51
|
Huang C, Heinlein M. Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods Mol Biol 2022; 2457:23-54. [PMID: 35349131 DOI: 10.1007/978-1-0716-2132-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
52
|
Park SY, Shimizu K, Brown J, Aoki K, Westwood JH. Mobile Host mRNAs Are Translated to Protein in the Associated Parasitic Plant Cuscuta campestris. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010093. [PMID: 35009096 PMCID: PMC8747733 DOI: 10.3390/plants11010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Cuscuta spp. are obligate parasites that connect to host vascular tissue using a haustorium. In addition to water, nutrients, and metabolites, a large number of mRNAs are bidirectionally exchanged between Cuscuta spp. and their hosts. This trans-specific movement of mRNAs raises questions about whether these molecules function in the recipient species. To address the possibility that mobile mRNAs are ultimately translated, we built upon recent studies that demonstrate a role for transfer RNA (tRNA)-like structures (TLSs) in enhancing mRNA systemic movement. C. campestris was grown on Arabidopsis that expressed a β-glucuronidase (GUS) reporter transgene either alone or in GUS-tRNA fusions. Histochemical staining revealed localization in tissue of C. campestris grown on Arabidopsis with GUS-tRNA fusions, but not in C. campestris grown on Arabidopsis with GUS alone. This corresponded with detection of GUS transcripts in Cuscuta on Arabidopsis with GUS-tRNA, but not in C. campestris on Arabidopsis with GUS alone. Similar results were obtained with Arabidopsis host plants expressing the same constructs containing an endoplasmic reticulum localization signal. In C. campestris, GUS activity was localized in the companion cells or phloem parenchyma cells adjacent to sieve tubes. We conclude that host-derived GUS mRNAs are translated in C. campestris and that the TLS fusion enhances RNA mobility in the host-parasite interactions.
Collapse
Affiliation(s)
- So-Yon Park
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.-Y.P.); (J.B.)
| | - Kohki Shimizu
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan;
| | - Jocelyn Brown
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.-Y.P.); (J.B.)
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan;
- Correspondence: (K.A.); (J.H.W.)
| | - James H. Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.-Y.P.); (J.B.)
- Correspondence: (K.A.); (J.H.W.)
| |
Collapse
|
53
|
Böhm J, Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. PLANT PHYSIOLOGY 2021; 187:2017-2031. [PMID: 35235668 PMCID: PMC8890503 DOI: 10.1093/plphys/kiab297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 05/29/2023]
Abstract
In Eukaryotes, long-distance and rapid signal transmission is required in order to be able to react fast and flexibly to external stimuli. This long-distance signal transmission cannot take place by diffusion of signal molecules from the site of perception to the target tissue, as their speed is insufficient. Therefore, for adequate stimulus transmission, plants as well as animals make use of electrical signal transmission, as this can quickly cover long distances. This update summarises the most important advances in plant electrical signal transduction with a focus on the carnivorous Venus flytrap. It highlights the different types of electrical signals, examines their underlying ion fluxes and summarises the carnivorous processes downstream of the electrical signals.
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
54
|
Zhang G, Kong G, Li Y. Long-distance communication through systemic macromolecular signaling mediates stress defense responses in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1926-1934. [PMID: 34431527 DOI: 10.1111/ppl.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Land plants have a unique vascular bundle system that ranges in length from a few centimeters to hundreds of meters. These systems integrate the various organs of the whole plant, perform material exchange between different plant tissues and mediate the transmission of signals between cells or over long distances. Grafting and parasitism can reshape the vascular tissues of different ecotypes or species and represent two important systems for studying plant systemic signaling. In recent years, with the advancement of genomics and sequencing technology, the transportation, identification, and function of systemic plant macromolecules have been extensively studied. Here, we review the current body of knowledge of the transport pathways and regulatory mechanisms of macromolecules in plants and assess systemic, long-distance signal trafficking that mediates stress responses, and plant-environment or plant-insect community interactions. Additionally, we propose several methods for identifying mobile mRNAs and proteins. Finally, we discuss the challenges facing systemic signaling research and put forth the most urgent questions that need to be answered to advance our understanding of plant systemic signaling.
Collapse
Affiliation(s)
- Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
55
|
Lezzhov AA, Morozov SY, Solovyev AG. Phloem Exit as a Possible Control Point in Selective Systemic Transport of RNA. FRONTIERS IN PLANT SCIENCE 2021; 12:739369. [PMID: 34899773 PMCID: PMC8660857 DOI: 10.3389/fpls.2021.739369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/28/2021] [Indexed: 06/01/2023]
Affiliation(s)
- Alexander A. Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Sergey Y. Morozov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Faculty of Biology, Moscow State University, Moscow, Russia
| | - Andrey G. Solovyev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Faculty of Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
56
|
De Bisschop G, Allouche D, Frezza E, Masquida B, Ponty Y, Will S, Sargueil B. Progress toward SHAPE Constrained Computational Prediction of Tertiary Interactions in RNA Structure. Noncoding RNA 2021; 7:71. [PMID: 34842779 PMCID: PMC8628965 DOI: 10.3390/ncrna7040071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.
Collapse
Affiliation(s)
- Grégoire De Bisschop
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Delphine Allouche
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
- Institut Necker-Enfants Malades (INEM), Inserm U1151, 156 rue de Vaugirard, CEDEX 15, 75015 Paris, France
| | - Elisa Frezza
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
| | - Benoît Masquida
- Université de Strasbourg, CNRS UMR7156 GMGM, 67084 Strasbourg, France;
| | - Yann Ponty
- Ecole Polytechnique, CNRS UMR 7161, LIX, 91120 Palaiseau, France; (Y.P.); (S.W.)
| | - Sebastian Will
- Ecole Polytechnique, CNRS UMR 7161, LIX, 91120 Palaiseau, France; (Y.P.); (S.W.)
| | - Bruno Sargueil
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
| |
Collapse
|
57
|
Lv X, Sun Y, Hao P, Zhang C, Tian J, Fu M, Xu Z, Wang Y, Zhang X, Xu X, Wu T, Han Z. RBP differentiation contributes to selective transmissibility of OPT3 mRNAs. PLANT PHYSIOLOGY 2021; 187:1587-1604. [PMID: 34618059 PMCID: PMC8566248 DOI: 10.1093/plphys/kiab366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.
Collapse
Affiliation(s)
- Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaqiang Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
58
|
Tolstyko EA, Chergintsev DA, Tolicheva OA, Vinogradova DS, Konevega AL, Morozov SY, Solovyev AG. RNA Binding by Plant Serpins in vitro. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1214-1224. [PMID: 34903159 DOI: 10.1134/s0006297921100059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Serpins constitute a large family of protease inhibitors with regulatory functions found in all living organisms. Most plant serpins have not been functionally characterized, with the exception of Arabidopsis thaliana AtSerpin1, an inhibitor of pro-apoptotic proteases, which is involved in the regulation of the programmed cell death induction, and Cucurbita maxima CmPS1, a phloem protein, which presumably inhibits insect digestive proteases and binds RNA. CmPS1 interacts most efficiently with highly structured RNA; in particular, it forms a specific complex with tRNA. Here, we demonstrated that AtSerpin1 also forms a complex with tRNA. Analysis of tRNA species bound by AtSerpin1 and CmPS1 in the presence of tRNA excess revealed that both proteins have no strict selectivity for individual tRNAs, suggesting specific interaction of AtSerpin1 and CmPS1 proteins with elements of the secondary/tertiary structure universal for all tRNAs. Analysis of CmPS1 binding of the microRNA precursor pre-miR390 and its mutants demonstrated that the pre-miR390 mutant with a perfect duplex in the hairpin stem lost the ability to form a discrete complex with CmPS1, whereas another variant of pre-miR390 with the native unpaired nucleotide residues in the stem retained this ability. These data indicate that specific interactions of plant serpins with structured RNA are based on the recognition of structurally unique spatial motifs formed with the participation of unpaired nucleotide residues in the RNA duplexes.
Collapse
Affiliation(s)
- Eugene A Tolstyko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga A Tolicheva
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - Dariya S Vinogradova
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.,NanoTemper Technologies Rus, Saint Petersburg, 191167, Russia
| | - Andrey L Konevega
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.,Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.,National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Sergey Y Morozov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
59
|
Wicaksono A, Dobránszki J, Teixeira da Silva JA. The term "caline" in plant developmental biology. Biol Futur 2021; 72:299-306. [PMID: 34554550 DOI: 10.1007/s42977-021-00076-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
In the 1930s, Frits Warmolt Went conducted a number of seminal studies on pea seedlings that had been germinated in the dark and assessed their growth when either the apical parts, cotyledons, or roots were cut off or grafted, to assess whether coplant growth factors assisted auxin in the development of these organs. Went assigned the term "calines" to all auxin-assisting substances, specifically rhizocaline, caulocaline, and phyllocaline in root, shoot (and axillary buds) and leaf development, respectively. Those experiments were based exclusively on growth assays, and no supplementary biochemical or physiological analyses were ever conducted, and additional proof was only provided by Went using pea or tomato. The lack of independent reproducibility by other groups, combined with the fact that the hormonal control of these developmental events in plants is now fairly well-studied event, even at the molecular level, suggests that these growth factors that Went observed 80 years ago either do not exist or are known by some other term in modern plant development. The terms related to "calines" should thus no longer be used in plant developmental biology.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Division of Biotechnology, Generasi Biologi Indonesia (Genbinesia) Foundation, Jl. Swadaya Barat No. 4, Gresik Regency, 61171, Indonesia.
| | - Judit Dobránszki
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| | - Jaime A Teixeira da Silva
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary. .,Independent Researcher, Kagawa-ken, Japan.
| |
Collapse
|
60
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis. BIOINFORMATICS (OXFORD, ENGLAND) 2021; 37:2450-2460. [PMID: 33693548 DOI: 10.1101/2020.06.15.152819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 05/27/2023]
Abstract
MOTIVATION Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. RESULTS This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model's dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. AVAILABILITY AND IMPLEMENTATION The method was developed with the R statistical software and is made available through the R package 'irg' hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva 1205, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
61
|
Khakhar A, Wang C, Swanson R, Stokke S, Rizvi F, Sarup S, Hobbs J, Voytas DF. VipariNama: RNA viral vectors to rapidly elucidate the relationship between gene expression and phenotype. PLANT PHYSIOLOGY 2021; 186:2222-2238. [PMID: 34009393 PMCID: PMC8331131 DOI: 10.1093/plphys/kiab197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Synthetic transcription factors have great promise as tools to help elucidate relationships between gene expression and phenotype by allowing tunable alterations of gene expression without genomic alterations of the loci being studied. However, the years-long timescales, high cost, and technical skill associated with plant transformation have limited their use. In this work, we developed a technology called VipariNama (ViN) in which vectors based on the tobacco rattle virus are used to rapidly deploy Cas9-based synthetic transcription factors and reprogram gene expression in planta. We demonstrate that ViN vectors can implement activation or repression of multiple genes systemically and persistently over several weeks in Nicotiana benthamiana, Arabidopsis (Arabidopsis thaliana), and tomato (Solanum lycopersicum). By exploring strategies including RNA scaffolding, viral vector ensembles, and viral engineering, we describe how the flexibility and efficacy of regulation can be improved. We also show how this transcriptional reprogramming can create predictable changes to metabolic phenotypes, such as gibberellin biosynthesis in N. benthamiana and anthocyanin accumulation in Arabidopsis, as well as developmental phenotypes, such as plant size in N. benthamiana, Arabidopsis, and tomato. These results demonstrate how ViN vector-based reprogramming of different aspects of gibberellin signaling can be used to engineer plant size in a range of plant species in a matter of weeks. In summary, ViN accelerates the timeline for generating phenotypes from over a year to just a few weeks, providing an attractive alternative to transgenesis for synthetic transcription factor-enabled hypothesis testing and crop engineering.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Surbhi Sarup
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - John Hobbs
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| |
Collapse
|
62
|
Sorkin ML, Nusinow DA. Time Will Tell: Intercellular Communication in the Plant Clock. TRENDS IN PLANT SCIENCE 2021; 26:706-719. [PMID: 33468432 DOI: 10.1016/j.tplants.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 05/17/2023]
Abstract
Multicellular organisms have evolved local and long-distance signaling mechanisms to synchronize development and response to stimuli among a complex network of cells, tissues, and organs. Biological timekeeping is one such activity that is suggested to be coordinated within an organism to anticipate and respond to daily and seasonal patterns in the environment. New research into the plant clock suggests circadian rhythms are communicated between cells and across long distances. However, further clarity is required on the nature of the signaling molecules and the mechanisms underlying signal translocation. Here we summarize the roles and properties of tissue-specific circadian rhythms, discuss the evidence for local and long-distance clock communication, and evaluate the potential signaling molecules and transport mechanisms involved in this system.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
63
|
Subhankar B, Yamaguchi K, Shigenobu S, Aoki K. Trans-species small RNAs move long distances in a parasitic plant complex. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:187-196. [PMID: 34393597 PMCID: PMC8329266 DOI: 10.5511/plantbiotechnology.21.0121a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 05/13/2023]
Abstract
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant's parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant.
Collapse
Affiliation(s)
- Bera Subhankar
- Gradute School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Koh Aoki
- Gradute School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
64
|
Khakhar A, Voytas DF. RNA Viral Vectors for Accelerating Plant Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:668580. [PMID: 34249040 PMCID: PMC8261061 DOI: 10.3389/fpls.2021.668580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
The tools of synthetic biology have enormous potential to help us uncover the fundamental mechanisms controlling development and metabolism in plants. However, their effective utilization typically requires transgenesis, which is plagued by long timescales and high costs. In this review we explore how transgenesis can be minimized by delivering foreign genetic material to plants with systemically mobile and persistent vectors based on RNA viruses. We examine the progress that has been made thus far and highlight the hurdles that need to be overcome and some potential strategies to do so. We conclude with a discussion of biocontainment mechanisms to ensure these vectors can be used safely as well as how these vectors might expand the accessibility of plant synthetic biology techniques. RNA vectors stand poised to revolutionize plant synthetic biology by making genetic manipulation of plants cheaper and easier to deploy, as well as by accelerating experimental timescales from years to weeks.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
65
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
66
|
Reinvigoration/Rejuvenation Induced through Micrografting of Tree Species: Signaling through Graft Union. PLANTS 2021; 10:plants10061197. [PMID: 34208406 PMCID: PMC8231136 DOI: 10.3390/plants10061197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
Abstract
Trees have a distinctive and generally long juvenile period during which vegetative growth rate is rapid and floral organs do not differentiate. Among trees, the juvenile period can range from 1 year to 15–20 years, although with some forest tree species, it can be longer. Vegetative propagation of trees is usually much easier during the juvenile phase than with mature phase materials. Therefore, reversal of maturity is often necessary in order to obtain materials in which rooting ability has been restored. Micrografting has been developed for trees to address reinvigoration/rejuvenation of elite selections to facilitate vegetative propagation. Generally, shoots obtained after serial grafting have increased rooting competence and develop juvenile traits; in some cases, graft-derived shoots show enhanced in vitro proliferation. Recent advances in graft signaling have shown that several factors, e.g., plant hormones, proteins, and different types of RNA, could be responsible for changes in the scion. The focus of this review includes (1) a discussion of the differences between the juvenile and mature growth phases in trees, (2) successful restoration of juvenile traits through micrografting, and (3) the nature of the different signals passing through the graft union.
Collapse
|
67
|
Blicharz S, Beemster GT, Ragni L, De Diego N, Spíchal L, Hernándiz AE, Marczak Ł, Olszak M, Perlikowski D, Kosmala A, Malinowski R. Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1338-1355. [PMID: 33738886 PMCID: PMC8360158 DOI: 10.1111/tpj.15240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 05/31/2023]
Abstract
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.
Collapse
Affiliation(s)
- Sara Blicharz
- Integrative Plant Biology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| | - Gerrit T.S. Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES)Department of BiologyUniversity of AntwerpGroenenborgerlaan 171Antwerpen2020Belgium
| | - Laura Ragni
- ZMBP‐Center for Plant Molecular BiologyUniversity of TübingenTübingenGermany
| | - Nuria De Diego
- Department of Chemical Biology and GeneticsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Lukas Spíchal
- Department of Chemical Biology and GeneticsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Alba E. Hernándiz
- Department of Chemical Biology and GeneticsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of SciencesNoskowskiego 12/14Poznan61‐704Poland
| | - Marcin Olszak
- Department of Plant BiochemistryInstitute of Biochemistry and Biophysics Polish Academy of Sciencesul. Pawińskiego 5aWarsaw02‐106Poland
| | - Dawid Perlikowski
- Plant Physiology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| | - Arkadiusz Kosmala
- Plant Physiology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| | - Robert Malinowski
- Integrative Plant Biology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| |
Collapse
|
68
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
69
|
Godel-Jędrychowska K, Kulińska-Łukaszek K, Kurczyńska E. Similarities and Differences in the GFP Movement in the Zygotic and Somatic Embryos of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649806. [PMID: 34122474 PMCID: PMC8194063 DOI: 10.3389/fpls.2021.649806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.
Collapse
|
70
|
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4144-4160. [PMID: 33484251 PMCID: PMC8130982 DOI: 10.1093/jxb/erab030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
71
|
Zhang J, Xu Y, Xie J, Zhuang H, Liu H, Shen G, Wu J. Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. PLANT PHYSIOLOGY 2021; 185:1395-1410. [PMID: 33793912 PMCID: PMC8133666 DOI: 10.1093/plphys/kiaa004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Dodder (Cuscuta spp., Convolvulaceae) is a genus of parasitic plants with worldwide distribution. Dodders are able to simultaneously parasitize two or more adjacent hosts, forming dodder-connected plant clusters. Nitrogen (N) deficiency is a common challenge to plants. To date, it has been unclear whether dodder transfers N-systemic signals between hosts grown in N-heterogeneous soil. Transcriptome and methylome analyses were carried out to investigate whether dodder (Cuscuta campestris) transfers N-systemic signals between N-replete and N-depleted cucumber (Cucumis sativus) hosts, and it was found that N-systemic signals from the N-deficient cucumber plants were rapidly translocated through C. campestris to the N-replete cucumber plants. Unexpectedly, certain systemic signals were also transferred from the N-replete to N-depleted cucumber hosts. We demonstrate that these systemic signals are able to regulate large transcriptome and DNA methylome changes in the recipient hosts. Importantly, N stress also induced many long-distance mobile mRNA transfers between C. campestris and hosts, and the bilateral N-systemic signaling between N-replete and N-depleted hosts had a strong impact on the inter-plant mobile mRNAs. Our 15N labeling experiment indicated that under N-heterogeneous conditions, N-systemic signals from the N-deficient cucumber hosts did not obviously change the N-uptake activity of the N-replete cucumber hosts; however, in plant clusters comprising C. campestris-connected cucumber and soybean (Glycine max) plants, if the soybean plants were N-starved, the cucumber plants exhibited increased N-uptake activity. This study reveals that C. campestris facilitates plant-plant communications under N-stress conditions by enabling extensive bilateral N-systemic signaling between different hosts.
Collapse
Affiliation(s)
- Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Xie
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Author for communication:
| |
Collapse
|
72
|
Konakalla NC, Bag S, Deraniyagala AS, Culbreath AK, Pappu HR. Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses 2021; 13:662. [PMID: 33921345 PMCID: PMC8069313 DOI: 10.3390/v13040662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) continues to be a constraint to peanut, pepper, tobacco, and tomato production in Georgia and elsewhere. TSWV is being managed by an integrated disease management strategy that includes a combination of cultural practices, vector management, and growing virus-resistant varieties where available. We used a non-transgenic strategy to induce RNA interference (RNAi)-mediated resistance in tobacco (Nicotiana tabacum) plants against TSWV. Double-stranded RNA (dsRNA) molecules for the NSs (silencing suppressor) and N (nucleoprotein) genes were produced by a two-step PCR approach followed by in vitro transcription. When topically applied to tobacco leaves, both molecules elicited a resistance response. Host response to the treatments was measured by determining the time to symptom expression, and the level of resistance by absolute quantification of the virus. We also show the systemic movement of dsRNA_N from the inoculated leaves to younger, non-inoculated leaves. Post-application, viral siRNAs were detected for up to nine days in inoculated leaves and up to six days in non-inoculated leaves. The topical application of dsRNAs to induce RNAi represents an environmentally safe and efficient way to manage TSWV in tobacco crops and could be applicable to other TSWV-susceptible crops.
Collapse
Affiliation(s)
- Naga Charan Konakalla
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
| | | | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA;
| |
Collapse
|
73
|
Johns S, Hagihara T, Toyota M, Gilroy S. The fast and the furious: rapid long-range signaling in plants. PLANT PHYSIOLOGY 2021; 185:694-706. [PMID: 33793939 PMCID: PMC8133610 DOI: 10.1093/plphys/kiaa098] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Plants possess a systemic signaling system whereby local stimuli can lead to rapid, plant-wide responses. In addition to the redistribution of chemical messengers that range from RNAs and peptides to hormones and metabolites, a communication system acting through the transmission of electrical, Ca2+, reactive oxygen species and potentially even hydraulic signals has also been discovered. This latter system can propagate signals across many cells each second and researchers are now beginning to uncover the molecular machineries behind this rapid communications network. Thus, elements such as the reactive oxygen species producing NAPDH oxidases and ion channels of the two pore channel, glutamate receptor-like and cyclic nucleotide gated families are all required for the rapid propagation of these signals. Upon arrival at their distant targets, these changes trigger responses ranging from the production of hormones, to changes in the levels of primary metabolites and shifts in patterns of gene expression. These systemic responses occur within seconds to minutes of perception of the initial, local signal, allowing for the rapid deployment of plant-wide responses. For example, an insect starting to chew on just a single leaf triggers preemptive antiherbivore defenses throughout the plant well before it has a chance to move on to the next leaf on its menu.
Collapse
Affiliation(s)
- Sarah Johns
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Simon Gilroy
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
- Author for communication:
| |
Collapse
|
74
|
Wang T, Li X, Zhang X, Wang Q, Liu W, Lu X, Gao S, Liu Z, Liu M, Gao L, Zhang W. RNA Motifs and Modification Involve in RNA Long-Distance Transport in Plants. Front Cell Dev Biol 2021; 9:651278. [PMID: 33869208 PMCID: PMC8047152 DOI: 10.3389/fcell.2021.651278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
A large number of RNA molecules have been found in the phloem of higher plants, and they can be transported to distant organelles through the phloem. RNA signals are important cues to be evolving in fortification strategies by long-distance transportation when suffering from various physiological challenges. So far, the mechanism of RNA selectively transportation through phloem cells is still in progress. Up to now, evidence have shown that several RNA motifs including Polypyrimidine (poly-CU) sequence, transfer RNA (tRNA)-related sequence, Single Nucleotide Mutation bound with specific RNA binding proteins to form Ribonucleotide protein (RNP) complexes could facilitate RNA mobility in plants. Furthermore, some RNA secondary structure such as tRNA-like structure (TLS), untranslation region (UTR) of mRNA, stem-loop structure of pre-miRNA also contributed to the mobility of RNAs. Latest researchs found that RNA methylation such as methylated 5′ cytosine (m5C) played an important role in RNA transport and function. These studies lay a theoretical foundation to uncover the mechanism of RNA transport. We aim to provide ideas and clues to inspire future research on the function of RNA motifs in RNA long-distance transport, furthermore to explore the underlying mechanism of RNA systematic signaling.
Collapse
Affiliation(s)
- Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shunli Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
76
|
Ivashuta S, Iandolino A, Watson G. Exogenous RNA as a Regulatory Signal during a Plant's Interaction with the Biotic Environment: An Evolutionary Perspective and Future Applications in Agriculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:532. [PMID: 33808982 PMCID: PMC8000970 DOI: 10.3390/plants10030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a responsive organism by exogenous RNA. While exogenous RNA transfer between organisms of different kingdoms of life have been unambiguously identified in nature, our understanding of the biological significance of this phenomenon remains obscure, particularly within an evolutionary context. During the last decade multiple reports utilizing various mechanisms of natural eRNAi phenomena have been attempted to develop new agricultural traits and products including weed, disease and insect control. Although these attempts yielded mixed results, this concept remains extremely attractive for many agricultural applications. To better utilize eRNAi for practical applications, we would like to emphasize the necessity of understanding the biological significance of this phenomenon within an evolutionary context and learn from nature by developing advanced tools to identify and study new cases of exogeneous RNA transfer and eRNAi. In this opinion article we would like to look at the exogeneous RNA transfer from an evolutionary perspective, propose that new cases of exogeneous RNA transfer still remain to be identified in nature, and address a knowledge gap in understanding the biological function and significance of RNA transfer. We believe such approach may eventually result in a more successful use of this phenomenon for practical applications in agriculture.
Collapse
|
77
|
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front Nutr 2021; 8:586564. [PMID: 33768107 PMCID: PMC7985180 DOI: 10.3389/fnut.2021.586564] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules from 18 to 24 nucleotides that are produced by prokaryote and eukaryote organisms, which play a crucial role in regulating gene expression through binding to their mRNA targets. MiRNAs have acquired special attention for their potential in cross kingdom communication, notably food-derived microRNAs (xenomiRs), which could have an impact on microorganism and mammal physiology. In this review, we mainly aim to deal with new perspectives on: (1) The mechanism by which food-derived xenomiRs (mainly dietary plant xenomiRs) could be incorporated into humans through diet, in a free form, associated with proteins or encapsulated in exosome-like nanoparticles. (2) The impact of dietary plant-derived miRNAs in modulating gut microbiota composition, which in turn, could regulate intestinal barrier permeability and therefore, affect dietary metabolite, postbiotics or food-derived miRNAs uptake efficiency. Individual gut microbiota signature/composition could be also involved in xenomiR uptake efficiency through several mechanisms such us increasing the bioavailability of exosome-like nanoparticles miRNAs. (3) Gut microbiota dysbiosis has been proposed to contribute to disease development by affecting gut epithelial barrier permeability. For his reason, the availability and uptake of dietary plant xenomiRs might depend, among other factors, on this microbiota-related permeability of the intestine. We hypothesize and critically review that xenomiRs-microbiota interaction, which has been scarcely explored yet, could contribute to explain, at least in part, the current disparity of evidences found dealing with dietary miRNA uptake and function in humans. Furthermore, dietary plant xenomiRs could be involved in the establishment of the multiple gut microenvironments, in which microorganism would adapt in order to optimize the resources and thrive in them. Additionally, a particular xenomiR could preferentially accumulate in a specific region of the gastrointestinal tract and participate in the selection and functions of specific gut microbial communities.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
78
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling in Arabidopsis. Bioinformatics 2021; 37:2450-2460. [PMID: 33693548 PMCID: PMC8388030 DOI: 10.1093/bioinformatics/btab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/05/2022] Open
Abstract
Motivation Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. Results This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. Availability and implementation The method was developed with the R statistical software and is made available through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
79
|
Keller I, Rodrigues CM, Neuhaus HE, Pommerrenig B. Improved resource allocation and stabilization of yield under abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153336. [PMID: 33360492 DOI: 10.1016/j.jplph.2020.153336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Sugars are the main building blocks for carbohydrate storage, but also serve as signaling molecules and protective compounds during abiotic stress responses. Accordingly, sugar transport proteins fulfill multiple roles as they mediate long distance sugar allocation, but also shape the subcellular and tissue-specific carbohydrate profiles by balancing the levels of these molecules in various compartments. Accordingly, transporter activity represents a target by classical or directed breeding approaches, to either, directly increase phloem loading or to increase sink strength in crop species. The relative subcellular distribution of sugars is critical for molecular signaling affecting yield-relevant processes like photosynthesis, onset of flowering and stress responses, while controlled long-distance sugar transport directly impacts development and productivity of plants. However, long-distance transport is prone to become unbalanced upon adverse environmental conditions. Therefore, we highlight the influence of stress stimuli on sucrose transport in the phloem and include the role of stress induced cellular carbohydrate sinks, like raffinose or fructans, which possess important roles to build up tolerance against challenging environmental conditions. In addition, we report on recent breeding approaches that resulted in altered source and sink capacities, leading to increased phloem sucrose shuttling in crops. Finally, we present strategies integrating the need of cellular stress-protection into the general picture of long-distance transport under abiotic stress, and point to possible approaches improving plant performance and resource allocation under adverse environmental conditions, leading to stabilized or even increased crop yield.
Collapse
Affiliation(s)
- Isabel Keller
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | |
Collapse
|
80
|
Peters WS, Jensen KH, Stone HA, Knoblauch M. Plasmodesmata and the problems with size: Interpreting the confusion. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153341. [PMID: 33388666 DOI: 10.1016/j.jplph.2020.153341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Plant tissues exhibit a symplasmic organization; the individual protoplasts are connected to their neighbors via cytoplasmic bridges that extend through pores in the cell walls. These bridges may have diameters of a micrometer or more, as in the sieve pores of the phloem, but in most cell types they are smaller. Historically, botanists referred to cytoplasmic bridges of all sizes as plasmodesmata. The meaning of the term began to shift when the transmission electron microscope (TEM) became the preferred tool for studying these structures. Today, a plasmodesma is widely understood to be a 'nano-scale' pore. Unfortunately, our understanding of these nanoscopic channels suffers from methodological limitations. This is exemplified by the fact that state-of-the-art EM techniques appear to reveal plasmodesmal pore structures that are much smaller than the tracer molecules known to diffuse through these pores. In general, transport processes in pores that have dimensions in the size range of the transported molecules are governed by different physical parameters than transport process in the macroscopic realm. This can lead to unexpected effects, as experience in nanofluidic technologies demonstrates. Our discussion of problems of size in plasmodesma research leads us to conclude that the field will benefit from technomimetic reasoning - the utilization of concepts developed in applied nanofluidics for the interpretation of biological systems.
Collapse
Affiliation(s)
- Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA.
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
81
|
Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon- Magnaporthe oryzae Pathosystems. Int J Mol Sci 2021; 22:ijms22020650. [PMID: 33440747 PMCID: PMC7826919 DOI: 10.3390/ijms22020650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.
Collapse
|
82
|
Li S, Wang X, Xu W, Liu T, Cai C, Chen L, Clark CB, Ma J. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. NATURE PLANTS 2021; 7:50-59. [PMID: 33452489 DOI: 10.1038/s41477-020-00829-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Long-distance RNA movement is important for plant growth and environmental responses; however, the extent to which RNAs move between distant tissues, their relative magnitude and functional importance remain to be elucidated on a genomic scale. Using a soybean (Glycine max)-common bean (Phaseolus vulgaris) grafting system, we identified 100 shoot-root mobile microRNAs and 32 shoot-root mobile phased secondary small interfering RNAs (phasiRNAs), which were predominantly produced in shoots and transported to roots, and, in most cases, accumulated to a level similar to that observed in shoots. Many of these microRNAs or phasiRNAs enabled cleavage of their messenger RNA targets or phasiRNA precursors in roots. In contrast, most mobile-capable mRNAs were transcribed in both shoots and roots, with only small proportions transported to recipient tissues. These findings suggest that the regulatory mechanisms for small RNA movement are different from those for mRNA movement, and that the former is more strictly regulated and, probably, more functionally important than the latter.
Collapse
Affiliation(s)
- Shuai Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Wenying Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tong Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chunmei Cai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | | | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
83
|
Peña EJ, Robles Luna G, Heinlein M. In vivo imaging of tagged mRNA in plant tissues using the bacterial transcriptional antiterminator BglG. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:271-282. [PMID: 33098198 DOI: 10.1111/tpj.15035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants. Here, we present an in vivo plant RNA-labeling system based on the Escherichia coli RNA-binding protein BglG. Using the detection of RNA in mobile RNA particles formed by viral movement protein (MP) as a model, we demonstrate the efficiency and specificity of mRNA detection by the BglG system as compared with MS2 and λN systems. Our observations show that MP mRNA is specifically associated with MP in mobile MP particles but hardly with MP localized at plasmodesmata. MP mRNA is clearly absent from MP accumulating along microtubules. We show that the in vivo BglG labeling of the MP particles depends on the presence of the BglG-binding stem-loop aptamers within the MP mRNA and that the aptamers enhance the coprecipitation of BglG by MP, thus demonstrating the presence of an MP:MP mRNA complex. The BglG system also allowed us to monitor the cell-to-cell transport of the MP mRNA, thus linking the observation of mobile MP mRNA granules with intercellular MP mRNA transport. Given its specificity demonstrated here, the BglG system may be widely applicable for studying mRNA transport and localization in plants.
Collapse
Affiliation(s)
- Eduardo J Peña
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| |
Collapse
|
84
|
Castañeda V, González EM, Wienkoop S. Phloem Sap Proteins Are Part of a Core Stress Responsive Proteome Involved in Drought Stress Adjustment. FRONTIERS IN PLANT SCIENCE 2021; 12:625224. [PMID: 33603764 PMCID: PMC7884324 DOI: 10.3389/fpls.2021.625224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
During moderate drought stress, plants can adjust by changes in the protein profiles of the different organs. Plants transport and modulate extracellular stimuli local and systemically through commonly induced inter- and intracellular reactions. However, most proteins are frequently considered, cell and organelle specific. Hence, while signaling molecules and peptides can travel systemically throughout the whole plant, it is not clear, whether protein isoforms may exist ubiquitously across organs, and what function those may have during drought regulation. By applying shotgun proteomics, we extracted a core proteome of 92 identical protein isoforms, shared ubiquitously amongst several Medicago truncatula tissues, including roots, phloem sap, petioles, and leaves. We investigated their relative distribution across the different tissues and their response to moderate drought stress. In addition, we functionally compared this plant core stress responsive proteome with the organ-specific proteomes. Our study revealed plant ubiquitous protein isoforms, mainly related to redox homeostasis and signaling and involved in protein interaction networks across the whole plant. Furthermore, about 90% of these identified core protein isoforms were significantly involved in drought stress response, indicating a crucial role of the core stress responsive proteome (CSRP) in the plant organ cross-communication, important for a long-distance stress-responsive network. Besides, the data allowed for a comprehensive characterization of the phloem proteome, revealing new insights into its function. For instance, CSRP protein levels involved in stress and redox are relatively more abundant in the phloem compared to the other tissues already under control conditions. This suggests a major role of the phloem in stress protection and antioxidant activity enabling the plants metabolic maintenance and rapid response upon moderate stress. We anticipate our study to be a starting point for future investigations of the role of the core plant proteome. Under an evolutionary perspective, CSRP would enable communication of different cells with each other and the environment being crucial for coordinated stress response of multicellular organisms.
Collapse
Affiliation(s)
- Veronica Castañeda
- Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
| | - Esther M. González
- Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
- Esther M. González,
| | - Stefanie Wienkoop
- Unit of Molecular Systems Biology, Department of Functional and Evolution Ecology, University of Vienna, Vienna, Austria
- *Correspondence: Stefanie Wienkoop,
| |
Collapse
|
85
|
Sidorova T, Miroshnichenko D, Kirov I, Pushin A, Dolgov S. Effect of Grafting on Viral Resistance of Non-transgenic Plum Scion Combined With Transgenic PPV-Resistant Rootstock. FRONTIERS IN PLANT SCIENCE 2021; 12:621954. [PMID: 33597963 PMCID: PMC7882617 DOI: 10.3389/fpls.2021.621954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
In stone fruit trees, resistance to Plum pox virus (PPV) can be achieved through the specific degradation of viral RNA by the mechanism of RNA interference (RNAi). Transgenic virus-resistant plants, however, raise serious biosafety concerns due to the insertion and expression of hairpin constructs that usually contain various selective foreign genes. Since a mature stone tree represents a combination of scion and rootstock, grafting commercial varieties onto transgenic virus-tolerant rootstocks is a possible approach to mitigate biosafety problems. The present study was aimed at answering the following question: To what extent are molecular RNAi silencing signals transmitted across graft junctions in transgrafted plum trees and how much does it affect PPV resistance in genetically modified (GM)/non-transgenic (NT) counterparts? Two combinations, NT:GM and GM:NT (scion:rootstock), were studied, with an emphasis on the first transgrafting scenario. Viral inoculation was carried out on either the scion or the rootstock. The interspecific rootstock "Elita" [(Prunus pumila L. × P. salicina Lindl.) × (P. cerasifera Ehrh.)] was combined with cv. "Startovaya" (Prunus domestica L.) as a scion. Transgenic plum lines of both cultivars were transformed with a PPV-coat protein (CP)-derived intron-separate hairpin-RNA construct and displayed substantial viral resistance. High-throughput sequence data of small RNA (sRNA) pools indicated that the accumulation of construct-specific small interfering RNA (siRNA) in transgenic plum rootstock reached over 2%. The elevated siRNA level enabled the resistance to PPV and blocked the movement of the virus through the GM tissues into the NT partner when the transgenic tissues were inoculated. At the same time, the mobile siRNA signal was not moved from the GM rootstock to the target NT tissue to a level sufficient to trigger silencing of PPV transcripts and provide reliable viral resistance. The lack of mobility of transgene-derived siRNA molecules was accompanied by the transfer of various endogenous rootstock-specific sRNAs into the NT scion, indicating the exceptional transitivity failure of the studied RNAi signal. The results presented here indicate that transgrafting in woody fruit trees remains an unpredictable practice and needs further in-depth examination to deliver molecular silencing signals.
Collapse
Affiliation(s)
- Tatiana Sidorova
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- *Correspondence: Tatiana Sidorova,
| | - Dmitry Miroshnichenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Alexander Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
- Federal Horticulture Center for Breeding, Agrotechnology and Nursery, Moscow, Russia
| |
Collapse
|
86
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
87
|
Tabein S, Jansen M, Noris E, Vaira AM, Marian D, Behjatnia SAA, Accotto GP, Miozzi L. The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. FRONTIERS IN PLANT SCIENCE 2020; 11:533338. [PMID: 33329620 PMCID: PMC7732615 DOI: 10.3389/fpls.2020.533338] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/09/2020] [Indexed: 06/02/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a devastating plant pathogen, causing huge crop losses worldwide. Unfortunately, due to its wide host range and emergence of resistance breaking strains, its management is challenging. Up to now, resistance to TSWV infection based on RNA interference (RNAi) has been achieved only in transgenic plants expressing parts of the viral genome or artificial microRNAs targeting it. Exogenous application of double-stranded RNAs (dsRNAs) for inducing virus resistance in plants, namely RNAi-based vaccination, represents an attractive and promising alternative, already shown to be effective against different positive-sense RNA viruses and viroids. In the present study, the protection efficacy of exogenous application of dsRNAs targeting the nucleocapsid (N) or the movement protein (NSm) coding genes of the negative-sense RNA virus TSWV was evaluated in Nicotiana benthamiana as model plant and in tomato as economically important crop. Most of the plants treated with N-targeting dsRNAs, but not with NSm-targeting dsRNAs, remained asymptomatic until 40 (N. benthamiana) and 63 (tomato) dpi, while the remaining ones showed a significant delay in systemic symptoms appearance. The different efficacy of N- and NSm-targeting dsRNAs in protecting plants is discussed in the light of their processing, mobility and biological role. These results indicate that the RNAi-based vaccination is effective also against negative-sense RNA viruses but emphasize that the choice of the target viral sequence in designing RNAi-based vaccines is crucial for its success.
Collapse
Affiliation(s)
- Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Marco Jansen
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Daniele Marian
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | | | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
88
|
Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus maritimus (Hemiptera: Pseudococcidae). INSECTS 2020; 11:insects11110739. [PMID: 33126451 PMCID: PMC7692628 DOI: 10.3390/insects11110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Simple Summary RNA interference (RNAi) is a defense mechanism that protects insects from viruses by targeting and degrading RNA. This feature has been exploited to reduce the expression of endogenous RNA for determining functions of various genes and for killing insect pests by targeting genes that are vital for insect survival. When dsRNA matching perfectly to the target RNA is administered, the RNAi machinery dices the dsRNA into ~21 bp fragments (known as siRNAs) and one strand of siRNA is employed by the RNAi machinery to target and degrade the target RNA. In this study we used a cocktail of dsRNAs targeting grape mealybug’s aquaporin and sucrase genes to kill the insect. Aquaporins and sucrases are important genes enabling these insects to maintain water relations indispensable for survival and digest complex sugars in the diet of plant sap-feeding insects, including mealybugs. In our experiments, administration of dsRNA caused a reduction in expression of the target genes and an increase in insect mortality. These results provide support for the application of RNAi to control the grape mealybug. Abstract The grape mealybug Pseudococcus maritimus (Ehrhorn, 1900) (Hemiptera: Pseudococcidae) is a significant pest of grapevines (Vitis spp.) and a vector of disease-causing grape viruses, linked to its feeding on phloem sap. The management of this pest is constrained by the lack of naturally occurring resistance traits in Vitis. Here, we obtained proof of concept that RNA interference (RNAi) using double-stranded RNA (dsRNA) molecules against essential genes for phloem sap feeding can depress insect survival. The genes of interest code for an aquaporin (AQP) and a sucrase (SUC) that are required for osmoregulation in related phloem sap-feeding hemipteran insects (aphids and whiteflies). In parallel, we investigated the grape mealybug genes coding non-specific nucleases (NUC), which reduce RNAi efficacy by degrading administered dsRNA. Homologs of AQP and SUC with experimentally validated function in aphids, together with NUC, were identified in the published transcriptome of the citrus mealybug Planococcus citri by phylogenetic analysis, and sequences of the candidate genes were obtained for Ps. maritimus by PCR with degenerate primers. Using this first sequence information for Ps. maritimus, dsRNA was prepared and administered to the insects via an artificial diet. The treatment comprising dsRNA against AQP, SUC and NUC significantly increased insect mortality over three days, relative to dsRNA-free controls. The dsRNA constructs for AQP and NUC were predicted, from sequence analysis to have some activity against other mealybugs, but none of the three dsRNA constructs have predicted activity against aphids. This study provides the basis to develop in planta RNAi strategies against Ps. maritimus and other mealybug pests of grapevines.
Collapse
|
89
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
90
|
Maizel A, Markmann K, Timmermans M, Wachter A. To move or not to move: roles and specificity of plant RNA mobility. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:52-60. [PMID: 32634685 DOI: 10.1016/j.pbi.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Intercellular communication in plants coordinates cellular functions during growth and development, and in response to environmental cues. RNAs figure prominently among the mobile signaling molecules used. Many hundreds of RNA species move over short and long distances, and can be mutually exchanged in biotic interactions. Understanding the specificity determinants of RNA mobility and the physiological relevance of this phenomenon are areas of active research. Here, we highlight the recent progress in our knowledge of small RNA and messenger RNA movement. Particular emphasis is given to novel insight into the specificity determinants of messenger RNA mobility, the role of small RNA movement in development, and the specificity of RNA exchange in plant-plant and plant-microbe interactions.
Collapse
Affiliation(s)
- Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Katharina Markmann
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Marja Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von Müller-Weg 6, 55128 Mainz, Germany
| |
Collapse
|
91
|
Dong Y, Yang Y, Wang Z, Wu M, Fu J, Guo J, Chang L, Zhang J. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). PEST MANAGEMENT SCIENCE 2020; 76:3168-3176. [PMID: 32333833 DOI: 10.1002/ps.5871] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/24/2020] [Accepted: 04/25/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND RNA interference (RNAi) has emerged as a promising technology for insect pest control. Because of the accumulation of high levels of long double-stranded RNAs (dsRNAs) in plastids, it was previously shown that expression of dsRNAs from plastid genome led to higher mortality of some insect pests with chewing mouthparts than dsRNAs expression from nuclear genome. However, whether plastid-expressed dsRNAs have effects on phloem sap-sucking pests is unknown. In this study, we compared the RNAi effects of nuclear transgenic and transplastomic plants on the whitefly Bemisia tabaci, a serious sap-sucking pest. RESULTS Nuclear transgenic and transplastomic tobacco plants were developed for the expression of dsRNA against BtACTB gene of Bemisia tabaci, respectively. Feeding nuclear transgenic plants to Bemisia tabaci resulted in reduced gene expression of BtACTB and survival rate, and impaired fecundity of Bemisia tabaci. We did not observe any effects of transplastomic plants on Bemisia tabaci fitness. Furthermore, we found that the inability of B. tabaci to obtain dsRNAs from plastids might restrict its RNAi responses. CONCLUSION Our study indicated that the expression of dsRNAs in nuclear transgenic plants was more effective than that in transplastomic plants for the control of Bemisia tabaci. The inaccessibility of Bemisia tabaci to plastids contributes to the inefficiency of plastid-mediated RNAi. Our findings are of great significance to future optimization of transgenically delivered RNAi approaches for efficient controlling of sap-sucking pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Dong
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Yong Yang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zican Wang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Mengting Wu
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Jinqiu Fu
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Chang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Jiang Zhang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| |
Collapse
|
92
|
Zhang C, Qi M, Zhang X, Wang Q, Yu Y, Zhang Y, Kong Z. Rhizobial infection triggers systemic transport of endogenous RNAs between shoots and roots in soybean. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1213-1226. [PMID: 32221813 DOI: 10.1007/s11427-019-1608-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 10/24/2022]
Abstract
Legumes have evolved a symbiotic relationship with rhizobial bacteria and their roots form unique nitrogen-fixing organs called nodules. Studies have shown that abiotic and biotic stresses alter the profile of gene expression and transcript mobility in plants. However, little is known about the systemic transport of RNA between roots and shoots in response to rhizobial infection on a genome-wide scale during the formation of legume-rhizobia symbiosis. In our study, we found that two soybean (Glycine max) cultivars, Peking and Williams, show a high frequency of single nucleotide polymorphisms; this allowed us to characterize the origin and mobility of transcripts in hetero-grafts of these two cultivars. We identified 4,552 genes that produce mobile RNAs in soybean, and found that rhizobial infection triggers mass transport of mRNAs between shoots and roots at the early stage of nodulation. The majority of these mRNAs are of relatively low abundance and their transport occurs in a selective manner in soybean plants. Notably, the mRNAs that moved from shoots to roots at the early stage of nodulation were enriched in many nodule-related responsive processes. Moreover, the transcripts of many known symbiosis-related genes that are induced by rhizobial infection can move between shoots and roots. Our findings provide a deeper understanding of endogenous RNA transport in legume-rhizobia symbiotic processes.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Qi
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yijing Zhang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
93
|
Identification of Long-Distance Transmissible mRNA between Scion and Rootstock in Cucurbit Seedling Heterografts. Int J Mol Sci 2020; 21:ijms21155253. [PMID: 32722102 PMCID: PMC7432352 DOI: 10.3390/ijms21155253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Grafting has been widely used to improve plant growth and tolerance in crop production, as well as for clarifying systemic mRNA signaling from donor to recipient tissues in organ-to-organ communication. In this study, we investigated graft partner interaction mechanisms of Cucumis sativus (Csa) and Cucurbita moschata (Cmo) using a large-scale endogenous mRNA transport. The results indicated that most mobile transcripts followed an allocation pathway from source to sink. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that mRNA mobility functions are universally common and individually specific. Identification of mRNA mobility between distant tissues in heterografts with RT-PCR (reverse transcription PCR), RT-qPCR (reverse transcriptional quantitative real time PCR), and clone sequencing were used to estimate 78.75% of selected mobile transcripts. Integration of bioinformatic analysis and RT-qPCR identification allowed us to hypothesize a scion-to-rootstock-to-scion feedback signal loop of Csa move-down and Cmo move-up mRNAs, where Csa scion move-down mRNAs were involved in carbon fixation and biosynthesis of amino acid pathways, and Cmo root received Csa move-down mRNA and then delivered the corresponding Cmo upward mRNA to scion to improve photosynthesis of cucumber scion. This formed a feedback signal loop of scion-to-rootstock-to scion to explain why pumpkin rootstock enhanced cucumber production in the industry, which was utilized for organ communication and mediates photosynthesis processes in heterograft cucurbit crops.
Collapse
|
94
|
Wójcik AM. Research Tools for the Functional Genomics of Plant miRNAs During Zygotic and Somatic Embryogenesis. Int J Mol Sci 2020; 21:E4969. [PMID: 32674459 PMCID: PMC7420248 DOI: 10.3390/ijms21144969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
During early plant embryogenesis, some of the most fundamental decisions on fate and identity are taken making it a fascinating process to study. It is no surprise that higher plant embryogenesis was intensively analysed during the last century, while somatic embryogenesis is probably the most studied regeneration model. Encoded by the MIRNA, short, single-stranded, non-coding miRNAs, are commonly present in all Eukaryotic genomes and are involved in the regulation of the gene expression during the essential developmental processes such as plant morphogenesis, hormone signaling, and developmental phase transition. During the last few years dedicated to miRNAs, analytical methods and tools have been developed, which have afforded new opportunities in functional analyses of plant miRNAs, including (i) databases for in silico analysis; (ii) miRNAs detection and expression approaches; (iii) reporter and sensor lines for a spatio-temporal analysis of the miRNA-target interactions; (iv) in situ hybridisation protocols; (v) artificial miRNAs; (vi) MIM and STTM lines to inhibit miRNA activity, and (vii) the target genes resistant to miRNA. Here, we attempted to summarise the toolbox for functional analysis of miRNAs during plant embryogenesis. In addition to characterising the described tools/methods, examples of the applications have been presented.
Collapse
Affiliation(s)
- Anna Maria Wójcik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
95
|
Souza MF, Davis JA. Detailed Characterization of Melanaphis sacchari (Hemiptera: Aphididae) Feeding Behavior on Different Host Plants. ENVIRONMENTAL ENTOMOLOGY 2020; 49:683-691. [PMID: 32333015 DOI: 10.1093/ee/nvaa036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 06/11/2023]
Abstract
Worldwide, Melanaphis sacchari Zehntner is reported on several plants in the family Poaceae, including important crops. In the United States, M. sacchari has been present primarily on sugarcane (Saccharum officinarum L.), but recently sorghum (Sorghum bicolor (L.) Moench) has become a main host. It is not clear how M. sacchari exploits sorghum or other plant species present in the Louisiana agro-ecoscape, but there is potential for these plants to be bridging hosts. Thus, this study determined the feeding behavior of M. sacchari on sorghum, rice, Oryza sativa (L.), sweetpotato, Ipomea batatas (L.), maize, Zea mays (L.), Johnsongrass, S. halepense (L.), and wheat Triticum aestivum (L.) using electrical penetration graphs. Melanaphis sacchari established sustained feeding on sorghum, Johnsongrass, wheat, and rice, only a negligent percentage on maize and no aphid fed on sweetpotato. Differences in Electrical Penetration Graph parameters among the plants in nonpenetrating total time and the lower number of probes, time to penetration initiation, proportion of individuals probing, number of probes shorter than 30 s, number of probes longer than 30 s but shorter than 3 min, pathway phase duration, and number of cell punctures during pathway phase, suggest epidermis and mesophyll factors affecting aphid feeding behavior. While the lack of differences in number of feeding occurrences, total time feeding, and number of sustained feeding occurrences shows that M. sacchari is able to feed on those plants, sieve element factors such as resistance or low nutritional quality prevent the growth of this population in field.
Collapse
Affiliation(s)
- M F Souza
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences, Baton Rouge, LA
| | - J A Davis
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences, Baton Rouge, LA
| |
Collapse
|
96
|
Long-Distance Movement of mRNAs in Plants. PLANTS 2020; 9:plants9060731. [PMID: 32531920 PMCID: PMC7356335 DOI: 10.3390/plants9060731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/28/2023]
Abstract
Long-distance transport of information molecules in the vascular tissues could play an important role in regulating plant growth and enabling plants to cope with adverse environments. Various molecules, including hormones, proteins, small peptides and small RNAs have been detected in the vascular system and proved to have systemic signaling functions. Sporadic studies have shown that a number of mRNAs produced in the mature leaves leave their origin cells and move to distal tissues to exert important physiological functions. In the last 3-5 years, multiple heterograft systems have been developed to demonstrate that a large quantity of mRNAs are mobile in plants. Further comparison of the mobile mRNAs identified from these systems showed that the identities of these mRNAs are very diverse. Although species-specific mRNAs may regulate the unique physiological characteristic of the plant, mRNAs with conserved functions across multiple species are worth more effort in identifying universal physiological mechanisms existing in the plant kingdom.
Collapse
|
97
|
Garg V, Kühn C. What determines the composition of the phloem sap? Is there any selectivity filter for macromolecules entering the phloem sieve elements? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:284-291. [PMID: 32248039 DOI: 10.1016/j.plaphy.2020.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
In view of recent findings, it is still a matter of debate whether the composition of the phloem sap of higher plants is specific and based on a plasmodesmal selectivity filter for macromolecular transport, or whether simply related to size, abundance and half-life of the macromolecules within the phloem sap. A range of reports indicates specific function of phloem-mobile signaling molecules such as the florigen making it indispensable to discriminate specific macromolecules entering the phloem from others which cannot cross this selectivity filter. Nevertheless, several findings have discussed for a non-selective transport via plasmodesmata, or contamination of the phloem sap by degradation products coming from immature still developing young sieve elements undergoing differentiation. Here, we discuss several possibilities, and raise the question how selectivity of the phloem sap composition could be achieved thereby focusing on mobility and dynamics of sucrose transporter mRNA and proteins.
Collapse
Affiliation(s)
- Varsha Garg
- Institute of Biology, Department of Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Christina Kühn
- Institute of Biology, Department of Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany.
| |
Collapse
|
98
|
Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, Malota K, Boutilier K, Kurczynska EU. Symplasmic isolation marks cell fate changes during somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2612-2628. [PMID: 31974549 PMCID: PMC7210756 DOI: 10.1093/jxb/eraa041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.
Collapse
Affiliation(s)
- Kamila Godel-Jedrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Kulinska-Lukaszek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anneke Horstman
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mercedes Soriano
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mengfan Li
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Karol Malota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in KatowiceKatowice, Poland
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Ewa U Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
99
|
Lu X, Liu W, Wang T, Zhang J, Li X, Zhang W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. FRONTIERS IN PLANT SCIENCE 2020; 11:460. [PMID: 32431719 PMCID: PMC7214726 DOI: 10.3389/fpls.2020.00460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Grafting is widely used in fruit, vegetable, and flower propagation to improve biotic and abiotic stress resistance, yield, and quality. At present, the systemic changes caused by grafting, as well as the mechanisms and effects of long-distance signal transport between rootstock and scion have mainly been investigated in model plants (Arabidopsis thaliana and Nicotiana benthamiana). However, these aspects of grafting vary when different plant materials are grafted, so the study of model plants provides only a theoretical basis and reference for the related research of grafted vegetables. The dearth of knowledge about the transport of signaling molecules in grafted vegetables is inconsistent with the rapid development of large-scale vegetable production, highlighting the need to study the mechanisms regulating the rootstock-scion interaction and long-distance transport. The rapid development of molecular biotechnology and "omics" approaches will allow researchers to unravel the physiological and molecular mechanisms involved in the rootstock-scion interaction in vegetables. We summarize recent progress in the study of the physiological aspects (e.g., hormones and nutrients) of the response in grafted vegetables and focus in particular on long-distance molecular signaling (e.g., RNA and proteins). This review provides a theoretical basis for studies of the rootstock-scion interaction in grafted vegetables, as well as provide guidance for rootstock breeding and selection to meet specific demands for efficient vegetable production.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
100
|
Uslu VV, Wassenegger M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA. Curr Opin Virol 2020; 42:18-24. [PMID: 32371359 DOI: 10.1016/j.coviro.2020.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 01/16/2023]
Abstract
In almost all eukaryotes, RNA interference (RNAi) is a natural defence mechanism against foreign nucleic acids, including transposons and viruses. It is generally triggered by long double stranded RNA molecules (dsRNA, >50bp) that are processed into small interfering RNAs (siRNAs). RNAi can be artificially activated by the expression of RNAi triggers through viruses (virus-induced gene silencing, VIGS) and transgenes. Moreover, for almost 10 years, exogenous RNA application methods are developed as tools to induce RNAi in plants. In this review, exogenous RNA application techniques having the potential to activate RNAi with a focus on RNAi-mediated virus resistance will be discussed. Limitations of exogenous RNA applications, targeting of virus vectors and open questions related to mechanistic details that still require further investigation will be pointed out.
Collapse
Affiliation(s)
- Veli V Uslu
- RLP AgroScience, AlPlanta - Institute for Plant Research, 67435 Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience, AlPlanta - Institute for Plant Research, 67435 Neustadt, Germany; Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|