the HB treatment and NK-1R antagonists could act as specific drugs against HB cells. In this review, we update and discuss the use of NK-1R antagonists in the treatment of HB.
Collapse
|
61
|
Eapen PM, Rao CM, Nampoothiri M. Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders. Rev Neurosci 2019; 30:233-243. [PMID: 30260793 DOI: 10.1515/revneuro-2018-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
The neurokinin 1 receptor with the natural substrate substance P is one of the intensely studied receptors among the neurokinin receptors. The intracellular signaling mechanism uses G protein-coupled transduction regulating various physiological processes from nausea to Alzheimer's disease. The neurokinin 1 receptor plays a significant role in neuroinflammation-mediated alterations in neural circuitry. Neurokinin 1 receptor antagonists are selective, potent and exhibited efficacy in animal models of nervous system disorders. Evolving data now strengthen the viewpoint of brain substance P/neurokinin 1 receptor axis-mediated action in neural circuit dysfunction. Thus, a deep-rooted analysis of disease mechanism in which the neurokinin 1 receptor is involved is necessary for augmenting disease models which encourage the pharmaceutical industry to intensify the research pipeline. This review is an attempt to outline the concept of neurokinin 1 receptor signaling interlinked to the brain innate immune system. We also uncover the mechanisms of the neurokinin 1 receptor involved in neurological disorder and various methods of modulating the neurokinin 1 receptor, which may result in therapeutic action.
Collapse
Affiliation(s)
- Prasanth M Eapen
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
62
|
Theoharides TC, Tsilioni I, Conti P. Mast Cells May Regulate The Anti-Inflammatory Activity of IL-37. Int J Mol Sci 2019; 20:ijms20153701. [PMID: 31362339 PMCID: PMC6696426 DOI: 10.3390/ijms20153701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Mast cells are unique immune cells involved in allergic reactions, but also in immunity and inflammation. Interleukin 37 (IL-37) has emerged as an important regulatory cytokine with ability to inhibit immune and inflammatory processes. IL-37 is made primarily by macrophages upon activation of toll-like receptors (TLR) leading to generation of mature IL-37 via the action of caspase 1. In this review, we advance the premise that mast cells could regulate the anti-inflammatory activity of the IL-37 via their secretion of heparin and tryptase. Extracellular IL-37 could either dimerize in the presence of heparin and lose biological activity, or be acted upon by proteases that can generate even more biologically active IL-37 forms. Molecules that could selectively inhibit the secretion of mast cell mediators may, therefore, be used together with IL-37 as novel therapeutic agents.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
63
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
64
|
Tsilioni I, Pipis H, Freitag MSC, Izquierdo MDC, Freitag K, Theoharides TC. Effects of an Extract of Salmon Milt on Symptoms and Serum TNF and Substance P in Patients With Fibromyalgia Syndrome. Clin Ther 2019; 41:1564-1574.e2. [PMID: 31303280 DOI: 10.1016/j.clinthera.2019.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/09/2023]
Abstract
PURPOSE The aim of this study was to evaluate the effects of a dietary supplement containing primarily an extract of salmon's milt (semen) on symptoms and blood levels of proinflammatory molecules in patients with fibromyalgia syndrome (FMS), a chronic, painful musculoskeletal disease without a distinct pathogenesis or treatment. We recently reported increased serum levels of the proinflammatory molecules substance P (SP) and tumor necrosis factor (TNF) in patients with FMS as compared to those in normal controls. METHODS This prospective, open-label study was conducted in patients with FMS (n = 87; 80 women, 7 men; age range, 18-80 years) selected from 2 clinical centers in Spain. Patients were administered the supplement and were evaluated at weeks 1 (before treatment), 4, 8, and 12 (end of treatment) for clinical parameters of functioning, fatigue, and pain, as well as overall impression. Patients were directed to take 1 capsule per day in the morning for the first 4 weeks, followed by 1 capsule in the morning and 1 capsule in the evening for the remaining 8 weeks. Differences in symptom scores in patients with FMS between weeks 1 and weeks 4, 8, and 12 were evaluated using ANOVA. Blood was obtained and serum separated in patients with FMS at 1 and 12 weeks and in a separate population of healthy controls (n = 20; 15 women, 5 men; age range, 25-65 years). Serum levels of SP and TNF were measured in patients with FMS at 1 and 12 weeks and in healthy controls by ELISA. TNF and SP levels in patients with FMS were compared between weeks 1 and 12, as well as between patients with FMS and untreated controls, using the Mann-Whitney U test. FINDINGS Clinical parameters of functioning, fatigue, and pain, as well as overall impression, were improved significantly at 4 weeks as compared to 1 week and remained unchanged for the duration of the study (all, P < 0.0001). Serum TNF and SP levels were significantly elevated at 1 week in patients with FMS compared to controls and were decreased significantly at 12 weeks as compared to 1 week (all, P < 0.0001). IMPLICATIONS Our findings indicate that this dietary supplement may significantly improve symptoms in patients with FMS. This is the first time to our knowledge that any molecule has been reported to be associated with a reduction in serum SP level. Consequently, the supplement or its hypothesized main active ingredient, spermine, may be developed as a novel treatment approach to FMS or other neuroinflammatory conditions. ClinicalTrials.gov identifier: NCT03911882.
Collapse
Affiliation(s)
- Irene Tsilioni
- Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | - Theoharis C Theoharides
- Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
65
|
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Marone G, Spadaro G. Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function. Front Cell Neurosci 2019; 13:299. [PMID: 31333418 PMCID: PMC6616107 DOI: 10.3389/fncel.2019.00299] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated via aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10−7 M – 5 × 10−6 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10−5 M – 3 × 10−4 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the de novo synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Felice Rivellese
- Center for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Arturo Genovese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
66
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
67
|
Deng XT, Tang SM, Wu PY, Li QP, Ge XX, Xu BM, Wang HS, Miao L. SP/NK-1R promotes gallbladder cancer cell proliferation and migration. J Cell Mol Med 2019; 23:7961-7973. [PMID: 30903649 PMCID: PMC6850939 DOI: 10.1111/jcmm.14230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/28/2022] Open
Abstract
Aberrant substance P/neurokinin‐1 receptor (SP/NK‐1R) system activation plays a critical role in various disorders, however, little is known about the expression and the detailed molecular mechanism of the SP and NK‐1R in gallbladder cancer (GBC). In this study, we firstly analyzed the expression and clinical significance of them in patients with GBC. Then, cellular assays were performed to clarify their biological role in GBC cells. Moreover, we investigated the molecular mechanisms regulated by SP/NK‐1R. Meanwhile, mice xenografted with human GBC cells were analyzed regarding the effects of SP/NK1R complex in vivo. Finally, patient samples were utilized to investigate the effect of SP/NK‐1R. The results showed that SP and NK‐1R were highly expressed in GBC. We found that SP strongly induced GBC cell proliferation, clone formation, migration and invasion, whereas antagonizing NK‐1R resulted in the opposite effects. Moreover, SP significantly enhanced the expression of NF‐κB p65 and the tumor‐associated cytokines, while, Akt inhibitor could reverse these effects. Further studies indicated that decreasing activation of NF‐κB or Akt diminished GBC cell proliferation and migration. In consistent with results, immunohistochemical staining showed high levels of Akt, NF‐κB and cytokines in tumor tissues. Most importantly, the similar conclusion was obtained in xenograft mouse model. Our findings demonstrate that NK‐1R, after binding with the endogenous agonist SP, could induce GBC cell migration and spreading via modulation of Akt/NF‐κB pathway.
Collapse
Affiliation(s)
- Xue-Ting Deng
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Min Tang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pei-Yao Wu
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan-Peng Li
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian-Xiu Ge
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bo-Ming Xu
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Shan Wang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Miao
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
68
|
Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer. Mol Biol Rep 2019; 46:1285-1293. [PMID: 30684188 DOI: 10.1007/s11033-019-04599-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
Breast cancer is the second leading cause of cancer death in women with increasing incidence. Hence, finding a diagnostic factor and/or potential drug target could lead to an earlier diagnosis or a more effective therapeutic protocol. It is shown that substance P (SP) through its receptor neurokinin-1 (NK1R) could initiate tumor cell proliferation, angiogenesis, and migration. This was a case-control study on 41 women with breast cancer and 34 healthy controls. Serum level of SP was measured using an ELISA method, and immunohistochemistry staining was performed to study NK1R expression in different cell compartments. Assessing serum SP values of patients showed significantly higher levels than those of healthy individuals. However, no significant correlation was found between SP levels and tumor criteria, but between SP and HER-2. Moreover, the percentage, intensity of staining as well as tissue distribution of NK1R were significantly higher in tumor tissues as compared with controls. Increased serum SP levels and NK1R tissue distribution were observed in patients with breast cancer as compared with their controls, highlighting the involvement of SP/NK1R complex in breast cancer incidence. NK1R profound expression in tumor cell cytoplasm and its significant correlation with the majority of cancer features can be of importance to be taken into consideration as a possible potential therapeutic target in future targeted therapeutic strategies. Furthermore, cytoplasmic expression of NK1R can be suggested as a potent prognostic factor as it has shown significant correlation with TNM and tumor grade.
Collapse
|
69
|
Abstract
The NK1 tachykinin G-protein-coupled receptor (GPCR) binds substance P, the first neuropeptide to be discovered in mammals. Through activation of NK1R, substance P modulates a wide variety of physiological and disease processes including nociception, inflammation, and depression. Human NK1R (hNK1R) modulators have shown promise in clinical trials for migraine, depression, and emesis. However, the only currently approved drugs targeting hNK1R are inhibitors for chemotherapy-induced nausea and vomiting (CINV). To better understand the molecular basis of ligand recognition and selectivity, we solved the crystal structure of hNK1R bound to the inhibitor L760735, a close analog of the drug aprepitant. Our crystal structure reveals the basis for antagonist interaction in the deep and narrow orthosteric pocket of the receptor. We used our structure as a template for computational docking and molecular-dynamics simulations to dissect the energetic importance of binding pocket interactions and model the binding of aprepitant. The structure of hNK1R is a valuable tool in the further development of tachykinin receptor modulators for multiple clinical applications.
Collapse
|
70
|
Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK 1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochem Int 2018; 122:106-119. [PMID: 30453005 DOI: 10.1016/j.neuint.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
To characterize mechanisms involved in neurokinin type 1 receptor (NK1R)-mediated emesis, we investigated the brainstem emetic signaling pathways following treating least shrews with the selective NK1R agonist GR73632. In addition to episodes of vomiting over a 30-min observation period, a significant increase in substance P-immunoreactivity in the emetic brainstem dorsal motor nucleus of the vagus (DMNX) occurred at 15 min post an intraperitoneal (i.p.) injection GR73632 (5 mg/kg). In addition, time-dependent upregulation of phosphorylation of several emesis -associated protein kinases occurred in the brainstem. In fact, Western blots demonstrated significant phosphorylations of Ca2+/calmodulin kinase IIα (CaMKIIα), extracellular signal-regulated protein kinase1/2 (ERK1/2), protein kinase B (Akt) as well as α and βII isoforms of protein kinase C (PKCα/βII). Moreover, enhanced phospho-ERK1/2 immunoreactivity was also observed in both brainstem slices containing the dorsal vagal complex emetic nuclei as well as in jejunal sections from the shrew small intestine. Furthermore, our behavioral findings demonstrated that the following agents suppressed vomiting evoked by GR73632 in a dose-dependent manner: i) the NK1R antagonist netupitant (i.p.); ii) the L-type Ca2+ channel (LTCC) antagonist nifedipine (subcutaneous, s.c.); iii) the inositol trisphosphate receptor (IP3R) antagonist 2-APB (i.p.); iv) store-operated Ca2+ entry inhibitors YM-58483 and MRS-1845, (i.p.); v) the ERK1/2 pathway inhibitor U0126 (i.p.); vi) the PKC inhibitor GF109203X (i.p.); and vii) the inhibitor of phosphatidylinositol 3-kinase (PI3K)-Akt pathway LY294002 (i.p.). Moreover, NK1R, LTCC, and IP3R are required for GR73632-evoked CaMKIIα, ERK1/2, Akt and PKCα/βII phosphorylation. In addition, evoked ERK1/2 phosphorylation was sensitive to inhibitors of PKC and PI3K. These findings indicate that the LTCC/IP3R-dependent PI3K/PKCα/βII-ERK1/2 signaling pathways are involved in NK1R-mediated vomiting.
Collapse
|
71
|
Substance P and the neurokinin-1 receptor in the ischaemic heart: Two sides to the coin. Int J Cardiol 2018; 271:258-259. [PMID: 29960759 DOI: 10.1016/j.ijcard.2018.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
72
|
Li Z, Luo T, Ning X, Xiong C, Wu A. Neurokinin-1 receptor antagonism improves postoperative neurocognitive disorder in mice. Neurosci Lett 2018; 687:189-195. [DOI: 10.1016/j.neulet.2018.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/01/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
|
73
|
Barbariga M, Rabiolo A, Fonteyne P, Bignami F, Rama P, Ferrari G. The Effect of Aging on Nerve Morphology and Substance P Expression in Mouse and Human Corneas. ACTA ACUST UNITED AC 2018; 59:5329-5335. [DOI: 10.1167/iovs.18-24707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marco Barbariga
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Rabiolo
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Bignami
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
74
|
Dion MZ, Leiske D, Sharma VK, Zuch de Zafra CL, Salisbury CM. Mitigation of Oxidation in Therapeutic Antibody Formulations: a Biochemical Efficacy and Safety Evaluation of N-Acetyl-Tryptophan and L-Methionine. Pharm Res 2018; 35:222. [PMID: 30280329 DOI: 10.1007/s11095-018-2467-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Biotherapeutics can be susceptible to oxidation during manufacturing and storage. Free L-methionine is known to protect methionine residues in proteins from oxidation. Similarly, free tryptophan and other indole derivatives have been shown to protect tryptophan residues from oxidation. N-acetyl-DL-tryptophan was previously identified as a potentially superior antioxidant to tryptophan as it has a lower oxidation potential and produces less peroxide upon light exposure. This study sought to confirm the antioxidant efficacy and safety of N-acetyl-DL-tryptophan and L-methionine as formulation components for biotherapeutic drugs. METHODS Antibodies were subjected to AAPH and light exposure in the presence of N-acetyl-DL-tryptophan and L-methionine. Oxidation in relevant CDR and Fc residues was quantified by peptide map. In silico, in vitro, and in vivo studies were performed to evaluate the safety of N-acetyl-DL-tryptophan and L-methionine. RESULTS Peptide mapping demonstrated that N-acetyl-DL-tryptophan was effective at protecting tryptophans from AAPH stress, and that the combination of N-acetyl-DL-tryptophan and L-methionine protected both tryptophan and methionine from AAPH stress. The safety assessment suggested an acceptable safety profile for both excipients. CONCLUSIONS N-acetyl-tryptophan and L-methionine effectively reduce the oxidation of susceptible tryptophan and methionine residues in antibodies and are safe for use in parenteral biotherapeutic formulations.
Collapse
Affiliation(s)
- Michelle Z Dion
- Early Stage Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Danielle Leiske
- Early Stage Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
- Seattle Genetics, Bothell, Washington, USA
| | - Vikas K Sharma
- Late Stage Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Christina L Zuch de Zafra
- Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
- Amgen, South San Francisco, California, USA.
| | - Cleo M Salisbury
- Early Stage Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
- Protein Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
75
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
76
|
Substance P and IL-33 administered together stimulate a marked secretion of IL-1β from human mast cells, inhibited by methoxyluteolin. Proc Natl Acad Sci U S A 2018; 115:E9381-E9390. [PMID: 30232261 DOI: 10.1073/pnas.1810133115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mast cells are critical for allergic and inflammatory responses in which the peptide substance P (SP) and the cytokine IL-33 are involved. SP (0.01-1 μM) administered together with IL-33 (30 ng/mL) to human cultured LAD2 mast cells stimulates a marked increase (P < 0.0001) in secretion of the proinflammatory cytokine IL-1β. Preincubation of LAD2 (30 min) with the SP receptor (NK-1) antagonists L-733,060 (10 μM) or CP-96345 (10 µM) inhibits (P < 0.001) secretion of IL-1β stimulated by either SP (1 μM) or SP together with IL-33 (30 ng/mL). Surprisingly, secretion of IL-1β stimulated by IL-33 is inhibited (P < 0.001) by each NK-1 antagonist. Preincubation with an antibody against the IL-33 receptor ST2 inhibits (P < 0.0001) secretion of IL-1β stimulated either by IL-33 or together with SP. The combination of SP (1 μM) with IL-33 (30 ng/mL) increases IL-1β gene expression by 90-fold in LAD2 cells and by 200-fold in primary cultured mast cells from human umbilical cord blood. The combination of SP and IL-33 increases intracellular levels of IL-1β in LAD2 by 100-fold and gene expression of IL-1β and procaspase-1 by fivefold and pro-IL-1β by twofold. Active caspase-1 is present even in unstimulated cells and is detected extracellularly. Preincubation of LAD2 cells with the natural flavonoid methoxyluteolin (1-100 mM) inhibits (P < 0.0001) secretion and gene expression of IL-1β, procaspase-1, and pro-IL-1β. Mast cell secretion of IL-1β in response to SP and IL-33 reveals targets for the development of antiinflammatory therapies.
Collapse
|
77
|
Gadais C, Ballet S. The Neurokinins: Peptidomimetic Ligand Design and Therapeutic Applications. Curr Med Chem 2018; 27:1515-1561. [PMID: 30209994 DOI: 10.2174/0929867325666180913095918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The neurokinins are indisputably essential neurotransmitters in numerous pathoand physiological events. Being widely distributed in the Central Nervous System (CNS) and peripheral tissues, their discovery rapidly promoted them to drugs targets. As a necessity for molecular tools to understand the biological role of this class, endogenous peptides and their receptors prompted the scientific community to design ligands displaying either agonist and antagonist activity at the three main neurokinin receptors, called NK1, NK2 and NK3. Several strategies were implemented for this purpose. With a preference to small non-peptidic ligands, many research groups invested efforts in synthesizing and evaluating a wide range of scaffolds, but only the NK1 antagonist Aprepitant (EMENDT) and its prodrug Fosaprepitant (IVEMENDT) have been approved by the Food Drug Administration (FDA) for the treatment of Chemotherapy-Induced and Post-Operative Nausea and Vomiting (CINV and PONV, respectively). While non-peptidic drugs showed limitations, especially in side effect control, peptidic and pseudopeptidic compounds progressively regained attention. Various strategies were implemented to modulate affinity, selectivity and activity of the newly designed ligands. Replacement of canonical amino acids, incorporation of conformational constraints, and fusion with non-peptidic moieties gave rise to families of ligands displaying individual or dual NK1, NK2 and NK3 antagonism, that ultimately were combined with non-neurokinin ligands (such as opioids) to target enhanced biological impact.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
78
|
Bubak AN, Como CN, Blackmon AM, Frietze S, Mescher T, Jones D, Cohrs RJ, Paucek P, Baird NL, Nagel MA. Varicella Zoster Virus Induces Nuclear Translocation of the Neurokinin-1 Receptor, Promoting Lamellipodia Formation and Viral Spread in Spinal Astrocytes. J Infect Dis 2018; 218:1324-1335. [PMID: 29788447 PMCID: PMC6129113 DOI: 10.1093/infdis/jiy297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy. Methods Mock- and VZV-infected HA-sps were examined for substance P (subP) production, NK-1R localization, morphological changes, and viral spread in the presence or absence of the NK-1R antagonists aprepitant and rolapitant. Results VZV infection of HA-sps induced nuclear localization of full-length and truncated NK-1R in the absence of the endogenous ligand, subP, and was associated with extensive lamellipodia formation and viral spread that was inhibited by NK-1R antagonists. Conclusions We have identified a novel, subP-independent, proviral function of nuclear NK-1R associated with lamellipodia formation and viral spread that is distinct from subP-induced NK-1R cell membrane/cytoplasmic localization without lamellipodia formation. These results suggest that binding of a putative viral ligand to NK-1R produces a dramatically different NK-1R downstream effect than binding of subP. Finally, the NK-1R antagonists aprepitant and rolapitant provide promising alternatives to nucleoside analogs in treating VZV infections, including myelopathy.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Christina N Como
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Anna M Blackmon
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Seth Frietze
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington
| | - Teresa Mescher
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Dallas Jones
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Petr Paucek
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora
| |
Collapse
|
79
|
Sakamoto A, Yamaguchi R, Yamaguchi R, Narahara S, Sugiuchi H, Yamaguchi Y. Cross-talk between the transcription factor Sp1 and C/EBPβ modulates TGFβ1 production to negatively regulate the expression of chemokine RANTES. Heliyon 2018; 4:e00679. [PMID: 29998198 PMCID: PMC6037877 DOI: 10.1016/j.heliyon.2018.e00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023] Open
Abstract
RANTES is a key chemokine for atherosclerosis, and obesity is associated with progression of atherosclerosis. Substance P (SP) increases glucose uptake and accumulation of lipids in adipocytes, and SP may upregulate RANTES expression. This study investigated the mechanism of RANTES expression by human M1 macrophages stimulated with SP. SP upregulated RANTES protein expression, whereas aprepitant (an NK1R antagonist) blunted this response. Pretreatment of macrophages with BIRB796 (a combined p38γ/p38δ inhibitor) led to a significant decrease of RANTES expression. Next, we investigated the effect of several NK1R internalization factors on RANTES expression, including GRK2, β-arrestin 2, dynamin, ROCK, and TGFβ1. Exposure of macrophages to SP upregulated TGFβ1 expression. Silencing of β-arrestin 2 or GRK2 significantly enhanced the RANTES protein level after stimulation by SP, whereas TGFβ1/2/3 siRNA or dynasore (a dynamin inhibitor) decreased RANTES and Y-27632 (a ROCK inhibitor) had no effect. Surprisingly, silencing of transcription factor specificity protein 1 (Sp1) or inhibition of Sp1 activity by mithramycin led to significant upregulation of TGFβ1 protein and corresponding enhancement of RANTES expression (by ELISA or western blotting), whereas siRNA for C/EBPβ attenuated expression of both TGFβ1 and RANTES. Next, we investigated transcriptional cross-talk among Sp1 and C/EBPβ, TIF1β, or Fli-1 in relation to RANTES expression. Compared with TIF1β or Fli-1 siRNA, C/EBPβ siRNA showed significantly stronger inhibition of RANTES production by Sp1 siRNA-transfected macrophages after stimulation with SP. In conclusion, transcription factor Sp1 engages in cross-talk with C/EBPβ and modulates TGFβ1 production to negatively regulate RANTES expression in macrophages stimulated with SP. In conclusion, cross-talk between the transcription factor Sp1 and C/EBPβ modulates TGFβ1 production to negatively regulate expression of the atherogenic chemokine RANTES in SP-stimulated macrophages, while RANTES is upregulated by SP via the p38γδMAPK/C/EBPβ/TGFβ1 signaling pathway.
Collapse
Affiliation(s)
- Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Reona Yamaguchi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Yasuo Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| |
Collapse
|
80
|
Genetic variants with gene regulatory effects are associated with diisocyanate-induced asthma. J Allergy Clin Immunol 2018; 142:959-969. [PMID: 29969634 DOI: 10.1016/j.jaci.2018.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Isocyanates are major causes of occupational asthma, but susceptibility and mechanisms of diisocyanate-induced asthma (DA) remain uncertain. OBJECTIVE The aim of this study was to identify DA-associated functional genetic variants through next-generation sequencing (NGS), bioinformatics, and functional assays. METHODS NGS was performed in 91 workers with DA. Fourteen loci with known DA-associated single nucleotide polymorphisms (SNPs) were sequenced and compared with data from 238 unexposed subjects. Ranking of DA-associated SNPs based on their likelihood to affect gene regulatory mechanisms in the lung yielded 21 prioritized SNPs. Risk and nonrisk oligonucleotides were tested for binding of nuclear extracts from A549, BEAS-2B, and IMR-90 lung cell lines by using electrophoretic mobility shift assays. DNA constructs were cloned into a pGL3 promoter vector for luciferase gene reporter assays. RESULTS NGS detected 130 risk variants associated with DA (3.1 × 10-6 to 6.21 × 10-4), 129 of which were located in noncoding regions. The 21 SNPs prioritized by using functional genomic data sets were in or proximal to 5 genes: cadherin 17 (CDH17; n = 10), activating transcription factor 3 (ATF3; n = 7), family with sequence similarity, member A (FAM71A; n = 2), tachykinin receptor 1 (TACR1; n = 1), and zinc finger and BTB domain-containing protein 16 (ZBTB16; n = 1). Electrophoretic mobility shift assays detected allele-dependent nuclear protein binding in A549 cells for 8 of 21 variants. In the luciferase assay 4 of the 21 SNPs exhibited allele-dependent changes in gene expression. DNA affinity precipitation and mass spectroscopy of rs147978008 revealed allele-dependent binding of H1 histones, which was confirmed by using Western blotting. CONCLUSIONS We identified 5 DA-associated potential regulatory SNPs. Four variants exhibited effects on gene regulation (ATF rs11571537, CDH17 rs2446824 and rs2513789, and TACR1 rs2287231). A fifth variant (FAM71A rs147978008) showed nonrisk allele preferential binding to H1 histones. These results demonstrate that many DA-associated genetic variants likely act by modulating gene regulation.
Collapse
|
81
|
Douglas SD, Leeman SE. Is substance P a nasal epithelial neuropeptide? J Allergy Clin Immunol 2018; 142:1677. [PMID: 29958676 DOI: 10.1016/j.jaci.2018.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Steven D Douglas
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| | | |
Collapse
|
82
|
Fernandes J, Mudgal J, Rao CM, Arora D, Basu Mallik S, Pai KSR, Nampoothiri M. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats. Toxicol Mech Methods 2018; 28:328-334. [PMID: 29185389 DOI: 10.1080/15376516.2017.1411412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl3) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Joylee Fernandes
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Jayesh Mudgal
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | | | - Devinder Arora
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
- b School of Pharmacy , MHIQ, QUM Network, Griffith University , Goldcoast , Australia
| | - Sanchari Basu Mallik
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - K S R Pai
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Madhavan Nampoothiri
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| |
Collapse
|
83
|
Petra AI, Tsilioni I, Taracanova A, Katsarou-Katsari A, Theoharides TC. Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. Allergy Asthma Proc 2018; 39:153-160. [PMID: 29490771 DOI: 10.2500/aap.2018.38.4105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cytokine interleukin (IL) 31 has emerged as an important component of allergic and inflammatory diseases associated with pruritus, such as atopic dermatitis (AD) and mastocytosis. Mast cells (MC) are stimulated by allergic and nonallergic triggers, and play a critical role in such diseases by secreting histamine and tryptase as well as cytokines and chemokines. IL-33 has been reported to augment MC responses, but its effect on secretion of IL-31 is not known. OBJECTIVES To investigate whether IL-33 can stimulate the secretion of IL-31 from cultured human MCs and whether this response is augmented by either the neuropeptide substance P (SP) or immunoglobulin E (IgE) and anti-IgE in the absence or presence of IL-4. METHODS Laboratory of Allergic Diseases (LAD2) human MCs were cultured in StemProH-34 SFM medium supplemented by stem cell factor and were stimulated either with IL-33 (10 ng /mL) or SP (2 μM), or preincubated with IgE (1 μg/mL) overnight, and then stimulated with anti-IgE (1 μg/mL) for 24 hours. IL-31 gene expression was measured by quantitative polymerase chain reaction, and protein was measured by enzyme-linked immunosorbent assay. RESULTS IL-33 (10 ng/mL) induces IL-31 gene expression, synthesis, and secretion from LAD2 cells in the absence of degranulation, whereas SP and IgE on their own have no effect. However, the effect of IL-33 is augmented by SP (2 μM) and/or IgE and anti-IgE (1 μg/mL both) and especially their combination. Moreover, this response is significantly further increased when LAD2 cells are cultured in the presence of IL-4. CONCLUSION These findings provide evidence that IL-33 induced secretion of IL-31 from LAD2 MC, an action augmented by novel neuroimmune interactions that may help in the development of new treatments of allergic and inflammatory diseases, especially AD and mastocytosis.
Collapse
Affiliation(s)
- Anastasia I. Petra
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| | - Alexandra Taracanova
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| | | | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| |
Collapse
|
84
|
Li B, Han X, Ye X, Ni J, Wu J, Dai J, Wu Z, Chen C, Wan R, Wang X, Hu G. Substance P-regulated leukotriene B4 production promotes acute pancreatitis-associated lung injury through neutrophil reverse migration. Int Immunopharmacol 2018; 57:147-156. [PMID: 29482159 DOI: 10.1016/j.intimp.2018.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant and inflammatory mediator involved in multiple inflammatory diseases. Substance P (SP) has been reported to promote production of LTB4 in itch-associated response in vivo and in some immune cells in vitro. Here, we investigated the role of LTB4 in acute pancreatitis (AP), AP-associated acute lung injury (ALI) and the related mechanisms of LTB4 production in AP. In vivo, murine AP model was induced by caerulein and lipopolysaccharide or L-arginine. The levels of LTB4 and its specific receptor BLT1 were markedly upregulated in both AP models. Blockade of BLT1 by LY293111 attenuated the severity of AP, decreased neutrophil reverse transendothelial cell migration (rTEM) into the circulation and alleviated the severity of ALI. In vitro, treatment of pancreatic acinar cells with SP increased LTB4 production. Furthermore, SP treatment increased phosphorylation of protein kinase C (PKC) α and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p-38 MAPK and c-Jun NH2-terminal kinase (JNK). Finally, blockade of neurokinin-1 receptor by CP96345 significantly attenuated the severity of AP and decreased the level of LTB4 when compared to AP group. In summary, these results show that SP regulates the production of LTB4 via PKCα/MAPK pathway, which further promotes AP-associated ALI through neutrophil rTEM.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
85
|
Huang AY, Wu SY. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds. Br J Pharmacol 2018; 175:1039-1053. [PMID: 29328505 DOI: 10.1111/bph.14142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/21/2017] [Accepted: 12/23/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. EXPERIMENTAL APPROACH To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. KEY RESULTS Our results showed that SP elicited PLC activation-dependent intracellular Ca2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. CONCLUSION AND IMPLICATIONS Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Sandy Y Wu
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
86
|
Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J Leukoc Biol 2018; 103:1043-1051. [PMID: 29345372 DOI: 10.1002/jlb.3mir0817-348r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Substance P (SP) is a tachykinin peptide, which triggers intracellular signaling in the nervous and immune systems, as well as, other local and systemic events. The interaction between SP and its receptor, neurokinin-1 receptor (NK1R), results in major downstream cellular actions, which include changes in calcium fluxes, ERK, and p21-activated kinase phosphorylation and NFκB activation. Two naturally occurring variants of the NK1R, the full-length, 407 aa receptor (NK1R-F) and the truncated, 311 aa isoform (NK1R-T), mediate the actions of SP. Receptor truncation partially disrupts signaling motifs of the carboxyl tail, a critical site for mediating NK1R signaling, resulting in a "less-efficient" receptor. Although NK1R-F is the predominant isoform in the central and peripheral nervous systems, NK1R-T is expressed in several tissues and cells, which include monocytes, NK cells, and T-cells. The SP binding domain is not affected by truncation and this site is identical in both NK1R receptor isoforms. However, while cells expressing NK1R-F respond to nanomolar concentrations of SP, monocyte and macrophage activation, mediated through NK1R-T, requires micromolar concentrations of SP in order to elicit signaling responses. Elevated plasma levels of SP are associated with increased inflammatory responses and NK1R antagonists reduce inflammation and cytokine production in vivo. This mini review presents and discusses the novel hypothesis that the expression of NK1R-T on immune system cells prevents immune activation in a milieu, which usually contains low concentrations of SP and, thus, maintains immune homeostasis. In contrast, in the activated neuronal microenvironment, when SP levels reach the threshold at tissue sites, SP promotes immune activation and modulates monocyte/macrophage polarization.
Collapse
Affiliation(s)
- Sergei Spitsin
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Vasiliki Pappa
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Steven D Douglas
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
87
|
Chou CM, Lee YL, Liao CW, Huang YC, Fan CK. Enhanced expressions of neurodegeneration-associated factors, UPS impairment, and excess Aβ accumulation in the hippocampus of mice with persistent cerebral toxocariasis. Parasit Vectors 2017; 10:620. [PMID: 29273062 PMCID: PMC5741903 DOI: 10.1186/s13071-017-2578-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Toxocariasis is a worldwide zoonotic parasitic disease mainly caused by Toxocara canis. Humans can be infected by accidental ingestion of T. canis embryonated ovum-contaminated food, water, or encapsulated larvae in paratenic hosts' viscera or meat. Since humans and mice are paratenic hosts of T. canis, the wandering larvae might cause mechanical tissue damage and excretory-secretory antigens may trigger inflammatory injuries to local organs. Long-term residence of T. canis larvae in a paratenic host's brain may cause cerebral toxocariasis (CT) that contributes to cerebral damage, neuroinflammation and neuropsychiatric disorders in mice and clinical patients. Since the hippocampus has been long recognized as being responsible for learning and memory functions, parasitic invasion of this site may cause neuroinflammatory and neurodegenerative disorders. The present study intended to assess pathological changes, expressions of neurodegeneration-associated factors (NDAFs), including transforming growth factor (TGF)-β1, S100B, glial fibrillary acidic protein (GFAP), transglutaminase type 2 (TG2), claudin-5, substance P (SP) and interleukin (IL)-1β, and the ubiquitin-proteasome system (UPS) function in the hippocampus and associated cognitive behavior in ICR mice orally inoculated with a high, medium or low-dose of T. canis embryonated ova during a 20-week investigation. RESULTS Results indicated although there were insignificant differences in learning and memory function between the experimental mice and uninfected control mice, possibly because the site where T. canis larvae invaded was the surrounding area but not the hippocampus per se. Nevertheless, enhanced expressions of NDAF, persistent UPS impairment and excess amyloid β (Aβ) accumulation concomitantly emerged in the experimental mice hippocampus at 8, 16 and 20 weeks post-infection. CONCLUSIONS We thus postulate that progressive CT may still progress to neurodegeneration due to enhanced NDAF expressions, persistent UPS impairment and excess Aβ accumulation in the hippocampus.
Collapse
Affiliation(s)
- Chia-Mei Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan.,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chien-Wei Liao
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan.,Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Ying-Chieh Huang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chia-Kwung Fan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan. .,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan. .,Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan. .,Tropical Medicine Division, International PhD Program in Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan.
| |
Collapse
|
88
|
Serum substance P: an indicator of disease activity and subclinical inflammation in rheumatoid arthritis. Clin Rheumatol 2017; 37:901-908. [DOI: 10.1007/s10067-017-3929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
|
89
|
Burmeister AR, Johnson MB, Chauhan VS, Moerdyk-Schauwecker MJ, Young AD, Cooley ID, Martinez AN, Ramesh G, Philipp MT, Marriott I. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. J Neuroinflammation 2017; 14:245. [PMID: 29237453 PMCID: PMC5729418 DOI: 10.1186/s12974-017-1012-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Background The tachykinin substance P (SP) is recognized to exacerbate inflammation at peripheral sites via its target receptor, neurokinin 1 receptor (NK-1R), expressed by leukocytes. More recently, SP/NK-1R interactions have been associated with severe neuroinflammation and neuronal damage. We have previously demonstrated that NK-1R antagonists can limit neuroinflammatory damage in a mouse model of bacterial meningitis. Furthermore, we have since shown that these agents can attenuate bacteria-induced neuronal and glial inflammatory mediator production in nonhuman primate (NHP) brain explants and isolated neuronal cells, and following in vivo infection. Methods In the present study, we have assessed the ability of NHP brain explants, primary human microglia and astrocytes, and immortalized human glial cell lines to express NK-1R isoforms. We have utilized RT-PCR, immunoblot analysis, immunofluorescent microscopy, and/or flow cytometric analysis, to quantify NK-1R expression in each, at rest, or following bacterial challenge. Furthermore, we have assessed the ability of human microglia to respond to SP by immunoblot analysis of NF-kB nuclear translocation and determined the ability of this neuropeptide to augment inflammatory cytokine release and neurotoxic mediator production by human astrocytes using an ELISA and a neuronal cell toxicity assay, respectively. Results We demonstrate that human microglial and astrocytic cells as well as NHP brain tissue constitutively express robust levels of the full-length NK-1R isoform. In addition, we demonstrate that the expression of NK-1R by human astrocytes can be further elevated following exposure to disparate bacterial pathogens or their components. Importantly, we have demonstrated that NK-1R is functional in both human microglia and astrocytes and show that SP can augment the inflammatory and/or neurotoxic immune responses of glial cells to disparate and clinically relevant bacterial pathogens. Conclusions The robust constitutive and functional expression of the full-length NK-1R isoform by human microglia and astrocytes, and the ability of SP to augment inflammatory signaling pathways and mediator production by these cells, support the contention that SP/NK-1R interactions play a significant role in the damaging neuroinflammation associated with conditions such as bacterial meningitis.
Collapse
Affiliation(s)
- Amanda R Burmeister
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Vinita S Chauhan
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Megan J Moerdyk-Schauwecker
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Ada D Young
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Ian D Cooley
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Alejandra N Martinez
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
| |
Collapse
|
90
|
Dulin JD, Coyne PJ, Bohm NM, Adler M. Fosaprepitant for the Management of Refractory Pain in a Patient with Cancer-Related Dermatomyositis. J Palliat Med 2017; 20:1415-1419. [DOI: 10.1089/jpm.2017.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jennifer D. Dulin
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Patrick J. Coyne
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Nicole M. Bohm
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Mary Adler
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
91
|
Spitsin S, Tebas P, Barrett JS, Pappa V, Kim D, Taylor D, Evans DL, Douglas SD. Antiinflammatory effects of aprepitant coadministration with cART regimen containing ritonavir in HIV-infected adults. JCI Insight 2017; 2:95893. [PMID: 28978797 DOI: 10.1172/jci.insight.95893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV-infected individuals, even well controlled with combined antiretroviral therapy (cART), have systemic inflammation and comorbidities. Substance P (SP) is an undecapeptide, which mediates neurotransmission and inflammation through its cognate neurokinin 1 receptor (NK1R). Plasma SP levels are elevated in HIV-infected individuals. The FDA-approved antiemetic aprepitant, an NK1R antagonist, has anti-HIV effects and antiinflammatory actions. We evaluated the safety, pharmacokinetics, and antiinflammatory properties of aprepitant in HIV-positive individuals receiving cART. METHODS We conducted a phase 1B study of 12 HIV-positive individuals on a ritonavir-containing regimen (HIV viral load less than 40 copies/ml and CD4 > 400 cells/μl). Participants received open-label aprepitant 375 mg per day for 28 days and were followed for an additional 30 days. Changes in plasma levels of proinflammatory markers were assessed using flow cytometry, ELISA, luminex, and SOMAscan assays. RESULTS The mean peak aprepitant plasma concentration was 30.7 ± 15.3 μg/ml at day 14 and 23.3 ± 12.3 μg/ml at day 28. Aprepitant treatment resulted in decreased plasma SP levels and affected 176 plasma proteins (56 after FDR) and several metabolic pathways, including inflammation and lipid metabolism. No change in soluble CD163 was observed. Aprepitant treatment was associated with a moderate increases in total and HDL cholesterol and affected select hematologic and metabolic markers, which returned to baseline levels 30 days after aprepitant treatment was stopped. There were 12 mild and 10 moderate adverse events (AE). CONCLUSIONS Aprepitant is safe and well tolerated. The antiinflammatory properties of aprepitant make it a possible adjunctive therapy for comorbid conditions associated with HIV infection. TRIAL REGISTRATION ClinicalTrials.gov (NCT02154360). FUNDING This research was funded by NIH UO1 MH090325, P30 MH097488, and PO1 MH105303.
Collapse
Affiliation(s)
- Sergei Spitsin
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey S Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vasiliki Pappa
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Deborah Kim
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Dwight L Evans
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
92
|
Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1543-1552. [PMID: 28827386 DOI: 10.4049/jimmunol.1601751] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is an undecapeptide present in the CNS and the peripheral nervous system. SP released from the peripheral nerves exerts its biological and immunological activity via high-affinity neurokinin 1 receptor (NK1R). SP is also produced by immune cells and acts as an autocrine or paracrine fashion to regulate the function of immune cells. In addition to its proinflammatory role, SP and its metabolites in combination with insulin-like growth factor-1 are shown to promote the corneal epithelial wound healing. Recently, we showed an altered ocular surface homeostasis in unmanipulated NK1R-/- mice, suggesting the role of SP-NK1R signaling in ocular surface homeostasis under steady-state. This review summarizes the immunobiology of SP and its effect on immune cells and immunity to microbial infection. In addition, the effect of SP in inflammation, wound healing, and corneal epithelial homeostasis in the eye is discussed.
Collapse
Affiliation(s)
- Susmit Suvas
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and .,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
93
|
Hsieh T, Vaickus MH, Stein TD, Lussier BL, Kim J, Stepien DM, Duffy ER, Chiswick EL, Remick DG. The Role of Substance P in Pulmonary Clearance of Bacteria in Comparative Injury Models. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:3236-3245. [PMID: 27876152 DOI: 10.1016/j.ajpath.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023]
Abstract
Neural input to the immune system can alter its ability to clear pathogens effectively. Patients suffering mild traumatic brain injury (mTBI) have shown reduced rates of pneumonia and a murine model replicated these findings, with better overall survival of TBI mice compared with sham-injured mice. To further investigate the mechanism of improved host response in TBI mice, this study developed and characterized a mild tail trauma model of similar severity to mild TBI. Both mild tail trauma and TBI induced similar systemic changes that normalized within 48 hours, including release of substance P. Examination of tissues showed that injuries are limited to the target tissue (ie, tail in tail trauma, brain in mTBI). Pneumonia challenge showed that mild TBI mice showed improved immune responses, characterized by the following: i) increased survival, ii) increased pulmonary neutrophil recruitment, iii) increased bacterial clearance, and iv) increased phagocytic cell killing of bacteria compared with tail trauma. Administration of a neurokinin-1-receptor antagonist to block substance P signaling eliminated the improved survival of mTBI mice. Neurokinin-1-receptor antagonism did not alter pneumonia mortality in tail trauma mice. These data show that immune benefits of trauma are specific to mTBI and that tail trauma is an appropriate control for future studies aimed at elucidating the mechanisms of improved innate immune responses in mTBI mice.
Collapse
Affiliation(s)
- Terry Hsieh
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Max H Vaickus
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Bethany L Lussier
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Jiyoun Kim
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - David M Stepien
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Elizabeth R Duffy
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Evan L Chiswick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
94
|
SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc Natl Acad Sci U S A 2017; 114:E4002-E4009. [PMID: 28461492 DOI: 10.1073/pnas.1524845114] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The peptide substance P (SP) and the cytokine tumor necrosis factor (TNF) have been implicated in inflammatory processes. Mast cells are recognized as important in inflammatory responses. Here, we report that IL-33 (30 ng/mL), a member of the IL-1 family of cytokines, administered in combination with SP (1 µM), markedly increase (by 1,000-fold) TNF gene expression in cultured human LAD2 and primary mast cells derived from umbilical cord blood. SP (0.01-1 μM) and IL-33 (1-100 ng/mL) in combination also greatly stimulate TNF secretion (by 4,500-fold). Pretreatment of LAD2 cells with two different neurokinin-1 (NK-1) receptor antagonists and siRNA inhibits TNF secretion by 50% (P < 0.001) when stimulated by SP and IL-33. Pretreatment of LAD2 cells with a neutralizing antibody for IL-33 receptor, ST2, inhibits TNF secretion by 50% (P < 0.001), and ST2 siRNA decreases TNF secretion by 30% (P < 0.05), when stimulated by SP and IL-33. Surprisingly, NK-1 antagonists also inhibit 50% of TNF secretion (P < 0.001) when stimulated only by IL-33, and ST2 receptor reduction also decreases SP-stimulated TNF secretion by 30% (P < 0.05), suggesting an interaction between NK-1 and ST2 receptors. Moreover, IL-33 increases NK-1 gene and surface protein expression, as well as IKβ-α phosphorylation. Pretreatment of LAD2 cells with 5,7,3',4'-tetramethoxyflavone (methoxyluteolin) (1-100 μM) inhibits (P < 0.001) TNF gene expression (98%) and secretion (64%) at 50 µM and phosphorylation of p-IKB-α at 1 μM when stimulated by SP and IL-33. These findings identify a unique amplification process of TNF synthesis and secretion via the interaction of NK-1 and ST2 receptors inhibitable by methoxyluteolin.
Collapse
|
95
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
96
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
97
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE Evaluate the effect of substance P (SP) on an intervertebral disc rat organ culture model. SUMMARY OF BACKGROUND DATA Monolayer cell experiments have demonstrated that exposure intervertebral disc tissue cells to SP leads to upregulation in inflammatory cytokine expression; however, this has not been evaluated in a more complex organ culture model. METHODS Forty-eight intervertebral discs from eight rats were used in an organ culture model. Intervertebral discs were divided into three groups: control, SP-treated group, and a group treated with an SP antagonist followed by SP. Cytokine antibody array was used to quantify expression patterns, which were confirmed using ELISA and real-time polymerase chain reaction. RESULTS The cytokine array demonstrated a 3.40 ± 0.59-fold increase in interleukin 6 (IL-6) expression in the SP group (P = 0.004), and the effect of SP was mitigated by the SP antagonist (P = 0.03). These results were verified as ELISA demonstrated a significant difference in the IL-6 level between the control group and SP group (0.73 vs. 5.80 ng/mL, P < 0.001), and there was a significant difference in the IL-6 level between the SP and the SP antagonist group (5.80 vs. 4.02 ng/mL, P = 0.01). Similarly, the real-time polymerase chain reaction demonstrated that the discs treated with SP had a 4.77-fold increase in IL-6 levels (P = 0.01) compared to controls, and a significantly greater increase in IL-6 levels between the intervertebral discs in the SP group and those in the SP antagonist group versus control (4.77 vs. 1.57, P = 0.02). CONCLUSION SP lead to the activation of an inflammatory pathway by increasing expression of IL-6 in an intervertebral disc organ culture model. These results provide evidence that SP may be an important factor in the link between intervertebral disc degeneration and low back pain. LEVEL OF EVIDENCE N/A.
Collapse
|
98
|
Gaddipati S, Rao P, Jerome AD, Burugula BB, Gerard NP, Suvas S. Loss of Neurokinin-1 Receptor Alters Ocular Surface Homeostasis and Promotes an Early Development of Herpes Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4021-4033. [PMID: 27798158 PMCID: PMC5113833 DOI: 10.4049/jimmunol.1600836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022]
Abstract
Substance P neuropeptide and its receptor, neurokinin-1 receptor (NK1R), are reported to present on the ocular surface. In this study, mice lacking functional NK1R exhibited an excessive desquamation of apical corneal epithelial cells in association with an increased epithelial cell proliferation and increased epithelial cell density, but decreased epithelial cell size. The lack of NK1R also resulted in decreased density of corneal nerves, corneal epithelial dendritic cells (DCs), and a reduced volume of basal tears. Interestingly, massive accumulation of CD11c+CD11b+ conventional DCs was noted in the bulbar conjunctiva and near the limbal area of corneas from NK1R-/- mice. After ocular HSV-1 infection, the number of conventional DCs and neutrophils infiltrating the infected corneas was significantly higher in NK1R-/- than C57BL/6J mice. This was associated with an increased viral load in infected corneas of NK1R-/- mice. As a result, the number of IFN-γ-secreting virus-specific CD4 T cells in the draining lymph nodes of NK1R-/- mice was much higher than in infected C57BL/6J mice. An increased number of CD4 T cells and mature neutrophils (CD11b+Ly6ghigh) in the inflamed corneas of NK1R-/- mice was associated with an early development of severe herpes stromal keratitis. Collectively, our results show that the altered corneal biology of uninfected NK1R-/- mice along with an enhanced immunological response after ocular HSV-1 infection causes an early development of herpes stromal keratitis in NK1R-/- mice.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Conjunctiva/immunology
- Conjunctiva/pathology
- Conjunctiva/virology
- Cornea/immunology
- Cornea/pathology
- Cornea/virology
- Dendritic Cells/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Homeostasis
- Interferon-gamma/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/physiopathology
- Keratitis, Herpetic/virology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutrophils/immunology
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-1/physiology
- Viral Load
Collapse
Affiliation(s)
- Subhash Gaddipati
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Pushpa Rao
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Andrew David Jerome
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bala Bharathi Burugula
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Norma P Gerard
- Division of Respiratory Diseases, Department of Medicine, Boston's Children Hospital, Harvard Medical School, Boston, MA 02215; and
| | - Susmit Suvas
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201;
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
99
|
Spitsin S, Meshki J, Winters A, Tuluc F, Benton TD, Douglas SD. Substance P-mediated chemokine production promotes monocyte migration. J Leukoc Biol 2016; 101:967-973. [PMID: 28366881 DOI: 10.1189/jlb.1ab0416-188rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 01/13/2023] Open
Abstract
The neuropeptide SP has physiologic and pathophysiologic roles in CNS and peripheral tissues and is involved in crosstalk between nervous and immune systems in various conditions, including HIV and SIV infection. Increased SP levels were demonstrated in plasma of HIV+ individuals as well as in the CNS of SIV-infected, nonhuman primates. SP increases HIV infection in macrophages through interaction with its receptor, NK1R. The SP effect on immune system is both pro- and anti-inflammatory and includes up-regulation of a number of cytokines and cell receptors. The main goal of this study was to determine whether there is interplay between monocyte exposure to SP and recruitment into sites of inflammation. We now demonstrate that exposure of either human macrophages or PBMCs to SP leads to increased production of chemokines, including MCP-1, for which expression is limited to cells of the myeloid lineage. This effect is inhibited by the NK1R antagonist, aprepitant. Exposure to conditioned medium derived from SP-treated PBMCs resulted in increased monocyte migration through semipermeable membranes and an in vitro human BBB model. Monocyte migration was blocked by anti-MCP-1 antibodies. Our results suggest that increased SP levels associated with HIV and other inflammatory conditions may contribute to increased monocyte migration into the CNS and other tissues through a MCP-1-dependent mechanism.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - John Meshki
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Angela Winters
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Florin Tuluc
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Tami D Benton
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; and
| | - Steven D Douglas
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
100
|
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 2016; 13:264. [PMID: 27724914 PMCID: PMC5057243 DOI: 10.1186/s12974-016-0738-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
Collapse
Affiliation(s)
- Frances Corrigan
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kimberley A Mander
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|