51
|
Effects of succession stages and altitudinal gradient on leaf surface area and biomass allocation of typical plants in the subalpine of Eastern Tibetan Plateau. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
52
|
Hill AJ, Dawson TE, Dody A, Rachmilevitch S. Dew water-uptake pathways in Negev desert plants: a study using stable isotope tracers. Oecologia 2021; 196:353-361. [PMID: 34008141 DOI: 10.1007/s00442-021-04940-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Dew is an important water resource for plants in most deserts. The mechanism that allows desert plants to use dew water was studied using an isotopic water tracer approach. Most plants use water directly from the soil; the roots transfer the water to the rest of the plant, where it is required for all metabolic functions. However, many plants can also take up water into their leaves and stems. Examining the dew water uptake pathways in desert plants can lend insight on another all water-use pathways examination. We determined where and how dew water enters plants in the water limited Negev desert. Highly depleted isotopic water was sprayed on three different dominant plant species of the Negev desert-Artemesia sieberi, Salsola inermis and Haloxylon scoparium-and its entry into the plant was followed. Water was sprayed onto the soil only, or on the leaves/stems only (with soil covered to prevent water entry via root uptake). Thereafter, the isotopic composition of water in the roots and stems were measured at various time points. The results show that each plant species used the dew water to a different extent, and we obtained evidence of foliar uptake capacity of dew water that varied depending on the microenvironmental conditions. A. sieberi took up the greatest amount of dew water through both stems and roots, S. inermis took up dew water mainly from the roots, and H. scoparium showed the least dew capture overall.
Collapse
Affiliation(s)
- Amber J Hill
- The Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus Midreshet Ben Gurion, Ben Gurion University of the Negev, 84990, Beersheba, Israel.
| | - Todd E Dawson
- Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Avraham Dody
- Geography and Environmental Developing Department, Ben Gurion University, BeerSheba, Israel
| | - Shimon Rachmilevitch
- The Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus Midreshet Ben Gurion, Ben Gurion University of the Negev, 84990, Beersheba, Israel
| |
Collapse
|
53
|
Losada JM, Díaz M, Holbrook NM. Idioblasts and peltate hairs as distribution networks for water absorbed by xerophilous leaves. PLANT, CELL & ENVIRONMENT 2021; 44:1346-1360. [PMID: 33347627 DOI: 10.1111/pce.13985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Capparis odoratissima is a tree species native to semi-arid environments of South America where low soil water availability coexists with frequent night-time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves. Abaxially, the leaves of C. odoratissima are covered with peltate hairs, while the adaxial surfaces are glabrous. Both surfaces are able to absorb condensed water, but the abaxial surface has higher rates of water uptake. Thousands of idioblasts per cm2 , a higher density than stomata, connect the adaxial leaf surface and the abaxial peltate hairs, both of which contain hygroscopic substances such as arabinogalactan proteins and pectins. The highly specialized anatomy of the leaves of C odoratissima fulfils the dual function of minimizing water loss when stomata are closed, while maintaining the ability to absorb liquid water. Cell-wall related hygroscopic compounds in the peltate hairs and idioblasts create a network of microchannels that maintain leaf hydration and promote water uptake.
Collapse
Affiliation(s)
- Juan M Losada
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Málaga, Spain
- Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts, USA
| | - Miriam Díaz
- Centro de Investigaciones en Ecología y Zonas Áridas (CIEZA), Universidad Nacional Experimental Francisco de Miranda, Coro, Venezuela
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
54
|
Fernández V, Gil-Pelegrín E, Eichert T. Foliar water and solute absorption: an update. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:870-883. [PMID: 33219553 DOI: 10.1111/tpj.15090] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The absorption of water and solutes by plant leaves has been recognised since more than two centuries. Given the polar nature of water and solutes, the mechanisms of foliar uptake have been proposed to be similar for water and electrolytes, including nutrient solutions. Research efforts since the 19th century focussed on characterising the properties of cuticles and applying foliar sprays to crop plants as a tool for improving crop nutrition. This was accompanied by the development of hundreds of studies aimed at characterising the chemical and structural nature of plant cuticles from different species and the mechanisms of cuticular and, to a lower extent, stomatal penetration of water and solutes. The processes involved are complex and will be affected by multiple environmental, physico-chemical and physiological factors which are only partially clear to date. During the last decades, the body of evidence that water transport across leaf surfaces of native species may contribute to water balances (absorption and loss) at an ecosystem level has grown. Given the potential importance of foliar water absorption for many plant species and ecosystems as shown in recent studies, the aim of this review is to first integrate current knowledge on plant surface composition, structure, wettability and physico-chemical interactions with surface-deposited matter. The different mechanisms of foliar absorption of water and electrolytes and experimental procedures for tracing the uptake process are discussed before posing several outstanding questions which should be tackled in future studies.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, 50059, Spain
| | - Thomas Eichert
- University of Applied Sciences Erfurt, Erfurt, 99051, Germany
| |
Collapse
|
55
|
Wang A, Siegwolf RTW, Joseph J, Thomas FM, Werner W, Gessler A, Rigling A, Schaub M, Saurer M, Li MH, Lehmann MM. Effects of soil moisture, needle age and leaf morphology on carbon and oxygen uptake, incorporation and allocation: a dual labeling approach with 13CO2 and H218O in foliage of a coniferous forest. TREE PHYSIOLOGY 2021; 41:50-62. [PMID: 32879961 DOI: 10.1093/treephys/tpaa114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The carbon and oxygen isotopic composition of water and assimilates in plants reveals valuable information on plant responses to climatic conditions. Yet, the carbon and oxygen uptake, incorporation and allocation processes determining isotopic compositions are not fully understood. We carried out a dual-isotope labeling experiment at high humidity with 18O-enriched water (H218O) and 13C-enriched CO2 (13CO2) with attached Scots pine (Pinus sylvestris L.) branches and detached twigs of hemiparasitic mistletoes (Viscum album ssp. austriacum) in a naturally dry coniferous forest, where also a long-term irrigation takes place. After 4 h of label exposure, we sampled previous- and recent-year leaves, twig phloem and twig xylem over 192 h for the analysis of isotope ratios in water and assimilates. For both species, the uptake into leaf water and the incorporation of the 18O-label into leaf assimilates was not influenced by soil moisture, while the 13C-label incorporation into assimilates was significantly higher under irrigation compared with control dry conditions. Species-specific differences in leaf morphology or needle age did not affect 18O-label uptake into leaf water, but the incorporation of both tracers into assimilates was two times lower in mistletoe than in pine. The 18O-label allocation in water from pine needles to twig tissues was two times higher for phloem than for xylem under both soil moisture conditions. In contrast, the allocation of both tracers in pine assimilates were similar and not affected by soil moisture, twig tissue or needle age. Soil moisture effects on 13C-label but not on 18O-label incorporation into assimilates can be explained by the stomatal responses at high humidity, non-stomatal pathways for water and isotope exchange reactions. Our results suggest that non-photosynthetic 18O-incorporation processes may have masked prevalent photosynthetic processes. Thus, isotopic variation in leaf water could also be imprinted on assimilates when photosynthetic assimilation rates are low.
Collapse
Affiliation(s)
- Ao Wang
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jobin Joseph
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Frank M Thomas
- Geobotany, University of Trier, Behringstrasse 21, 54296 Trier, Germany
| | - Willy Werner
- Geobotany, University of Trier, Behringstrasse 21, 54296 Trier, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
56
|
Modified Hiltner Dew Balance to Re-Estimate Dewfall Accumulation as a Reliable Water Source in the Negev Desert. WATER 2020. [DOI: 10.3390/w12102952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dew formation is an essential component of the water balance in dry ecosystems, but measuring dew is challenging due, in part, to its dependency on the surface on which it forms. We detail the use of a modified Hiltner dew balance to illustrate how more accurate measurements of dewfall may be obtained. Using a modified Hiltner dew balance, we measured dewfall in the Negev Desert continuously for 3 years (2013–2015). Data analyses examined the relationship between dew formation, rain events and other environmental parameters in order to re-evaluate the importance of dew in the water budget. In line with previous research, our findings demonstrate that dewfall is a substantial and stable input of water in the Negev desert, providing inputs in the dry summer and the wet winter. Our results show that while dewfall was larger and more prevalent in proximity to rain events, a notable portion of dewfall took place on days distant from any rain event. The Hiltner dew balance modifications proved to be reliable and increased the efficacy of measuring the quantity and timing of dew formation. This study demonstrates the importance of integrating dewfall data into decision-making models for dryland ecosystems and agriculture, as well as into climate models.
Collapse
|
57
|
Wolfe BT. Bark water vapour conductance is associated with drought performance in tropical trees. Biol Lett 2020; 16:20200263. [PMID: 32750268 DOI: 10.1098/rsbl.2020.0263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bark water vapour conductance (gbark) is a rarely considered functional trait. However, for the few tree species measured to date, it appears high enough to create stem water deficits associated with mortality during droughts, when access to water is limited. I tested whether gbark correlates with stem water deficit during drought conditions in two datasets of tropical trees: one of saplings in forest understories during an annual dry season and one of potted saplings in a shadehouse during extreme drought conditions. Among all 14 populations of eight species measured, gbark varied more than 10-fold (0.86-12.98 mmol m-2 s-1). In the forest understories, gbark was highly correlated with stem water deficit among four deciduous species, but not among evergreen species that likely maintained access to soil water. In the shadehouse, gbark was positively correlated with stem water deficit and mortality among all six species. Overall, tree species with higher gbark suffer higher stem water deficit when soil water is unavailable. Incorporating gbark into soil-plant-atmosphere hydrodynamic models may improve projections of plant mortality under drought conditions.
Collapse
Affiliation(s)
- Brett T Wolfe
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama.,School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
58
|
Jura-Morawiec J, Marcinkiewicz J. Wettability, water absorption and water storage in rosette leaves of the dragon tree (Dracaena draco L.). PLANTA 2020; 252:30. [PMID: 32725269 PMCID: PMC7387376 DOI: 10.1007/s00425-020-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Leaf surfaces of Dracaena draco are wettable and can absorb water. The thick, basal leaf part could act as a water reservoir that changes in volume with plant hydration. Rosettes of leaves of Dracaena draco play an important role in directing fog water through leaf axils into the stem tissues, where it can be stored for further use. However, how water is intercepted and collected by the leaves remains unclear, especially since leaf blade surfaces are considered hydrophobic. Based on the observations of D. draco individuals growing in Spain and in glasshouse conditions in Poland, we hypothesised that their long leaves (~ 70 cm) are able to absorb water along the whole leaf blade, but leaf age affects this process. We used water droplet contact angle measurements, anatomical analyses of leaf cross sections along the age gradient and dye tracer experiments to test this hypothesis. The data showed that the leaf surfaces of D. draco are wettable. In general, the mature leaves of the rosette are more wettable than the young ones. Water can be absorbed both through the adaxial and abaxial surfaces. The hydrenchyma is not uniformly distributed along the leaf, it is especially abundant towards the leaf base where it forms a massive water reservoir, which changes in volume depending on plant water status. The results of these studies shed light on the role of rosettes in water absorption by D. draco, and broaden our understanding of the functioning of this vulnerable species.
Collapse
Affiliation(s)
- Joanna Jura-Morawiec
- Polish Academy of Sciences Botanical Garden-Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland.
| | - Jan Marcinkiewicz
- Polish Academy of Sciences Botanical Garden-Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland
| |
Collapse
|
59
|
Vega C, González G, Bahamonde HA, Valbuena-Carabaña M, Gil L, Fernández V. Effect of irradiation and canopy position on anatomical and physiological features of Fagus sylvatica and Quercus petraea leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:232-242. [PMID: 32449682 DOI: 10.1016/j.plaphy.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Growing conditions at different tree canopy positions may significantly vary and lead to foliar changes even within the same tree. An assessment of foliar anatomy, including also epidermal features, can help us understand how plants respond to environmental factors. Working with two model tree species (i.e., Quercus petraea and Fagus sylvatica) grown at their southernmost European distribution area in Central Spain, the influence of irradiation and canopy height was examined by sampling lower canopy leaves and comparing them with fully irradiated, top canopy leaves and shaded top canopy leaves grown for months within a bag made of shade netting fabric before they sprouted. At the end of the summer, samples were collected, and several parameters were analysed. The results indicate that SLA (specific leaf area) differences are significant both between species and groups. Leaf and cuticle thickness differed significantly between groups while stomatal densities only between species. Regarding mineral concentrations, differences between species were significant for K, Mn, N and N: P ratios. It is concluded that leaf responses to environmental conditions may be variable both within the same tree and between species.
Collapse
Affiliation(s)
- Clara Vega
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Guillermo González
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Héctor A Bahamonde
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diagonal 113 Nº 469, 1900, La Plata, Argentina
| | - María Valbuena-Carabaña
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Gil
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Victoria Fernández
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
60
|
Schreel JDM, Leroux O, Goossens W, Brodersen C, Rubinstein A, Steppe K. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:769-780. [PMID: 32279362 DOI: 10.1111/tpj.14770] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin-rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Adriana Rubinstein
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
61
|
Schreel JDM, Steppe K. Foliar Water Uptake in Trees: Negligible or Necessary? TRENDS IN PLANT SCIENCE 2020; 25:590-603. [PMID: 32407698 DOI: 10.1016/j.tplants.2020.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Foliar water uptake (FWU) has been identified as a mechanism commonly used by trees and other plants originating from various biomes. However, many questions regarding the pathways and the implications of FWU remain, including its ability to mitigate climate change-driven drought. Therefore, answering these questions is of primary importance to adequately address and comprehend drought stress responses and associated growth. In this review, we discuss the occurrence, pathways, and consequences of FWU, with a focus predominantly on tree species. Subsequently, we highlight the tight coupling between FWU and foliar fertilizer applications, discuss FWU in a changing climate, and conclude with the importance of including FWU in mechanistic vegetation models.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
62
|
Kerhoulas LP, Weisgrau AS, Hoeft EC, Kerhoulas NJ. Vertical gradients in foliar physiology of tall Picea sitchensis trees. TREE PHYSIOLOGY 2020; 40:321-332. [PMID: 31976529 DOI: 10.1093/treephys/tpz137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In tall conifers, leaf structure can vary dramatically with height due to decreasing water potential (Ψ) and increasing light availability. This variation in leaf structure can have physiological consequences such as increased respiratory costs, reduced internal carbon dioxide conductance rates and ultimately reduced maximum photosynthetic rates (Amax). In Picea sitchensis (Bong.) Carrière, the leaf structure varies along the vertical gradient in ways that suggest compensatory changes to enhance photosynthesis, and this variation seems to be driven largely by light availability rather than by Ψ. These trends in leaf structure coupled with remarkably fast growth rates and dependence on moist environments inspire two important questions about P. sitchensis: (i) does foliar water uptake minimize the adverse effects of decreasing Ψ with height on leaf structure, and (ii) do trends in leaf structure increase photosynthetic rates despite increasing height? To answer these questions, we measured foliar water uptake capacity, predawn (Ψpd) and midday water potential and gas-exchange rates as they varied between 25- and 89-m heights in 300-year-old P. sitchensis trees in northwestern California. Our major findings for P. sitchensis include the following: (i) foliar water uptake capacity was quite high relative to published values for other woody species; (ii) foliar water uptake capacity increased between the crown base and treetop; (iii) wet season Ψpd was higher than predicted by the gravitational potential gradient, indicating foliar water uptake; and (iv) the maximum photosynthetic rate increased with height, presumably due to shifts in leaf structure between the crown base and treetop, mitigating height-related decreases in Amax. These findings suggest that together, the use of fog, dew and rain deposits on leaves and shifts in the leaf structure to conserve and possibly enhance photosynthetic capacity likely contribute to the rapid growth rates measured in this species.
Collapse
Affiliation(s)
- Lucy P Kerhoulas
- Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| | - Ariel S Weisgrau
- Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| | - Emily C Hoeft
- Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| | - Nicholas J Kerhoulas
- Department of Wildlife, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| |
Collapse
|
63
|
Lehmann MM, Goldsmith GR, Mirande-Ney C, Weigt RB, Schönbeck L, Kahmen A, Gessler A, Siegwolf RTW, Saurer M. The 18 O-signal transfer from water vapour to leaf water and assimilates varies among plant species and growth forms. PLANT, CELL & ENVIRONMENT 2020; 43:510-523. [PMID: 31732962 DOI: 10.1111/pce.13682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The 18 O signature of atmospheric water vapour (δ18 OV ) is known to be transferred via leaf water to assimilates. It remains, however, unclear how the 18 O-signal transfer differs among plant species and growth forms. We performed a 9-hr greenhouse fog experiment (relative humidity ≥ 98%) with 18 O-depleted water vapour (-106.7‰) on 140 plant species of eight different growth forms during daytime. We quantified the 18 O-signal transfer by calculating the mean residence time of O in leaf water (MRTLW ) and sugars (MRTSugars ) and related it to leaf traits and physiological drivers. MRTLW increased with leaf succulence and thickness, varying between 1.4 and 10.8 hr. MRTSugars was shorter in C3 and C4 plants than in crassulacean acid metabolism (CAM) plants and highly variable among species and growth forms; MRTSugars was shortest for grasses and aquatic plants, intermediate for broadleaf trees, shrubs, and herbs, and longest for conifers, epiphytes, and succulents. Sucrose was more sensitive to δ18 OV variations than other assimilates. Our comprehensive study shows that plant species and growth forms vary strongly in their sensitivity to δ18 OV variations, which is important for the interpretation of δ18 O values in plant organic material and compounds and thus for the reconstruction of climatic conditions and plant functional responses.
Collapse
Affiliation(s)
- Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866
| | | | - Rosemarie B Weigt
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences-Botany, University of Basel, Basel, 4056, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| |
Collapse
|
64
|
Berry ZC, Goldsmith GR. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. THE NEW PHYTOLOGIST 2020; 225:143-153. [PMID: 31418864 DOI: 10.1111/nph.16121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Most ecosystems experience frequent cloud cover resulting in light that is predominantly diffuse rather than direct. Moreover, these cloudy conditions are often accompanied by rain that results in wet leaf surfaces. Despite this, our understanding of photosynthesis is built upon measurements made on dry leaves experiencing direct light. Using a modified gas exchange setup, we measured the effects of diffuse light and leaf wetting on photosynthesis in canopy species from a tropical montane cloud forest. We demonstrate significant variation in species-level response to light quality independent of light intensity. Some species demonstrated 100% higher rates of photosynthesis in diffuse light, and others had 15% greater photosynthesis in direct light. Even at lower light intensities, diffuse light photosynthesis was equal to that under direct light conditions. Leaf wetting generally led to decreased photosynthesis, particularly when the leaf surface with stomata became wet; however, there was significant variation across species. Ultimately, we demonstrate that ecosystem photosynthesis is significantly altered in response to environmental conditions that are ubiquitous. Our results help to explain the observation that net ecosystem exchange can increase in cloudy conditions and can improve the representation of these processes in Earth systems models under projected scenarios of global climate change.
Collapse
Affiliation(s)
- Z Carter Berry
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| |
Collapse
|
65
|
Non-rainfall Moisture: A Key Driver of Microbial Respiration from Standing Litter in Arid, Semiarid, and Mesic Grasslands. Ecosystems 2019. [DOI: 10.1007/s10021-019-00461-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Models assume that rainfall is the major moisture source driving decomposition. Non-rainfall moisture (NRM: high humidity, dew, and fog) can also induce standing litter decomposition, but there have been few measurements of NRM-mediated decomposition across sites and no efforts to extrapolate the contribution of NRM to larger scales to assess whether this mechanism can improve model predictions. Here, we show that NRM is an important, year-round source of moisture in grassland sites with contrasting moisture regimes using field measurements and modeling. We first characterized NRM frequency and measured NRM-mediated decomposition at two sites in the Namib Desert, Namibia (hyper-arid desert), and at one site in Iowa, USA (tallgrass prairie). NRM was frequent at all sites (85–99% of hours that litter was likely to be wet were attributed to NRM) and tended to occur in cool, high-humidity periods for several hours or more at a time. NRM also resulted in CO2 release from microbes in standing litter at all sites when litter became sufficiently wet (> 5% gravimetric moisture for fine litter and > 13% for coarse), and significantly contributed to mass loss, particularly in the western Namib site that received almost no rain. When we modeled annual mass loss induced by NRM and rain and extrapolated our characterization of NRM decomposition to a final semiarid site (Sevilleta, New Mexico), we found that models driven by rainfall alone underestimated mass loss, while including NRM resulted in estimates within the range of observed mass loss. Together these findings suggest that NRM is an important missing component in quantitative and conceptual models of litter decomposition, but there is nuance involved in modeling NRM at larger scales.
Specifically, temperature and physical features of the substrate emerge as factors that affect the microbial response to litter wetting under NRM in our sites, and require further study. Hourly humidity can provide an adequate proxy of NRM frequency, but site-specific calibration with litter wetness is needed to accurately attribute decomposition to periods when NRM wets litter. Greater recognition of NRM-driven decomposition and its interaction with other processes like photodegradation is needed, especially since fog, dew, and humidity are likely to shift under future climates.
Collapse
|
66
|
Fuenzalida TI, Bryant CJ, Ovington LI, Yoon HJ, Oliveira RS, Sack L, Ball MC. Shoot surface water uptake enables leaf hydraulic recovery in Avicennia marina. THE NEW PHYTOLOGIST 2019; 224:1504-1511. [PMID: 31419324 DOI: 10.1111/nph.16126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/11/2019] [Indexed: 05/08/2023]
Abstract
The significance of shoot surface water uptake (SSWU) has been debated, and it would depend on the range of conditions under which it occurs. We hypothesized that the decline of leaf hydraulic conductance (Kleaf ) in response to dehydration may be recovered through SSWU, and that the hydraulic conductance to SSWU (Ksurf ) declines with dehydration. We quantified effects of leaf dehydration on Ksurf and effects of SSWU on recovery of Kleaf in dehydrated leaves of Avicennia marina. SSWU led to overnight recovery of Kleaf , with recovery retracing the same path as loss of Kleaf in response to dehydration. SSWU declined with dehydration. By contrast, Ksurf declined with rehydration time but not with dehydration. Our results showed a role of SSWU in the recovery of leaf hydraulic conductance and revealed that SSWU is sensitive to leaf hydration status. The prevalence of SSWU in vegetation suggests an important role for atmospheric water sources in maintenance of leaf hydraulic function, with implications for plant responses to changing environments.
Collapse
Affiliation(s)
- Tomás I Fuenzalida
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Callum J Bryant
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Leuwin I Ovington
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hwan-Jin Yoon
- Statistical Consulting Unit, The Australian National University, Acton, ACT, 2601, Australia
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP 6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
67
|
Holanda AER, Souza BC, Carvalho ECD, Oliveira RS, Martins FR, Muniz CR, Costa RC, Soares AA. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1097-1109. [PMID: 31251437 DOI: 10.1111/plb.13023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Foliar uptake of dew is likely an important mechanism of water acquisition for plants from tropical dry environments. However, there is still limited experimental evidence describing the anatomical pathways involved in this process and the effects of this water subsidy on the maintenance of gas exchange and leaf lifespan of species from seasonally dry tropical vegetation such as the Brazilian caatinga. We performed scanning electron, bright-field and confocal microscopic analyses and used apoplastic tracers to examine the foliar water uptake (FWU) routes in four woody species with different foliar phenology and widely distributed in the caatinga. Leaves of plants subjected to water stress were exposed to dew simulation to evaluate the effects of the FWU on leaf water potentials, gas exchange and leaf lifespan. All species absorbed water through their leaf cuticles and/or peltate trichomes but FWU capacity differed among species. Leaf wetting by dew increased leaf lifespan duration up to 36 days compared to plants in the drought treatment. A positive effect on leaf gas exchange and new leaf production was only observed in the anisohydric and evergreen species. We showed that leaf wetting by dew is relevant for the physiology and leaf lifespan of plants from seasonally dry tropical vegetation, especially for evergreen species.
Collapse
Affiliation(s)
- A E R Holanda
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - B C Souza
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - E C D Carvalho
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - R S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - F R Martins
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - C R Muniz
- Embrapa Tropical Agroindustry, Fortaleza, Brazil
| | - R C Costa
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - A A Soares
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
68
|
Grossiord C, Christoffersen B, Alonso-Rodríguez AM, Anderson-Teixeira K, Asbjornsen H, Aparecido LMT, Carter Berry Z, Baraloto C, Bonal D, Borrego I, Burban B, Chambers JQ, Christianson DS, Detto M, Faybishenko B, Fontes CG, Fortunel C, Gimenez BO, Jardine KJ, Kueppers L, Miller GR, Moore GW, Negron-Juarez R, Stahl C, Swenson NG, Trotsiuk V, Varadharajan C, Warren JM, Wolfe BT, Wei L, Wood TE, Xu C, McDowell NG. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 2019; 191:519-530. [DOI: 10.1007/s00442-019-04513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
|
69
|
Gange AC, Koricheva J, Currie AF, Jaber LR, Vidal S. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. THE NEW PHYTOLOGIST 2019; 223:2002-2010. [PMID: 31002383 PMCID: PMC6766880 DOI: 10.1111/nph.15859] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 05/21/2023]
Abstract
Herbaceous plants harbour species-rich communities of asymptomatic endophytic fungi. Although some of these endophytes are entomopathogenic, many are not, and remarkably little is known about how the presence of these fungi in plant tissues affects phytophagous insects. Here we show through a meta-analysis that both entomopathogenic and nonentomopathogenic endophytes have a negative effect on insect herbivores. Growth and performance of polyphagous and sucking insects are reduced by nonentomopathogenic endophytes, but monophages are unaffected, likely because the latter are better adapted to secondary metabolites produced or induced by the fungi. Furthermore, studies using excised leaves report weaker effects than those with intact plants, likely caused by chemical changes being masked by leaf excision. Most surprisingly, endophyte infection of seeds produces the greatest effect on insect herbivores in subsequent mature plants, even though the usual mode of fungal transmission is infection of leaves by airborne spores. We conclude that these ubiquitous hidden fungi may be important bodyguards of plants. However, in order to fully understand their roles in plant protection, we must be aware that minor differences in experimental design can lead to contradictory results.
Collapse
Affiliation(s)
- Alan C. Gange
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyTW20 0EXUK
| | - Julia Koricheva
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyTW20 0EXUK
| | - Amanda F. Currie
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyTW20 0EXUK
| | - Lara R. Jaber
- Department of Plant ProtectionSchool of AgricultureThe University of JordanAmman11942Jordan
| | - Stefan Vidal
- Department of Crop ProtectionAgricultural EntomologyGeorg‐August University GoettingenGrisebachstrasse 6Goettingen37077Germany
| |
Collapse
|
70
|
Arboreal Epiphytes in the Soil-Atmosphere Interface: How Often Are the Biggest “Buckets” in the Canopy Empty? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9080342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte “bucket” is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend ~1/3 of their time in the dry state (0–10% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied—as even the canopy soils were often <50% saturated (29–53% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of “net” precipitation waters reaching the surface.
Collapse
|
71
|
Schreel JDM, Van de Wal BAE, Hervé-Fernandez P, Boeckx P, Steppe K. Hydraulic redistribution of foliar absorbed water causes turgor-driven growth in mangrove seedlings. PLANT, CELL & ENVIRONMENT 2019; 42:2437-2447. [PMID: 30953380 DOI: 10.1111/pce.13556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Although foliar water uptake (FWU) has been shown in mature Avicennia marina trees, the importance for its seedlings remains largely unknown. A series of experiments were therefore performed using artificial rainfall events in a greenhouse environment to assess the ecological implications of FWU in A. marina seedlings. One-hour artificial rainfall events resulted in an increased leaf water potential, a reversed sap flow, and a rapid diameter increment signifying a turgor-driven growth of up to 30.1 ± 5.4 μm. Furthermore, the application of an artificial rainfall event with deuterated water showed that the amount of water absorbed by the leaves and transported to the stem was directly and univocally correlated to the observed growth spurts. The observations in this process-based study show that FWU is an important water acquisition mechanism under certain circumstances and might be of ecological importance for the establishment of A. marina seedlings. Distribution of mangrove trees might hence be more significantly disturbed by climate change-driven changes in rainfall patterns than previously assumed.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bart A E Van de Wal
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Pedro Hervé-Fernandez
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Isotope Bioscience Laboratory (ISOFYS), Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
72
|
Hendrik Poorter. THE NEW PHYTOLOGIST 2019; 223:1071-1072. [PMID: 31304605 DOI: 10.1111/nph.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
73
|
Binks O, Mencuccini M, Rowland L, da Costa ACL, de Carvalho CJR, Bittencourt P, Eller C, Teodoro GS, Carvalho EJM, Soza A, Ferreira L, Vasconcelos SS, Oliveira R, Meir P. Foliar water uptake in Amazonian trees: Evidence and consequences. GLOBAL CHANGE BIOLOGY 2019; 25:2678-2690. [PMID: 31012521 DOI: 10.1111/gcb.14666] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The absorption of atmospheric water directly into leaves enables plants to alleviate the water stress caused by low soil moisture, hydraulic resistance in the xylem and the effect of gravity on the water column, while enabling plants to scavenge small inputs of water from leaf-wetting events. By increasing the availability of water, and supplying it from the top of the canopy (in a direction facilitated by gravity), foliar uptake (FU) may be a significant process in determining how forests interact with climate, and could alter our interpretation of current metrics for hydraulic stress and sensitivity. FU has not been reported for lowland tropical rainforests; we test whether FU occurs in six common Amazonian tree genera in lowland Amazônia, and make a first estimation of its contribution to canopy-atmosphere water exchange. We demonstrate that FU occurs in all six genera and that dew-derived water may therefore be used to "pay" for some morning transpiration in the dry season. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU (kfu ), we estimate that the contribution by FU to annual transpiration at this site has a median value of 8.2% (103 mm/year) and an interquartile range of 3.4%-15.3%, with the biggest sources of uncertainty being kfu and the proportion of time the canopy is wet. Our results indicate that FU is likely to be a common strategy and may have significant implications for the Amazon carbon budget. The process of foliar water uptake may also have a profound impact on the drought tolerance of individual Amazonian trees and tree species, and on the cycling of water and carbon, regionally and globally.
Collapse
Affiliation(s)
- Oliver Binks
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Lucy Rowland
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Paulo Bittencourt
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Cleiton Eller
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Azul Soza
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | - Rafael Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
74
|
Influence of Drought on Foliar Water Uptake Capacity of Temperate Tree Species. FORESTS 2019. [DOI: 10.3390/f10070562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Foliar water uptake (FWU) has been investigated in an increasing number of species from a variety of areas but has remained largely understudied in deciduous, temperate tree species from non-foggy regions. As leaf wetting events frequently occur in temperate regions, FWU might be more important than previously thought and should be investigated. As climate change progresses, the number of drought events is expected to increase, basically resulting in a decreasing number of leaf wetting events, which might make FWU a seemingly less important mechanism. However, the impact of drought on FWU might not be that unidirectional because drought will also cause a more negative tree water potential, which is expected to result in more FWU. It yet remains unclear whether drought results in a general increase or decrease in the amount of water absorbed by leaves. The main objectives of this study are, therefore: (i) to assess FWU-capacity in nine widely distributed key tree species from temperate regions, and (ii) to investigate the effect of drought on FWU in these species. Based on measurements of leaf and soil water potential and FWU-capacity, the effect of drought on FWU in temperate tree species was assessed. Eight out of nine temperate tree species were able to absorb water via their leaves. The amount of water absorbed by leaves and the response of this plant trait to drought were species-dependent, with a general increase in the amount of water absorbed as leaf water potential decreased. This relationship was less pronounced when using soil water potential as an independent variable. We were able to classify species according to their response in FWU to drought at the leaf level, but this classification changed when using drought at the soil level, and was driven by iso- and anisohydric behavior. FWU hence occurred in several key tree species from temperate regions, be it with some variability, which potentially allows these species to partly reduce the effects of drought stress. We recommend including this mechanism in future research regarding plant–water relations and to investigate the impact of different pathways used for FWU.
Collapse
|
75
|
Boanares D, Kozovits AR, Lemos-Filho JP, Isaias RMS, Solar RRR, Duarte AA, Vilas-Boas T, França MGC. Foliar water-uptake strategies are related to leaf water status and gas exchange in plants from a ferruginous rupestrian field. AMERICAN JOURNAL OF BOTANY 2019; 106:935-942. [PMID: 31281976 DOI: 10.1002/ajb2.1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Fog is a frequent event in Brazilian rupestrian field and plays an important role in the physiology of several plant species. Foliar water uptake (FWU) of fog may be fast or slow depending on the species. However, fog water may negatively affect CO2 assimilation. Thus, the interference in the water and carbon balance as a result of different strategies of FWU was evaluated to verify whether fog may mitigate possible water deficit in leaves. METHODS Four plant species with different FWU strategies were studied in a ferruginous rupestrian field with frequent fog. Gas exchange and water potential were measured before dawn and at midday during the dry and rainy seasons, separating foggy from non-foggy days during the dry season. RESULTS The FWU speed negatively influences CO2 assimilation in the dry season, possibly because of its negative relationship with stomatal conductance, since reduced stomatal aperture impairs carbon entrance. Fog presence increased leaf water potential both in early morning and midday during the dry season. However, during the rainy season, the values of leaf water potential were lower at midday, than during the dry season with fog at midday, which favors leaf gas exchanges. CONCLUSIONS FWU interferes negatively, but briefly with CO2 assimilation. Nevertheless, FWU prevents water loss through transpiration and increases the water status of plants in the dry season. That is, FWU results in a compensation between CO2 assimilation and foliar hydration, which, in fact, is beneficial to the plants of this ecosystem.
Collapse
Affiliation(s)
- Daniela Boanares
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alessandra R Kozovits
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, MG, Brasil
| | - José P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rosy M S Isaias
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo R R Solar
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alexandre A Duarte
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Tiago Vilas-Boas
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Marcel G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
76
|
|
77
|
Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? FORESTS 2019. [DOI: 10.3390/f10030256] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leaf dry mass per unit area (LMA) is considered to represent the photosynthetic capacity, which actually implies a hypothesis that foliar water mass (leaf fresh weight minus leaf dry weight) is proportional to leaf dry weight during leaf growth. However, relevant studies demonstrated that foliar water mass disproportionately increases with increasing leaf dry weight. Although scaling relationships of leaf dry weight vs. leaf area for many plants were investigated, few studies compared the scaling relationship based on leaf dry weight with that based on leaf fresh weight. In this study, we used the data of three families (Lauraceae, Oleaceae, and Poaceae, subfamily Bambusoideae) with five broad-leaved species for each family to examine whether using different measures for leaf biomass (i.e., dry weight and fresh weight) can result in different fitted results for the scaling relationship between leaf biomass and area. Reduced major axis regression was used to fit the log-transformed data of leaf biomass and area, and the bootstrap percentile method was used to test the significance of the difference between the estimate of the scaling exponent of leaf dry weight vs. area and that of leaf fresh weight vs. area. We found that there were five species across three families (Phoebe sheareri (Hemsl.) Gamble, Forsythia viridissima Lindl., Osmanthus fragrans Lour., Chimonobambusa sichuanensis (T.P. Yi) T.H. Wen, and Hibanobambusa tranquillans f. shiroshima H. Okamura) whose estimates of the scaling exponent of leaf dry weight to area and that of leaf fresh weight to area were not significantly different, whereas, for the remaining ten species, both estimates were significantly different. For the species in the same family whose leaf shape is narrow (i.e., a low ratio of leaf width to length) the estimates of two scaling exponents are prone to having a significant difference. There is also an allometric relationship between leaf dry weight and fresh weight, which means that foliar water mass disproportionately increases with increased leaf dry weight. In addition, the goodness of fit for the scaling relationship of leaf fresh weight vs. area is better than that for leaf dry weight vs. area, which suggests that leaf fresh mass might be more able to reflect the physiological functions of leaves associated with photosynthesis and respiration than leaf dry mass. The above conclusions are based on 15 broad-leaved species, although we believe that those conclusions may be potentially extended to other plants with broad and flat leaves.
Collapse
|
78
|
Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. Foliar water uptake: Processes, pathways, and integration into plant water budgets. PLANT, CELL & ENVIRONMENT 2019; 42:410-423. [PMID: 30194766 DOI: 10.1111/pce.13439] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 05/04/2023]
Abstract
Nearly all plant families, represented across most major biomes, absorb water directly through their leaves. This phenomenon is commonly referred to as foliar water uptake. Recent studies have suggested that foliar water uptake provides a significant water subsidy that can influence both plant water and carbon balance across multiple spatial and temporal scales. Despite this, our mechanistic understanding of when, where, how, and to what end water is absorbed through leaf surfaces remains limited. We first review the evidence for the biophysical conditions necessary for foliar water uptake to occur, focusing on the plant and atmospheric water potentials necessary to create a gradient for water flow. We then consider the different pathways for uptake, as well as the potential fates of the water once inside the leaf. Given that one fate of water from foliar uptake is to increase leaf water potentials and contribute to the demands of transpiration, we also provide a quantitative synthesis of observed rates of change in leaf water potential and total fluxes of water into the leaf. Finally, we identify critical research themes that should be addressed to effectively incorporate foliar water uptake into traditional frameworks of plant water movement.
Collapse
Affiliation(s)
- Z Carter Berry
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Sybil G Gotsch
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|