51
|
von Seth J, van der Valk T, Lord E, Sigeman H, Olsen RA, Knapp M, Kardailsky O, Robertson F, Hale M, Houston D, Kennedy E, Dalén L, Norén K, Massaro M, Robertson BC, Dussex N. Genomic trajectories of a near-extinction event in the Chatham Island black robin. BMC Genomics 2022; 23:747. [PMID: 36357860 PMCID: PMC9647977 DOI: 10.1186/s12864-022-08963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.
Collapse
Affiliation(s)
- Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, 90014, Oulu, Finland
| | - Remi-André Olsen
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17121, Solna, Sweden
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, Aotearoa, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Marie Hale
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Dave Houston
- Department of Conservation, Biodiversity Group, Auckland, New Zealand
| | - Euan Kennedy
- Department of Conservation, Science and Capability, Christchurch, New Zealand
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, PO Box 789, Albury, NSW, Australia
| | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
52
|
Dimitrova A, Csilléry K, Klisz M, Lévesque M, Heinrichs S, Cailleret M, Andivia E, Madsen P, Böhenius H, Cvjetkovic B, De Cuyper B, de Dato G, Ferus P, Heinze B, Ivetić V, Köbölkuti Z, Lazarević J, Lazdina D, Maaten T, Makovskis K, Milovanović J, Monteiro AT, Nonić M, Place S, Puchalka R, Montagnoli A. Risks, benefits, and knowledge gaps of non-native tree species in Europe. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.908464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Changing ecosystem conditions and diverse socio-economical events have contributed to an ingrained presence of non-native tree species (NNTs) in the natural and cultural European landscapes. Recent research endeavors have focused on different aspects of NNTs such as legislation, benefits, and risks for forestry, emphasizing that large knowledge gaps remain. As an attempt to fulfill part of these gaps, within the PEN-CAFoRR COST Action (CA19128) network, we established an open-access questionnaire that allows both academic experts and practitioners to provide information regarding NNTs from 20 European countries. Then, we integrated the data originating from the questionnaire, related to the country-based assessment of both peer-reviewed and grey literature, with information from available datasets (EUFORGEN and EU-Forest), which gave the main structure to the study and led to a mixed approach review. Finally, our study provided important insights into the current state of knowledge regarding NNTs. In particular, we highlighted NNTs that have shown to be less commonly addressed in research, raising caution about those characterized by an invasive behavior and used for specific purposes (e.g., wood production, soil recultivation, afforestation, and reforestation). NNTs were especially explored in the context of resilient and adaptive forest management. Moreover, we emphasized the assisted and natural northward migration of NNTs as another underscored pressing issue, which needs to be addressed by joint efforts, especially in the context of the hybridization potential. This study represents an additional effort toward the knowledge enhancement of the NNTs situation in Europe, aiming for a continuously active common source deriving from interprofessional collaboration.
Collapse
|
53
|
Alvarez-Aleman A, Hunter ME, Frazer TK, Powell JA, Alfonso EG, Austin JD. The first assessment of the genetic diversity and structure of the endangered West Indian manatee in Cuba. Genetica 2022; 150:327-341. [PMID: 36271978 DOI: 10.1007/s10709-022-00172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
The coastal waters of Cuba are home to a small, endangered population of West Indian manatee, which would benefit from a comprehensive characterization of the population's genetic variation. We conducted the first genetic assessment of Cuban manatees to determine the extent of the population's genetic structure and characterize the neutral genetic diversity among regions within the archipelago. We genotyped 49 manatees at 18 microsatellite loci, a subset of 27 samples on 1703 single nucleotide polymorphisms (SNPs), and sequenced 59 manatees at the mitochondrial control region. The Cuba manatee population had low nuclear (microsatellites HE = 0.44, and SNP HE = 0.29) and mitochondrial genetic diversity (h = 0.068 and π = 0.00025), and displayed moderate departures from random mating (microsatellite FIS = 0.12, SNP FIS = 0.10). Our results suggest that the western portion of the archipelago undergoes periodic exchange of alleles based on the evidence of shared ancestry and low but significant differentiation. The southeast Guantanamo Bay region and the western portion of the archipelago were more differentiated than southwest and northwest manatees. The genetic distinctiveness observed in the southeast supports its recognition as a demographically independent unit for natural resource management regardless of whether it is due to historical isolation or isolation by distance. Estimates of the regional effective population sizes, with the microsatellite and SNP datasets, were small (all Ne < 60). Subsequent analyses using additional samples could better examine how the observed structure is masking simple isolation by distance patterns or whether ecological or biogeographic forces shape genetic patterns.
Collapse
Affiliation(s)
- Anmari Alvarez-Aleman
- School of Natural Resources and Environment, University of Florida, 2035 McCarty hall D, Gainesville, FL, 32611, USA. .,Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16 # 114 Entre 1ra y 3ra Plaza, Havana, Cuba. .,Clearwater Marine Aquarium Research Institute, Clearwater Marine Aquarium, Clearwater, FL, USA.
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, USA
| | - Thomas K Frazer
- School of Natural Resources and Environment, University of Florida, 2035 McCarty hall D, Gainesville, FL, 32611, USA.,College of Marine Science, University of South Florida, 140 Seventh Avenue South, KRC 3109, St. Petersburg, FL, 33701, USA
| | - James A Powell
- Clearwater Marine Aquarium Research Institute, Clearwater Marine Aquarium, Clearwater, FL, USA
| | - Eddy Garcia Alfonso
- Refugio de Fauna Lanzanillo-Pajonal-Fragoso, Empresa Provincial para la Protección de la Flora y la Fauna, Villa Clara, Cuba
| | - James D Austin
- School of Natural Resources and Environment, University of Florida, 2035 McCarty hall D, Gainesville, FL, 32611, USA.,Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| |
Collapse
|
54
|
Strong bidirectional gene flow between fish lineages separated for over 100,000 years. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractRestoring levels of genetic diversity in small and declining populations is increasingly being considered in biodiversity conservation. Evidence-based genetic management requires assessment of risks and benefits of crossing populations. Because risks are challenging to assess experimentally, e.g. through multi-generational crosses, decision-support approaches utilize proxy risk factors such as time since separation of lineages. However, the paucity of empirical datasets on fitness consequences of longer separation times tends to favour crossing lineages with conservatively short separations, restricting wildlife managers’ options. Here, we assessed the genetic outcomes of interbreeding in the wild between lineages of a threatened Australian freshwater fish (Macquarie perch) separated by an estimated 119,000–385,000 years of evolution in distinct environments. Fish belonging to the Murray-Darling Basin (MDB) lineage escaped from Cataract Dam—into which they were translocated in ~ 1915—into the Cataract River, where they interbred with the local Hawkesbury-Nepean Basin (HNB) lineage. Analyses of reduced-representation genomic data revealed no evidence of genetic incompatibilities during interbreeding of the two lineages in the Cataract River: assignment to genotypic clusters indicated a spectrum of hybrid types including second generation hybrids and backcrosses to both parental lineages. Thus, no adverse effects were detected from genetic mixing of populations separated by > 100,000 years. We are not advocating purposely crossing the two lineages for management purposes under present cost–benefit considerations, because there are currently sufficient intra-lineage source populations to beneficially mix. Instead, this study presents a useful calibration point: two morphologically different lineages evolved in different habitats for 119,000–385,000 years can successfully interbreed.
Collapse
|
55
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
56
|
Vandergast AG, Kus BE, Smith JG, Mitelberg A. Recent declines in genetic diversity with limited dispersal among coastal cactus wren populations in San Diego County, California. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Amy G. Vandergast
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Barbara E. Kus
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Julia G. Smith
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Anna Mitelberg
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| |
Collapse
|
57
|
Onley IR, White LC, Moseby KE, Copley P, Cowen S. Disproportionate admixture improves reintroduction outcomes despite the use of low‐diversity source populations: population viability analysis for a translocation of the greater stick‐nest rat. Anim Conserv 2022. [DOI: 10.1111/acv.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. R. Onley
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences University of Adelaide Adelaide SA Australia
| | - L. C. White
- Department of Primatology Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - K. E. Moseby
- Centre for Ecosystem Sciences, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - P. Copley
- South Australian Department for Environment and Water Adelaide SA Australia
| | - S. Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions Kensington WA Australia
- School of Biological Sciences University of Western Australia Crawley WA Australia
| |
Collapse
|
58
|
Kinship and Breeding Site Philopatry Drive Fine-Scale Genetic Structure in Fragmented Populations of the Gopher Frog (Rana capito) in North Carolina. J HERPETOL 2022. [DOI: 10.1670/20-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
59
|
Handler SD, Ledee OE, Hoving CL, Zuckerberg B, Swanston CW. A menu of climate change adaptation actions for terrestrial wildlife management. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stephen D. Handler
- USDA Forest Service and Northern Institute of Applied Climate Science 410 MacInnes Drive Houghton MI 49931 USA
| | - Olivia E. Ledee
- U.S. Geological Survey, Midwest Climate Adaptation Science Center 1992 Folwell Ave St. Paul MN 55116 USA
| | | | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison 1620 Linden Drive Madison WI 53705 USA
| | - Christopher W. Swanston
- USDA Forest Service and Northern Institute of Applied Climate Science 410 MacInnes Drive Houghton MI 49931 USA
| |
Collapse
|
60
|
Using PVA and captive breeding to balance trade-offs in the rescue of the island dibbler onto a new island ark. Sci Rep 2022; 12:11913. [PMID: 35831431 PMCID: PMC9279492 DOI: 10.1038/s41598-022-14150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
In the face of the current global extinction crisis, it is critical we give conservation management strategies the best chance of success. Australia is not exempt from global trends with currently the world’s greatest mammal extinction rate (~ 1 per 8 years). Many more are threatened including the dibbler (Parantechinus apicalis) whose remnant range has been restricted to Western Australia at just one mainland site and two small offshore islands—Whitlock Island (5 ha) and Boullanger Island (35 ha). Here, we used 14 microsatellite markers to quantify genetic variation in the remaining island populations from 2013 to 2018 and incorporated these data into population viability analysis (PVA) models, used to assess factors important to dibbler survival and to provide guidance for translocations. Remnant population genetic diversity was low (< 0.3), and populations were highly divergent from each other (pairwise FSTs 0.29–0.52). Comparison of empirical data to an earlier study is consistent with recent declines in genetic diversity and models projected increasing extinction risk and declining genetic variation in the next century. Optimal translocation scenarios recommend 80 founders for new dibbler populations—provided by captive breeding—and determined the proportion of founders from parental populations to maximise genetic diversity and minimise harvesting impact. The goal of our approach is long-term survival of genetically diverse, self-sustaining populations and our methods are transferable. We consider mixing island with mainland dibblers to reinforce genetic variation.
Collapse
|
61
|
Evans MJ, Weeks AR, Scheele BC, Gordon IJ, Neaves LE, Andrewartha TA, Brockett B, Rapley S, Smith KJ, Wilson BA, Manning AD. Coexistence conservation: Reconciling threatened species and invasive predators through adaptive ecological and evolutionary approaches. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Maldwyn J. Evans
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Andrew R. Weeks
- School of BioSciences The University of Melbourne Parkville Victoria Australia
| | - Ben C. Scheele
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Iain J. Gordon
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- The James Hutton Institute Dundee UK
- Central Queensland University Townsville Queensland Australia
- Land & water, CSIRO Townsville Queensland Australia
- Lead, Protected Places Mission, National Environmental Science Program Reef and Rainforest Research Centre Cairns Queensland Australia
| | - Linda E. Neaves
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Tim A. Andrewartha
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Brittany Brockett
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Shoshana Rapley
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Kiarrah J. Smith
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Belinda A. Wilson
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Adrian D. Manning
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
62
|
Hohwieler KR, Villiers DL, Cristescu RH, Frere CH. Genetic erosion detected in a specialist mammal living in a fast‐developing environment. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Katrin R. Hohwieler
- Global Change Ecology Research Group University of the Sunshine Coast, School of Science, Technology and Engineering Sippy Down Queensland Australia
| | | | - Romane H. Cristescu
- Global Change Ecology Research Group University of the Sunshine Coast, School of Science, Technology and Engineering Sippy Down Queensland Australia
| | - Celine H. Frere
- School of Biological Sciences University of Queensland St Lucia QLD Australia
| |
Collapse
|
63
|
Tumi L, Xue-Jun G, Prado GE, Cosacov A, Garcia VH, Arakaki M, Suni ML. Genetic diversity and genetic structure of Puya raimondii (Bromeliaceae) for its conservation in the Peruvian Andes. REVISTA PERUANA DE BIOLOGÍA 2022. [DOI: 10.15381/rpb.v29i2.22557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Puya raimondii is an endemic species from the high Andes of Peru and Bolivia. In Peru it is distributed from 8.068501°S, 16.170280°W to 16.180580°S, 70.658873°W, between 3600 and 4800 m, living in extreme climatic conditions typical of the Puna, where it plays an important ecological role. Despite the wide distribution of P. raimondii populations in Peru, they appear to be fairly uniform morphologically. The following questions arise: Will the current molecular tools be able to show differences between the numerous populations? Are the conservation areas established for P. raimondii sufficient since they harbor the existing variability? To answer these questions, this work aimed to evaluate the genetic diversity and genetic structure in a northern population, Pachapaqui (Ancash department), a central population, Yanacancha (Junin), and a southern population, Lampa - Choconchaca sector (Puno), using microsatellite markers (SSR) specific for the species. The genetic diversity parameters used included number of alleles (A), exclusive alleles (RA), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic content index (PIC). The results showed that the total number of A varied from 2 - 13, the He values were 0 ‒ 0.723 and Ho 0 ‒ 0.929, with an average He of 0.217, indicating a moderate to high genetic diversity, being the population of Lampa-Choconchaca sector, the one that presented the greatest allelic diversity and the greatest genetic diversity. The Hardy-Weinberg test showed that the populations are in HW disequilibrium, the statistical analysis indicates 65% of the genetic variation at the population level and values of FST (0.426) and RST (0.650) that indicate high genetic differentiation among populations, with two genetic groups (K=2) that correspond to the populations of northern-central and southern Peru. The results provide useful information to establish conservation strategies for P. raimondii, which lead to the creation of an additional conservation area to protect the populations in southern Peru.
Collapse
|
64
|
Jørgensen DB, Ørsted M, Kristensen TN. Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of Drosophila melanogaster. J Evol Biol 2022; 35:868-878. [PMID: 35532930 PMCID: PMC9325394 DOI: 10.1111/jeb.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
One solution to alleviate the detrimental genetic effects associated with reductions in population size and fragmentation is to introduce immigrants from other populations. While the effects of this genetic rescue on fitness traits are fairly well known, it is less clear to what extent inbreeding depression and subsequent genetic rescue affect behavioural traits. In this study, replicated crosses between inbred lines of Drosophila melanogaster were performed in order to investigate the effects of inbreeding and genetic rescue on egg-to-adult viability and negative geotaxis behaviour-a locomotor response used to measure, e.g. the effects of physiological ageing. Transgenerational effects of outcrossing were investigated by examining the fitness consequences in both the F1 and F4 generation. The majority of inbred lines showed evidence for inbreeding depression for both egg-to-adult viability and behavioural performance (95% and 66% of lines, respectively), with inbreeding depression being more pronounced for viability compared with the locomotor response. Subsequent outcrossing with immigrants led to an alleviation of the negative effects for both viability and geotaxis response resulting in inbred lines being similar to the outbred controls, with beneficial effects persisting from F1 to F4 . Overall, the results clearly show that genetic rescue can provide transgenerational rescue of small, inbred populations by rapidly improving population fitness components. Thus, we show that even the negative effects of inbreeding on behaviour, similar to that of neurodegeneration associated with physiological ageing, can be reversed by genetic rescue.
Collapse
Affiliation(s)
| | - Michael Ørsted
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark.,Department of Biology, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
65
|
Wright AL, Anson JR, Leo V, Wright BR, Newsome TM, Grueber CE. Urban restoration of common species: population genetics of reintroduced native bush rats
Rattus fuscipes
in Sydney, Australia. Anim Conserv 2022. [DOI: 10.1111/acv.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. L. Wright
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
| | - J. R. Anson
- Australian Wildlife Conservancy Perth WA Australia
| | - V. Leo
- Australian Wildlife Conservancy Perth WA Australia
| | - B. R. Wright
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
- Sydney School of Veterinary Sciences The University of Sydney Faculty of Science, The University of Sydney Sydney NSW Australia
| | - T. M. Newsome
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
| | - C. E. Grueber
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
| |
Collapse
|
66
|
Shafer CL. A greater yellowstone ecosystem grizzly bear case study: genetic reassessment for managers. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThere are five grizzly bear (Ursus arctos horribilis) populations in the lower 48 states of the United States. My goal in this Commentary was to ascertain whether genetic diversity is being lost from the isolated GYE grizzly bear population and to better understand any viability implications. I reviewed the scientific literature, including two key genetic studies that the US Fish and Wildlife Service (USFWS) relied upon for their 2007 and current 2017 GYE grizzly bear genetics policy. I discovered that some studies reveal a loss of heterozygosity in the GYE bear population, both historically and in recent decades. Some had a statistically significant depletion rate. My review took place periodically between 2010 and 2021 and indicates that the genome of the GYE grizzly bear population is too small for long-term adaptation. The paper includes a discussion about evolutionary adaptation which invokes time frames rarely considered by nature conservation planners. I also examined genetic statements in the USFWS’s 2017 GYE grizzly bear delisting regulations and highlighted those that seem incongruent with current scientific thought. If this paper is read by some scientists, land managers, administrators, environmentalists, and others with some genetics background, they will better understand some USFWS decisions and policy statements. This case study illustrates that land management agencies can provide a one-sided treatment of some science when writing regulations about genetics.
Collapse
|
67
|
Skaien CL, Arcese P. On the capacity for rapid adaptation and plastic responses to herbivory and intraspecific competition in insular populations of
Plectritis congesta. Evol Appl 2022; 15:804-816. [PMID: 35603029 PMCID: PMC9108306 DOI: 10.1111/eva.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
A capacity for rapid adaptation should enhance the persistence of populations subject to temporal and spatial heterogeneity in natural selection, but examples from nature remain scarce. Plectritis congesta (Caprifoliaceae) is a winter annual that exhibits local adaptation to browsing by ungulates and hypothesized to show context‐dependent trade‐offs in traits affecting success in competition versus resistance or tolerance to browsing. We grew P. congesta from 44 insular populations historically exposed or naïve to ungulates in common gardens to (1) quantify genetic, plastic and competitive effects on phenotype; (2) estimate a capacity for rapid adaptation (evolvability); and (3) test whether traits favoured by selection with ungulates present were selected against in their absence. Plants from browsed populations bolted and flowered later, had smaller inflorescences, were less fecund and half as tall as plants from naïve populations on average, replicating patterns in nature. Estimated evolvabilities (3–36%) and narrow‐sense heritabilities (h2; 0.13–0.32) imply that differences in trait values as large as reported here can arise in 2–18 generations in an average population. Phenotypic plasticity was substantial, varied by browsing history and fruit phenotype and increased with competition. Fecundity increased with plasticity in flowering height given competition (0.47 ± 0.02 florets/cm, β ± se), but 23–77% faster in naïve plants bearing winged fruits (0.53 ± 0.04) than exposed‐wingless plants (0.43 ± 0.03) or exposed‐winged and naïve‐wingless plants (0.30 ± 0.03, each case). Our results support the hypothesis that context‐dependent variation in natural selection in P. congesta populations has conferred a substantial capacity for adaptation in response to selection in traits affecting success in competition versus resistance or tolerance to browsing in the absence versus presence of ungulates, respectively. Theory suggests that conserving adaptive capacity in P. congesta will require land managers to maintain spatial heterogeneity in natural selection, prevent local extinctions and maintain gene flow.
Collapse
Affiliation(s)
- Cora L. Skaien
- University of British Columbia Department of Forest and Conservation Sciences Faculty of Forestry 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - Peter Arcese
- University of British Columbia Department of Forest and Conservation Sciences Faculty of Forestry 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
68
|
White SL, Johnson TC, Rash JM, Lubinski BA, Kazyak DC. Using genetic data to advance stream fish reintroduction science: a case study in brook trout. Restor Ecol 2022. [DOI: 10.1111/rec.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shannon L. White
- Akima Systems Engineers, under contract to the U.S. Geological Survey Eastern Ecological Science Center 11649 Leetown Road Kearneysville West Virginia 25430 USA
| | - Thomas C. Johnson
- North Carolina Wildlife Resources Commission 645 Fish Hatchery Road Marion North Carolina 28752 USA
| | - Jacob M. Rash
- North Carolina Wildlife Resources Commission 645 Fish Hatchery Road Marion North Carolina 28752 USA
| | - Barbara A. Lubinski
- U.S. Geological Survey Eastern Ecological Science Center 11649 Leetown Road Kearneysville West Virginia 25430 USA
| | - David C. Kazyak
- U.S. Geological Survey Eastern Ecological Science Center 11649 Leetown Road Kearneysville West Virginia 25430 USA
| |
Collapse
|
69
|
Evans AE, Zimova M, Giery ST, Golden HE, Pastore AL, Nadeau CP, Urban MC. An eco‐evolutionary perspective on the humpty‐dumpty effect and community restoration. OIKOS 2022. [DOI: 10.1111/oik.08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annette E. Evans
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Environmental Conservation, Univ. of Massachusetts Amherst MA USA
| | | | - Sean T. Giery
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Biology, The Pennsylvania State Univ. Univ. Park PA USA
| | - Heidi E. Golden
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Golden Ecology LLC Simsbury CT USA
| | - Amanda L. Pastore
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Christopher P. Nadeau
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Smith Conservation Research Fellow, Marine and Environmental Sciences, Northeastern Univ. Nahant MA USA
| | - Mark C. Urban
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Center of Biological Risks, Univ. of Connecticut Storrs CT USA
| |
Collapse
|
70
|
Van Rossum F, Le Pajolec S, Raspé O, Godé C. Assessing Population Genetic Status for Designing Plant Translocations. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.829332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Assisted gene flow interventions such as plant translocations are valuable complementary techniques to habitat restoration. Bringing new genetic variants can contribute to increasing genetic diversity and evolutionary resilience, counteract inbreeding depression and improve plant fitness through heterosis. Large, highly genetically variable populations are usually recommended as sources for translocation. Unfortunately, many critically endangered species only occur as small populations, which are expected to show low genetic variation, high inbreeding level, paucity of compatible mates in self-incompatible species, and increased genetic divergence. Therefore, assessment of population genetic status is required for an appropriate choice of the source populations. In this paper, we exemplify the different analyses relevant for genetic evaluation of populations combining both molecular (plastid and nuclear) markers and fitness-related quantitative traits. We assessed the genetic status of the adult generation and their seed progeny (the potential translocation founders) of small populations of Campanula glomerata (Campanulaceae), a self-incompatible insect-pollinated herbaceous species critically endangered in Belgium. Only a few small populations remain, so that the species has been part of a restoration project of calcareous grasslands implementing plant translocations. In particular, we estimated genetic diversity, inbreeding levels, genetic structure in adults and their seed progeny, recent bottlenecks, clonal extent in adults, contemporary gene flow, effective population size (Ne), and parentage, sibship and seed progeny fitness variation. Small populations of C. glomerata presented high genetic diversity, and extensive contemporary pollen flow within populations, with multiple parentage among seed progenies, and so could be good seed source candidates for translocations. As populations are differentiated from each other, mixing the sources will not only optimize the number of variants and of compatible mates in translocated populations, but also representativeness of species regional genetic diversity. Genetic diversity is no immediate threat to population persistence, but small Ne, restricted among-population gene flow, and evidence of processes leading to genetic erosion, inbreeding and inbreeding depression in the seed progeny require management measures to counteract these trends and stochastic vulnerability. Habitat restoration facilitating recruitment, flowering and pollination, reconnecting populations by biological corridors or stepping stones, and creating new populations through translocations in protected areas are particularly recommended.
Collapse
|
71
|
Lovrenčić L, Temunović M, Gross R, Grgurev M, Maguire I. Integrating population genetics and species distribution modelling to guide conservation of the noble crayfish, Astacus astacus, in Croatia. Sci Rep 2022; 12:2040. [PMID: 35132091 PMCID: PMC8821615 DOI: 10.1038/s41598-022-06027-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/21/2022] [Indexed: 01/12/2023] Open
Abstract
The noble crayfish, Astacus astacus, is an indigenous European freshwater species. Its populations show significant declines caused by anthropogenic pressure on its habitats, climate change and the spread of invasive species. Diminishing populations’ trends and loss of genetic diversity highlight the need for effective conservation that will ensure their long-term survival. We combined population genetics and species distribution modelling (SDM) to reveal the impact of climate change and invasive species on the noble crayfish, and to guide future conservation programs of current populations. Our study showed that Croatian populations of A. astacus harbour an important part of species genetic diversity and represent significant genetic reservoir at the European level. The SDM results predicted substantial reductions of suitable habitats for A. astacus by the 2070; only 13% of its current potential distribution is projected to remain stable under pessimistic Representative Concentration Pathway (RCP 8.5) emission scenario. Moreover, most of the populations with high genetic diversity are located in the areas predicted to become unsuitable, and consequently have a high probability of being lost in the future. Further, SDM results also indicated considerable decrease of future habitat suitability for invasive crayfish species in Croatia, suggesting that climate change poses a major threat to already endangered A. astacus. The obtained results help in the identification of populations and areas with the highest conservation value which should be given the highest priority for protection. In order to preserve present diversity in areas that are predicted as suitable, we propose assisted migration and repopulation approaches, for enhancing populations’ size and saving maximum genetic variability. The result of our research emphasizes once again the benefits of multidisciplinary approach in the modern biodiversity conservation.
Collapse
Affiliation(s)
- Leona Lovrenčić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Martina Temunović
- Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Riho Gross
- Estonian University of Life Sciences, Tartu, Estonia
| | - Marin Grgurev
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Ivana Maguire
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
72
|
Van Rossum F, Hardy OJ. Guidelines for genetic monitoring of translocated plant populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13670. [PMID: 33236806 DOI: 10.1111/cobi.13670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Plant translocation is a useful tool for implementing assisted gene flow in recovery plans of critically endangered plant species. Although it helps to restore genetically viable populations, it is not devoid of genetic risks, such as poor adaptation of transplants and outbreeding depression in the hybrid progeny, which may have negative consequences in terms of demographic growth and plant fitness. Hence, a follow-up genetic monitoring should evaluate whether the translocated populations are genetically viable and self-sustaining in the short and long term. The causes of failure to adjust management responses also need to be identified. Molecular markers and fitness-related quantitative traits can be used to determine whether a plant translocation enhanced genetic diversity, increased fitness, and improved the probability of long-term survival. We devised guidelines and illustrated them with studies from the literature to help practitioners determine the appropriate genetic survey methods so that management practices can better integrate evolutionary processes. These guidelines include methods for sampling and for assessing changes in genetic diversity and differentiation, contemporary gene flow, mode of local recruitment, admixture level, the effects of genetic rescue, inbreeding or outbreeding depression and local adaptation on plant fitness, and long-term genetic changes.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, Meise, 1860, Belgium
- Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, Brussels, 1080, Belgium
| | - Olivier J Hardy
- Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, Brussels, 1050, Belgium
| |
Collapse
|
73
|
Doyle CA, Pellow BJ, Bell SAJ, Reynolds DM, Silcock JL, Commander LE, Ooi MKJ. Threatened Plant Translocation for Mitigation: Improving Data Accessibility Using Existing Legislative Frameworks. An Australian Case Study. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2021.789448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translocation of plants is used globally as a conservation action to bolster existing or establish new populations of threatened species and is usually communicated in academic publications or case studies. Translocation is also used to mitigate or offset impacts of urbanization and development but is less often publicly published. Irrespective of the motivation, conservation or mitigation, on ground actions are driven by overriding global conservation goals, applied in local or national legislation. This paper deconstructs the legislative framework which guides the translocation process in Australia and provides a case study which may translate to other countries, grappling with similar complexities of how existing legislation can be used to improve accessibility of translocation records. Each year, across Australia, threatened plants are being translocated to mitigate development impacts, however, limited publicly accessible records of their performance are available. To improve transparency and opportunities to learn from the outcomes of previous mitigation translocations, we propose mandatory recording of threatened plant translocations in publicly accessible databases, implemented as part of development approval conditions of consent. The contribution to these need not be onerous, at a minimum including basic translocation information (who, what, when) at project commencement and providing monitoring data (outcome) at project completion. These records are currently already collected and prepared for translocation proposals and development compliance reporting. Possible repositories for this information include the existing national Australian Network for Plant Conservation translocation database and existing State and Territory databases (which already require contributions as a condition of licensing requirements) with new provisions to identify and search for translocation records. These databases could then be linked to the Atlas of Living Australia and the Australian Threatened Plant Index. Once established, proposals for mitigation translocation could be evaluated using these databases to determine the viability of mitigation translocation as an offset measure and to build on the work of others to ensure better outcomes for plant conservation, where translocations occur.
Collapse
|
74
|
Brockett B, Banks S, Neaves LE, Gordon IJ, Pierson JC, Manning AD. Establishment, persistence and the importance of longitudinal monitoring in multi‐source reintroductions. Anim Conserv 2022. [DOI: 10.1111/acv.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- B. Brockett
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| | - S. Banks
- College of Engineering, IT and the Environment Charles Darwin University Darwin NT Australia
| | - L. E. Neaves
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| | - I. J. Gordon
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
- James Hutton Institute Dundee UK
- Central Queensland University Townsville QLD Australia
- Land & Water CSIRO Townsville QLD Australia
- Protected Places Mission NERP2, Reef and Rainforest Research Center Cairns QLD Australia
| | - J. C. Pierson
- ACT Parks and Conservation Service Canberra Australia
| | - A. D. Manning
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| |
Collapse
|
75
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
76
|
Schultz AJ, Strickland K, Cristescu RH, Hanger J, de Villiers D, Frère CH. Testing the effectiveness of genetic monitoring using genetic non-invasive sampling. Ecol Evol 2022; 12:e8459. [PMID: 35127011 PMCID: PMC8794716 DOI: 10.1002/ece3.8459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Effective conservation requires accurate data on population genetic diversity, inbreeding, and genetic structure. Increasingly, scientists are adopting genetic non-invasive sampling (gNIS) as a cost-effective population-wide genetic monitoring approach. gNIS has, however, known limitations which may impact the accuracy of downstream genetic analyses. Here, using high-quality single nucleotide polymorphism (SNP) data from blood/tissue sampling of a free-ranging koala population (n = 430), we investigated how the reduced SNP panel size and call rate typical of genetic non-invasive samples (derived from experimental and field trials) impacts the accuracy of genetic measures, and also the effect of sampling intensity on these measures. We found that gNIS at small sample sizes (14% of population) can provide accurate population diversity measures, but slightly underestimated population inbreeding coefficients. Accurate measures of internal relatedness required at least 33% of the population to be sampled. Accurate geographic and genetic spatial autocorrelation analysis requires between 28% and 51% of the population to be sampled. We show that gNIS at low sample sizes can provide a powerful tool to aid conservation decision-making and provide recommendations for researchers looking to apply these techniques to free-ranging systems.
Collapse
Affiliation(s)
- Anthony James Schultz
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
- Icelandic Museum of Natural History (Náttúruminjasafn Íslands)ReykjavikIceland
| | - Kasha Strickland
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
- Department of Aquaculture and Fish BiologyHólar UniversityHólarIceland
| | - Romane H. Cristescu
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
| | | | | | - Céline H. Frère
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
77
|
Barry BR, Moriarty K, Green D, Hutchinson RA, Levi T. Integrating multi‐method surveys and recovery trajectories into occupancy models. Ecosphere 2021. [DOI: 10.1002/ecs2.3886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Brent R. Barry
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon 97331 USA
| | - Katie Moriarty
- Pacific Northwest Research Station USDA Forest Service Corvallis Oregon 97331 USA
| | - David Green
- Institute of Natural Resources Oregon State University Portland Oregon 97207 USA
| | - Rebecca A. Hutchinson
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon 97331 USA
- School of Electrical Engineering and Computer Science Oregon State University Corvallis Oregon 97331 USA
| | - Taal Levi
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon 97331 USA
| |
Collapse
|
78
|
Rearing of Bitterling ( Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations. Animals (Basel) 2021; 11:ani11123534. [PMID: 34944309 PMCID: PMC8698087 DOI: 10.3390/ani11123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Among the many species threatened with extinction and covered by protection of species is bitterling Rhodeus amarus. It belongs to ostracophilic fish that place spawn inside live mussels. Bitterlings, such as mussels, belongs to indicator species that testify to the good state of the natural environment. Supporting the populations of these organisms is a necessity in order to preserve the biodiversity of inland waters, which are subjected to severe anthropopression. The development in advance of a method of reproduction and breeding of bitterling under controlled conditions can ensure their survival in the event of an imbalance in the natural environment. These were the first studies of this type, where after 6.5 months of rearing, sexually mature individuals were obtained. In this way, a suitable stocking material of the bitterling was obtained in order to save the endangered populations. Abstract Among the several dozen European freshwater fish species, only European bitterling (Rhodeus amarus Bloch) and Rhodeus meridionalis belong to the group of ostrakophilous fish. The embryonic and larval development of the fish in this reproductive group until the time of the yolk sac resorption takes place in the gill cavity of river mussels (Anodonta sp. or Unio sp.). This paper presents the results of the European bitterling Rhodeus amarus being reared under controlled conditions. Bitterling larvae were caught together with river mussels in the natural environment and subsequently placed in a tank for behavioural observations. Bitterling larvae were seen swimming in the water within a week of placing the bivalves under controlled conditions. The bitterling larvae were 8.6 ± 0.11 mm long when they started to swim actively. The rearing was conducted in water at 20 and 26 ± 0.5 °C and lasted for 6.5 months (200 days) in both variants. Initially, the larvae were fed with live nauplii of Artemia salina and subsequently with fodder. The bitterlings in tanks with water at 26 ± 0.5 °C were 66.2 ± 3.0 mm long and weighed 3389 ± 548 mg. For comparison, bitterlings kept in water at 20 ± 0.5 °C were 64.48 ± 3.4 mm long and weighed 3242 ± 427 mg. No larval malformities or mortality were observed during the larvae and fry rearing. The bitterlings had well-developed secondary sexual characteristics and exhibited pre-spawning behaviour at the end of the rearing. This produced suitable bitterling stocking material to be used in the conservation of small or endangered populations.
Collapse
|
79
|
Faske TM, Agneray AC, Jahner JP, Sheta LM, Leger EA, Parchman TL. Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evol Appl 2021; 14:2881-2900. [PMID: 34950235 PMCID: PMC8674890 DOI: 10.1111/eva.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023] Open
Abstract
The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.
Collapse
Affiliation(s)
- Trevor M. Faske
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Alison C. Agneray
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | | | - Lana M. Sheta
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - Elizabeth A. Leger
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
80
|
McLaughlin B, Fogg A, Ennis KK, Halstrom G, Herrera A, Quadri P. Climate change‐adaptive participatory field gene banking for a California endemic oak. Restor Ecol 2021. [DOI: 10.1111/rec.13573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Alissa Fogg
- Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma CA 94954 U.S.A
| | - Katherine K. Ennis
- Department of Integrative Biology University of California, Berkeley Berkeley CA 94720 U.S.A
| | - Grant Halstrom
- Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma CA 94954 U.S.A
| | - Alicia Herrera
- Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma CA 94954 U.S.A
| | - Paulo Quadri
- Sky Island Alliance 3127 N Cherry Avenue Tucson AZ 85719 U.S.A
| |
Collapse
|
81
|
Andres SE, Powell JR, Gregory D, Offord CA, Emery NJ. Assessing translocation management techniques through experimental trials: a case study of the endangered shrub
Persoonia hirsuta. Restor Ecol 2021. [DOI: 10.1111/rec.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samantha E. Andres
- Western Sydney University Hawkesbury Institute for the Environment Richmond New South Wales Australia
| | - Jeff R. Powell
- Western Sydney University Hawkesbury Institute for the Environment Richmond New South Wales Australia
| | - David Gregory
- South32 Illawarra Metallurgical Coal Level 3, Enterprise 1 Building, Innovation Campus, Squires Way, Wollongong New South Wales 2500 Australia
| | - Catherine A. Offord
- The Australian PlantBank Australian Institute of Botanical Science, Australian Botanic Garden Sydney New South Wales 2567 Australia
| | - Nathan J. Emery
- The Australian PlantBank Australian Institute of Botanical Science, Australian Botanic Garden Sydney New South Wales 2567 Australia
| |
Collapse
|
82
|
Jiang Y, Ju T, Neaves LE, Li J, Tan W, Huang Y, Liu Y, Mao K. Distinct Genetic Structure Reflects Ploidy Level Differentiation in Newly Discovered, Extremely Small Populations of Xanthocyparis vietnamensis from Southwestern China. Front Genet 2021; 12:733576. [PMID: 34790221 PMCID: PMC8591046 DOI: 10.3389/fgene.2021.733576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Population genetic assessment is crucial for the conservation and management of threatened species. Xanthocyparis vietnamensis is an endangered species that is currently restricted to karst mountains in southwestern China and Vietnam. This rare conifer was first recorded in 2002 from northern Vietnam and then in 2013 from Guangxi, China, yet nothing is known about its genetic diversity nor ploidy level variation, although previous cytological study suggest that Vietnamese populations are tetraploids. There have been about 45 individuals found to date in Guangxi, China. Here, we genotyped 33 X. vietnamensis individuals using 20 newly developed, polymorphic microsatellite loci, to assess the genetic variability of its extremely small populations. The genetic diversity of X. vietnamensis (HE = 0.511) was lower than that of two other heliophile species, Calocedrus macrolepis and Fokienia hodginsii, which have similar distribution ranges. This is consistent with the signature of a genetic bottleneck detected in X. vietnamensis. Although the population genetic differentiation coefficient across loci is moderate (FST = 0.125), STRUCTURE analysis revealed two distinct genetic clusters, namely the northern and southern population groups; DAPC analysis grouped the southern populations together in one cluster separate from the northern populations; AMOVA analysis detected a significant genetic differentiation between the two population groups (FRT = 0.089, p < 0.05), and BARRIER analysis detected a genetic barrier between them. Moreover, we detected differentiation in ploidy level between northern and southern populations, sampled individuals from the former and the later are all diploid and tetraploid cytotypes with mean genome sizes of 26.08 and 48.02 pg/2C, respectively. We deduced that heterogeneous geomorphology and historical events (e.g., human deforestation, Quaternary climate oscillations) may have contributed to population fragmentation and small population size in X. vietnamensis. Considering both genetic and ploidy level differentiation, we propose that two different management units (northern and southern) should be considered and a combination of in situ and ex situ conservation measures should be employed to preserve populations of this endangered species in southwestern China in the light of our findings.
Collapse
Affiliation(s)
- Yuliang Jiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Tsam Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Linda E Neaves
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Weining Tan
- Administration of Mulun National Nature Reserve of Guangxi, Huanjiang, China
| | - Yusong Huang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, China
| | - Yan Liu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
New developments in the field of genomic technologies and their relevance to conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01415-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractRecent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Collapse
|
84
|
Gavin‐Smyth N, Kramer AT, Urbina‐Casanova R, Vitt P, Fant JB. Genetic rescue reduces mate limitation in a threatened, clonal, and self‐incompatible plant species. Restor Ecol 2021. [DOI: 10.1111/rec.13458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nora Gavin‐Smyth
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| | - Andrea T. Kramer
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| | - Rafael Urbina‐Casanova
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| | - Pati Vitt
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
- Lake County Forest Preserve District 1899 W. Winchester Road, Libertyville IL 60048 U.S.A
| | - Jeremie B. Fant
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| |
Collapse
|
85
|
Mitchell WF, Boulton RL, Sunnucks P, Clarke RH. Are we adequately assessing the demographic impacts of harvesting for wild‐sourced conservation translocations? CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Rebecca L. Boulton
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Paul Sunnucks
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Rohan H. Clarke
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
86
|
Genetic structure, diversity and distribution of a threatened lizard affected by widespread habitat fragmentation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01408-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Rudin-Bitterli TS, Evans JP, Mitchell NJ. Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs. Commun Biol 2021; 4:1195. [PMID: 34663885 PMCID: PMC8523558 DOI: 10.1038/s42003-021-02695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Targeted gene flow (TGF) could bolster the adaptive potential of isolated populations threatened by climate change, but could also lead to outbreeding depression. Here, we explore these possibilities by creating mixed- and within-population crosses in a terrestrial-breeding frog species threatened by a drying climate. We reared embryos of the crawling frog (Pseudophryne guentheri) on wet and dry soils and quantified fitness-related traits upon hatching. TGF produced mixed outcomes in hybrids, which depended on crossing direction (origin of gametes from each sex). North-south crosses led to low embryonic survival if eggs were of a southern origin, and high malformation rates when eggs were from a northern population. Conversely, east-west crosses led to one instance of hybrid vigour, evident by increased fitness and desiccation tolerance of hybrid offspring relative to offspring produced from within-population crosses. These contrasting results highlight the need to experimentally evaluate the outcomes of TGF for focal species across generations prior to implementing management actions.
Collapse
Affiliation(s)
- Tabitha S Rudin-Bitterli
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jonathan P Evans
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
88
|
Hierarchical genetic structure and implications for conservation of the world's largest salmonid, Hucho taimen. Sci Rep 2021; 11:20508. [PMID: 34654859 PMCID: PMC8520000 DOI: 10.1038/s41598-021-99530-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world’s largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.
Collapse
|
89
|
Crow TM, Hufford KM, Burney OT. Plant performance predicted by genetic variation and environmental distance in important restoration shrub species
Cercocarpus montanus
. Restor Ecol 2021. [DOI: 10.1111/rec.13538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taylor M. Crow
- Department of Plant Sciences University of California Davis CA 95616 U.S.A
| | - Kristina M. Hufford
- Ecosystem Science and Management University of Wyoming Laramie WY 82071 U.S.A
| | - Owen T. Burney
- John T. Harrington Forestry Research Center New Mexico State University Mora NM 87732 U.S.A
| |
Collapse
|
90
|
Hoban S, Bruford MW, Funk WC, Galbusera P, Griffith MP, Grueber CE, Heuertz M, Hunter ME, Hvilsom C, Stroil BK, Kershaw F, Khoury CK, Laikre L, Lopes-Fernandes M, MacDonald AJ, Mergeay J, Meek M, Mittan C, Mukassabi TA, O'Brien D, Ogden R, Palma-Silva C, Ramakrishnan U, Segelbacher G, Shaw RE, Sjögren-Gulve P, Veličković N, Vernesi C. Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. Bioscience 2021; 71:964-976. [PMID: 34475806 PMCID: PMC8407967 DOI: 10.1093/biosci/biab054] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Global conservation policy and action have largely neglected protecting and monitoring genetic diversity—one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species’ adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers. However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts. We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity.
Collapse
Affiliation(s)
- Sean Hoban
- The Morton Arboretum, Center for Tree Science, Lisle, Illinois, United States
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States
| | - Peter Galbusera
- Royal Zoological Society of Antwerp, Centre for Research and Conservation, Antwerp, Belgium
| | | | - Catherine E Grueber
- University of Sydney's School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Myriam Heuertz
- INRAE, and the University of Bordeaux, Biogeco, Cestas, France
| | - Margaret E Hunter
- US Geological Survey's Wetland and Aquatic Research Center, Gainesville, Florida, United States
| | | | - Belma Kalamujic Stroil
- University of Sarajevo Institute for Genetic Engineering and Biotechnology, Laboratory for Molecular Genetics of Natural Resources, Sarajevo, Bosnia and Herzegovina
| | - Francine Kershaw
- Natural Resources Defense Council, New York, New York, United States
| | - Colin K Khoury
- International Center for Tropical Agriculture, Cali, Colombia
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| | | | - Anna J MacDonald
- Australian National University, John Curtin School of Medical Research and Research School of Biology, Canberra, Australia
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mariah Meek
- Michigan State University Department of Integrative Biology, AgBio Research, Ecology, Evolution, and Behavior Program, East Lansing, Michigan, United States
| | - Cinnamon Mittan
- Cornell University's Department of Ecology and Evolutionary Biology, Ithaca, New York, United States
| | - Tarek A Mukassabi
- University of Benghazi Department of Botany, Faculty of Sciences, Benghazi, Libya
| | | | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and with the Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, United Kingdom
| | | | - Uma Ramakrishnan
- Department of Ecology and Evolution, National Centre for Biological Sciences, Bangalore, India
| | - Gernot Segelbacher
- Chair of wildlife ecology and management, University Freiburg, Freiburg, Germany
| | - Robyn E Shaw
- Department of Environmental and Conservation Sciences, Murdoch University, Perth, Australia
| | - Per Sjögren-Gulve
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Nevena Veličković
- University of Novi Sad's Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
| | - Cristiano Vernesi
- Forest Ecology and Biogeochemical Fluxes Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Italy
| |
Collapse
|
91
|
Gargiulo R, Adamo M, Cribb PJ, Bartolucci F, Sarasan V, Alessandrelli C, Bona E, Ciaschetti G, Conti F, Di Cecco V, Di Martino L, Gentile C, Juan A, Magrini S, Mucciarelli M, Perazza G, Fay MF. Combining current knowledge of
Cypripedium calceolus
with a new analysis of genetic variation in Italian populations to provide guidelines for conservation actions. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Martino Adamo
- Department of Life Sciences and Systems Biology Università di Torino Torino Italy
| | | | - Fabrizio Bartolucci
- Floristic Research Center of the Apennine (University of Camerino – Gran Sasso and Laga Mountains National Park) Barisciano (L'Aquila) Italy
| | | | | | - Enzo Bona
- Centro Studi Naturalistici Bresciani, Museo di Scienze Naturali Brescia (BS) Italy
| | - Giampiero Ciaschetti
- Maiella National Park – Office for Plant Biodiversity Monitoring and Conservation Sulmona (AQ) Italy
| | - Fabio Conti
- Floristic Research Center of the Apennine (University of Camerino – Gran Sasso and Laga Mountains National Park) Barisciano (L'Aquila) Italy
| | - Valter Di Cecco
- Maiella National Park – Office for Plant Biodiversity Monitoring and Conservation Sulmona (AQ) Italy
| | - Luciano Di Martino
- Maiella National Park – Office for Plant Biodiversity Monitoring and Conservation Sulmona (AQ) Italy
| | - Carmelo Gentile
- Abruzzo, Lazio and Molise National Park viale Santa Lucia Pescasseroli (AQ) Italy
| | - Ana Juan
- Ciencias Ambientales y Recursos Naturales University of Alicante Alicante Spain
| | - Sara Magrini
- Tuscia Germplasm Bank, Tuscia University, largo dell'Università blocco C Viterbo Italy
| | - Marco Mucciarelli
- Department of Life Sciences and Systems Biology Università di Torino Torino Italy
| | | | - Michael F. Fay
- Royal Botanic Gardens, Kew Richmond United Kingdom
- School of Plant Biology, University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
92
|
Undin M, Lockhart PJ, Hills SFK, Armstrong DP, Castro I. Mixed Mating in a Multi-Origin Population Suggests High Potential for Genetic Rescue in North Island Brown Kiwi, Apteryx mantelli. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.702128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reinforcement translocations are increasingly utilised in conservation with the goal of achieving genetic rescue. However, concerns regarding undesirable results, such as genetic homogenisation or replacement, are widespread. One factor influencing translocation outcomes is the rate at which the resident and the introduced individuals interbreed. Consequently, post-release mate choice is a key behaviour to consider in conservation planning. Here we studied mating, and its consequences for genomic admixture, in the North Island brown kiwi Apteryx mantelli population on Ponui Island which was founded by two translocation events over 50 years ago. The two source populations used are now recognised as belonging to two separate management units between which birds differ in size and are genetically differentiated. We examined the correlation between male and female morphometrics for 17 known pairs and quantified the relatedness of 20 pairs from this admixed population. In addition, we compared the genetic similarity and makeup of 106 Ponui Island birds, including 23 known pairs, to birds representing the source populations for the original translocations. We found no evidence for size-assortative mating. On the contrary, genomic SNP data suggested that kiwi of one feather did not flock together, meaning that mate choice resulted in pairing between individuals that were less related than expected by random chance. Furthermore, the birds in the current Ponui Island population were found to fall along a gradient of genomic composition consistent with non-clustered representation of the two parental genomes. These findings indicate potential for successful genetic rescue in future Apteryx reinforcement translocations, a potential that is currently under utilised due to restrictive translocation policies. In light of our findings, we suggest that reconsideration of these policies could render great benefits for the future diversity of this iconic genus in New Zealand.
Collapse
|
93
|
Cook CN, Beever EA, Thurman LL, Thompson LM, Gross JE, Whiteley AR, Nicotra AB, Szymanski JA, Botero CA, Hall KR, Hoffmann AA, Schuurman GW, Sgrò CM. Supporting the adaptive capacity of species through more effective knowledge exchange with conservation practitioners. Evol Appl 2021; 14:1969-1979. [PMID: 34429742 PMCID: PMC8372063 DOI: 10.1111/eva.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 01/28/2023] Open
Abstract
There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well-positioned to inform the development of evidence-based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbour concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is an opportunity to accelerate the required changes by promoting closer collaboration between these two groups. We highlight how evolutionary biologists can harness lessons from other disciplines about how to foster effective knowledge exchange to make a substantive contribution to the development of effective conservation practices. These lessons include the following: (1) recognizing why practitioners do and do not use scientific evidence; (2) building an evidence base that will influence management decisions; (3) translating theory into a format that conservation practitioners can use to inform management practices; and (4) developing strategies for effective knowledge exchange. Although efforts will be required on both sides, we believe there are rewards for both practitioners and evolutionary biologists, not least of which is fostering practices to help support the long-term persistence of species.
Collapse
Affiliation(s)
- Carly N. Cook
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| | - Erik A. Beever
- Northern Rocky Mountain Science CenterU.S. Geological SurveyBozemanMTUSA
- Department of EcologyMontana State UniversityBozemanMTUSA
| | - Lindsey L. Thurman
- Northwest Climate Adaptation Science CenterU.S. Geological SurveyCorvallisORUSA
| | - Laura M. Thompson
- National Climate Adaptation Science CenterU.S. Geological SurveyRestonVAUSA
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTNUSA
| | - John E. Gross
- Climate Change Response ProgramU.S. National Park ServiceFort CollinsCOUSA
| | - Andrew R. Whiteley
- Wildlife Biology ProgramDepartment of Ecosystem and Conservation SciencesFranke College of Forestry and ConservationUniversity of MontanaMissoulaMTUSA
| | - Adrienne B. Nicotra
- Division of Ecology and EvolutionResearch School of BiologyAustralian National UniversityCanberraACTAustralia
| | | | | | | | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVICAustralia
| | | | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
94
|
Genetic Diversity and Divergence among Bighorn Sheep from Reintroduced Herds in Washington and Idaho. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
95
|
Barbosa S, Andrews KR, Goldberg AR, Gour DS, Hohenlohe PA, Conway CJ, Waits LP. The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Mol Ecol 2021; 30:4673-4694. [PMID: 34324748 DOI: 10.1111/mec.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus - NIDGS, and U. endemicus - SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both theinter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographic barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.
Collapse
Affiliation(s)
- Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Kimberly R Andrews
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Digpal S Gour
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Paul A Hohenlohe
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA.,Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-3051, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research Unit, Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844-1141, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| |
Collapse
|
96
|
Robledo-Ruiz DA, Pavlova A, Clarke RH, Magrath MJL, Quin B, Harrisson KA, Gan HM, Low GW, Sunnucks P. A novel framework for evaluating in situ breeding management strategies in endangered populations. Mol Ecol Resour 2021; 22:239-253. [PMID: 34288508 DOI: 10.1111/1755-0998.13476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Conservation breeding management aims to reduce inbreeding and maximize the retention of genetic diversity in endangered populations. However, breeding management of wild populations is still rare, and there is a need for approaches that provide data-driven evidence of the likelihood of success of alternative in situ strategies. Here, we provide an analytical framework that uses in silico simulations to evaluate, for real wild populations, (i) the degree of population-level inbreeding avoidance, (ii) the genetic quality of mating pairs, and (iii) the potential genetic benefits of implementing two breeding management strategies. The proposed strategies aim to improve the genetic quality of breeding pairs by splitting detrimental pairs and allowing the members to re-pair in different ways. We apply the framework to the wild population of the Critically Endangered helmeted honeyeater by combining genomic data and field observations to estimate the inbreeding (i.e., pair-kinship) and genetic quality (i.e., Mate Suitability Index) of all mating pairs for seven consecutive breeding seasons. We found no evidence of population-level inbreeding avoidance and that ~91.6% of breeding pairs were detrimental to the genetic health of the population. Furthermore, the framework revealed that neither proposed management strategy would significantly improve the genetic quality or reduce inbreeding of the mating pairs in this population. Our results demonstrate the usefulness of our analytical framework for testing the efficacy of different in situ breeding management strategies and for making evidence-based management decisions.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Rohan H Clarke
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Michael J L Magrath
- Department of Wildlife Conservation and Science, Zoos Victoria, Parkville, Vic., Australia.,School of BioSciences, University of Melbourne, Parkville, Vic., Australia
| | - Bruce Quin
- Department of Environment, Land, Water and Planning, Woori Yallock, Vic., Australia
| | - Katherine A Harrisson
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia.,Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Vic., Australia
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia.,Deakin Genomics Centre, Deakin University, Geelong, Vic., Australia
| | - Gabriel W Low
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
97
|
Duntsch L, Whibley A, Brekke P, Ewen JG, Santure AW. Genomic data of different resolutions reveal consistent inbreeding estimates but contrasting homozygosity landscapes for the threatened Aotearoa New Zealand hihi. Mol Ecol 2021; 30:6006-6020. [PMID: 34242449 DOI: 10.1111/mec.16068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Inbreeding can lead to a loss of heterozygosity in a population and when combined with genetic drift may reduce the adaptive potential of a species. However, there is uncertainty about whether resequencing data can provide accurate and consistent inbreeding estimates. Here, we performed an in-depth inbreeding analysis for hihi (Notiomystis cincta), an endemic and nationally vulnerable passerine bird of Aotearoa New Zealand. We first focused on subsampling variants from a reference genome male, and found that low-density data sets tend to miss runs of homozygosity (ROH) in some places and overestimate ROH length in others, resulting in contrasting homozygosity landscapes. Low-coverage resequencing and 50 K SNP array densities can yield comparable inbreeding results to high-coverage resequencing approaches, but the results for all data sets are highly dependent on the software settings employed. Second, we extended our analysis to 10 hihi where low-coverage whole genome resequencing, RAD-seq and SNP array genotypes are available. We inferred ROH and individual inbreeding to evaluate the relative effects of sequencing depth versus SNP density on estimating inbreeding coefficients and found that high rates of missingness downwardly bias both the number and length of ROH. In summary, when using genomic data to evaluate inbreeding, studies must consider that ROH estimates are heavily dependent on analysis parameters, data set density and individual sequencing depth.
Collapse
Affiliation(s)
- Laura Duntsch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
98
|
Hunter-Ayad J, Jarvie S, Greaves G, Digby A, Ohlemüller R, Recio MR, Seddon PJ. Novel Conditions in Conservation Translocations: A Conservative-Extrapolative Strategic Framework. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.691714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In response to anthropogenic threats, conservation translocations are increasingly used to combat species' population and range declines. However, moving animals outside of their current distribution can mean introducing them to novel conditions, even in the case of reintroductions to formerly inhabited areas due to ecosystem changes following extirpation. This exposure to novel conditions introduces uncertainty that can undermine decision making for species conservation. Here we propose two strategies, which we define as conservative and extrapolative, for approaching and managing novelty and the resulting uncertainty in conservation translocations. Conservative strategies are characterised by the avoidance and removal of novel conditions as much as possible, whereas extrapolative strategies are more experimental, allowing exposure to novel conditions and monitoring outcomes to increase understanding of a species' ecology. As each strategy carries specific risks and opportunities, they will be applicable in different scenarios. Extrapolative strategies suit species in recovery which can afford some experimental management, or species facing novel and emerging threats which require less traditional translocations, such as assisted colonisations. We provide examples, applying our framework to two endemic New Zealand species with long histories of translocation management: tuatara (Sphenodon punctatus), a reptile and takahē (Porphyrio hochstetteri), a flightless bird.
Collapse
|
99
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
100
|
Schmidt TL, Jasper M, Weeks AR, Hoffmann AA. Unbiased population heterozygosity estimates from genome‐wide sequence data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Thomas L. Schmidt
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Moshe‐Elijah Jasper
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Andrew R Weeks
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
- cesar Pty Ltd Parkville VIC Australia
| | - Ary A Hoffmann
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| |
Collapse
|