51
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
52
|
Morice A, Smith JA, McGarvey L, Birring SS, Parker SM, Turner A, Hummel T, Gashaw I, Fels L, Klein S, Francke K, Friedrich C. Eliapixant (BAY 1817080), a P2X3 receptor antagonist, in refractory chronic cough: a randomised, placebo-controlled, crossover phase 2a study. Eur Respir J 2021; 58:2004240. [PMID: 33986030 PMCID: PMC8607926 DOI: 10.1183/13993003.04240-2020] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND ATP acting via P2X3 receptors is an important mediator of refractory chronic cough (RCC). This phase 2a double-blinded crossover study assessed the safety, tolerability and efficacy of eliapixant (BAY 1817080), a selective P2X3 receptor antagonist, in adults with RCC attending specialist centres. METHODS In period A, patients received placebo for 2 weeks then eliapixant 10 mg for 1 week. In period B, patients received eliapixant 50, 200 and 750 mg twice daily for 1 week per dose level. Patients were randomised 1:1 to period A-B (n=20) or B-A (n=20). The primary efficacy end-point was change in cough frequency assessed over 24 h. The primary safety end-point was frequency and severity of adverse events (AEs). RESULTS 37 patients completed randomised therapy. Mean cough frequency fell by 17.4% versus baseline with placebo. Eliapixant reduced cough frequency at doses ≥50 mg (reduction versus placebo at 750 mg: 25% (90% CI 11.5-36.5%); p=0.002). Doses ≥50 mg also significantly reduced cough severity. AEs, mostly mild or moderate, were reported in 65% of patients with placebo and 41-49% receiving eliapixant. Cumulative rates of taste-related AEs were 3% with placebo and 5-21% with eliapixant; all were mild. CONCLUSIONS Selective P2X3 antagonism with eliapixant significantly reduced cough frequency and severity, confirming this as a viable therapeutic pathway for RCC. Taste-related side-effects were lower at therapeutic doses than with the less selective P2X3 antagonist gefapixant. Selective P2X3 antagonism appears to be a novel therapeutic approach for RCC.
Collapse
Affiliation(s)
- Alyn Morice
- Respiratory Research Group, Hull York Medical School, University of Hull, Hull, UK
| | - Jaclyn A Smith
- Manchester University NHS Foundation Trust and Manchester Academic Health Science Centre, Manchester, UK
| | - Lorcan McGarvey
- Wellcome Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Surinder S Birring
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College Hospital, London, UK
| | - Sean M Parker
- North Tyneside Hospital, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Alice Turner
- Institute of Applied Health Research and Population Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Hummel
- Smell and Taste Clinic, Dept of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
53
|
D'Amico D, Valdebenito S, Eugenin EA. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus. Purinergic Signal 2021; 17:563-576. [PMID: 34542793 DOI: 10.1007/s11302-021-09817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
54
|
Rabelo ILA, Arnaud-Sampaio VF, Adinolfi E, Ulrich H, Lameu C. Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor. Cells 2021; 10:1782. [PMID: 34359950 PMCID: PMC8305434 DOI: 10.3390/cells10071782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
The heterogeneity of tumor cell mass and the plasticity of cancer cell phenotypes in solid tumors allow for the insurgence of resistant and metastatic cells, responsible for cancer patients' clinical management's main challenges. Among several factors that are responsible for increased cancer aggression, metabolic reprogramming is recently emerging as an ultimate cancer hallmark, as it is central for cancer cell survival and self-renewal, metastasis and chemoresistance. The P2X7 receptor, whose expression is upregulated in many solid and hematological malignancies, is also emerging as a good candidate in cancer metabolic reprogramming and the regulation of stem cell proliferation and differentiation. Metabostemness refers to the metabolic reprogramming of cancer cells toward less differentiated (CSCs) cellular states, and we believe that there is a strong correlation between metabostemness and P2X7 receptor functions in oncogenic processes. Here, we summarize important aspects of P2X7 receptor functions in normal and tumor tissues as well as essential aspects of its structure, regulation, pharmacology and its clinical use. Finally, we review current knowledge implicating P2X7 receptor functions in cancer-related molecular pathways, in metabolic reprogramming and in metabostemness.
Collapse
Affiliation(s)
- Izadora Lorrany Alves Rabelo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Vanessa Fernandes Arnaud-Sampaio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| |
Collapse
|
55
|
Erukainure OL, Salau VF, Oyenihi AB, Mshicileli N, Chukwuma CI, Islam MS. Strawberry fruit (Fragaria x ananassa Romina) juice attenuates oxidative imbalance with concomitant modulation of metabolic indices linked to male infertility in testicular oxidative injury. Andrologia 2021; 53:e14175. [PMID: 34255375 DOI: 10.1111/and.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
This study investigated the protective properties of strawberry fruit on testicular oxidative injury. Oxidative injury was induced in vitro in testicular tissue homogenates by incubation with ferrous sulphate (FeSO4 ) in the presence and absence of strawberry fruit extract (SFE) for 30 min at 37˚C, with gallic acid serving as the standard antioxidant drug. Induction of oxidative injury significantly reduced glutathione, cholesterol and triglyceride levels; and inhibited SOD, catalase and ENTPDase activities when compared to normal control. It also led to exacerbated nitric oxide, malondialdehyde, LDL-cholesterol levels, acetylcholinesterase, ATPase and lipase activities. These effects were, however, reversed following treatment with SFE when compared to the untreated control, except for cholesterol and triglyceride levels. Additionally, the induction of the oxidative injury led to alterations in testicular lipid metabolites that were accompanied by the activation of α-linolenic acid and linoleic acid metabolic pathways. While SFE treatment had no significant impact on the altered metabolites, it repressed pathways for mitochondrial beta-oxidation of long-chain saturated fatty acids and plasmalogen synthesis. High-performance liquid chromatography analysis of SFE revealed the presence of rutin, caffeic acid, p-coumarin and cinnamic acid. These data imply the protective potentials of strawberry fruits against testicular oxidative injury.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ndumiso Mshicileli
- AgriFood Technology Station, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|
56
|
Huang Z, Tan S. P2X7 Receptor as a Potential Target for Major Depressive Disorder. Curr Drug Targets 2021; 22:1108-1120. [PMID: 33494675 DOI: 10.2174/1389450122666210120141908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder. Although the genetic, biochemical, and psychological factors have been related to the development of MDD, it is generally believed that a series of pathological changes in the brain caused by chronic stress is the main cause of MDD. However, the specific mechanisms underlying chronic stress-induced MDD are largely undermined. Recent investigations have found that increased pro-inflammatory cytokines and changes in the inflammatory pathway in the microglia cells in the brain are the potential pathophysiological mechanism of MDD. P2X7 receptor (P2X7R) and its mediated signaling pathway play a key role in microglia activation. The present review aimed to present and discuss the accumulating data on the role of P2X7R in MDD. Firstly, we summarized the research progress in the correlation between P2X7R and MDD. Subsequently, we presented the P2X7R mediated microglia activation in MDD and the role of P2X7R in increased blood-brain barrier (BBB) permeability caused by chronic stress. Lastly, we also discussed the potential mechanism underlying-P2X7R expression changes after chronic stress. In conclusion, P2X7R is a key molecule regulating the activation of microglia. Chronic stress activates microglia in the hippocampus by secreting interleukin- 1β (IL-1β) and other inflammatory cytokines, and increasing the BBB permeability, thus promoting the occurrence and development of MDD, which indicated that P2X7R might be a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| |
Collapse
|
57
|
Oliveira NF, Silva CLM. Unveiling the Potential of Purinergic Signaling in Schistosomiasis Treatment. Curr Top Med Chem 2021; 21:193-204. [PMID: 32972342 DOI: 10.2174/1568026620666200924115113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
58
|
Ferla M, Tasca T. The Role of Purinergic Signaling in Trichomonas vaginalis Infection. Curr Top Med Chem 2021; 21:181-192. [PMID: 32888270 DOI: 10.2174/1568026620999200904122212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 11/22/2022]
Abstract
Trichomoniasis, one of the most common non-viral sexually transmitted infections worldwide, is caused by the parasite Trichomonas vaginalis. The pathogen colonizes the human urogenital tract, and the infection is associated with complications such as adverse pregnancy outcomes, cervical cancer, and an increase in HIV transmission. The mechanisms of pathogenicity are multifactorial, and controlling immune responses is essential for infection maintenance. Extracellular purine nucleotides are released by cells in physiological and pathological conditions, and they are hydrolyzed by enzymes called ecto-nucleotidases. The cellular effects of nucleotides and nucleosides occur via binding to purinoceptors, or through the uptake by nucleoside transporters. Altogether, enzymes, receptors and transporters constitute the purinergic signaling, a cellular network that regulates several effects in practically all systems including mammals, helminths, protozoa, bacteria, and fungi. In this context, this review updates the data on purinergic signaling involved in T. vaginalis biology and interaction with host cells, focusing on the characterization of ecto-nucleotidases and on purine salvage pathways. The implications of the final products, the nucleosides adenosine and guanosine, for human neutrophil response and vaginal epithelial cell damage reveal the purinergic signaling as a potential new mechanism for alternative drug targets.
Collapse
Affiliation(s)
- Micheli Ferla
- Research Team on Trichomonas, Pharmaceutical Sciences Graduation Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Team on Trichomonas, Pharmaceutical Sciences Graduation Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
59
|
Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin JS, Bezard E, Stark H. Adenosine A 2AR/A 1R Antagonists Enabling Additional H 3R Antagonism for the Treatment of Parkinson's Disease. J Med Chem 2021; 64:8246-8262. [PMID: 34107215 DOI: 10.1021/acs.jmedchem.0c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.
Collapse
Affiliation(s)
- Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Anna Affini
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Elsa Y Pioli
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Institute of Pharmacology and Toxicology, School of Medicine, University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Alfred-Herrhausen-Street 50, 58448 Witten, Germany
| | - Yan Zhao
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | | | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jian-Sheng Lin
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Erwan Bezard
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| |
Collapse
|
60
|
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells 2021; 10:1124. [PMID: 34066933 PMCID: PMC8148598 DOI: 10.3390/cells10051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal survival depends on the glia, that is, on the astroglial and microglial support. Neurons die and microglia are activated not only in neurodegenerative diseases but also in physiological aging. Activated microglia, once considered harmful, express two main phenotypes: the pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G protein-coupled receptors in general and adenosine receptors in particular are potential targets for increasing the number of M2 cells. This article describes the mechanisms underlying microglial activation and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned to better react to exposure to more damaging events. Adenosine receptors are relevant due to their participation in preconditioning. They can also be overexpressed in activated microglial cells. The potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as therapeutic targets to provide microglia-mediated neuroprotection is here discussed.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
61
|
Ding S, Yu Q, Wang J, Zhu L, Li T, Guo X, Zhang X. Activation of ATF3/AP-1 signaling pathway is required for P2X3-induced endometriosis pain. Hum Reprod 2021; 35:1130-1144. [PMID: 32303740 DOI: 10.1093/humrep/deaa061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does P2X ligand-gated ion channel 3 (P2X3) play a role in endometriosis pain? SUMMARY ANSWER Upregulation of P2X3 in dorsal root ganglia (DRG) tissues via the activating transcription factor 3 (ATF3)/activator protein (AP)-1 pathway contributed to endometriosis-associated hyperalgesia, which could be attenuated by the chitosan oligosaccharide stearic acid (CSOSA)/liposomes (LPs)/SP600125 delivery system. WHAT IS KNOWN ALREADY Infiltrating nerve fibers and elevated nociceptors in endometriotic lesions are associated with endometriosis pain. P2X3 has been demonstrated to play an important role in neuropathic pain. STUDY DESIGN, SIZE, DURATION A rat model of endometriosis was used to investigate the signaling pathways involved in P2X3-induced pain. PARTICIPANTS/MATERIALS, SETTING, METHODS Degrees of hyperalgesia, endogenous adenosine 5'-triphosphate (ATP) contents and P2X3 expression levels in endometriotic lesions and DRG tissues were detected in a rat model of endometriosis. The expression levels of ATF3 and P2X3 were measured using qRT-PCR, western blot analysis and immunofluorescence analysis after adenosine 5'-diphosphate (ADP) exposure in DRG cells. Plasmids encoding ATF3 and its siRNA were used to investigate the role of ATF3 on ADP-induced P2X3 upregulation. The activity of ATF binding to the P2X3 promoter was evaluated by using chromatin immunoprecipitation (CHIP) and luciferase assays. SP600125, an inhibitor of c-JUN N-terminal kinase, was wrapped in CSOSA/LPs delivery system and its inhibitory effects on ADP-induced upregulation of P2X3 in DRG cells and endometriosis-induced hyperalgesia in rats were tested. MAIN RESULTS AND THE ROLE OF CHANCE The concentrations of endogenous ATP and expression levels of P2X3 were significantly increased in both endometriotic lesions and DRG tissues in endometriosis rat models and were found to be positively correlated with the severity of hyperalgesia. In DRG cells, P2X3 expression levels were elevated by ADP stimulation, but dramatically inhibited by blocking ATF3 with its siRNA and SP600125. CHIP and luciferase assay showed that ADP increased the binding of ATF3 to the P2X3 promoter, resulting in an increase in P2X3 expression levels. In the CSOSA/LPs/SP600125 delivery system, the drug could be effectively concentrated in endometriotic lesions, and it could alleviate endometriosis-induced hyperalgesia, reduce the size of endometriotic lesions and attenuate upregulated P2X3 expression levels in endometriosis rat models. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Changes in the sensitivity and function of P2X3 caused by endometriosis need to be further investigated. WIDER IMPLICATIONS OF THE FINDINGS This study indicates that ATP and the P2X3 receptor are involved in endometriosis pain, thus providing a novel therapeutic approach for the treatment of endometriosis pain by targeting the P2X3 receptor. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by National Key R&D Program of China (Grant No. 2017YFC1001202) and National Natural Science Foundation of China (Grant Nos. 81974225, 81671429 and 81471433). There are no competing interests.
Collapse
Affiliation(s)
- Shaojie Ding
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Qin Yu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Jianzhang Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Libo Zhu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Tiantian Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinyue Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinmei Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| |
Collapse
|
62
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
63
|
Sarti AC, Vultaggio-Poma V, Falzoni S, Missiroli S, Giuliani AL, Boldrini P, Bonora M, Faita F, Di Lascio N, Kusmic C, Solini A, Novello S, Morari M, Rossato M, Wieckowski MR, Giorgi C, Pinton P, Di Virgilio F. Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab005. [PMID: 35330818 PMCID: PMC8788778 DOI: 10.1093/function/zqab005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Basal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, Adenosine 5'-triphosphate (ATP) synthesis, and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia, and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack (1) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca2+ level, (2) modifies expression pattern of oxidative phosphorylation enzymes, and (3) severely affects cardiac performance. Hearts from P2rx7-deleted versus wild-type mice are larger, heart mitochondria smaller, and stroke volume, ejection fraction, fractional shortening, and cardiac output, are significantly decreased. Accordingly, the physical fitness of P2X7R-null mice is severely reduced. Thus, the P2X7R is a key modulator of mitochondrial energy metabolism and a determinant of physical fitness.
Collapse
Affiliation(s)
- Alba Clara Sarti
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Paola Boldrini
- Center of Electronic Microscopy, University of
Ferrara, Ferrara 44121, Italy
| | - Massimo Bonora
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research
Council, Pisa 56124, Italy
| | - Nicole Di Lascio
- Institute of Clinical Physiology, National Research
Council, Pisa 56124, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research
Council, Pisa 56124, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular, and
Critical Area Pathology, University of Pisa, Pisa 56124, Italy
| | - Salvatore Novello
- Department of Biomedical and Specialty Surgical
Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Michele Morari
- Department of Biomedical and Specialty Surgical
Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Marco Rossato
- Department of Medicine, University of
Padova, Padova 35128, Italy
| | | | - Carlotta Giorgi
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Francesco Di Virgilio
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy,Address correspondence to F.D.V. (e-mail:
)
| |
Collapse
|
64
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
65
|
Fleck D, Kenzler L, Mundt N, Strauch M, Uesaka N, Moosmann R, Bruentgens F, Missel A, Mayerhofer A, Merhof D, Spehr J, Spehr M. ATP activation of peritubular cells drives testicular sperm transport. eLife 2021; 10:e62885. [PMID: 33502316 PMCID: PMC7840184 DOI: 10.7554/elife.62885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Spermatogenesis, the complex process of male germ cell proliferation, differentiation, and maturation, is the basis of male fertility. In the seminiferous tubules of the testes, spermatozoa are constantly generated from spermatogonial stem cells through a stereotyped sequence of mitotic and meiotic divisions. The basic physiological principles, however, that control both maturation and luminal transport of the still immotile spermatozoa within the seminiferous tubules remain poorly, if at all, defined. Here, we show that coordinated contractions of smooth muscle-like testicular peritubular cells provide the propulsive force for luminal sperm transport toward the rete testis. Using a mouse model for in vivo imaging, we describe and quantify spontaneous tubular contractions and show a causal relationship between peritubular Ca2+ waves and peristaltic transport. Moreover, we identify P2 receptor-dependent purinergic signaling pathways as physiological triggers of tubular contractions both in vitro and in vivo. When challenged with extracellular ATP, transport of luminal content inside the seminiferous tubules displays stage-dependent directionality. We thus suggest that paracrine purinergic signaling coordinates peristaltic recurrent contractions of the mouse seminiferous tubules to propel immotile spermatozoa to the rete testis.
Collapse
Affiliation(s)
- David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Lina Kenzler
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Nadine Mundt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
- Research Training Group 2416 MultiSenses – MultiScales, RWTH Aachen UniversityAachenGermany
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen UniversityAachenGermany
| | - Naofumi Uesaka
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
- Department of Cognitive Neurobiology, Tokyo Medical and Dental UniversityTokyoJapan
| | - Robert Moosmann
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Felicitas Bruentgens
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Annika Missel
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision, RWTH Aachen UniversityAachenGermany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
- Research Training Group 2416 MultiSenses – MultiScales, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
66
|
Sun L, Yao K, Zhang H, Chen W. Activation of the ATP-P2X pathway by TRPV4 in acute ocular hypertension. Int J Ophthalmol 2020; 13:1697-1704. [PMID: 33214998 DOI: 10.18240/ijo.2020.11.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To measure the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) in the rat cornea and determine whether it is related to adenosine triphosphate (ATP) generation in a rat model of acute ocular hypertension (AOH). METHODS Immunofluorescence staining of TRPV4, P2X2 receptor, P2X3 receptor, and β3-tubulin in rat corneal longitudinal sections and paved was performed to clearly display histological structures. Rat models of AOH and agonist/antagonist-treated groups were established and corneal ATP was measured using an ATP assay. The independent t-test and simple linear correlation model were adopted for statistical analyses. RESULTS Immunofluorescence staining of rat cornea sections revealed that epithelial and endothelial membranes showed strong immunoreactivity for TRPV4 and P2X2 receptor and coexpression with β3-tubulin in the rat corneal epithelial layer. Corneal ATP was significantly higher in the AOH rat model than in the control (P<0.05) and apparently lower after pretreatment by applying eyedrops of TRPV4 antagonist RN1734 with 30-40 mm Hg intraocular pressure (IOP; P<0.05). A simple linear regression model showed a positive correlation between rat corneal ATP and IOP values (R 2=0.996, P=0.0134) from the normal IOP (113 mm Hg) to 40 mm Hg. At 10-40min after anterior chamber injection of GSK1016790A (0.01 mL, 50 nmol/L in 0.9% NaCl), corneal ATP was significantly higher than in the control group (P<0.05), which peaked at 10min. The ATP concentration of the normal epithelium was higher than that of the endothelium in the AOH rat model and after anterior chamber injection of GSK1016790A (P<0.05). CONCLUSION The ATP concentration in the AOH rat cornea is increased by TRPV4 activation.
Collapse
Affiliation(s)
- Li Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| |
Collapse
|
67
|
Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020; 9:cells9112496. [PMID: 33212982 PMCID: PMC7698494 DOI: 10.3390/cells9112496] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Adenosine triphosphate (ATP) is one of the main biochemical components of the tumor microenvironment (TME), where it can promote tumor progression or tumor suppression depending on its concentration and on the specific ecto-nucleotidases and receptors expressed by immune and cancer cells. ATP can be released from cells via both specific and nonspecific pathways. A non-regulated release occurs from dying and damaged cells, whereas active release involves exocytotic granules, plasma membrane-derived microvesicles, specific ATP-binding cassette (ABC) transporters and membrane channels (connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion channels (MACs)). Extracellular ATP acts at P2 purinergic receptors, among which P2X7R is a key mediator of the final ATP-dependent biological effects. Over the years, P2 receptor- or ecto-nucleotidase-targeting for cancer therapy has been proposed and actively investigated, while comparatively fewer studies have explored the suitability of TME ATP as a target. In this review, we briefly summarize the available evidence suggesting that TME ATP has a central role in determining tumor fate and is, therefore, a suitable target for cancer therapy.
Collapse
|
68
|
Pacheco PAF, Diogo RT, Magalhães BQ, Faria RX. Plant natural products as source of new P2 receptors ligands. Fitoterapia 2020; 146:104709. [DOI: 10.1016/j.fitote.2020.104709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
|
69
|
Vuerich M, Mukherjee S, Robson SC, Longhi MS. Control of Gut Inflammation by Modulation of Purinergic Signaling. Front Immunol 2020; 11:1882. [PMID: 33072065 PMCID: PMC7544737 DOI: 10.3389/fimmu.2020.01882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two of the most common IBD manifestations and are both associated with unfettered inflammation, often refractory to conventional immunosuppressive treatment. In both conditions, imbalance between effector and regulatory cell immune responses has been documented and is thought to contribute to disease pathogenesis. Purinergic signaling is a known modulator of systemic and local inflammation and growing evidences point to extracellular ATP/adenosine imbalance as a key determinant factor in IBD-associated immune dysregulation. In vitro and pre-clinical studies suggest a role for both ATP (P2) and adenosine (P1) receptors in dictating onset and severity of the disease. Moreover, our experimental data indicate ENTPD1/CD39 and CD73 ectoenzymes as pivotal modulators of intestinal inflammation, with clear translational importance. Here we will provide an updated overview of the current knowledge on the role of the purinergic signaling in modulating immune responses in IBD. We will also review and discuss the most promising findings supporting the use of purinergic-based therapies to correct immune dysregulation in CD and UC.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Samiran Mukherjee
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
70
|
Abstract
Neuropathic pain (NP) has become a serious global health issue and a huge clinical challenge without available effective treatment. P2 receptors family is involved in pain transmission and represents a promising target for pharmacological intervention. Traditional Chinese medicine (TCM) contains multiple components which are effective in targeting different pathological mechanisms involved in NP. Different from traditional analgesics, which target a single pathway, TCMs take the advantage of multiple components and multiple targets, and can significantly improve the efficacy of treatment and contribute to the prediction of the risks of NP. Compounds of TCM acting at nucleotide P2 receptors in neurons and glial cells could be considered as a potential research direction for moderating neuropathic pain. This review summarized the recently published data and highlighted several TCMs that relieved NP by acting at P2 receptors.
Collapse
|
71
|
Carluccio M, Zuccarini M, Ziberi S, Giuliani P, Morabito C, Mariggiò MA, Lonardo MT, Adinolfi E, Orioli E, Di Iorio P, Caciagli F, Ciccarelli R. Involvement of P2X7 Receptors in the Osteogenic Differentiation of Mesenchymal Stromal/Stem Cells Derived from Human Subcutaneous Adipose Tissue. Stem Cell Rev Rep 2020; 15:574-589. [PMID: 30955192 DOI: 10.1007/s12015-019-09883-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ionotropic P2X7 receptor (P2X7R) is involved in bone homeostasis but its role in osteogenesis is controversial. Thus, we investigated the expression of P2X7R and the effects exerted by its modulation in mesenchymal stromal cells from human subcutaneous adipose tissue (S-ASCs), which have potential therapeutic application in bone regenerative medicine. We found that undifferentiated S-ASCs expressed P2X7R and its functional splice variants P2X7AR and P2X7BR. Cell stimulation by P2X7R agonist BzATP (100 μM) neither modified proliferation nor caused membrane pore opening while increasing intracellular Ca2+ levels and migration. The P2X7R antagonist A438079 reversed these effects. However, 25-100 μM BzATP, administered to S-ASCs undergoing osteogenic differentiation, dose-dependently decreased extracellular matrix mineralization and expression of osteogenic transcription factors Runx2, alkaline phosphatase and osteopontin. These effects were not coupled to cell proliferation reduction or to cell death increase, but were associated to decrease in P2X7AR and P2X7BR expression. In contrast, expression of P2X7R, especially P2X7BR isoform, significantly increased during the osteogenic process. Noteworthy, the antagonist A438079, administered alone, at first restrained cell differentiation, enhancing it later. Accordingly, A438079 reversed BzATP effects only in the second phase of S-ASCs osteogenic differentiation. Apyrase, a diphosphohydrolase converting ATP/ADP into AMP, showed a similar behavior. Altogether, findings related to A438079 or apyrase effects suggest an earlier and prevailing pro-osteogenic activity by endogenous ATP and a later one by adenosine derived from endogenous ATP metabolism. Conversely, P2X7R pharmacological stimulation by BzATP, mimicking the effects of high ATP levels occurring during tissue injuries, depressed receptor expression/activity impairing MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Caterina Morabito
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Maria A Mariggiò
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Elena Adinolfi
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy. .,StemTeCh Group, Chieti, Italy.
| |
Collapse
|
72
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
73
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
74
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
75
|
Wilkaniec A, Cieślik M, Murawska E, Babiec L, Gąssowska-Dobrowolska M, Pałasz E, Jęśko H, Adamczyk A. P2X7 Receptor is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2020; 21:ijms21113959. [PMID: 32486485 PMCID: PMC7312811 DOI: 10.3390/ijms21113959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) belongs to a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). Several studies have pointed to a role of P2X7R-dependent signalling in Parkinson's disease (PD)-related neurodegeneration. The pathology of (PD) is characterized by the formation of insoluble alpha-synuclein (α-Syn) aggregates—Lewy bodies, but the mechanisms underlying α-Syn-induced dopaminergic cell death are still partially unclear. Our previous studies indicate that extracellular α-Syn directly interact with neuronal P2X7R and induces intracellular free calcium mobilization in neuronal cells. The main objective of this study was to examine the involvement of P2X7R receptor in α-Syn-induced mitochondrial dysfunction and cell death. We found that P2X7R stimulation is responsible for α-Syn-induced oxidative stress and activation of the molecular pathways of programmed cell death. Exogenous α-Syn treatment led to P2X7R-dependent decrease in mitochondrial membrane potential as well as elevation of mitochondrial ROS production resulting in breakdown of cellular energy production. Moreover, P2X7R-dependent deregulation of AMP-activated protein kinase as well as decrease in parkin protein level could be responsible for α-Syn-induced mitophagy impairment and accumulation of dysfunctional mitochondria. P2X7R might be putative pharmacological targets in molecular mechanism of extracellular α-Syn toxicity.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
- Correspondence: ; Tel.: +48-22-608-66-00; Fax: +48-22-608-64-13
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Emilia Murawska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1 Street, 02-096 Warsaw, Poland;
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| |
Collapse
|
76
|
Tian M, Abdelrahman A, Baqi Y, Fuentes E, Azazna D, Spanier C, Densborn S, Hinz S, Schmid R, Müller CE. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. J Med Chem 2020; 63:6164-6178. [PMID: 32345019 DOI: 10.1021/acs.jmedchem.0c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 μM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 μM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.
Collapse
Affiliation(s)
- Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, 3460000 Talca, Chile
| | - Djamil Azazna
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Claudia Spanier
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sabrina Densborn
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
77
|
Calcium signaling mediated by aminergic GPCRs is impaired by the PI3K inhibitor LY294002 and its analog LY303511 in a PI3K-independent manner. Eur J Pharmacol 2020; 880:173182. [PMID: 32416185 DOI: 10.1016/j.ejphar.2020.173182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (LY294) and its much less active analog LY303511 (LY303) constitute the paired probe that is commonly used to demonstrate the involvement of PI3K in intracellular signaling. We studied effects of LY294 and LY303 on Ca2+ signaling initiated by certain GPCR agonists in cells of several lines, including CHO cells expressing the recombinant serotonin receptor 5-HT2C and mesenchymal stromal cells derived from the human adipose tissue (AD-MSCs) and umbilical cord (UD-MSCs). The LY294/LY303 pair exerted apparently specific effects on responsiveness of AD-MSCs to ATP, suggesting the involvement of PI3K in ATP transduction. Surprisingly, LY303 inhibited Ca2+ transients elicited by histamine in the same cells, while LY294 was ineffective. This observation and other findings implicated a PI3K-unrelated mechanism in mediating effects of the LY compound on AD-MSC responsiveness to histamine. With LY303 in the bath, the dose dependence of histamine responses was shifted positively at the invariable number of responsive cells, as would be the case with a competitive antagonist of histamine receptors. Moreover, LY303 and LY294 inhibited Ca2+ transients elicited by acetylcholine and serotonin in UD-MSCs and CHO/5-HT2C cells, respectively. Our overall results argued for the possibility that LY294 and LY303 could directly affect activity of aminergic GPCRs. Thus, LY303511 and LY294002 should be used cautiously in studies of PI3K as a factor of GPCR signaling.
Collapse
|
78
|
Ali AA, Avakian GA, Von Gall C. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020; 21:E3423. [PMID: 32408622 PMCID: PMC7279285 DOI: 10.3390/ijms21103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Charlotte Von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (A.A.H.A.); (G.A.A.)
| |
Collapse
|
79
|
Wu M, Feng Y, Shi X. Advances with Long Non-Coding RNAs in Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2020; 13:1429-1434. [PMID: 32431526 PMCID: PMC7201007 DOI: 10.2147/dmso.s249232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleotides, which are defined as transcripts. The lncRNAs are involved in regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels. Recent studies have found that lncRNA is closely related to many diseases like neurological diseases, endocrine and metabolic disorders. Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes mellitus. In this review, we highlight the latest research related to lncRNAs in DPN.
Collapse
Affiliation(s)
- Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
80
|
Dunn PJ, Salm EJ, Tomita S. ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity. J Biol Chem 2020; 295:5192-5203. [PMID: 31988241 PMCID: PMC7170513 DOI: 10.1074/jbc.ra119.010699] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purinergic signaling by extracellular ATP regulates a variety of cellular events and is implicated in both normal physiology and pathophysiology. Several molecules have been associated with the release of ATP and other small molecules, but their precise contributions have been difficult to assess because of their complexity and heterogeneity. Here, we report on the results of a gain-of-function screen for modulators of hypotonicity-induced ATP release using HEK-293 cells and murine cerebellar granule neurons, along with bioluminescence, calcium FLIPR, and short hairpin RNA-based gene-silencing assays. This screen utilized the most extensive genome-wide ORF collection to date, covering 90% of human, nonredundant, protein-encoding genes. We identified two ABCG1 (ABC subfamily G member 1) variants, which regulate cellular cholesterol, as modulators of hypotonicity-induced ATP release. We found that cholesterol levels control volume-regulated anion channel-dependent ATP release. These findings reveal novel mechanisms for the regulation of ATP release and volume-regulated anion channel activity and provide critical links among cellular status, cholesterol, and purinergic signaling.
Collapse
Affiliation(s)
- Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Kavli Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elizabeth J Salm
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Kavli Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Kavli Institute, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
81
|
Analysis of purine receptor expression and functionality in alveolar epithelial cells. Purinergic Signal 2020; 16:213-229. [PMID: 32236789 DOI: 10.1007/s11302-020-09696-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research, although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca2+]) measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y2, P2Y6, and P2X4 were detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all cell lines.
Collapse
|
82
|
Anwar S, Rivest S. Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 2020; 24:331-344. [PMID: 32129117 DOI: 10.1080/14728222.2020.1738391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: Despite the revolutionary progress in neurodegenerative disease research, there is no cure for Alzheimer's disease (AD). This is a chronic progressive neurodegenerative disease affecting aged people and is associated with chronic neuroinflammation and amyloid-beta (Aβ) deposition in the brain parenchyma. Microglia, the resident myeloid cells in the central nervous system, are critically involved in the pathogenesis of AD and have emerged as a potential therapeutic target for treating or preventing AD. The failure of microglia to keep up with persistent amyloid-beta development along with secretion of inflammatory cytokines is detrimental to neurons and favors Aβ accumulation.Areas covered: This review illuminates the latest research that is focused on molecules and their intracellular targets that promote microglial phagocytosis and /or its polarization to an anti-inflammatory state.Expert opinion: A robust inflammatory response of microglia is not necessary to improve their efficiency of Aβ clearance. The challenge is to master inflammatory/anti-inflammatory phenotypes depending on the stage of AD and to maintain efficient responses to remove Aβ. Therefore, promoting microglia phagocytosis without a persistent excessive inflammatory response could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shehata Anwar
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada.,Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
83
|
Opposing Effects of Adenosine and Inosine in Human Subcutaneous Fibroblasts May Be Regulated by Third Party ADA Cell Providers. Cells 2020; 9:cells9030651. [PMID: 32156055 PMCID: PMC7140481 DOI: 10.3390/cells9030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Human subcutaneous fibroblasts (HSCF) challenged with inflammatory mediators release huge amounts of ATP, which rapidly generates adenosine. Given the nucleoside’s putative relevance in wound healing, dermal fibrosis, and myofascial pain, we investigated the role of its precursor, AMP, and of its metabolite, inosine, in HSCF cells growth and collagen production. AMP (30 µM) was rapidly (t½ 3 ± 1 min) dephosphorylated into adenosine by CD73/ecto-5′-nucleotidase. Adenosine accumulation (t½ 158 ± 17 min) in the extracellular fluid reflected very low cellular adenosine deaminase (ADA) activity. HSCF stained positively against A2A and A3 receptors but were A1 and A2B negative. AMP and the A2A receptor agonist, CGS21680C, increased collagen production without affecting cells growth. The A2A receptor antagonist, SCH442416, prevented the effects of AMP and CGS21680C. Inosine and the A3 receptor agonist, 2Cl-IB-MECA, decreased HSCF growth and collagen production in a MRS1191-sensitive manner, implicating the A3 receptor in the anti-proliferative action of inosine. Incubation with ADA reproduced the inosine effect. In conclusion, adenosine originated from extracellular ATP hydrolysis favors normal collagen production by HSCF via A2A receptors. Inhibition of unpredicted inosine formation by third party ADA cell providers (e.g., inflammatory cells) may be a novel therapeutic target to prevent inappropriate dermal remodeling via A3 receptors activation.
Collapse
|
84
|
Ni CM, Sun HP, Xu X, Ling BY, Jin H, Zhang YQ, Zhao ZQ, Cao H, Xu L. Spinal P2X7R contributes to streptozotocin-induced mechanical allodynia in mice. J Zhejiang Univ Sci B 2020; 21:155-165. [PMID: 32115912 PMCID: PMC7076344 DOI: 10.1631/jzus.b1900456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/25/2019] [Indexed: 01/14/2023]
Abstract
Painful diabetic neuropathy (PDN) is a diabetes mellitus complication. Unfortunately, the mechanisms underlying PDN are still poorly understood. Adenosine triphosphate (ATP)-gated P2X7 receptor (P2X7R) plays a pivotal role in non-diabetic neuropathic pain, but little is known about its effects on streptozotocin (STZ)-induced peripheral neuropathy. Here, we explored whether spinal cord P2X7R was correlated with the generation of mechanical allodynia (MA) in STZ-induced type 1 diabetic neuropathy in mice. MA was assessed by measuring paw withdrawal thresholds and western blotting. Immunohistochemistry was applied to analyze the protein expression levels and localization of P2X7R. STZ-induced mice expressed increased P2X7R in the dorsal horn of the lumbar spinal cord during MA. Mice injected intrathecally with a selective antagonist of P2X7R and P2X7R knockout (KO) mice both presented attenuated progression of MA. Double-immunofluorescent labeling demonstrated that P2X7R-positive cells were mostly co-expressed with Iba1 (a microglia marker). Our results suggest that P2X7R plays an important role in the development of MA and could be used as a cellular target for treating PDN.
Collapse
Affiliation(s)
- Cheng-ming Ni
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - He-ping Sun
- Department of Endocrinology, the Affiliated Kunshan First People’s Hospital of Jiangsu University, Kunshan 215300, China
| | - Xiang Xu
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Bing-yu Ling
- Department of Emergency, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225001, China
| | - Hui Jin
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Yu-qiu Zhang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-qi Zhao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lan Xu
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
85
|
Adenosine Suppresses Cholangiocarcinoma Cell Growth and Invasion in Equilibrative Nucleoside Transporters-Dependent Pathway. Int J Mol Sci 2020; 21:ijms21030814. [PMID: 32012688 PMCID: PMC7037771 DOI: 10.3390/ijms21030814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal disease with increasing incidence worldwide. Previous study showed that CCA was sensitive to adenosine. Thereby, molecular mechanisms of CCA inhibition by adenosine were examined in this study. Our results showed that adenosine inhibited CCA cells via an uptake of adenosine through equilibrative nucleoside transporters (ENTs), instead of activation of adenosine receptors. The inhibition of ENTs by NBTI caused the inhibitory effect of adenosine to subside, while adenosine receptor antagonists, caffeine and CGS-15943, failed to do so. Intracellular adenosine level was increased after adenosine treatment. Also, a conversion of adenosine to AMP by adenosine kinase is required in this inhibition. On the other hand, inosine, which is a metabolic product of adenosine has very little inhibitory effect on CCA cells. This indicates that a conversion of adenosine to inosine may reduce adenosine inhibitory effect. Furthermore, there was no specific correlation between level of proinflammatory proteins and CCA responses to adenosine. A metabolic stable analog of adenosine, 2Cl-adenosine, exerted higher inhibition on CCA cell growth. The disturbance in intracellular AMP level also led to an activation of 5′ AMP-activated protein kinase (AMPK). Accordingly, we proposed a novel adenosine-mediated cancer cell growth and invasion suppression via a receptor-independent mechanism in CCA.
Collapse
|
86
|
Lillis T, Veis A, Sakellaridis N, Tsirlis A, Dailiana Z. Effect of clopidogrel in bone healing-experimental study in rabbits. World J Orthop 2019; 10:434-445. [PMID: 31908992 PMCID: PMC6937425 DOI: 10.5312/wjo.v10.i12.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed drug for prevention of myocardial infarction and stroke in patients at risk. It inhibits thrombus formation via inhibition of the P2Y12 purinergic receptor on platelets, which is important in their activation by ADP. However, the P2Y12 receptor has also been found to be expressed in both osteoblasts and osteoclasts. Accumulated evidence suggests that purinergic receptors regulate important functions of bone turnover. Previous studies on the effect of clopidogrel on bone metabolism indicated potential harmful effects, but their results remain conflicting. Thus, clopidogrel treatment may affect bone healing, but it has not yet been studied. AIM To evaluate if continuous perioperative clopidogrel treatment has any negative effect on bone healing in the rabbit calvarial defect model. METHODS Sixteen male white New Zealand rabbits were randomly assigned in two groups: One group received daily 3 mg/kg of clopidogrel per os and the other group received the vehicle alone for a week prior to the surgical procedures; the treatments were continued for another 6 wk postoperatively. The surgical procedures included generation of two circular calvarial defects 11 mm in diameter in every animal. After the 6-wk period of healing, postmortem radiographic and histomorphometric evaluation of the defects was performed. RESULTS Both the surgical procedures and the postoperative period were uneventful and well tolerated by all the animals, without any surgical wound dehiscence, signs of infection or other complication. New bone was formed either inwards from the defect margins or in the central portion of the defect as separated bony islets. While defect healing was still incomplete in both groups, the clopidogrel group had significantly improved radiographic healing scores. Moreover, the histomorphometric analysis showed that bone regeneration (%) was 28.07 ± 7.7 for the clopidogrel group and 19.47 ± 4.9 for the control group, showing a statistically significant difference between them (P = 0.018). Statistically significant difference was also found in the defect bridging (%), i.e. 72.17 ± 21.2 for the clopidogrel group and 41.17 ± 8.5 for the control group, respectively (P = 0.004), whereas there was no statistical difference in bone tissue density between the groups. CONCLUSION Our results indicate that maintenance of perioperative clopidogrel treatment does not negatively affect bone healing but rather promotes it. Further research is needed in order to find useful applications of this finding.
Collapse
Affiliation(s)
- Theodoros Lillis
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Alexander Veis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Nikolaos Sakellaridis
- Department of Clinical Pharmacology, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Anastasios Tsirlis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Zoe Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
87
|
Mazeh AC, Angus JA, Wright CE. The effects of varying Mg 2+ ion concentrations on contractions to the cotransmitters ATP and noradrenaline in the rat vas deferens. Auton Neurosci 2019; 222:102588. [PMID: 31669796 DOI: 10.1016/j.autneu.2019.102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 10/25/2022]
Abstract
The vas deferens responds to a single electrical pulse with a biphasic contraction caused by cotransmitters ATP and noradrenaline. Removing Mg2+ (normally 1.2 mM) from the physiological salt solution (PSS) enhances the contraction. This study aimed to determine the effect of Mg2+ concentration on nerve cotransmitter-mediated contractions. Rat vasa deferentia were sequentially bathed in increasing (0, 1.2, 3 mM) or decreasing (3, 1.2, 0 mM) Mg2+ concentrations. At each concentration a single field pulse was applied, and the biphasic contraction recorded. Contractions to exogenous noradrenaline 10 μM and ATP 100 μM were also determined. The biphasic nerve-mediated contraction was elicited by ATP and noradrenaline as NF449 (10 μM) and prazosin (100 nM) completely prevented the respective peaks. Taking the contractions in normal PSS (Mg2+ 1.2 mM) as 100%, lowering Mg2+ to 0 mM enhanced the ATP peak to 170 ± 7% and raising Mg2+ to 3 mM decreased it to 39 ± 3%; the noradrenaline peak was not affected by lowering Mg2+ to 0 mM (97 ± 3%) but was decreased to 63 ± 4% in high Mg2+ (3 mM). Contractions to exogenous ATP, but not noradrenaline, were increased in Mg2+ 0 mM and both were inhibited with Mg2+ 3 mM. Changing Mg2+ concentration affects the contractions elicited by the cotransmitters ATP and noradrenaline. The greatest effects were to potentiate the contraction to ATP in Mg2+ 0 mM and to inhibit the contraction to both ATP and noradrenaline in high Mg2+. Future publications should clearly justify any decision to vary the magnesium concentration from normal (1.2 mM) values.
Collapse
Affiliation(s)
- Amna C Mazeh
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
88
|
Liu S, Wang M, Wang N, Li S, Sun R, Xing J, Wang Y, Yu S, Li L, Li G, Liang S. Exploring the molecular mechanism of the effect of puerarin on P2X 3. Int J Biol Macromol 2019; 142:484-491. [PMID: 31593721 DOI: 10.1016/j.ijbiomac.2019.09.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
P2X3 is a ligand-gated nonselective cation channel and permeable to Na+, K+ and Ca2+. Adenosine triphosphate (ATP) activation of the P2X3 on primary sensory ganglion neurons is involved in nociceptive transmission. Puerarin is a major active ingredient extracted from the traditional Chinese medicine Ge-gen. Puerarin inhibits nociceptive signal transmission by inhibiting the P2X3 in the dorsal root ganglia (DRG) and sympathetic ganglia, but its molecular mechanism is unclear. The aim of this study was to explore the molecular mechanism of puerarin on the P2X3. Here, molecular docking results revealed that puerarin binds well to the human P2X3 protein in the vicinity of the ATP binding pocket. Protein-ligand docking showed that the V64A mutation reduced the effect of puerarin but had little effect on ATP. V64A site-directed mutagenesis of P2X3 was performed using an overlap extension PCR technique. The wild-type and V64A mutant pEGFP-C1-P2X3 recombinant plasmids were transfected into HEK 293 cells. The electrophysiology results demonstrated that puerarin exerted an obvious inhibitory effect on ATP-activated currents in HEK 293 cells transfected with the wild-type P2X3, while little inhibition was observed in HEK 293 cells transfected with the mutant P2X3. These studies suggest that puerarin inhibits the P2X3 by binding to V64A.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Mengke Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Na Wang
- Undergraduate Student of Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shizhen Li
- Undergraduate Student of Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Rui Sun
- Undergraduate Student of Anesthesiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Jingming Xing
- Undergraduate Student of Basic Medical Science Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yueying Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shicheng Yu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Lin Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Guodong Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shangdong Liang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
89
|
Mewes M, Lenders M, Stappers F, Scharnetzki D, Nedele J, Fels J, Wedlich-Söldner R, Brand SM, Schmitz B, Brand E. Soluble adenylyl cyclase (sAC) regulates calcium signaling in the vascular endothelium. FASEB J 2019; 33:13762-13774. [PMID: 31585052 DOI: 10.1096/fj.201900724r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular endothelium acts as a selective barrier between the bloodstream and extravascular tissues. Intracellular [Ca2+]i signaling is essential for vasoactive agonist-induced stimulation of endothelial cells (ECs), typically including Ca2+ release from the endoplasmic reticulum (ER). Although it is known that interactions of Ca2+ and cAMP as ubiquitous messengers are involved in this process, the individual contribution of cAMP-generating adenylyl cyclases (ACs), including the only soluble AC (sAC; ADCY10), remains less clear. Using life-cell microscopy and plate reader-based [Ca2+]i measurements, we found that human immortalized ECs, primary aortic and cardiac microvascular ECs, and primary vascular smooth muscle cells treated with sAC-specific inhibitor KH7 or anti-sAC-small interfering RNA did not show endogenous or exogenous ATP-induced [Ca2+]i elevation. Of note, a transmembrane AC (tmAC) inhibitor did not prevent ATP-induced [Ca2+]i elevation in ECs. Moreover, l-phenylephrine-dependent constriction of ex vivo mouse aortic ring segments was also reduced by KH7. Analysis of the inositol-1,4,5-trisphosphate (IP3) pathway revealed reduced IP3 receptor phosphorylation after KH7 application, which also prevented [Ca2+]i elevation induced by IP3 receptor agonist adenophostin A. Our results suggest that sAC rather than tmAC controls the agonist-induced ER-dependent Ca2+ response in ECs and may represent a treatment target in arterial hypertension and heart failure.-Mewes, M., Lenders, M., Stappers, F., Scharnetzki, D., Nedele, J., Fels, J., Wedlich-Söldner, R., Brand, S.-M., Schmitz, B., Brand, E. Soluble adenylyl cyclase (sAC) regulates calcium signaling in the vascular endothelium.
Collapse
Affiliation(s)
- Mirja Mewes
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Malte Lenders
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Franciska Stappers
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - David Scharnetzki
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Johanna Nedele
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Johannes Fels
- Institute for Cell Dynamics and Imaging, Medical Faculty, University of Muenster, Muenster, Germany.,Department of Physiology, Pathophysiology, and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| | - Roland Wedlich-Söldner
- Institute for Cell Dynamics and Imaging, Medical Faculty, University of Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
90
|
Tóth A, Antal Z, Bereczki D, Sperlágh B. Purinergic Signalling in Parkinson's Disease: A Multi-target System to Combat Neurodegeneration. Neurochem Res 2019; 44:2413-2422. [PMID: 31054067 PMCID: PMC6776560 DOI: 10.1007/s11064-019-02798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons that results in characteristic motor and non-motor symptoms. L-3,4 dihydroxyphenylalanine (L-DOPA) is the gold standard therapy for the treatment of PD. However, long-term use of L-DOPA leads to side effects such as dyskinesias and motor fluctuation. Since purines have neurotransmitter and co-transmitter properties, the function of the purinergic system has been thoroughly studied in the nervous system. Adenosine and adenosine 5'-triphosphate (ATP) are modulators of dopaminergic neurotransmission, neuroinflammatory processes, oxidative stress, excitotoxicity and cell death via purinergic receptor subtypes. Aberrant purinergic receptor signalling can be either the cause or the result of numerous pathological conditions, including neurodegenerative disorders. Many data confirm the involvement of purinergic signalling pathways in PD. Modulation of purinergic receptor subtypes, the activity of ectonucleotidases and ATP transporters could be beneficial in the treatment of PD. We give a brief summary of the background of purinergic signalling focusing on its roles in PD. Possible targets for pharmacological treatment are highlighted.
Collapse
Affiliation(s)
- Adrián Tóth
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Üllői út 26., Budapest, 1085, Hungary
| | - Zsófia Antal
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083, Hungary
| | - Dániel Bereczki
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Beáta Sperlágh
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083, Hungary.
| |
Collapse
|
91
|
Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signal 2019; 15:477-489. [PMID: 31576486 DOI: 10.1007/s11302-019-09680-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Collapse
Affiliation(s)
- E Velázquez-Miranda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México.
| |
Collapse
|
92
|
Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, Galligan JJ, Gulbransen BD. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G314-G332. [PMID: 31188623 PMCID: PMC6774087 DOI: 10.1152/ajpgi.00104.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.
Collapse
Affiliation(s)
- Vladimir Grubišić
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Alberto L. Perez-Medina
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - David E. Fried
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Jean Sévigny
- 3Centre de recherche du CHU de Québec–Université Laval, Québec City, Quebec, Canada,4Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Quebec, Canada
| | - Simon C. Robson
- 5Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James J. Galligan
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
93
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
94
|
Gonçalves FQ, Lopes JP, Silva HB, Lemos C, Silva AC, Gonçalves N, Tomé ÂR, Ferreira SG, Canas PM, Rial D, Agostinho P, Cunha RA. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer's disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis 2019; 132:104570. [PMID: 31394204 DOI: 10.1016/j.nbd.2019.104570] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023] Open
Abstract
Adenosine A2A receptors (A2AR) overfunction causes synaptic and memory dysfunction in early Alzheimer's disease (AD). In a β-amyloid (Aβ1-42)-based model of early AD, we now unraveled that this involves an increased synaptic release of ATP coupled to an increased density and activity of ecto-5'-nucleotidase (CD73)-mediated formation of adenosine selectively activating A2AR. Thus, CD73 inhibition with α,β-methylene-ADP impaired long-term potentiation (LTP) in mouse hippocampal slices, which is occluded upon previous superfusion with the A2AR antagonist SCH58261. Furthermore, α,β-methylene-ADP did not alter LTP amplitude in global A2AR knockout (KO) and in forebrain neuron-selective A2AR-KO mice, but inhibited LTP amplitude in astrocyte-selective A2AR-KO mice; this shows that CD73-derived adenosine solely acts on neuronal A2AR. In agreement with the concept that ATP is a danger signal in the brain, ATP release from nerve terminals is increased after intracerebroventricular Aβ1-42 administration, together with CD73 and A2AR upregulation in hippocampal synapses. Importantly, this increased CD73 activity is critically required for Aβ1-42 to impair synaptic plasticity and memory since Aβ1-42-induced synaptic and memory deficits were eliminated in CD73-KO mice. These observations establish a key regulatory role of CD73 activity over neuronal A2AR and imply CD73 as a novel target for modulation of early AD.
Collapse
Affiliation(s)
- Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João P Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - António C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
95
|
Blanchard C, Boué-Grabot E, Massé K. Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family. Front Cell Neurosci 2019; 13:340. [PMID: 31402854 PMCID: PMC6676501 DOI: 10.3389/fncel.2019.00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 01/27/2023] Open
Abstract
P2X receptors are ATP-gated cations channels formed by the homo or hetero-trimeric association from the seven cloned subunits (P2X1-7). P2X receptors are widely distributed in different organs and cell types throughout the body including the nervous system and are involved in a large variety of physiological but also pathological processes in adult mammals. However, their expression and function during embryogenesis remain poorly understood. Here, we report the cloning and the comparative expression map establishment of the entire P2X subunit family in the clawed frog Xenopus. Orthologous sequences for 6 mammalian P2X subunits were identified in both X. laevis and X. tropicalis, but not for P2X3 subunit, suggesting a potential loss of this subunit in the Pipidae family. Three of these genes (p2rx1, p2rx2, and p2rx5) exist as homeologs in the pseudoallotetraploid X. laevis, making a total of 9 subunits in this species. Phylogenetic analyses demonstrate the high level of conservation of these receptors between amphibian and other vertebrate species. RT-PCR revealed that all subunits are expressed during the development although zygotic p2rx6 and p2rx7 transcripts are mainly detected at late organogenesis stages. Whole mount in situ hybridization shows that each subunit displays a specific spatio-temporal expression profile and that these subunits can therefore be grouped into two groups, based on their expression or not in the developing nervous system. Overlapping expression in the central and peripheral nervous system and in the sensory organs suggests potential heteromerization and/or redundant functions of P2X subunits in Xenopus embryos. The developmental expression of the p2rx subunit family during early phases of embryogenesis indicates that these subunits may have distinct roles during vertebrate development, especially embryonic neurogenesis.
Collapse
Affiliation(s)
- Camille Blanchard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Karine Massé
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
96
|
Tonic Calcium-Activated Chloride Current Sustained by ATP Release and Highly Desensitizing Human P2X1 Receptors. Neuroscience 2019; 439:332-341. [PMID: 31349005 DOI: 10.1016/j.neuroscience.2019.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
Extracellular adenosine triphosphate (ATP) participates in maintaining the vascular tone in the CNS, particularly in the retina, via the tonic activity of ligand gated activated P2X1 receptors. P2X1 receptors are characterized by their high affinity for ATP and their strong desensitization to concentrations of ATP that are 200-fold lower than their EC50. The mechanism behind P2X1 tonic activity remains unclear. In this study, we expressed human P2X1 (hP2X1) homomeric receptors in Xenopus oocytes to explore the relationship between ATP release from oocytes at rest, hP2X1, and Ca2+-activated Cl- channels. Our results indicate that Xenopus oocytes release ATP at rest via vesicular exocytosis, and this process is a constitutive phenomenon independent of extracellular Ca2+. Our results also indicate that hP2X1 receptors are able to sustain a tonic activity of Ca2+-activated Cl- channels. In the presence of extracellular Ca2+ the activity of hP2X1 receptors is greatly amplified by its coupling with Ca2+-activated Cl- channels. Future studies addressing the relationship between hP2X1 receptors and Ca2+-activated Cl- channels in vascular smooth muscle cells should provide information about additional mechanisms that regulate the vascular tone and their potential as pharmaceutical targets. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
97
|
Brockmann N, Sureechatchaiyan P, Müller D, Hennicke T, Hausmann R, Fritz G, Hamacher A, Kassack MU. Profiling of a suramin-derived compound library at recombinant human P2Y receptors identifies NF272 as a competitive but non-selective P2Y 2 receptor antagonist. Purinergic Signal 2019; 15:287-298. [PMID: 31270713 DOI: 10.1007/s11302-019-09663-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides mediate multiple physiological effects such as proliferation, differentiation, or induction of apoptosis through G protein-coupled P2Y receptors or P2X ion channels. Evaluation of the complete physiological role of nucleotides has long been hampered by a lack of potent and selective ligands for all P2 subtypes. Meanwhile, for most of the P2 receptors, selective ligands are available, but only a few potent and selective P2Y2 receptor antagonists are described. This limits the understanding of the role of P2Y2 receptors. The purpose of this study was to search for P2Y2 receptor antagonists by a combinatorial screening of a library of around 415 suramin-derived compounds. Calcium fluorescence measurements at P2Y2 receptors recombinantly expressed in human 1321N1 astrocytoma cells identified NF272 [8-(4-methyl-3-(3-phenoxycarbonylimino-benzamido)benzamido)-naphthalene-1,3,5-trisulfonic acid trisodium salt] as a competitive P2Y2 receptor antagonist with a Ki of 19 μM which is 14-fold more potent than suramin at this receptor subtype. The SCHILD analysis of competitive inhibition resulted in a pA2 value of 5.03 ± 0.22 (mean ± SEM) with a slope not significantly different from unity. Among uracil-nucleotide-preferring P2Y receptors, NF272 shows a moderate selectivity over P2Y4 (3.6-fold) and P2Y6 (5.7-fold). However, NF272 is equipotent at P2Y1, and even more potent at P2Y11 and P2Y12 receptors. Up to 250 μM, NF272 showed no cytotoxicity in MTT cell viability assays in 1321N1, HEK293, and OVCAR-3 cells. Further, NF272 was able to inhibit the ATP-induced calcium signal in OVCAR-3 cells demonstrated to express P2Y2 receptors. In conclusion, NF272 is a competitive but non-selective P2Y2 receptor antagonist with 14-fold higher potency than suramin lacking cytotoxic effects. Therefore, NF272 may serve as a lead structure for further development of P2Y2 receptor antagonists.
Collapse
Affiliation(s)
- Nicole Brockmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - David Müller
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen, RWTH Aachen University, Aachen, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
98
|
Lee EJ, Kim JY, Ahn Y, Lee BM, Heo Y, Hwang S, Lee SH, Lee J, Chung G, Oh SH. Critical Role of ATP-P2X7 Axis in UV-Induced Melanogenesis. J Invest Dermatol 2019; 139:1554-1563.e6. [PMID: 30926287 DOI: 10.1016/j.jid.2019.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
Purinergic signaling participates in skin physiology and pathology, such as hair growth, wound healing, inflammation, pain, and skin cancer. However, few studies have investigated the involvement of purinergic signaling in skin pigmentation. This study demonstrated that extracellular adenosine 5'-triphosphate (ATP) released from keratinocytes by UVB radiation promotes melanin production in primary human epidermal melanocytes and ex vivo skin cultures. Intracellular calcium ion and protein kinase C/CREB signaling contributed to ATP-mediated melanogenesis. Also, P2X7 receptor was proven to play a pivotal role in ATP-mediated melanogenesis because P2X7 receptor blockade abrogated ATP-induced melanin production. In addition, MNT1 cells with P2X7 receptor knockout using CRISPR/Cas9 system did not show any increase in MITF expression when co-cultured with UV-irradiated keratinocytes compared to MNT1 cells with intact P2X7 receptor, which showed increased expression of MITF. In conclusion, our results indicate that the extracellular ATP-P2X7 signaling axis is an adjunctive mechanism in UV-induced melanogenesis. Furthermore, ATP-induced purinergic signaling in melanocytes may alter skin pigmentation.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Byeong-Min Lee
- Department of Oral Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yunkyung Heo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Shinwon Hwang
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Gehoon Chung
- Department of Oral Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
99
|
Buccioni M, Dal Ben D, Lambertucci C, Martí Navia A, Ricciutelli M, Spinaci A, Volpini R, Marucci G. New sensible method to quantize the intestinal absorption of receptor ligands. Bioorg Med Chem 2019; 27:3328-3333. [PMID: 31230970 DOI: 10.1016/j.bmc.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
In recent years, special attention has been paid to the A3 adenosine receptor (A3AR) as a possible pharmacological target to treat intestinal inflammation. In this work, it was set up a novel method to quantify the concentration of a promising anti-inflammatory agent inside and outside of intestinal barrier using the everted gut sac technique. The compound chosen for the present study is one of the most potent and selective A3AR agonist reported so far, named AR 170 (N6-methyl-2-phenylethynyl-5'-N-methylcarboxamidoadenosine). In order to evaluate the intestinal absorption of AR 170 the radioligand binding assay in comparison with HPLC-DAD was used. Results showed that the compound is absorbed via passive diffusion by paracellular pathway. The concentrations determined in the serosal (inside the sac) fluid by radioligand binding assay are in good agreement with those obtained through the widely used HPLC/MS protocol, demonstrating the reliability of the method. It is worthwhile to note that the radioligand binding assay allows detecting very low concentrations of analyte, thus offering an excellent tool to measure the intestinal absorption of receptor ligands. Moreover, the AR 170 quantity outside the gut sac and the interaction with A3AR could presuppose good topical anti-inflammatory effects of this compound.
Collapse
Affiliation(s)
- Michela Buccioni
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Diego Dal Ben
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Catia Lambertucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Aleix Martí Navia
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Andrea Spinaci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Rosaria Volpini
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Gabriella Marucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
100
|
Lin SCY, Thorne PR, Housley GD, Vlajkovic SM. Purinergic Signaling and Aminoglycoside Ototoxicity: The Opposing Roles of P1 (Adenosine) and P2 (ATP) Receptors on Cochlear Hair Cell Survival. Front Cell Neurosci 2019; 13:207. [PMID: 31156393 PMCID: PMC6529511 DOI: 10.3389/fncel.2019.00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/24/2019] [Indexed: 01/12/2023] Open
Abstract
Purinergic signaling regulates important physiological processes and the homeostatic response to stress in the cochlea via extracellular nucleosides (adenosine) and nucleotides (ATP, UTP). Using a previously established organotypic culture model, the current study investigated the effect of purinergic P1 (adenosine) and P2 (ATP) receptor activation on the survival of the sensory hair cell population in the cochlea exposed to the ototoxic aminoglycoside neomycin. Organ of Corti explants were obtained from C57BL/6 mice at postnatal day 3 (P3) and maintained in normal culture medium (with or without purine receptor agonists or analogs) for 19.5 h prior to neomycin exposure (1 mM, 3 h) followed by a further incubation for 19.5 h in culture medium. The cochlear explants were then fixed in 4% paraformaldehyde (PFA) and sensory hair cells labeled with Alexa 488-phalloidin. Neomycin induced a substantial loss of the sensory hair cells, mostly in the middle segment of the cochlea. This neomycin-induced ototoxicity was unaffected by the addition of P2 receptor agonists (ATP and UTP) in the culture medium, whilst the addition of their slowly-hydrolyzable analogs (ATPγS, UTPγS) aggravated neomycin-induced sensory hair cell loss. In contrast, the activation of P1 receptors by adenosine or adenosine amine congener (ADAC) conferred partial protection from neomycin ototoxicity. This study demonstrates a pro-survival effect of P1 receptor stimulation, whilst prolonged activation of P2 receptors has an opposite effect. Based on these findings, we postulate that P1 and P2 receptors orchestrate differential responses to cochlear injury and that the balance of these receptors is important for maintaining cochlear homeostasis following ototoxic injury.
Collapse
Affiliation(s)
- Shelly C Y Lin
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gary D Housley
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Srdjan M Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|