51
|
Roig-Oliver M, Rayon C, Roulard R, Fournet F, Bota J, Flexas J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. PHYSIOLOGIA PLANTARUM 2021; 172:1439-1451. [PMID: 32770751 DOI: 10.1111/ppl.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 05/06/2023]
Abstract
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Romain Roulard
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - François Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| |
Collapse
|
52
|
Flexas J, Clemente-Moreno MJ, Bota J, Brodribb TJ, Gago J, Mizokami Y, Nadal M, Perera-Castro AV, Roig-Oliver M, Sugiura D, Xiong D, Carriquí M. Cell wall thickness and composition are involved in photosynthetic limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3971-3986. [PMID: 33780533 DOI: 10.1093/jxb/erab144] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Yusuke Mizokami
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, Japan
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Daisuke Sugiura
- Laboratory of Crop Science, Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Marc Carriquí
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
53
|
Mantuano D, Ornellas T, Aidar MPM, Mantovani A. Photosynthetic activity increases with leaf size and intercellular spaces in an allomorphic lianescent aroid Rhodospatha oblongata. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:557-566. [PMID: 33556303 DOI: 10.1071/fp20215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate leaf anatomy, as well as photosynthetic gas exchange, that underlie the improvement in light foraging capacity, which appears to occur in aroid vines seeking light exposure. Three levels of plant height (soil level, 3 m and 6 m) were categorised for the aroid vine Rhodospatha oblongata Poepp. to represent the transition from ground to canopy. Compared with shaded leaves, leaves exposed to high light conditions were thicker, presenting a larger, spongy parenchyma characterised by a larger transversal area of intercellular spaces. In addition to the increase in maximum CO2 assimilation (Amax) and thicker and larger leaf lamina, we found an increased light saturation point, light compensation point and water use efficiency at 500 µmol PPFD. Nitrogen content per leaf dry mass remained constant across habitats, but Amax/N was 1.5-times greater in the canopy position than in the leaves at soil level, suggesting that CO2 gain did not rely on an N-related biochemical apparatus. The lower δ13C discrimination observed at high canopy leaves corroborated the higher photosynthesis. Altogether, these results suggest that the large and exposed aroid leaves maintained carbon gain coupled with light gain through investing in a more efficient proportion of intercellular spaces and photosynthetic cell surface, which likely allowed a less pronounced CO2 gradient in substomatal-intercellular space.
Collapse
Affiliation(s)
- Dulce Mantuano
- Laboratório de Ecofisiologia Vegetal, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A, sala A1-118, CCS, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil; and Corresponding author.
| | - Thales Ornellas
- Escola Nacional de Botânica Tropical; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| | - Marcos P M Aidar
- Centro de Pesquisas em Ecologia e Fisiologia, Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica de São Paulo, São Paulo, SP, Brazil
| | - André Mantovani
- Laboratório de Botânica Estrutural, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| |
Collapse
|
54
|
Li S, Liu J, Liu H, Qiu R, Gao Y, Duan A. Role of Hydraulic Signal and ABA in Decrease of Leaf Stomatal and Mesophyll Conductance in Soil Drought-Stressed Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:653186. [PMID: 33995449 PMCID: PMC8118518 DOI: 10.3389/fpls.2021.653186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Drought reduces leaf stomatal conductance (gs) and mesophyll conductance (gm). Both hydraulic signals and chemical signals (mainly abscisic acid, ABA) are involved in regulating gs. However, it remains unclear what role the endogenous ABA plays in gm under decreasing soil moisture. In this study, the responses of gs and gm to ABA were investigated under progressive soil drying conditions and their impacts on net photosynthesis (An) and intrinsic water use efficiency (WUEi) were also analyzed. Experimental tomato plants were cultivated in pots in an environment-controlled greenhouse. Reductions of gs and gm induced a 68-78% decline of An under drought conditions. While soil water potential (Ψsoil) was over -1.01 MPa, gs reduced as leaf water potential (Ψleaf) decreased, but ABA and gm kept unchanged, which indicating gs was more sensitive to drought than gm. During Ψsoil reduction from -1.01 to -1.44 MPa, Ψleaf still kept decreasing, and both gs and gm decreased concurrently following to the sustained increases of ABA content in shoot sap. The gm was positively correlated to gs during a drying process. Compared to gs or gm, WUEi was strongly correlated with gm/gs. WUEi improved within Ψsoil range between -0.83 and -1.15 MPa. In summary, gs showed a higher sensitivity to drought than gm. Under moderate and severe drought at Ψsoil ≤ -1.01 MPa, furthermore from hydraulic signals, ABA was also involved in this co-ordination reductions of gs and gm and thereby regulated An and WUEi.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Liu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Liu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Rangjian Qiu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
55
|
Fernández-Marín B, Arzac MI, López-Pozo M, Laza JM, Roach T, Stegner M, Neuner G, García-Plazaola JI. Frozen in the dark: interplay of night-time activity of xanthophyll cycle, xylem attributes, and desiccation tolerance in fern resistance to winter. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3168-3184. [PMID: 33617637 DOI: 10.1093/jxb/erab071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/15/2021] [Indexed: 05/14/2023]
Abstract
While most ferns avoid freezing as they have a tropical distribution or shed their fronds, wintergreen species in temperate and boreoalpine ecosystems have to deal with sub-zero temperatures. Increasing evidence has revealed overlapping mechanisms of desiccation and freezing tolerance in angiosperms, but the physiological mechanisms behind freezing tolerance in ferns are far from clear. We evaluated photochemical and hydraulic parameters in five wintergreen fern species differing in their ability to tolerate desiccation. We assessed frond freezing tolerance, ice nucleation temperature and propagation pattern, and xylem anatomical traits. Dynamics of photochemical performance and xanthophyll cycle were evaluated during freeze-thaw events under controlled conditions and, in selected species, in the field. Only desiccation-tolerant species, which possessed a greater fraction of narrow tracheids (<18 μm) than sensitive species, tolerated freezing. Frond freezing occurred in the field at -3.4 ± 0.9 °C (SD) irrespective of freezing tolerance, freezable water content, or tracheid properties. Even in complete darkness, maximal photochemical efficiency of photosystem II was down-regulated concomitantly with zeaxanthin accumulation in response to freezing. This was reversible upon re-warming only in tolerant species. Our results suggest that adaptation for freezing tolerance is associated with desiccation tolerance through complementary xylem properties (which may prevent risk of irreversible cavitation) and effective photoprotection mechanisms. The latter includes de-epoxidation of xanthophylls in darkness, a process evidenced for the first time directly in the field.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - José Manuel Laza
- Laboratory of Macromolecular Chemistry (Labquimac), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Thomas Roach
- Department of Botany and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Matthias Stegner
- Department of Botany and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Gilbert Neuner
- Department of Botany and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
56
|
Nadal M, Perera-Castro AV, Gulías J, Farrant JM, Flexas J. Resurrection plants optimize photosynthesis despite very thick cell walls by means of chloroplast distribution. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2600-2610. [PMID: 33483750 DOI: 10.1093/jxb/erab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Resurrection plants are vascular species able to sustain extreme desiccation in their vegetative tissues. Despite its potential interest, the role of leaf anatomy in CO2 diffusion and photosynthesis under non-stressed conditions has not been explored in these species. Net CO2 assimilation (An) and its underlying diffusive, biochemical, and anatomical determinants were assessed in 10 resurrection species from diverse locations, including ferns, and homoiochlorophyllous and poikilochlorophyllous angiosperms. Data obtained were compared with previously published results in desiccation-sensitive ferns and angiosperms. An in resurrection plants was mostly driven by mesophyll conductance to CO2 (gm) and limited by CO2 diffusion. Resurrection species had a greater cell wall thickness (Tcw) than desiccation-sensitive plants, a feature associated with limited CO2 diffusion in the mesophyll, but also greater chloroplast exposure to intercellular spaces (Sc), which usually leads to higher gm. This combination enabled a higher An per Tcw compared with desiccation-sensitive species. Resurrection species possess unusual anatomical features that could confer stress tolerance (thick cell walls) without compromising the photosynthetic capacity (high chloroplast exposure). This mechanism is particularly successful in resurrection ferns, which display higher photosynthesis than their desiccation-sensitive counterparts.
Collapse
Affiliation(s)
- Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
57
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
58
|
Ferroni L, Brestič M, Živčak M, Cantelli R, Pancaldi S. Increased photosynthesis from a deep-shade to high-light regime occurs by enhanced CO 2 diffusion into the leaf of Selaginella martensii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:143-154. [PMID: 33486204 DOI: 10.1016/j.plaphy.2021.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The current understanding of photosynthesis across land plant phylogeny strongly indicates that ancient vascular plants are mainly limited by strong constitutive CO2 diffusional constraints, particularly low stomatal and mesophyll conductance. Considering that the lycophyte Selaginella martensii can demonstrate long-term light acclimation, this study addresses the regulation extent of CO2 assimilation in this species cultivated under contrasting light regimes of deep shade, medium shade and high light. Comparative analyses of photosynthetic traits, CO2 conductance and leaf morpho-anatomy revealed acclimation plasticity similar to that of seed plants, though occurring in the context of an inherently low photosynthetic capacity typical of lycophytes. Specific modulations of the stomatal density and aperture, chloroplast surface exposed to mesophyll airspaces and cell wall thickness sustained a marked improvement in CO2 diffusion from deep shade to high light. However, the maximum carboxylation rate was comparatively less effectively upregulated, leading to a greater incidence of biochemical limitations of photosynthesis. Because of a low carboxylation capacity under any light regime, a lycophyte prevents potential photodamage to the chloroplast by not only exploiting the thermal dissipation of excess absorbed energy but also diverting a large fraction of photosynthetic electrons to sinks alternative to carboxylation.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy; Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia.
| | - Marián Brestič
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia.
| | - Marek Živčak
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia
| | - Riccardo Cantelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| |
Collapse
|
59
|
Théroux-Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK, Tholen D, McElrone AJ, Simonin KA, Brodersen CR. Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size. Proc Biol Sci 2021; 288:20203145. [PMID: 33622134 PMCID: PMC7934972 DOI: 10.1098/rspb.2020.3145] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Maintaining high rates of photosynthesis in leaves requires efficient movement of CO2 from the atmosphere to the mesophyll cells inside the leaf where CO2 is converted into sugar. CO2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO2 diffusion into and through the leaf, maintaining high rates of CO2 supply to the leaf mesophyll despite declining atmospheric CO2 levels during the Cretaceous.
Collapse
Affiliation(s)
| | - Adam B. Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - J. Mason Earles
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Matthew E. Gilbert
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - C. Kevin Boyce
- Department of Geological Sciences, Stanford University, Palo Alto, CA 94305, USA
| | - Danny Tholen
- Institute of Botany, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Andrew J. McElrone
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
- USDA-Agricultural Research Service, Davis, CA 95616, USA
| | - Kevin A. Simonin
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | |
Collapse
|
60
|
Evans JR. Mesophyll conductance: walls, membranes and spatial complexity. THE NEW PHYTOLOGIST 2021; 229:1864-1876. [PMID: 33135193 DOI: 10.1111/nph.16968] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
A significant resistance to CO2 diffusion is imposed by mesophyll tissue inside leaves. Mesophyll resistance, rm (or its reciprocal, mesophyll conductance, gm ), reduces the rate at which Rubisco can fix CO2 , increasing the water and nitrogen costs of carbon acquisition. gm varies in proportion to the surface area of chloroplasts exposed to intercellular airspace per unit leaf area. It also depends on the thickness and effective porosity of the cell wall and the CO2 permeabilities of membranes. As no measurements exist for the effective porosity of mesophyll cell walls, and CO2 permeability values are too low to account for observed rates of CO2 assimilation, conclusions from modelling must be treated with caution. There is great variation in the mesophyll resistance per unit chloroplast area for a given cell wall thickness, which may reflect differences in effective porosity. While apparent gm can vary with CO2 and irradiance, the underlying conductance at the cellular level may remain unchanged. Dynamic changes in apparent gm arise for spatial reasons and because chloroplasts differ in their photosynthetic composition and operate in different light environments. Measurements of the temperature sensitivity of membrane CO2 permeability are urgently needed to explain variation in temperature responses of gm .
Collapse
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
61
|
Machado R, Loram-Lourenço L, Farnese FS, Alves RDFB, de Sousa LF, Silva FG, Filho SCV, Torres-Ruiz JM, Cochard H, Menezes-Silva PE. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. THE NEW PHYTOLOGIST 2021; 229:1415-1430. [PMID: 32964437 DOI: 10.1111/nph.16941] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/04/2020] [Indexed: 05/26/2023]
Abstract
Plants continue to lose water from their leaves even after complete stomatal closure. Although this minimum conductance (gleaf-res ) has substantial impacts on strategies of water use and conservation, little is known about the potential drivers underlying the variability of this trait across species. We thus untangled the relative contribution of water leaks from the cuticle and stomata in order to investigate how the variability in leaf morphological and anatomical traits is related to the variation in gleaf-res and carbon assimilation capacity across 30 diverse species from the Brazilian Cerrado. In addition to cuticle permeance, water leaks from stomata had a significant impact on gleaf-res . The differential pattern of stomata distribution in the epidermis was a key factor driving this variation, suggesting the existence of a trade-off between carbon assimilation and water loss through gleaf-res . For instance, higher gleaf-res , observed in fast-growing species, was associated with the investment in small and numerous stomata, which allowed higher carbon assimilation rates but also increased water leaks, with negative impacts on leaf survival under drought. Variation in cuticle structural properties was not linked to gleaf-res . Our results therefore suggest the existence of a trade-off between carbon assimilation efficiency and dehydration tolerance at foliar level.
Collapse
Affiliation(s)
- Renan Machado
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - Lucas Loram-Lourenço
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - Fernanda Santos Farnese
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - Rauander Douglas Ferreira Barros Alves
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - Letícia Ferreira de Sousa
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - Sebastião Carvalho Vasconcelos Filho
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| | - José M Torres-Ruiz
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Paulo Eduardo Menezes-Silva
- Laboratory of Plant Physiology, Department of Biology, Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde, 75901-970, Brazil
| |
Collapse
|
62
|
Wu J, Shi Z, Liu S, Centritto M, Cao X, Zhang M, Zhao G. Photosynthetic capacity of male and female Hippophae rhamnoides plants along an elevation gradient in eastern Qinghai-Tibetan Plateau, China. TREE PHYSIOLOGY 2021; 41:76-88. [PMID: 32785643 DOI: 10.1093/treephys/tpaa105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Elevational variations in the growing environment and sex differences in individuals drive the diversification of photosynthetic capacity of plants. However, photosynthetic response of dioecious plants to elevation gradients and the mechanisms that cause these responses are poorly understood. We measured foliar gas exchange, chlorophyll fluorescence and nitrogen allocations of male and female Seabuckthorn (Hippophae rhamnoides L.) at the elevation of 1900-3700 m above sea level (a.s.l.) on the eastern Qinghai-Tibetan Plateau, China. Male and female plants showed increased leaf photosynthetic capacity at higher elevation generally with no sex-specific difference. Photosynthetic photon flux density-saturated photosynthesis (Asat) was limited mostly by diffusional components (77 ± 1%), whereas biochemical components contributed minor limitations (22 ± 1%). Mesophyll conductance (gm) played an essential role in Asat variation, accounting for 40 ± 2% of the total photosynthetic limitations and had a significant positive correlation with Asat. Leaf nitrogen allocations to Rubisco (PR) and bioenergetics (PB) in the photosynthetic apparatus were major drivers for variations in photosynthetic nitrogen-use efficiency. The increase of these resource uptake capacities enables H. rhamnoides to maintain a high level of carbon assimilation and function efficiently to cope with the harsh conditions and shorter growing season at higher elevation.
Collapse
Affiliation(s)
- Jiamei Wu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Guangdong Zhao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
63
|
Roig-Oliver M, Bresta P, Nadal M, Liakopoulos G, Nikolopoulos D, Karabourniotis G, Bota J, Flexas J. Cell wall composition and thickness affect mesophyll conductance to CO2 diffusion in Helianthus annuus under water deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7198-7209. [PMID: 32905592 DOI: 10.1093/jxb/eraa413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Water deprivation affects photosynthesis, leaf anatomy, and cell wall composition. Although the former effects have been widely studied, little is known regarding those changes in cell wall major (cellulose, hemicelluloses, pectin, and lignin) and minor (cell wall-bound phenolics) compounds in plants acclimated to short- and long-term water deprivation and during recovery. In particular, how these cell wall changes impact anatomy and/or photosynthesis, specifically mesophyll conductance to CO2 diffusion (gm), has been scarcely studied. To induce changes in photosynthesis, cell wall composition and anatomy, Helianthus annuus plants were studied under five conditions: (i) control (i.e. without stress) (CL); (ii) long-term water deficit stress (LT); (iii) long-term water deficit stress with recovery (LT-Rec); (iv) short-term water deficit stress (ST); and (v) short-term water deficit stress with recovery (ST-Rec), resulting in a wide photosynthetic range (from 3.80 ± 1.05 μmol CO2 m-2 s-1 to 24.53 ± 0.42 μmol CO2 m-2 s-1). Short- and long-term water deprivation and recovery induced distinctive responses of the examined traits, evidencing a cell wall dynamic turnover during plants acclimation to each condition. In particular, we demonstrated for the first time how gm correlated negatively with lignin and cell wall-bound phenolics and how the (cellulose+hemicelloses)/pectin ratio was linked to cell wall thickness (Tcw) variations.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Panagiota Bresta
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Dimosthenis Nikolopoulos
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - George Karabourniotis
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
64
|
Du J, Shen T, Xiong Q, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Zhou D, He H, Zhong L, Chen X. Combined proteomics, metabolomics and physiological analyses of rice growth and grain yield with heavy nitrogen application before and after drought. BMC PLANT BIOLOGY 2020; 20:556. [PMID: 33302870 PMCID: PMC7731554 DOI: 10.1186/s12870-020-02772-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/02/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Nitrogen application can effectively mitigate the damage to crop growth and yield caused by drought. However, the efficiency of heavy nitrogen application before drought (NBD) and heavy nitrogen application after drought (NAD) to regulate rice response to drought stress remains controversial. In this study, we profiled physiology, proteomics and metabolomics in rice variety Wufengyou 286 of two nitrogen management modes (NBD and NAD) to investigate their yield formation and the mechanism of nitrogen regulation for drought resistance. RESULTS Results revealed that the yield of NBD and NAD decreased significantly when it was subjected to drought stress at the stage of young panicle differentiation, while the yield of NBD was 33.85 and 36.33% higher than that of NAD in 2017 and 2018, reaching significant levels. Under drought conditions, NBD increased chlorophyll content and net photosynthetic rate in leaves, significantly improved the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase and catalase, and decreased malondialdehyde (MDA) content compared with NAD. NBD promoted nitrogen assimilation in leaves, which was characterized by increased activities of nitrate reductase (NR) and glutamine synthetase (GS). In addition, NBD significantly increased the contents of osmotic regulatory substances such as soluble sugar, soluble protein and free proline. Gene ontology and KEGG enrichment analysis of 234 differentially expressed proteins and 518 differential metabolites showed that different nitrogen management induced strong changes in photosynthesis pathway, energy metabolism pathway, nitrogen metabolism and oxidation-reduction pathways. CONCLUSION Different nitrogen management methods have significant differences in drought resistance of rice. These results suggest that heavy nitrogen application before drought may be an important pathway to improve the yield and stress resistance of rice, and provide a new ecological perspective on nitrogen regulation in rice.
Collapse
Affiliation(s)
- Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Tianhua Shen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Qiangqiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China.
| |
Collapse
|
65
|
Xiong D, Flexas J. From one side to two sides: the effects of stomatal distribution on photosynthesis. THE NEW PHYTOLOGIST 2020; 228:1754-1766. [PMID: 32652573 DOI: 10.1111/nph.16801] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
The functions of stomata have been studied for a long time; however, a clear understanding of the influences of stomatal distribution on photosynthesis, especially the CO2 diffusion, is still unclear. Here, we investigated the stomatal morphology, distribution on leaf surfaces, vein traits and gas exchange parameters of 61 species, of which 29 were amphistomatous, spanning 32 families. Photosynthesis (A) was tightly coupled with operational stomatal conductance (gs ) and mesophyll conductance (gm ) regardless of whether phylogenetic relationships were accounted for. Although the enhancement of gs from ferns and gymnosperms to angiosperms could largely be explained by the increase in leaf vein density (VLA) and stomatal density (SD), the gs was decoupled from VLA and SD across angiosperm species. Instead, A in angiosperms was further influenced by the allocation of stomatal pores on leaf surfaces, which dramatically increased gs and gm . Moreover, the ratio of gs to anatomically based maximum gs was, on average, 0.12 across species. Our results show that the shift of stomatal pores from one leaf side to both sides played an important role in regulating CO2 diffusion via both stomata and mesophyll tissues. Modifications of stomata distribution have potential as a functional trait for photosynthesis improvement.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07121, Spain
| |
Collapse
|
66
|
Yang YJ, Hu H, Huang W. The Light Dependence of Mesophyll Conductance and Relative Limitations on Photosynthesis in Evergreen Sclerophyllous Rhododendron Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9111536. [PMID: 33182785 PMCID: PMC7697185 DOI: 10.3390/plants9111536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 06/09/2023]
Abstract
Mesophyll conductance (gm) limits CO2 diffusion from sub-stomatal internal cavities to the sites of RuBP carboxylation. However, the response of gm to light intensity remains controversial. Furthermore, little is known about the light response of relative mesophyll conductance limitation (lm) and its effect on photosynthesis. In this study, we measured chlorophyll fluorescence and gas exchange in nine evergreen sclerophyllous Rhododendron species. gm was maintained stable across light intensities from 300 to 1500 μmol photons m-2 s-1 in all these species, indicating that gm did not respond to the change in illumination in them. With an increase in light intensity, lm gradually increased, making gm the major limiting factor for area-based photosynthesis (AN) under saturating light. A strong negative relationship between lm and AN was found at 300 μmol photons m-2 s-1 but disappeared at 1500 μmol photons m-2 s-1, suggesting an important role for lm in determining AN at sub-saturating light. Furthermore, the light-dependent increase in lm led to a decrease in chloroplast CO2 concentration (Cc), inducing the gradual increase of photorespiration. A higher lm under saturating light made AN more limited by RuBP carboxylation. These results indicate that the light response of lm plays significant roles in determining Cc, photorespiration, and the rate-limiting step of AN.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| |
Collapse
|
67
|
Perera-Castro AV, Nadal M, Flexas J. What drives photosynthesis during desiccation? Mosses and other outliers from the photosynthesis-elasticity trade-off. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6460-6470. [PMID: 32686831 DOI: 10.1093/jxb/eraa328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In vascular plants, more rigid leaves have been linked to lower photosynthetic capacity, associated with low CO2 diffusion across the mesophyll, indirectly resulting in a trade-off between photosynthetic capacity (An) and bulk modulus of elasticity (ε). However, we evaluated mosses, liverworts, and Chara sp., plus some lycophytes and ferns, and found that they behaved as clear outliers of the An-ε relationship. Despite this finding, when vascular and non-vascular plants were plotted together, ε still linearly determined the cessation of net photosynthesis during desiccation both in species with stomata (either actively or hydro-passively regulated) and in species lacking stomata, and regardless of their leaf structure. The latter result challenges our current view of photosynthetic responses to desiccation and/or water stress. Structural features and hydric strategy are discussed as possible explanations for the deviation of these species from the An-ε trade-off, as well as for the general linear dependency between ε and the full cessation of An during desiccation.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
68
|
Veromann-Jürgenson LL, Brodribb TJ, Niinemets Ü, Tosens T. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4958-4971. [PMID: 32392579 DOI: 10.1093/jxb/eraa231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic efficiency of plants in different environments is controlled by stomata, hydraulics, biochemistry, and mesophyll conductance (gm). Recently, gm was demonstrated to be the key limitation of photosynthesis in gymnosperms. Values of gm across gymnosperms varied over 20-fold, but this variation was poorly explained by robust structure-bound integrated traits such as leaf dry mass per area. Understanding how the component structural traits control gm is central for identifying the determinants of variability in gm across plant functional and phylogenetic groups. Here, we investigated the structural traits responsible for gm in 65 diverse gymnosperms. Although the integrated morphological traits, shape, and anatomical characteristics varied widely across species, the distinguishing features of all gymnosperms were thick mesophyll cell walls and low chloroplast area exposed to intercellular airspace (Sc/S) compared with angiosperms. Sc/S and cell wall thickness were the fundamental traits driving variations in gm across gymnosperm species. Chloroplast thickness was the strongest limitation of gm among liquid-phase components. The variation in leaf dry mass per area was not correlated with the key ultrastructural traits determining gm. Thus, given the absence of correlating integrated easy-to-measure traits, detailed knowledge of underlying component traits controlling gm across plant taxa is necessary to understand the photosynthetic limitations across ecosystems.
Collapse
Affiliation(s)
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
69
|
Carriquí M, Nadal M, Clemente-Moreno MJ, Gago J, Miedes E, Flexas J. Cell wall composition strongly influences mesophyll conductance in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1372-1385. [PMID: 32390169 DOI: 10.1111/tpj.14806] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Cell wall thickness is widely recognized as one of the main determinants of mesophyll conductance to CO2 (gm ). However, little is known about the components that regulate effective CO2 diffusivity in the cell wall (i.e. the ratio between actual porosity and tortuosity, the other two biophysical diffusion properties of cell walls). The aim of this study was to assess, at the interspecific level, potential relationships between cell wall composition, cell wall thickness (Tcw ) and gm . Gymnosperms constitute an ideal group to deepen these relationships, as they present, on average, the thickest cell walls within spermatophytes. We characterized the foliar gas exchange, the morphoanatomical traits related with gm , the leaf fraction constituted by cell walls and three main components of primary cell walls (hemicelluloses, cellulose and pectins) in seven gymnosperm species. We found that, although the relatively low gm of gymnosperms was mainly determined by their elevated Tcw , gm was also strongly correlated with cell wall composition, which presumably sets the final effective CO2 diffusivity. The data presented here suggest that (i) differences in gm are strongly correlated to the pectins to hemicelluloses and cellulose ratio in gymnosperms, and (ii) variations in cell wall composition may modify effective CO2 diffusivity in the cell wall to compensate the negative impact of thickened walls. We speculate that higher relative pectin content allows higher gm because pectins increase cell wall hydrophilicity and CO2 molecules cross the wall dissolved in water.
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
- School of Natural Sciences, University of Tasmania (UTAS), Bag 55, Hobart, Tasmania, 7001, Australia
| | - Miquel Nadal
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - María J Clemente-Moreno
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Jorge Gago
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Madrid, 28040, Spain
| | - Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| |
Collapse
|
70
|
Zhang JY, Cun Z, Chen JW. Photosynthetic performance and photosynthesis-related gene expression coordinated in a shade-tolerant species Panax notoginseng under nitrogen regimes. BMC PLANT BIOLOGY 2020; 20:273. [PMID: 32593292 PMCID: PMC7321538 DOI: 10.1186/s12870-020-02434-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). RESULTS Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi). LN- and HN-grown individuals allocated less N to light-harvesting system (NL) and carboxylation system (NC), respectively. N surplus negatively affected the expression of genes in Car biosynthesis (GGPS, DXR, PSY, IPI and DXS). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes (FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2, RPI4, CAB and PetE were repressed in the HN-grown plants. CONCLUSIONS LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
71
|
Clemente-Moreno MJ, Omranian N, Sáez PL, Figueroa CM, Del-Saz N, Elso M, Poblete L, Orf I, Cuadros-Inostroza A, Cavieres LA, Bravo L, Fernie AR, Ribas-Carbó M, Flexas J, Nikoloski Z, Brotman Y, Gago J. Low-temperature tolerance of the Antarctic species Deschampsia antarctica: A complex metabolic response associated with nutrient remobilization. PLANT, CELL & ENVIRONMENT 2020; 43:1376-1393. [PMID: 32012308 DOI: 10.1111/pce.13737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The species Deschampsia antarctica (DA) is one of the only two native vascular species that live in Antarctica. We performed ecophysiological, biochemical, and metabolomic studies to investigate the responses of DA to low temperature. In parallel, we assessed the responses in a non-Antarctic reference species (Triticum aestivum [TA]) from the same family (Poaceae). At low temperature (4°C), both species showed lower photosynthetic rates (reductions were 70% and 80% for DA and TA, respectively) and symptoms of oxidative stress but opposite responses of antioxidant enzymes (peroxidases and catalase). We employed fused least absolute shrinkage and selection operator statistical modelling to associate the species-dependent physiological and antioxidant responses to primary metabolism. Model results for DA indicated associations with osmoprotection, cell wall remodelling, membrane stabilization, and antioxidant secondary metabolism (synthesis of flavonols and phenylpropanoids), coordinated with nutrient mobilization from source to sink tissues (confirmed by elemental analysis), which were not observed in TA. The metabolic behaviour of DA, with significant changes in particular metabolites, was compared with a newly compiled multispecies dataset showing a general accumulation of metabolites in response to low temperatures. Altogether, the responses displayed by DA suggest a compromise between catabolism and maintenance of leaf functionality.
Collapse
Affiliation(s)
- María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain
| | - Nooshin Omranian
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Patricia L Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | | | - Néstor Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mhartyn Elso
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Leticia Poblete
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción and Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - León Bravo
- Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain
| |
Collapse
|
72
|
Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 2020; 48:429-439. [DOI: 10.1042/bst20190312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.
Collapse
|
73
|
Brodribb TJ, Carriquí M, Delzon S, McAdam SAM, Holbrook NM. Advanced vascular function discovered in a widespread moss. NATURE PLANTS 2020; 6:273-279. [PMID: 32170283 DOI: 10.1038/s41477-020-0602-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/22/2020] [Indexed: 05/13/2023]
Abstract
The evolution of terrestrial plants capable of growing upwards into the dry atmosphere profoundly transformed the Earth. A transition from small, 'non-vascular' bryophytes to arborescent vascular plants during the Devonian period is partially attributed to the evolutionary innovation of an internal vascular system capable of functioning under the substantial water tension associated with vascular water transport. Here, we show that vascular function in one of the most widespread living bryophytes (Polytrichum commune) exhibits strong functional parallels with the vascular systems of higher plants. These parallels include vascular conduits in Polytrichum that resist buckling while transporting water under tension, and leaves capable of regulating transpiration, permitting photosynthetic gas exchange without cavitation inside the vascular system. The advanced vascular function discovered in this tallest bryophyte family contrasts with the highly inefficient water use found in their leaves, emphasizing the importance of stomatal evolution enabling photosynthesis far above the soil surface.
Collapse
Affiliation(s)
- T J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.
| | - M Carriquí
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de la Economía del Agua, Palma, Spain
| | - S Delzon
- Université Bordeaux, BIOGECO, INRAE, Pessac, France
| | - S A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - N M Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
74
|
Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazaola JI, Gago J. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:979-1000. [PMID: 31953876 DOI: 10.1111/tpj.14694] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Carlos M Figueroa
- UNL, CONICET, FBCB, Instituto de Agrobiotecnología del Litoral, 3000, Santa Fe, Argentina
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| |
Collapse
|
75
|
Lundgren MR, Fleming AJ. Cellular perspectives for improving mesophyll conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:845-857. [PMID: 31854030 PMCID: PMC7065256 DOI: 10.1111/tpj.14656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
After entering the leaf, CO2 faces an intricate pathway to the site of photosynthetic fixation embedded within the chloroplasts. The efficiency of CO2 flux is hindered by a number of structural and biochemical barriers which, together, define the ease of flow of the gas within the leaf, termed mesophyll conductance. Previous authors have identified the key elements of this pathway, raising the prospect of engineering the system to improve CO2 flux and, thus, to increase leaf photosynthetic efficiency. In this review, we provide a perspective on the potential for improving the individual elements that contribute to this complex parameter. We lay particular emphasis on generation of the cellular architecture of the leaf which sets the initial boundaries of a number of mesophyll conductance parameters, incorporating an overview of the molecular transport processes which have been proposed as major facilitators of CO2 flux across structural boundaries along the pathway. The review highlights the research areas where future effort might be invested to increase our fundamental understanding of mesophyll conductance and leaf function and, consequently, to enable translation of these findings to improve the efficiency of crop photosynthesis.
Collapse
Affiliation(s)
| | - Andrew J. Fleming
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
76
|
Cousins AB, Mullendore DL, Sonawane BV. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:816-830. [PMID: 31960507 DOI: 10.1111/tpj.14664] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/19/2019] [Indexed: 05/24/2023]
Abstract
The conductance of carbon dioxide (CO2 ) from the substomatal cavities to the initial sites of CO2 fixation (gm ) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm , (iii) the technical limitation of estimating gm , which cannot be directly measured, and (iv) how gm responds to long- and short-term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two-resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three-dimensional (3-D) reaction-diffusion models and 3-D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm . Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.
Collapse
Affiliation(s)
- Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Daniel L Mullendore
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Balasaheb V Sonawane
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
77
|
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:964-978. [PMID: 31833133 DOI: 10.1111/tpj.14651] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Photosynthesis is the basis of all life on Earth. Surprisingly, until very recently, data on photosynthesis, photosynthetic efficiencies, and photosynthesis limitations in terrestrial land plants other than spermatophytes were very scarce. Here we provide an updated data compilation showing that maximum photosynthesis rates (expressed either on an area or dry mass basis) progressively scale along the land plant's phylogeny, from lowest values in bryophytes to largest in angiosperms. Unexpectedly, both photosynthetic water (WUE) and nitrogen (PNUE) use efficiencies also scale positively through the phylogeny, for which it has been commonly reported that these two efficiencies tend to trade-off between them when comparing different genotypes or a single species subject to different environmental conditions. After providing experimental evidence that these observed trends are mostly due to an increased mesophyll conductance to CO2 - associated with specific anatomical changes - along the phylogeny, we discuss how these findings on a large phylogenetic scale can provide useful information to address potential photosynthetic improvements in crops in the near future.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
- School of Biological Sciences, University of Tasmania, Private Bag 51, 7001, Hobart, TAS, Australia
| |
Collapse
|
78
|
Lin D, Yang S, Dou P, Wang H, Wang F, Qian S, Yang G, Zhao L, Yang Y, Fanin N. A plant economics spectrum of litter decomposition among coexisting fern species in a sub-tropical forest. ANNALS OF BOTANY 2020; 125:145-155. [PMID: 31633171 PMCID: PMC7080221 DOI: 10.1093/aob/mcz166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/17/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The plant economics spectrum theory provides a useful framework to examine plant strategies by integrating the co-ordination of plant functional traits along a resource acquisition-conservation trade-off axis. Empirical evidence for this theory has been widely observed for seed plants (Spermatophyta). However, whether this theory can be applied to ferns (Pteridophyta), a ubiquitous and ancient group of vascular plants, has rarely been evaluated so far. METHODS We measured 11 pairs of plant functional traits on leaves and fine roots (diameter <2 mm) on 12 coexisting fern species in a sub-tropical forest. Litterbags of leaves and roots were placed in situ and exposed for 586 d to measure decomposition rates. The variation of traits across species and the co-ordination among traits within and between plant organs were analysed. Finally, the influence of the traits on decomposition rates were explored. KEY RESULTS Most leaf and root traits displayed high cross-species variation, and were aligned along a major resource acquisition-conservation trade-off axis. Many fern traits co-varied between leaves and fine roots, suggesting co-ordinated responses between above- and below-ground organs. Decomposition rates of leaves were significantly higher than those of fine roots, but they were significantly and positively correlated. Finally, our results highlight that the decomposition of both leaves and roots was relatively well predicted by the leaf and root economics spectra. CONCLUSIONS Our results support the existence of an acquisition-conservation trade-off axis within ferns and indicate that traits have important 'afterlife' effects on fern litter decomposition. We conclude that the plant economics spectrum theory that is commonly observed across seed plants can be applied to ferns species, thereby extending the generality of this theory to this ancient plant lineage in our study site. Our study further suggests that the evolutionary and ecological basis for the relationships among key economics traits appears to be similar between ferns and seed plants. Future studies involving larger data sets will be required to confirm these findings across different biomes at larger spatial scales.
Collapse
Affiliation(s)
- Dunmei Lin
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Shufang Yang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Pengpeng Dou
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Hongjuan Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Fang Wang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Guangrong Yang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Liang Zhao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Nicolas Fanin
- Interaction Soil Plant Atmosphere (ISPA), UMR 1391, INRA-Bordeaux Sciences Agro, 71 avenue Edouard Bourlaux, 33882 Villenave-d’Ornon cedex, France
| |
Collapse
|
79
|
Kübarsepp L, Laanisto L, Niinemets Ü, Talts E, Tosens T. Are stomata in ferns and allies sluggish? Stomatal responses to CO 2 , humidity and light and their scaling with size and density. THE NEW PHYTOLOGIST 2020; 225:183-195. [PMID: 31479517 DOI: 10.1111/nph.16159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Fast stomatal reactions enable plants to successfully cope with a constantly changing environment yet there is an ongoing debate on the stomatal regulation mechanisms in basal plant groups. We measured stomatal morphological parameters in 29 fern and allied species from temperate to tropical biomes and two outgroup angiosperm species. Stomatal dynamic responses to environmental drivers were measured in 16 ferns and the two angiosperms using a gas-exchange system. Principal components analyses were used to further reveal the structure-function relationships in stomata. We show a > 10-fold variation for stomatal opening delays and 20-fold variation for stomatal closing delays in ferns. Across species, stomatal responses to vapor pressure deficit (VPD) were the fastest, while light and [CO2 ] responses were slower. In most cases the outgroup species' reaction speeds to changes in environmental variables were similar to those of ferns. Correlations between stomatal response rate and size were apparent for stomatal opening in light and low [CO2 ] while not evident for closing reactions and changes in VPD. No correlations between stomatal density and response speed were observed. Together, this study demonstrates different mechanisms controlling stomatal reactions in ferns at different environmental stimuli, which should be considered in future studies relating stomatal morphology and function.
Collapse
Affiliation(s)
- Liisa Kübarsepp
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| |
Collapse
|
80
|
Xie K, Lu Z, Pan Y, Gao L, Hu P, Wang M, Guo S. Leaf photosynthesis is mediated by the coordination of nitrogen and potassium: The importance of anatomical-determined mesophyll conductance to CO 2 and carboxylation capacity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110267. [PMID: 31779911 DOI: 10.1016/j.plantsci.2019.110267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 05/28/2023]
Abstract
Both nitrogen (N) and potassium (K) have been widely studied in maintaining efficient photosynthesis and plant growth. However, the mechanisms underlying the photosynthetic response to their interaction remain unclear. This study assessed the effects of N and K supply on photosynthetic limitations and the corresponding changes in anatomical structures in leaves of rice (Oryza sativa L.) plants, grown hydroponically under different levels of N and K in a greenhouse. Results revealed that a suitable leaf N/K ratio (2.99-3.10) maintain a high rate of photosynthesis (A). The A under N and/or K deficiency was primarily limited by mesophyll conductance (gm) and RuBP carboxylation in biochemical processes. The decline of gm in N- or K-starved leaves was mostly resulted from low surface area of chloroplasts exposed to intercellular airspaces (Sc) and high mesophyll cell wall thickness. Synergistic effects of N and K on gm were reflected in leaf anatomical structure, especially their coordinated roles in enhancing Sc. The enhanced photosynthesis in plants with coordinated supply of N and K was caused by the balance of RuBP carboxylation and regeneration. These results highlight the synergistic effect of N and K on leaf photosynthesis, which are mainly reflected in facilitating anatomical-determined gm and carboxylation capacity.
Collapse
Affiliation(s)
- Kailiu Xie
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yonghui Pan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Limin Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ping Hu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
81
|
Clemente-Moreno MJ, Omranian N, Sáez P, Figueroa CM, Del-Saz N, Elso M, Poblete L, Orf I, Cuadros-Inostroza A, Cavieres L, Bravo L, Fernie A, Ribas-Carbó M, Flexas J, Nikoloski Z, Brotman Y, Gago J. Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis. THE NEW PHYTOLOGIST 2020; 225:754-768. [PMID: 31489634 DOI: 10.1111/nph.16167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/22/2019] [Indexed: 05/28/2023]
Abstract
Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23°C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 μmol CO2 m-2 s-1 ) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.
Collapse
Affiliation(s)
- María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain
| | - Nooshin Omranian
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Patricia Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile
| | - Carlos María Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000, Santa Fe, Argentina
| | - Néstor Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
| | - Mhartyn Elso
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile
| | - Leticia Poblete
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | | | - Lohengrin Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
| | - León Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Cs. Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Alisdair Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Golm, Germany
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), 4000, Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
82
|
Roig-Oliver M, Nadal M, Clemente-Moreno MJ, Bota J, Flexas J. Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153084. [PMID: 31812907 DOI: 10.1016/j.jplph.2019.153084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Environmental conditions determine plants performance as they shape - among other key factors - leaf features and physiology. However, little is known regarding to the changes occurring in leaf cell wall composition during the acclimation to an environmental stress and, specially, if these changes have an impact on other leaf physiology aspects. In order to induce changes in photosynthesis, leaf water relations and cell wall main components (i.e., cellulose, hemicelluloses and pectins) and see how they co-vary, Vitis vinifera cv. Grenache was tested under four different conditions: (i) non-stress conditions (i.e., control, with high summer temperature and irradiance), (ii) growth chamber conditions, (iii) growth chamber under water stress and (iv) cold growth chamber. Plants developed in growth chambers decreased net CO2 assimilation (AN) and mesophyll conductance (gm) compared to control. Although cold did not change the bulk modulus of elasticity (ε), it decreased in growth chamber conditions and water stress. Control treatment showed the highest values for photosynthetic parameters and ε as well as for leaf structural traits such as leaf mass area (LMA) and leaf density (LD). Whereas cellulose content correlated with photosynthetic parameters, particularly AN and gm, pectins and the amount of alcohol insoluble residue (AIR) - an approximation of the isolated cell wall fraction - correlated with leaf water parameters, specifically, ε. Although preliminary, our results suggest that cell wall modifications due to environmental acclimations can play a significant role in leaf physiology by affecting distinctly photosynthesis and water relations in a manner that might depend on environmental conditions.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| |
Collapse
|
83
|
Pathare VS, Koteyeva N, Cousins AB. Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C 4 grasses. THE NEW PHYTOLOGIST 2020; 225:169-182. [PMID: 31400232 DOI: 10.1111/nph.16106] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/01/2019] [Indexed: 05/21/2023]
Abstract
Mesophyll conductance (gm ) is the diffusion of CO2 from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3 species, gm is influenced by diverse leaf structural and anatomical traits; however, little is known about traits affecting gm in C4 species. To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimate gm and microscopy techniques to measure leaf structural and anatomical traits potentially related to gm in 18 C4 grasses. In this study, gm scaled positively with photosynthesis and intrinsic water-use efficiency (TEi ), but not with stomatal conductance. Also, gm was not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada ), stomatal ratio (SR), mesophyll surface area exposed to IAS (Smes ) and leaf thickness. However, gm was not related to abaxial stomatal densities (SDaba ) and mesophyll cell wall thickness (TCW ). Our study suggests that greater SDada and SR increased gm by increasing Smes and creating additional parallel pathways for CO2 diffusion inside mesophyll cells. Thus, SDada , SR and Smes are important determinants of C4 -gm and could be the target traits selected or modified for achieving greater gm and TEi in C4 species.
Collapse
Affiliation(s)
- Varsha S Pathare
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Nuria Koteyeva
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
- Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of the Russian Academy of Sciences, 197376, St Petersburg, Russia
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| |
Collapse
|
84
|
Zhu K, Yuan F, Wang A, Yang H, Guan D, Jin C, Zhang H, Zhang Y, Wu J. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:22-34. [PMID: 31550610 DOI: 10.1016/j.plaphy.2019.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The recoveries of mesophyll (gm) and stomatal conductance to CO2 (gsc) after soil rewatering have received considerable attention in recent years, but the recovery mechanisms involving leaf anatomy and physiological activities are poorly understood. Moreover, it is also unclear whether leaf gas-phase conductance (gias) or liquid-phase conductance (gliq) is the main factor promoting gm recovery. By simultaneously using gas exchange and chlorophyll fluorescence, we measured the recoveries of gm and gsc in saplings of Manchurian ash (Fraxinus mandshurica Rupr.) and Mongolian oak (Quercus mongolica Fish. ex Ledeb) exposed to two initial water stress (medium water stress, MW, and severe water stress, SW) and following rewatering. Furthermore, leaf anatomical characteristics and the activities of aquaporin (AQP) and carbonic anhydrase (CA) were measured to explain the mechanisms of gm and gsc recoveries. The results showed that (i) both gm and gsc were partly recovered after rewatering, and the recoveries decreased with initial water stress in both species. (ii) The gm recovery was much greater in Mongolian oak than in Manchurian ash, while the gsc recovery was much greater in Manchurian ash. Consequently, the photosynthesis recovery in Manchurian ash was mostly affected by gsc recovery, while that in Mongolian oak was mostly affected by gm recovery. (iii) The gm recovery mainly resulted from the great increase in leaf gliq after rewatering rather than that in gias, as gias had a negative effect on gm recovery. The stomatal opening status improved after rewatering, as the stomatal pore size (SS) increased, greatly promoting gsc recovery. In addition, the activities of both AQP and CA increased after rewatering, which improved CO2 transmembrane transports and greatly promoted gm and gsc recoveries.
Collapse
Affiliation(s)
- Kai Zhu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Hong Yang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushu Zhang
- The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
85
|
Sasaki K, Ida Y, Kitajima S, Kawazu T, Hibino T, Hanba YT. Overexpressing the HD-Zip class II transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus. Sci Rep 2019. [PMID: 31575941 DOI: 10.1038/s41598-019-50610-50615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Alteration in the leaf mesophyll anatomy by genetic modification is potentially a promising tool for improving the physiological functions of trees by improving leaf photosynthesis. Homeodomain leucine zipper (HD-Zip) transcription factors are candidates for anatomical alterations of leaves through modification of cell multiplication, differentiation, and expansion. Full-length cDNA encoding a Eucalyptus camaldulensis HD-Zip class II transcription factor (EcHB1) was over-expressed in vivo in the hybrid Eucalyptus GUT5 generated from Eucalyptus grandis and Eucalyptus urophylla. Overexpression of EcHB1 induced significant modification in the mesophyll anatomy of Eucalyptus with enhancements in the number of cells and chloroplasts on a leaf-area basis. The leaf-area-based photosynthesis of Eucalyptus was improved in the EcHB1-overexpression lines, which was due to both enhanced CO2 diffusion into chloroplasts and increased photosynthetic biochemical functions through increased number of chloroplasts per unit leaf area. Additionally, overexpression of EcHB1 suppressed defoliation and thus improved the growth of Eucalyptus trees under drought stress, which was a result of reduced water loss from trees due to the reduction in leaf area with no changes in stomatal morphology. These results gave us new insights into the role of the HD-Zip II gene.
Collapse
Affiliation(s)
- Keisuke Sasaki
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuuki Ida
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sakihito Kitajima
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tetsu Kawazu
- Forestry Research Institute, Oji Holdings Corporation, 24-9 Nobono-cho, Kameyama, Mie, 519-0212, Japan
- K-Plantech, 3085-15 Kobe, Tsu, Mie, 514-0065, Japan
| | - Takashi Hibino
- Forestry Research Institute, Oji Holdings Corporation, 24-9 Nobono-cho, Kameyama, Mie, 519-0212, Japan
- Pine Chemicals Development, R&D Center, R&D Company, HARIMA CHEMICALS INC., 5-9-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yuko T Hanba
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
86
|
Dehigaspitiya P, Milham P, Ash GJ, Arun-Chinnappa K, Gamage D, Martin A, Nagasaka S, Seneweera S. Exploring natural variation of photosynthesis in a site-specific manner: evolution, progress, and prospects. PLANTA 2019; 250:1033-1050. [PMID: 31254100 DOI: 10.1007/s00425-019-03223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Site-specific changes of photosynthesis, a relatively new concept, can be used to improve the productivity of critical food crops to mitigate the foreseen food crisis. Global food security is threatened by an increasing population and the effects of climate change. Large yield improvements were achieved in major cereal crops between the 1950s and 1980s through the Green Revolution. However, we are currently experiencing a significant decline in yield progress. Of the many approaches to improved cereal yields, exploitation of the mode of photosynthesis has been intensely studied. Even though the C4 pathway is considered the most efficient, mainly because of the carbon concentrating mechanisms around the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, which minimize photorespiration, much is still unknown about the specific gene regulation of this mode of photosynthesis. Most of the critical cereal crops, including wheat and rice, are categorized as C3 plants based on the photosynthesis of major photosynthetic organs. However, recent findings raise the possibility of different modes of photosynthesis occurring at different sites in the same plant and/or in plants grown in different habitats. That is, it seems possible that efficient photosynthetic traits may be expressed in specific organs, even though the major photosynthetic pathway is C3. Knowledge of site-specific differences in photosynthesis, coupled with site-specific regulation of gene expression, may therefore hold a potential to enhance the yields of economically important C3 crops.
Collapse
Affiliation(s)
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, LB 1797, Penrith, NSW, 2753, Australia
| | - Gavin J Ash
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Dananjali Gamage
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Seiji Nagasaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- National Institute of Fundamental Studies, Hanthana Road, Kandy, 20000, Central, Sri Lanka.
| |
Collapse
|
87
|
Sasaki K, Ida Y, Kitajima S, Kawazu T, Hibino T, Hanba YT. Overexpressing the HD-Zip class II transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus. Sci Rep 2019; 9:14121. [PMID: 31575941 PMCID: PMC6773882 DOI: 10.1038/s41598-019-50610-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Alteration in the leaf mesophyll anatomy by genetic modification is potentially a promising tool for improving the physiological functions of trees by improving leaf photosynthesis. Homeodomain leucine zipper (HD-Zip) transcription factors are candidates for anatomical alterations of leaves through modification of cell multiplication, differentiation, and expansion. Full-length cDNA encoding a Eucalyptus camaldulensis HD-Zip class II transcription factor (EcHB1) was over-expressed in vivo in the hybrid Eucalyptus GUT5 generated from Eucalyptus grandis and Eucalyptus urophylla. Overexpression of EcHB1 induced significant modification in the mesophyll anatomy of Eucalyptus with enhancements in the number of cells and chloroplasts on a leaf-area basis. The leaf-area-based photosynthesis of Eucalyptus was improved in the EcHB1-overexpression lines, which was due to both enhanced CO2 diffusion into chloroplasts and increased photosynthetic biochemical functions through increased number of chloroplasts per unit leaf area. Additionally, overexpression of EcHB1 suppressed defoliation and thus improved the growth of Eucalyptus trees under drought stress, which was a result of reduced water loss from trees due to the reduction in leaf area with no changes in stomatal morphology. These results gave us new insights into the role of the HD-Zip II gene.
Collapse
Affiliation(s)
- Keisuke Sasaki
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuuki Ida
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sakihito Kitajima
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tetsu Kawazu
- Forestry Research Institute, Oji Holdings Corporation, 24-9 Nobono-cho, Kameyama, Mie, 519-0212, Japan.,K-Plantech, 3085-15 Kobe, Tsu, Mie, 514-0065, Japan
| | - Takashi Hibino
- Forestry Research Institute, Oji Holdings Corporation, 24-9 Nobono-cho, Kameyama, Mie, 519-0212, Japan.,Pine Chemicals Development, R&D Center, R&D Company, HARIMA CHEMICALS INC., 5-9-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yuko T Hanba
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
88
|
Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. Photosynthesis Optimized across Land Plant Phylogeny. TRENDS IN PLANT SCIENCE 2019; 24:947-958. [PMID: 31362860 DOI: 10.1016/j.tplants.2019.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Until recently, few data were available on photosynthesis and its underlying mechanistically limiting factors in plants, other than crops and model species. Currently, a new large pool of data from extant representatives of basal terrestrial plant groups is emerging, allowing exploration of how photosynthetic capacity (Amax) increases from minimum values in bryophytes to maximum in tracheophytes, which is associated to an optimization of the balance between its limiting factors. From predominant mesophyll conductance limitation (lm) in bryophytes and lycophytes (fern allies) to stomatal conductance (ls) and lm colimitation in pteridophytes (ferns) and gymnosperms, a balanced colimitation by the three limitations is finally reached in angiosperms. We discuss the implications of this new knowledge for future biotechnological attempts to improve crop photosynthesis.
Collapse
Affiliation(s)
- Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Rafael Eduardo Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Alisdair Robert Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| |
Collapse
|
89
|
Clemente-Moreno MJ, Gago J, Díaz-Vivancos P, Bernal A, Miedes E, Bresta P, Liakopoulos G, Fernie AR, Hernández JA, Flexas J. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1031-1046. [PMID: 31215089 DOI: 10.1111/tpj.14437] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 05/28/2023]
Abstract
Mesophyll conductance (gm ), the diffusion of CO2 from substomatal cavities to the carboxylation sites in the chloroplasts, is a highly complex trait driving photosynthesis (net CO2 assimilation, AN ). However, little is known concerning the mechanisms by which it is dynamically regulated. The apoplast is considered as a 'key information bridge' between the environment and cells. Interestingly, most of the environmental constraints affecting gm also cause apoplastic responses, cell wall (CW) alterations and metabolic rearrangements. Since CW thickness is a key determinant of gm , we hypothesize that other changes in this cellular compartiment should also influence gm . We study the relationship between the antioxidant apoplastic system and CW metabolism and the gm responses in tobacco plants (Nicotiana sylvestris L.) under two abiotic stresses (drought and salinity), combining in vivo gas-exchange measurements with analyses of antioxidant activities, CW composition and primary metabolism. Stress treatments imposed substantial reductions in AN (58-54%) and gm (59%), accompanied by a strong antioxidant enzymatic response at the apoplastic and symplastic levels. Interestingly, apoplastic but not symplastic peroxidases were positively related to gm . Leaf anatomy remained mostly stable; however, the stress treatments significantly affected the CW composition, specifically pectins, which showed significant relationships with AN and gm . The treatments additionally promoted a differential primary metabolic response, and specific CW-related metabolites including galactose, glucosamine and hydroxycinnamate showed exclusive relationships with gm independent of the stress. These results suggest that gm responses can be attributed to specific changes in the apoplastic antioxidant system and CW metabolism, opening up more possibilities for improving photosynthesis using breeding/biotechnological strategies.
Collapse
Affiliation(s)
- María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7,5, Palma de Mallorca, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7,5, Palma de Mallorca, Spain
| | - Pedro Díaz-Vivancos
- Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, E-30100, Murcia, Spain
| | - Agustina Bernal
- Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, E-30100, Murcia, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Campus Ciudad Universitaria, 28040, Pozuelo de Alarcón, Madrid, Spain
| | - Panagiota Bresta
- Laboratory of Plant Physiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - José Antonio Hernández
- Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, E-30100, Murcia, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7,5, Palma de Mallorca, Spain
| |
Collapse
|
90
|
Han J, Lei Z, Zhang Y, Yi X, Zhang W, Zhang Y. Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. PHYSIOLOGIA PLANTARUM 2019; 166:873-887. [PMID: 30264467 DOI: 10.1111/ppl.12845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/26/2023]
Abstract
Mesophyll conductance (gm ) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well-watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN ) under drought conditions was related to a decline in gm and in stomatal conductance (gs ). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm , its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc /S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw ). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.
Collapse
Affiliation(s)
- Jimei Han
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Zhangying Lei
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yujie Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Xiaoping Yi
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
91
|
Puglielli G. Beyond the Concept of Winter-Summer Leaves of Mediterranean Seasonal Dimorphic Species. FRONTIERS IN PLANT SCIENCE 2019; 10:696. [PMID: 31214218 PMCID: PMC6554432 DOI: 10.3389/fpls.2019.00696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
|
92
|
Carriquí M, Roig-Oliver M, Brodribb TJ, Coopman R, Gill W, Mark K, Niinemets Ü, Perera-Castro AV, Ribas-Carbó M, Sack L, Tosens T, Waite M, Flexas J. Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. THE NEW PHYTOLOGIST 2019; 222:1256-1270. [PMID: 30623444 DOI: 10.1111/nph.15675] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/22/2018] [Indexed: 05/08/2023]
Abstract
Photosynthesis in bryophytes and lycophytes has received less attention than terrestrial plant groups. In particular, few studies have addressed the nonstomatal diffusion conductance to CO2 gnsd of these plant groups. Their lower photosynthetic rate per leaf mass area at any given nitrogen concentration compared with vascular plants suggested a stronger limitation by CO2 diffusion. We hypothesized that bryophyte and lycophyte photosynthesis is largely limited by low gnsd . Here, we studied CO2 diffusion inside the photosynthetic tissues and its relationships with photosynthesis and anatomical parameters in bryophyte and lycophyte species in Antarctica, Australia, Estonia, Hawaii and Spain. On average, lycophytes and, specially, bryophytes had the lowest photosynthetic rates and nonstomatal diffusion conductance reported for terrestrial plants. These low values are related to their very thick cell walls and their low exposure of chloroplasts to cell perimeter. We conclude that the reason why bryophytes lie at the lower end of the leaf economics spectrum is their strong nonstomatal diffusion conductance limitation to photosynthesis, which is driven by their specific anatomical characteristics.
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Rafael Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Warwick Gill
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Kohte 6, 10130, Tallinn, Estonia
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Mashuri Waite
- Center for Regional System Analysis, Planning, and Development, Bogor Agricultural University, Bogor, 16153, Indonesia
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| |
Collapse
|
93
|
Knauer J, Zaehle S, De Kauwe MG, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C. Effects of mesophyll conductance on vegetation responses to elevated CO 2 concentrations in a land surface model. GLOBAL CHANGE BIOLOGY 2019; 25:1820-1838. [PMID: 30809890 PMCID: PMC6487956 DOI: 10.1111/gcb.14604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/26/2019] [Indexed: 05/13/2023]
Abstract
Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An - Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm -explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (-2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.
Collapse
Affiliation(s)
- Jürgen Knauer
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
- International Max Planck Research School for Global Biogeochemical Cycles (IMPRS gBGC)JenaGermany
| | - Sönke Zaehle
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
- Michael‐Stifel Center Jena for Data‐Driven and Simulation ScienceJenaGermany
| | - Martin G. De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research CentreUniversity of New South WalesSydneyNSWAustralia
| | - Nur H. A. Bahar
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant SciencesResearch School of Biology, Australian National UniversityCanberraACTAustralia
| | - John R. Evans
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant SciencesResearch School of Biology, Australian National UniversityCanberraACTAustralia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNSWAustralia
| | - Markus Reichstein
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
- Michael‐Stifel Center Jena for Data‐Driven and Simulation ScienceJenaGermany
| | - Christiane Werner
- Department of Ecosystem PhysiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
94
|
Deans RM, Brodribb TJ, Busch FA, Farquhar GD. Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. THE NEW PHYTOLOGIST 2019; 222:382-395. [PMID: 30372523 DOI: 10.1111/nph.15572] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/22/2018] [Indexed: 05/07/2023]
Abstract
More efficient gas exchange strategies under dynamic light environments have been hypothesised to contribute to the dominance of angiosperms in the vascular plant flora. However, we still lack a clear understanding of how stomatal dynamics affect photosynthetic dynamics and whether differences exist between lineages. Stomatal and photosynthetic dynamics following changes in irradiance were studied in 15 species, encompassing ferns, gymnosperms and angiosperms. We determined the effect of stomatal speed on dynamic photosynthesis and water loss. Moreover, we assessed whether dynamic behaviour followed evolutionary lineage divisions, or whether ecological adaptation to maximise light fleck use could describe dynamic behaviour. We found that species with fast stomatal opening, such as ferns, forgo less photosynthesis during photosynthetic induction. By contrast, there was no relationship between stomatal closure speed and the water wasted by transiently more-open stomata, because species with higher rates of gas exchange also showed faster stomatal closure. Shade-adapted species possessed fast-opening but slow-closing stomata, consistent with ecological adaptation to maximise light fleck use. Our results suggest dynamic behaviour follows adaptive ecological trends more strongly than evolutionary ones, but angiosperms may benefit from relatively faster photosynthetic induction by adopting a less conservative water-use strategy.
Collapse
Affiliation(s)
- Ross M Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Florian A Busch
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
95
|
Gimeno TE, Saavedra N, Ogée J, Medlyn BE, Wingate L. A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1639-1651. [PMID: 30715494 PMCID: PMC6411372 DOI: 10.1093/jxb/erz020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
The primary function of stomata is to minimize plant water loss while maintaining CO2 assimilation. Stomatal water loss incurs an indirect cost to photosynthesis in the form of non-stomatal limitations (NSL) via reduced carboxylation capacity (CAP) and/or mesophyll conductance (MES). Two optimal formulations for stomatal conductance (gs) arise from the assumption of each type of NSL. In reality, both NSL could coexist, but one may prevail for a given leaf ontogenetic stage or plant functional type, depending on leaf morphology. We tested the suitability of two gs formulations (CAP versus MES) on species from six plant functional types (C4 crop, C3 grass, fern, conifer, evergreen, and deciduous angiosperm trees). MES and CAP parameters (the latter proportional to the marginal water cost to carbon gain) decreased with water availability only in deciduous angiosperm trees, while there were no clear differences between leaf ontogenetic stages. Both CAP and MES formulations fit our data in most cases, particularly under low water availability. For ferns, stomata appeared to operate optimally only when subjected to water stress. Overall, the CAP formulation provided a better fit across all species, suggesting that sub-daily stomatal responses minimize NSL by reducing carboxylation capacity predominantly, regardless of leaf morphology and ontogenetic stage.
Collapse
Affiliation(s)
- Teresa E Gimeno
- INRA, UMR ISPA, Villenave d’Ornon, France
- Basque Centre for Climate Change (BC3), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Noelia Saavedra
- INRA, UMR ISPA, Villenave d’Ornon, France
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | |
Collapse
|
96
|
Carriquí M, Douthe C, Molins A, Flexas J. Leaf anatomy does not explain apparent short-term responses of mesophyll conductance to light and CO 2 in tobacco. PHYSIOLOGIA PLANTARUM 2019; 165:604-618. [PMID: 29744895 DOI: 10.1111/ppl.12755] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Mesophyll conductance to CO2 (gm ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine gm in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of gm to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of gm in response to variations of light and CO2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO2 , the values of gm estimated by chlorophyll fluorescence decreased under high CO2 and increased at low CO2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the gm estimated by analytical models based on anatomical parameters was constant under varying light and CO2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast gm variations should be due to artefacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase).
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma, 07122, Spain
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma, 07122, Spain
| | - Arántzazu Molins
- Departament de Botànica, ICBIBE & Jardí Botànic, Facultat de Ciències Biològiques, Universitat de València, Valencia, 46100, Spain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma, 07122, Spain
| |
Collapse
|
97
|
Ye J, Jiang Y, Veromann-Jürgenson LL, Niinemets Ü. Petiole gall aphid ( Pemphigus spyrothecae) infestation of Populus × petrovskiana leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles. TREES (BERLIN, GERMANY : WEST) 2019; 33:37-51. [PMID: 31700201 PMCID: PMC6837882 DOI: 10.1007/s00468-018-1756-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Poplar spiral gall aphid (Pemphigus spyrothecae) forms galls on the petiole in poplars (Populus) and mass infestations are frequent in poplar stands, but how these parasite gall infestations can affect the leaf lamina structure, photosynthetic rate and constitutive and stress volatile emissions is unknown. We investigated how the infestation by the petiole gall aphids affects lamina photosynthetic characteristics (net assimilation rate, stomatal conductance), C and N contents, and constitutive isoprene and induced volatile emissions in Populus × petrovskiana. The dry gall mass per leaf dry mass (M g/M l) was used as a quantitative measure of the severity of gall infestation. Very high fraction of leaf biomass was invested in gall formation with M g/M l varying between 0.5-2. Over the whole range of the infestation severities, net assimilation rate per area, leaf dry mass per unit area and N content decreased with increasing the severity of infestation. In contrast, stomatal conductance, leaf dry mass per fresh mass, constitutive isoprene emissions, and induced green leaf volatile (GLV), monoterpene, sesquiterpene and benzenoid emissions increased with increasing the severity of gall infestation. The rates of induced emissions were low and these emissions were associated with methyl jasmonate release from leaf laminas. The data demonstrate that petiole gall infestations lead to major changes in leaf lamina sink-source relationships and leaf water relations, thereby significantly altering lamina photosynthesis. Modifications in stress-induced emissions likely indicated systemic signaling triggered by jasmonate transported from the petiole galls to the lamina where jasmonate elicited a cascade of volatile emission responses. Enhance isoprene emissions and induced volatile emissions can play a major role in indirect defense against other herbivores, securing the food source for the gall aphids. In conclusion, a massive infestation by petiole gall aphids can profoundly modify the foliage photosynthetic performance and volatile emission profiles in poplars.
Collapse
Affiliation(s)
- Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Corresponding author,
| | - Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
98
|
Han J, Lei Z, Flexas J, Zhang Y, Carriquí M, Zhang W, Zhang Y. Mesophyll conductance in cotton bracts: anatomically determined internal CO2 diffusion constraints on photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5433-5443. [PMID: 30124926 PMCID: PMC6255706 DOI: 10.1093/jxb/ery296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
Mesophyll conductance (gm) has been shown to affect photosynthetic capacity and thus the estimates of terrestrial carbon balance. While there have been some attempts to model gm at the leaf and larger scales, the potential contribution of gm to the photosynthesis of non-leaf green organs has not been studied. Here, we investigated the influence of gm on photosynthesis of cotton bracts and how it in turn is influenced by anatomical structures, by comparing leaf palisade and spongy mesophyll with bract tissue. Our results showed that photosynthetic capacity in bracts is much lower than in leaves, and that gm is a limiting factor for bract photosynthesis to a similar extent to stomatal conductance. Bract and the spongy tissue of leaves have lower mesophyll conductance than leaf palisade tissue due to the greater volume fraction of intercellular air spaces, smaller chloroplasts, lower surface area of mesophyll cells and chloroplasts exposed to leaf intercellular air spaces and, perhaps, lower membrane permeability. Comparing bracts with leaf spongy tissue, although bracts have a larger cell wall thickness, they have a similar gm estimated from anatomical characteristics, likely due to the cumulative compensatory effects of subtle differences in each subcellular component, especially chloroplast traits. These results provide the first evidence for anatomical constraints on gm and photosynthesis in non-leaf green organs.
Collapse
Affiliation(s)
- Jimei Han
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, P.R. China
| | - Zhangying Lei
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, P.R. China
| | - Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-Instituto de Agroecología y Economía del Agua (INAGEA), Palma, Illes Balears, Spain
| | - Yujie Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, P.R. China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-Instituto de Agroecología y Economía del Agua (INAGEA), Palma, Illes Balears, Spain
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, P.R. China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, P.R. China
| |
Collapse
|
99
|
Xiong D, Flexas J. Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade-offs. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5599-5609. [PMID: 30189099 PMCID: PMC6255696 DOI: 10.1093/jxb/ery322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 05/23/2023]
Abstract
The leaf economics spectrum (LES) is an ecophysiological concept describing the trade-offs of leaf structural and physiological traits, and has been widely investigated on multiple scales. However, the effects of the breeding process on the LES in crops, as well as the mechanisms of the trait trade-offs underlying the LES, have not been thoroughly elucidated to date. In this study, a dataset that included leaf anatomical, biochemical, and functional traits was constructed to evaluate the trait covariations and trade-offs in domesticated species, namely rice (Oryza species). The slopes and intercepts of the major bivariate correlations of the leaf traits in rice were significantly different from the global LES dataset (Glopnet), which is based on multiple non-crop species in natural ecosystems, although the general patterns were similar. The photosynthetic traits responded differently to leaf structural and biochemical changes, and mesophyll conductance was the most sensitive to leaf nitrogen (N) status. A further analysis revealed that the relative limitation of mesophyll conductance declined with leaf N content; however, the limitation of the biochemistry increased relative to leaf N content. These findings indicate that breeding selection and high-resource agricultural environments lead crops to deviate from the leaf trait covariation in wild species, and future breeding to increase the photosynthesis of rice should primarily focus on improvement of the efficiency of photosynthetic enzymes.
Collapse
Affiliation(s)
- Dongliang Xiong
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Centre for Carbon, Water and Food, University of Sydney, Brownlow Hill, New South Wales, Australia
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)–Universitat de les Illes Balears (UIB), Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
100
|
Tosens T, Laanisto L. Mesophyll conductance and accurate photosynthetic carbon gain calculations. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5315-5318. [PMID: 30476280 DOI: 10.1093/jxb/ery369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Estonia
| |
Collapse
|