51
|
Zong W, Zeng X, Chen S, Chen L, Zhou L, Wang X, Gao Q, Zeng G, Hu K, Ouyang D. Ginsenoside compound K attenuates cognitive deficits in vascular dementia rats by reducing the Aβ deposition. J Pharmacol Sci 2019; 139:223-230. [PMID: 30799178 DOI: 10.1016/j.jphs.2019.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside compound K (CK) is the main metabolite of protopanaxadiol-type ginsenosides and has been demonstrated to exert neuroprotective and cognition-enhancing effects. The effects of CK on cognitive function in vascular dementia (VD) has not been elucidated. Therefore, the present study aims to elucidate the effects of CK on memory function as well as its potential mechanism in VD rats. Sprague-Dawley rats were subjected to Chronic Cerebral Hypoperfusion (CCH) by permanent bilateral common carotid artery occlusion (2VO). CCH induced neuronal damage and aggravated the aggregation of Amyloid-β1-42 peptides (Aβ1-42), which plays a critical role in the neurotoxicity and cognitive impairment. CK treatment attenuated CCH-induced Aβ1-42 deposition and ameliorated cognition impairment. Furthermore, CK enhanced the activity of the pSer9-Glycogen synthase kinase 3β (pSer9-GSK3β) and the insulin degrading enzyme (IDE), which mainly involved the production and clearance of Aβ1-42. Moreover, CK treatment enhanced the activity of protein kinase B (PKB/Akt), a key kinase in phosphatidylinositol 3 kinase (PI3K)/Akt pathway that can regulate the activity of GSK-3β and IDE. In short, our findings provide the first evidence that CK might attenuate cognitive deficits and Aβ1-42 deposition in the hippocampus via enhancing the expression of pSer9-GSK-3β and IDE.
Collapse
Affiliation(s)
- Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, 410000, People's Republic of China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xintong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, 410331, People's Republic of China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, 410000, People's Republic of China.
| |
Collapse
|
52
|
Pan C, Shan H, Wu T, Liu W, Lin Y, Xia W, Wang F, Zhou Z, Yu X. 20(S)-Protopanaxadiol Inhibits Titanium Particle-Induced Inflammatory Osteolysis and RANKL-Mediated Osteoclastogenesis via MAPK and NF-κB Signaling Pathways. Front Pharmacol 2019; 9:1538. [PMID: 30713497 PMCID: PMC6345703 DOI: 10.3389/fphar.2018.01538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023] Open
Abstract
Osteolysis is a principal reason for arthroplasty failure like aseptic loosening induced by Titanium (Ti) particle. It is a challenge for orthopedic surgeons. Recent researches show that 20(S)-protopanaxadiol can inhibit inflammatory cytokine release in vitro. This study aims to assess the effect of 20(S)-protopanaxadiol on Ti particle-induced osteolysis and RANKL-mediated osteoclastogenesis. Micro-CT and histological analysis in vivo indicated the inhibitory effects of 20(S)-protopanaxadiol on osteoclastogenesis and the excretion of inflammatory cytokines. Next, we demonstrated that 20(S)-protopanaxadiol inhibited osteoclast differentiation, bone resorption area, and F-actin ring formation in a dose-dependent manner. Moreover, mechanistic studies suggested that the suppression of MAPK and NF-κB signaling pathways were found to mediate the inhibitory effects of 20(S)-protopanaxadiol. In conclusion, 20(S)-protopanaxadiol may suppress osteoclastogenesis in a dose- dependent manner and it could be a potential treatment of Ti particle-induced osteolysis.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tianyi Wu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiwei Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenyang Xia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Feng Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zubin Zhou
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
53
|
Song W, Li G, Tang Y, Wei L, Song D, Wang X, Zhang C, Jin X, Jiang S. Ginsenoside compound K inhibits oxidative stress and NLRP3 inflammasome activity in mice exposed to chronic unpredictable mild stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1668851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Wu Song
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Gen Li
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yong Tang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Lin Wei
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Danning Song
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Xiaoyan Wang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Chi Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Shuang Jiang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| |
Collapse
|
54
|
Li F, Ma Q, Zhao H, Wang R, Tao Z, Fan Z, Zhang S, Li G, Luo Y. L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization. Metab Brain Dis 2018; 33:1995-2003. [PMID: 30117100 PMCID: PMC6244772 DOI: 10.1007/s11011-018-0307-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/12/2018] [Indexed: 12/31/2022]
Abstract
Overwhelming evidence suggests that microglia play an important role in ischemic injury and they polarize into two different phenotypes with distinct functions after ischemic stroke. We performed the present study to investigate whether L-3-n butylphthalide (NBP) has an effect on microglial polarization. Mice were subjected to transient middle cerebral artery occlusion (MCAO) for 45 min, and then immediately after reperfusion were treated with NBP or vehicle via the caudal vein for 7 consecutive days. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed that NBP treatment resulted in a tendency to decrease cerebral infarct volume at 1 day after MCAO, and significant decreased infarct volume at 3 days after MCAO. Sensorimotor function was evaluated by the adhesive removal test and balance beam test, which were superior in NBP-treated mice compared with vehicle-treated mice at 1 and 3 days after MCAO. Immunofluorescent staining further indicated that NBP treatment significantly increased the number of CD206+/Iba1+ M2 microglia/macrophages and reduced the number of CD16+/Iba1+ M1 cells at 3 and 7 days after MCAO reperfusion. Western blot also showed an elevation of M2 marker (arginase-1) in NBP-treated brains at 7 days after MCAO. In conclusion, our results clearly show that NBP treatment significantly mitigates ischemic brain damage and promotes recovery of neurological function in early phase after ischemic stroke, probably by skewing M1 microglia/macrophages polarization towards M2 phenotype. Thus, our study provides new evidence that NBP might be a promising candidate for ameliorating injury caused by ischemic stroke.
Collapse
Affiliation(s)
- Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhibin Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
55
|
Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells. J Ginseng Res 2018; 43:319-325. [PMID: 30976170 PMCID: PMC6437553 DOI: 10.1016/j.jgr.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator–activated receptor gamma (PPARγ). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via PPARγ. Methods The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the PPARγ structure using Surflex-Dock in Sybyl-X 2.1.1. Results PPARγ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the PPARγ-specific inhibitor, T0070907. The PPARγ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of PPARγ. Conclusions Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on PPARγ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of PPARγ suggests that the compound binds to PPARγ in a position similar to that of known agonists.
Collapse
|
56
|
Lee JO, Choi E, Shin KK, Hong YH, Kim HG, Jeong D, Hossain MA, Kim HS, Yi YS, Kim D, Kim E, Cho JY. Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway. J Ginseng Res 2018; 43:154-160. [PMID: 30662304 PMCID: PMC6323178 DOI: 10.1016/j.jgr.2018.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022] Open
Abstract
Background Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-α and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-1β, interferon-β, and tumor necrosis factor-α in a dose-dependent manner. Conclusion Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.
Collapse
Affiliation(s)
- Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Hyun Soo Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
57
|
Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int Immunopharmacol 2018; 63:227-238. [DOI: 10.1016/j.intimp.2018.07.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/01/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
|
58
|
Zeng X, Hu K, Chen L, Zhou L, Luo W, Li C, Zong W, Chen S, Gao Q, Zeng G, Jiang D, Li X, Zhou H, Ouyang DS. The Effects of Ginsenoside Compound K Against Epilepsy by Enhancing the γ-Aminobutyric Acid Signaling Pathway. Front Pharmacol 2018; 9:1020. [PMID: 30254585 PMCID: PMC6142013 DOI: 10.3389/fphar.2018.01020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Abstract
The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine's scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Chaopeng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
59
|
Jakaria M, Haque ME, Kim J, Cho DY, Kim IS, Choi DK. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study. Oncotarget 2018; 9:33601-33620. [PMID: 30323902 PMCID: PMC6173364 DOI: 10.18632/oncotarget.26035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment is a state that affects thinking, communication, understanding, and memory, and is very common in various neurological disorders. Among many factors, age-related cognitive decline is an important area in mental health research. Research to find therapeutic medications or supplements to treat cognitive deficits and maintain cognitive health has been ongoing. Ginseng and its active components may have played a role in treating chronic disorders. Numerous preclinical studies have confirmed that ginseng and its active components such as ginsenosides, gintonin, and compound K are pharmacologically efficacious in different models of and are linked to cognitive impairment. Among their several roles, they act as an anti-neuroinflammatory and help fight against oxidative stress and modulate the cholinergic signal. These roles may be involved in enhancing cognition and attenuating impairment. There have been some clinical studies on the activity of ginseng in cognitive impairment, but many ginseng species and active compounds remain to be investigated. In addition, new formulations of active ginseng components such as nanoparticles and liposomes could be used for preclinical and clinical models of cognitive impairment. Here, we discuss the therapeutic potential of active ginseng components in cognitive impairment and their chemistry and pharmacokinetics and consider prospects for their delivery and clinical study with respect to cognitive impairment.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Md. Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - In-Su Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
60
|
Zhou P, Du S, Zhou L, Sun Z, Zhuo LH, He G, Zhao Y, Wu Y, Zhang X. Tetramethylpyrazine‑2'O‑sodium ferulate provides neuroprotection against neuroinflammation and brain injury in MCAO/R rats by suppressing TLR-4/NF-κB signaling pathway. Pharmacol Biochem Behav 2018; 176:33-42. [PMID: 30171935 DOI: 10.1016/j.pbb.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neuroinflammation following cerebral ischemia is a serious risk factor in stroke patients. The purpose of this study was to investigate the neuroprotective effects of tetramethylpyrazine‑2'O‑sodium ferulate (TSF), a structurally modified compound from tetramethylpyrazine and ferulate, on cerebral ischemic injury and the underlying mechanisms. METHODS Focal transient cerebral ischemia was induced in rat for 2 h by middle cerebral artery occlusion (MCAO) and the protective effect of TSF was studied using different doses of the drug (10.8, 18, 30 mg/kg, intravenously); Ozagrel (18 mg/kg) was used as the positive control. The drugs were given immediately after MCAO and the efficacy and mechanisms were evaluated at 72 h of reperfusion. The level of pro-inflammatory cytokines such as TNF-α, IL-1β and anti-inflammatory molecules such as IL-10 was measured; other factors such as neurological deficit, brain water content and infarct size and the level of MCP-1, ICAM-1, iNOS, CD11b, TLR-4/NF-κBp65 were also measured. RESULTS TSF at the doses of 18, 30 mg/kg significantly improved neurological deficit, reduced brain water content and infarct size, accompanied by a decrease in the concentration of TNF-α, IL-1β, MCP-1, ICAM-1, iNOS and an increase in the concentration of IL-10. The amount of CD11b and ICAM-1 was found largely decreased and the expression of TLR-4 and the nuclear NF-κBp65 was weakened in TSF-treatment group. CONCLUSIONS Our study suggests that TSF possesses a neuroprotective effect against ischemic stroke which might be mediated through suppression of the inflammatory pathways in the brain following ischemic stroke.
Collapse
Affiliation(s)
- Peipei Zhou
- Pharmaceutical department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuzhang Du
- Pharmaceutical department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Zhou
- Pharmaceutical department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Laboratory of Accurate Clinical Pharmaceutical of Henan Province, Zhengzhou, Henan 450052, PR China
| | - Zhi Sun
- Pharmaceutical department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Laboratory of Accurate Clinical Pharmaceutical of Henan Province, Zhengzhou, Henan 450052, PR China
| | - Li Hua Zhuo
- Pharmaceutical department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Laboratory of Accurate Clinical Pharmaceutical of Henan Province, Zhengzhou, Henan 450052, PR China
| | - Guangwei He
- Hefei Yigong Pharmaceutical Co., Ltd., Hefei, Anhui, PR China
| | - Yan Zhao
- Hefei Yigong Pharmaceutical Co., Ltd., Hefei, Anhui, PR China
| | - Yulin Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China.
| | - Xiaojian Zhang
- Pharmaceutical department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Laboratory of Accurate Clinical Pharmaceutical of Henan Province, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
61
|
Shin KO, Choe SJ, Uchida Y, Kim I, Jeong Y, Park K. Ginsenoside Rb1 Enhances Keratinocyte Migration by a Sphingosine-1-Phosphate-Dependent Mechanism. J Med Food 2018; 21:1129-1136. [PMID: 30148701 DOI: 10.1089/jmf.2018.4246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cutaneous wound healing process is tightly regulated by a range of cellular responses, including migration. Sphingosine-1-phosphate (S1P) is a signaling lipid produced in keratinocytes (KC) and it is known to stimulate skin wound repair through increased KC migration. Of the multifunctional triterpene ginsenosides, Rb1 enhances cutaneous wound healing process by increasing KC migration, but cellular mechanisms responsible for the Rb1-mediated increase in KC migration are largely unknown. Therefore, we hypothesized that, and assessed whether, Rb1 could stimulate KC migration through S1P-dependent mechanisms. Rb1 significantly increases S1P production by regulating the activity of metabolic conversion enzymes associated with S1P generation and degradation, sphingosine kinase 1 (SPHK1) and S1P lyase, respectively, in parallel with enhanced KC migration. However, blockade of ceramide to S1P metabolic conversion using a specific inhibitor of SPHK1 attenuated the expected Rb1-mediated increase in KC migration. Furthermore, a pan-S1P receptor inhibitor pertussis toxin significantly attenuated Rb1-induced stimulation of KC migration. Moreover, the Rb1-induced increases in KC migration required S1P receptor(s)-mediated activation of ERK1/2 and NF-κB, leading to production of key cutaneous migrating proteins, matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, the results show that Rb1 stimulates KC migration through an S1P→S1P receptor(s)→ERK1/2→NF-κB→MMP-2/-9 pathway. This research revealed a previously unidentified cellular mechanism for Rb1 in enhancing KC migration and pointing to a new therapeutic approach to stimulate the cutaneous wound healing process.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| | - Sung Jay Choe
- 2 Department of Dermatology, Yonsei University Wonju College of Medicine , Wonju, Korea
| | - Yoshikazu Uchida
- 3 Department of Dermatology, School of Medicine, University of California , San Francisco, San Francisco, California, USA
- 4 Northern California Institute for Research and Education , Veterans Affairs Medical Center, San Francisco, California, USA
| | - Inyong Kim
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
| | - Yoonhwa Jeong
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
- 6 Department of Food Science and Nutrition, Dankook University , Cheonan, Korea
| | - Kyungho Park
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| |
Collapse
|
62
|
Lee JW, Ji SH, Choi BR, Choi DJ, Lee YG, Kim HG, Kim GS, Kim K, Lee YH, Baek NI, Lee DY. UPLC-QTOF/MS-Based Metabolomics Applied for the Quality Evaluation of Four Processed Panax ginseng Products. Molecules 2018; 23:molecules23082062. [PMID: 30126124 PMCID: PMC6222836 DOI: 10.3390/molecules23082062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022] Open
Abstract
In the food industry and herbal markets, it is critical to control the quality of processed Panax ginseng products. In this study, ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MS)-based metabolomics was applied for the quality evaluation of white ginseng (WG), tae-geuk ginseng (TG), red ginseng (RG), and black ginseng (BG). Diverse metabolites including ginsenosides were profiled by UPLC-QTOF/MS, and the datasets of WG, TG, RG, and BG were then subjected to multivariate analyses. In principal component analysis (PCA), four processed ginseng products were well-differentiated, and several ginsenosides were identified as major components of each product. S-plot also characterized the metabolic changes between two processed ginseng products, and the major ginsenosides of each product were found as follows: WG (M-Rb1, M-Rb2, M-Rc, Re, Rg1), TG (Rb2, Rc, Rd, Re, Rg1), RG (Rb1, Rb2, Rc, Rd, Re, Rg1), and BG (Rd, Rk1, Rg5, Rg3). Furthermore, the quantitative contents of ginsenosides were evaluated from the four processed ginseng products. Finally, it was indicated that the proposed metabolomics approach was useful for the quality evaluation and control of processed ginseng products.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Seung-Heon Ji
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Doo Jin Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Hyoung-Geun Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Kyuil Kim
- Institute of JinAn Red Ginseng, JinAn 55442, Korea.
| | - Youn-Hyung Lee
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Nam-In Baek
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| |
Collapse
|
63
|
High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Song W, Guo Y, Jiang S, Wei L, Liu Z, Wang X, Su Y. Antidepressant Effects of the Ginsenoside Metabolite Compound K, Assessed by Behavioral Despair Test and Chronic Unpredictable Mild Stress Model. Neurochem Res 2018; 43:1371-1382. [DOI: 10.1007/s11064-018-2552-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022]
|
65
|
Xiang B, Xiao C, Shen T, Li X. Anti-inflammatory effects of anisalcohol on lipopolysaccharide-stimulated BV2 microglia via selective modulation of microglia polarization and down-regulation of NF-κB p65 and JNK activation. Mol Immunol 2018; 95:39-46. [DOI: 10.1016/j.molimm.2018.01.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023]
|
66
|
Oh J, Kim JS. Compound K derived from ginseng: neuroprotection and cognitive improvement. Food Funct 2018; 7:4506-4515. [PMID: 27801453 DOI: 10.1039/c6fo01077f] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evidence for the neuroprotective and cognitive effects of compound K, a metabolite biotransformed from ginsenosides Rb1, Rb2, and Rc, is reviewed here. Compound K is more bioavailable than other ginsenosides and therefore has greater potential to exert bioactive functions in the body. Although the capability of compound K to cross the blood-brain barrier is not clear, it has been reported to have neuroprotective and cognition enhancing effects and decrease inflammatory biomarkers in animal models of Alzheimer's disease and cerebral ischemia. The plethora of potential health benefits of compound K warrants further research to evaluate its biochemical mechanisms and its ability to protect healthy populations from neurodegenerative diseases.
Collapse
Affiliation(s)
- Jisun Oh
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
67
|
Park EH, Kim JS, Lee JS, Lee YJ, Song YW, Lee EY. Compound K Inhibits Interleukin-1β-induced Expression of Inflammatory Mediators and Matrix Metalloproteinases by Inhibiting Mitogen-activated Protein Kinase Activation in Chondrocytes. JOURNAL OF RHEUMATIC DISEASES 2018. [DOI: 10.4078/jrd.2018.25.3.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eun Hye Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Soo Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jeong Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
68
|
Effect of Sensitization by Cerebral Antigen on Expression of Synaptophysin in the Sensorimotor Cortex under Conditions of Ischemia and Immunocorrection of its Consequences. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
69
|
Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol 2017; 107:362-372. [PMID: 28698154 PMCID: PMC7116968 DOI: 10.1016/j.fct.2017.07.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of Panax ginseng and Panax quinquefolius in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Over the past few years, extensive preclinical and clinical evidence in the scientific literature worldwide has supported the beneficial effects of P. ginseng and P. quinquefolius in significant central nervous system, metabolic, infectious and neoplastic diseases. There has been growing research on ginseng because of its favorable pharmacokinetics, including the intestinal biotransformation which is responsible for the processing of ginsenosides - contained in the roots or extracts of ginseng - into metabolites with high pharmacological activity and how such principles act on numerous cell targets. The aim of this review is to provide a simple and extensive overview of the pharmacokinetics and pharmacodynamics of P. ginseng and P. quinquefolius, focusing on the clinical evidence which has shown particular effectiveness in specific diseases, such as dementia, diabetes mellitus, respiratory infections, and cancer. Furthermore, the review will also provide data on toxicological factors to support the favorable safety profile of these medicinal plants.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy.
| | - Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
70
|
Lee JY, Choi HY, Park CS, Pyo MK, Yune TY, Kim GW, Chung SH. GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats. J Ginseng Res 2017; 43:58-67. [PMID: 30662294 PMCID: PMC6323171 DOI: 10.1016/j.jgr.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ∼30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Sol Park
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Go Woon Kim
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Hyun Chung
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
71
|
Lee YK, Choi KH, Kwak HS, Chang YH. The preventive effects of nanopowdered red ginseng on collagen-induced arthritic mice. Int J Food Sci Nutr 2017; 69:308-317. [PMID: 28770639 DOI: 10.1080/09637486.2017.1358359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was carried out to investigate the efficiency of red ginseng nanopowder in preventing collagen-induced arthritis (CIA) in mice. The mice were divided into five groups: normal group (no immunisation), control (CIA), powdered red ginseng (PRG), nanopowdered red ginseng (NRG) and methotrexate (MTX). Administering MTX, PRG and NRG to arthritic mice significantly decreased spleen indexes, clinical and histological scores compared to control group. Serum analysis of NRG and MTX groups showed a reduction in the cytokines such as the levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β) in comparison to PRG group. The levels of immunoglobulin M (IgM) and immunoglobulin G1 (IgG1) in the NRG group were significantly lower than those of the PRG group. In summary, the present study indicated that NRG can be effective in preventing type II collagen-induced rheumatoid arthritis in mice.
Collapse
Affiliation(s)
- Yun-Kyung Lee
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| | - Kyung-Hoon Choi
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Hae-Soo Kwak
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Yoon Hyuk Chang
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
72
|
Igami K, Shimojo Y, Ito H, Miyazaki T, Nakano F, Kashiwada Y. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ. J Med Food 2017; 19:817-22. [PMID: 27627700 DOI: 10.1089/jmf.2016.3673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator activated receptor (PPAR) is a nuclear receptor that is one of the transcription factors regulating lipid and glucose metabolism. Fermented ginseng (FG) is a ginseng fermented by Lactobacillus paracasei A221 containing minor ginsenosides and metabolites of fermentation. DNA microarray analysis of rat liver treated with FG indicated that FG affects on lipid metabolism are mediated by PPAR-α. To identify a PPAR-α agonist in FG, PPAR-α transcription reporter assay-guided fractionation was performed. The fraction obtained from the MeOH extract of FG, which showed potent transcription activity of PPAR-α, was fractionated by silica gel column chromatography into 16 subfractions, and further separation and crystallization gave compound 1 together with four known constituents of ginseng, including 20(R)- and 20(S)-protopanaxadiol, and 20(R)- and 20(S)-ginsenoside Rh1. The structure of compound 1 was identified as 10-hydroxy-octadecanoic acid by (1)H- and (13)C-NMR spectra and by EI-MS analysis of the methyl ester of 1. Compound 1 demonstrated much higher transcription activity of PPAR-α than the other isolated compounds. In addition, compound 1 also showed 5.5-fold higher transcription activity of PPAR-γ than vehicle at the dose of 20 μg/mL. In the present study, we identified 10-hydroxy-octadecanoic acid as a dual PPAR-α/γ agonist in FG. Our study suggested that metabolites of fermentation, in addition to ginsenosides, contribute to the health benefits of FG.
Collapse
Affiliation(s)
- Kentaro Igami
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan .,2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| | - Yosuke Shimojo
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan
| | - Hisatomi Ito
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan
| | | | - Fusako Nakano
- 2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| | - Yoshiki Kashiwada
- 2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| |
Collapse
|
73
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
74
|
Reactions of Microglial Cells in the Sensorimotor Cortex of Rats after Transient Ischemia. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9638-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro. Nutrients 2017; 9:nu9030207. [PMID: 28264445 PMCID: PMC5372870 DOI: 10.3390/nu9030207] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/21/2017] [Indexed: 01/14/2023] Open
Abstract
Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV-2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis-related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)-induced TLR4 activation, MAPK activation, NF-kB-mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE-2), secretion of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in Lipopolysaccharide (LPS)-activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS-activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti-neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration.
Collapse
|
76
|
Upadhyaya J, Yoon MS, Kim MJ, Ryu NS, Song YE, Kim YH, Kim MK. Purification and characterization of a novel ginsenoside Rc-hydrolyzing β-glucosidase from Armillaria mellea mycelia. AMB Express 2016; 6:112. [PMID: 27837549 PMCID: PMC5106418 DOI: 10.1186/s13568-016-0277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Ginsenosides are the principal compounds responsible for the pharmacological effects and health benefits of Panax ginseng root. Among protopanaxadiol (PPD)-type ginsenosides, minor ginsenosides such as ginsenoside (G)-F2, G-Rh2, compound (C)-Mc1, C-Mc, C-O, C-Y, and C-K are known to be more pharmacologically active constituents than major ginsenosides such as G-Rb1, G-Rb2, G-Rc, and G-Rd. A novel ginsenoside Rc-hydrolyzing β-glucosidase (BG-1) from Armillaria mellea mycelia was purified as a single protein band with molecular weight of 121.5 kDa on SDS-PAGE and a specific activity of 17.9 U mg-1 protein. BG-1 concurrently hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site or outer β-(1 → 2)-glucosidic linkage at the C-3 site of G-Rc to produce G-Rd and C-Mc1, respectively. The enzyme also hydrolyzed outer and inner glucosidic linkages at the C-3 site of G-Rd to produce C-K via G-F2, and inner glucosidic linkage at the C-3 site of C-Mc1 to produce C-Mc. C-Mc was also slowly hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site to produce C-K with reaction time prolongation. Finally, the pathways for formation of C-Mc and C-K from G-Rc by BG-1 were G-Rc → C-Mc1 → C-Mc and G-Rc → G-Rd → G-F2 → C-K, respectively. The optimum reaction conditions for C-Mc and C-K formation from G-Rc by BG-1 were pH 4.0-4.5, temperature 45-60 °C, and reaction time 72-96 h. This is the first report of efficient production of minor ginsenosides, C-Mc and C-K from G-Rc by β-glucosidase purified from A. mellea mycelia.
Collapse
Affiliation(s)
- Jitendra Upadhyaya
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Min-Sun Yoon
- Department of Food Science and Biotechnology, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Min-Ji Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Nam-Soo Ryu
- Department of Food Science and Biotechnology, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Young-Eun Song
- Agricultural Research and Extension Services, Iksan, 54591 Republic of Korea
| | - Young-Hoi Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Myung-Kon Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| |
Collapse
|
77
|
Infiltration of invariant natural killer T cells occur and accelerate brain infarction in permanent ischemic stroke in mice. Neurosci Lett 2016; 633:62-68. [PMID: 27637387 DOI: 10.1016/j.neulet.2016.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of T cells that have been implicated in inflammation, atopy, autoimmunity, infections, and cancer. Although iNKT cells have been extensively studied over the past decade, its role in the pathogenesis of ischemic brain injury is still largely unknown. In our study, we determined whether iNKT cells infiltration occur in a mouse model of permanent cerebral ischemia. C57BL6/J male mice were treated with either alpha-galactosylceramide (α-GalCer) or vehicle control before undergoing permanent middle cerebral artery occlusion (pMCAO). α-GalCer, a glycolipid antigen, specifically activates iNKT cells by a CD1d-restricted mechanism. Using flow cytometry, 10,000 leukocytes (CD45 high cells) from the ischemic hemisphere and peripheral blood respectively were analyzed to determine the number of NK1.1+CD3+ cells at 3, 12, 24 and 48h post-pMCAO. Cerebral infarct size, brain edema and morphological characteristics were measured at the stipulated time points by 2,3,5-triphenyltetrazolium chloride (TTC) staining, weighing, and H&E staining. The levels of IFN-γ and TNF-α in brain tissue and serum were assessed by immunohistochemistry and ELISA respectively. We found that the number of iNKT cells started increasing from 12h (PB sample) and 24h (ischemic hemisphere sample) respectively in the vehicle treated group. iNKT cells infiltration occurred at an earlier time-point compared in the α-GalCer treated group (T=3H vs T=12H in PB sample; T=12H vs T=24H in ischemic hemisphere sample). Brain water content at 12h and 24h was significantly higher in pMCAO+α-GalCer mice compared to pMCAO+vehicle mice which was in turn higher than mice that underwent sham surgery. Aggravated morphological abnormalities in HE-stained neurons and significantly increased neurons with pyknotic nuclei and cavitation in the ischemic region were observed at 24h in the pMCAO+α-GalCer and pMCAO+vehicle groups. Cerebral infarct volume, neurological deficit Scores and brain edema were significantly increased at 24h in the pMCAO+α-GalCer group compared to pMCAO+vehicle group. In the pMCAO+vehicle group, the serum concentrations of TNF-α and IFN-γ were increased at 12h and 24h post-pMCAO, and remained elevated up to 48h. In mice treated with pMCAO+α-GalCer, TNF-α and IFN-γ were both increased at 12h post-pMCAO, and remained elevated up to 48h. Immunohistochemistry showed that protein expression of TNF-α and IFN-γ in brain tissues was higher in α-GalCer-treated mice. Our results demonstrate that within 48h of focal permanent cerebral ischemia, iNKT cells infiltrate into the brain and contribute to brain infarction.
Collapse
|
78
|
Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2016; 41:435-443. [PMID: 29021688 PMCID: PMC5628327 DOI: 10.1016/j.jgr.2016.08.004] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023] Open
Abstract
Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives—including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1—exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-κB and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
79
|
Subedi L, Gaire BP, Do MH, Lee TH, Kim SY. Anti-neuroinflammatory and neuroprotective effects of the Lindera neesiana fruit in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:872-81. [PMID: 27288923 DOI: 10.1016/j.phymed.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/09/2016] [Accepted: 05/07/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lindera neesiana Kurz (Lauraceae), popularly known as Siltimur in Nepal, is an aromatic and spicy plant with edible fruits. It is a traditional herbal medicine widely used for the treatment of diarrhea, tooth pain, headache, and gastric disorders and is also used as a stimulant. PURPOSE The aim of the present study was to examine in vitro cytoprotective, anti-neuroinflammatory and neuroprotective potential of an aqueous extract of L. neesiana (LNE) fruit using different central nervous system (CNS) cell lines. METHODS In order to study the neuroprotective potential of LNE, we used three different types of CNS cell lines: murine microglia (BV2), rat glioma (C6), and mouse neuroblastoma (N2a). Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, and prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and nerve growth factor (NGF) release in the culture media was determined using enzyme linked immunosorbent assay (ELISA) kits. Western blot analysis was performed to determine the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), mitogen activated protein kinase (MAPK) family proteins, Bax, B cell lymphoma (BCL)-2, and cleaved caspase 3. Neurite outgrowth was determined using the IncuCyte imaging system. RESULTS LNE treatment not only reduced nitric oxide (NO) production in a dose-dependent manner, but also significantly reduced proinflammatory cytokines, iNOS and COX-2 production by lipopolysaccharide (LPS) stimulated BV-2 cells. LNE increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), whereas p-p38 and p- janus kinase (JNK) expression was significantly decreased in activated microglia. Furthermore, LNE increased cell viability of N2a cells, which was accompanied by decreased caspase-3 expression and the ratio of Bax/Bcl2 protein expression as well as increased NGF and neurite outgrowth, suggesting its neuroprotective potential against LPS-induced effects. Additionally, LNE substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) secretion in N2a cells and inhibited lipid dehydrogenase (LDH) release in H2O2-stimulated BV2 cells demonstrating the strong anti-inflammatory and antioxidant effects of LNE in CNS cell lines. CONCLUSION Here we found that water the soluble extract of LNE has promising anti-neuroinflammation and anti-apoptotic properties and identify LNE as a potential natural candidate for neuroprotection.
Collapse
Affiliation(s)
- Lalita Subedi
- Laboratoy of Pharmacognosy, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | - Bhakta Prasad Gaire
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | - Moon Ho Do
- Laboratoy of Pharmacognosy, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | - Taek Hwan Lee
- College of Pharmacy, Yonsei University, #162-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Sun Yeou Kim
- Laboratoy of Pharmacognosy, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea.
| |
Collapse
|
80
|
Zhou L, Zheng Y, Li Z, Bao L, Dou Y, Tang Y, Zhang J, Zhou J, Liu Y, Jia Y, Li X. Compound K Attenuates the Development of Atherosclerosis in ApoE(-/-) Mice via LXRα Activation. Int J Mol Sci 2016; 17:ijms17071054. [PMID: 27399689 PMCID: PMC4964430 DOI: 10.3390/ijms17071054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
- Department of pharmacy, Xinqiao Hospital & The Second Affiliated Hospital, Third Military Medical University, Shapingba, Chongqing 400037, China.
| | - Yu Zheng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Zhuoying Li
- Department of Outpatient, Logistical Engineering University of PLA, Shapingba, Chongqing 401311, China.
| | - Lingxia Bao
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Yin Dou
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Yuan Tang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Jianxiang Zhang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Jianzhi Zhou
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| |
Collapse
|
81
|
Han JS, Sung JH, Lee SK. Antimelanogenesis Activity of Hydrolyzed Ginseng Extract (GINST) via Inhibition of JNK Mitogen-activated Protein Kinase in B16F10 Cells. J Food Sci 2016; 81:H2085-92. [PMID: 27356239 DOI: 10.1111/1750-3841.13380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
GINST is a hydrolyzed ginseng extract produced by an in vitro process that imitates the metabolic function of bacteria in the human digestive track and has approved by the Ministry of Food and Drug Safety of Korea for the management of postprandial hyperglycemia. Additionally, GINST has been reported to have other physiological functions including anti-aging and antioxidant effects. The objectives of this study are to compare the antimelanogenic effects of fresh ginseng extract (FGE) and GINST extract and to elucidate the functional mechanism. The concentration of total ginsenosides in FGE and GINST was measured using ultraperformance liquid chromatography with a C18 column. B16F10 cells were treated with FGE and GINST for 72 h to assess melanin content, tyrosinase activity, and protein levels of microphthalmia-associated transcription factor (MITF) and tyrosinase-related protein-1 (TRP-1). The activity of kinases involved in mitogen-activated protein kinase (MAPK) signaling, such as extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (p38), were measured using western blots. While neither FGE nor GINST inhibited the activity of mushroom tyrosinase directly, GINST decreased melanogenesis and tyrosinase activity markedly. Furthermore, our results indicate that GINST downregulated the levels of MITF and TRP-1 possibly by suppressing JNK signaling. We concluded that, when compared to FGE, GINST has a superior antimelanogenic effect mediated by the downregulation of MITF, TRP-1, and intracellular tyrosinase activity via the JNK signaling pathway. Thus, we suggest that GINST has the potential to be used as a novel skin whitening agent.
Collapse
Affiliation(s)
- Joon-Seung Han
- Ilhwa Co., BioTech Research Inst., Foreign Business Center, 25, Angol-ro 56 beon-gil, Guri-si, Gyeonggi-do, Korea
| | - Jong Hwan Sung
- Ilhwa Co., BioTech Research Inst., Foreign Business Center, 25, Angol-ro 56 beon-gil, Guri-si, Gyeonggi-do, Korea
| | - Seung Kwon Lee
- Ilhwa Co., BioTech Research Inst., Foreign Business Center, 25, Angol-ro 56 beon-gil, Guri-si, Gyeonggi-do, Korea
| |
Collapse
|
82
|
Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma. J Ginseng Res 2016; 41:240-246. [PMID: 28701863 PMCID: PMC5489747 DOI: 10.1016/j.jgr.2016.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/19/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods The effects of the KRG on inhibition of hypoxia-induced COX-2 via PPARγ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of PPARγ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. PPARγ protein levels and PPARγ-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the PPARγ inhibitor GW9662. In addition, the inhibition of PPARγ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on PPARγ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly PPARγ and to identify the constituents responsible for this activity.
Collapse
|
83
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
84
|
Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling. Geriatr Gerontol Int 2015; 17:338-345. [PMID: 26712031 DOI: 10.1111/ggi.12699] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao Dong
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Lei Zheng
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Shujing Lu
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Yanbei Yang
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| |
Collapse
|
85
|
Shin JA, Jeong SI, Kim M, Yoon JC, Kim HS, Park EM. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice. Brain Behav Immun 2015; 50:221-231. [PMID: 26184082 DOI: 10.1016/j.bbi.2015.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 01/22/2023] Open
Abstract
Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea
| | - Sae Im Jeong
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea
| | - Minsuk Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Joo Chun Yoon
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea; Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Hee-Sun Kim
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea; Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea.
| |
Collapse
|
86
|
Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015; 7:129. [PMID: 26236231 PMCID: PMC4503934 DOI: 10.3389/fnagi.2015.00129] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Order: Apiales, Family: Araliaceae, Genus: Panax) has been used as a traditional herbal medicine for over 2000 years, and is recorded to have antianxiety, antidepressant and cognition enhancing properties. The protective effects of ginseng on neurological disorders are discussed in this review. Ginseng species and ginsenosides, and their intestinal metabolism and bioavailability are briefly introduced. This is followed by molecular mechanisms of effects of ginseng on the brain, including glutamatergic transmission, monoamine transmission, estrogen signaling, nitric oxide (NO) production, the Keap1/Nrf2 adaptive cellular stress pathway, neuronal survival, apoptosis, neural stem cells and neuroregeneration, microglia, astrocytes, oligodendrocytes and cerebral microvessels. The molecular mechanisms of the neuroprotective effects of ginseng in Alzheimer’s disease (AD) including β-amyloid (Aβ) formation, tau hyperphosphorylation and oxidative stress, major depression, stroke, Parkinson’s disease and multiple sclerosis are presented. It is hoped that this discussion will stimulate more studies on the use of ginseng in neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore Singapore, Singapore ; Neurobiology and Ageing Research Programme, National University of Singapore Singapore, Singapore
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Hwee-Ling Koh
- Department of Pharmacy, National University of Singapore Singapore, Singapore
| | - Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Eng-Ang Ling
- Department of Anatomy, National University of Singapore Singapore, Singapore
| |
Collapse
|
87
|
Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J Ginseng Res 2015; 40:105-12. [PMID: 27158230 PMCID: PMC4845050 DOI: 10.1016/j.jgr.2015.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022] Open
Abstract
Background Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at 25°C for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30–80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was Rb1 → Rd → F2 → compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72–96 h, pH 4.0–4.5, and temperature 45–55°C. Conclusion AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.
Collapse
|
88
|
Lim W, Shim MK, Kim S, Lee Y. Red ginseng represses hypoxia-induced cyclooxygenase-2 through sirtuin1 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:597-604. [PMID: 26055124 DOI: 10.1016/j.phymed.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/17/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Korean red ginseng (KRG) is a traditional herbal medicine made by steaming and drying the fresh ginseng, leading to chemical transformation of some components by heat. It ameliorates various inflammatory diseases and strengthens the endocrine, immune, and central nervous systems. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumorigenesis. PURPOSE In this study we examined the effects and the mechanism underlying Korean red ginseng water extract (KRG-WE) inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. STUDY DESIGN The effect of the KRG on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or qRT-PCR. The anti-invasive effect of KRG-WE was evaluated on A549 cells using matrigel invasion assay. The activation of glucocorticoid receptor (GR) and sirtuin1 (Sirt1) was examined by using specific inhibitors. RESULTS We first observed that hypoxia induced COX-2 protein and mRNA levels and promoter activity were suppressed by KRG-WE. Second, we observed that hypoxia-induced cell migration is dramatically reduced by KRG-WE. Third, we found that the effect of KRG-WE was not antagonized by the GR antagonist RU486 implying that the effect is mediated other than GR pathway. Finally, we demonstrated that inhibition of Sirt1 abolished the effect of KRG-WE on hypoxia-induced COX-2 suppression and cell-invasion indicating that the suppression is mediated by Sirt1. CONCLUSION Taken together, KRG-WE inhibits the hypoxic induction of COX-2 expression and cell invasion through Sirt1 activation. Our results imply that KRG-WE could be effective for suppression of inflammation under hypoxia.
Collapse
Affiliation(s)
- Wonchung Lim
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Korea; Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 363-764, Korea
| | - Myeong Kuk Shim
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Korea
| | - Sikwan Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju 380-701, Korea
| | - YoungJoo Lee
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Korea.
| |
Collapse
|
89
|
Kwon SH, Ma SX, Hong SI, Lee SY, Jang CG. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells. J Med Food 2015; 18:762-75. [PMID: 25897683 DOI: 10.1089/jmf.2014.3341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea.,2 Natural Products Research Center, Korea Institute of Science and Technology , Gangneung, Korea
| | - Shi-Xun Ma
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| | - Sa-Ik Hong
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| | - Seok-Yong Lee
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| | - Choon-Gon Jang
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| |
Collapse
|
90
|
Rastogi V, Santiago-Moreno J, Doré S. Ginseng: a promising neuroprotective strategy in stroke. Front Cell Neurosci 2015; 8:457. [PMID: 25653588 PMCID: PMC4299449 DOI: 10.3389/fncel.2014.00457] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022] Open
Abstract
Ginseng is one of the most widely used herbal medicines in the world. It has been used in the treatment of various ailments and to boost immunity for centuries; especially in Asian countries. The most common ginseng variant in traditional herbal medicine is ginseng, which is made from the peeled and dried root of Panax Ginseng. Ginseng has been suggested as an effective treatment for a vast array of neurological disorders, including stroke and other acute and chronic neurodegenerative disorders. Ginseng’s neuroprotective effects are focused on the maintenance of homeostasis. This review involves a comprehensive literature search that highlights aspects of ginseng’s putative neuroprotective effectiveness, focusing on stroke. Attenuation of inflammation through inhibition of various proinflammatory mediators, along with suppression of oxidative stress by various mechanisms, including activation of the cytoprotective transcriptional factor Nrf2, which results in decrease in reactive oxygen species, could account for its neuroprotective efficacy. It can also prevent neuronal death as a result of stroke, thus decreasing anatomical and functional stroke damage. Although there are diverse studies that have investigated the mechanisms involved in the efficacy of ginseng in treating disorders, there is still much that needs to be clarified. Both in vitro and in vivo studies including randomized controlled clinical trials are necessary to develop in-depth knowledge of ginseng and its practical applications.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Juan Santiago-Moreno
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Sylvain Doré
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Psychiatry, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
91
|
Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015; 100:208-220. [PMID: 25449425 DOI: 10.1016/j.fitote.2014.11.019] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022]
Abstract
As an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, ginsenoside compound K (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol, CK) is a major deglycosylated metabolite form of ginsenosides which is absorbed into the systemic circulation. And it has demonstrated such diverse intriguing biological properties as anticarcinogenic, anti-inflammation, antiallergic, anti-diabetic, anti-angiogenesis, anti-aging, neuroprotective and hepatoprotective effects. The present review shall summarize recent studies on various biotransformation and pharmacological activities of CK.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; School of Pharmaceutical Science, Central South University, Changsha 410013, China
| | - Yong-Yu Yang
- School of Pharmaceutical Science, Central South University, Changsha 410013, China
| | - Dong-Sheng Ouyang
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Guo-Ping Yang
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
92
|
Neuroprotective mechanism of BNG-1 against focal cerebral ischemia: a neuroimaging and neurotrophin study. PLoS One 2014; 9:e114909. [PMID: 25506838 PMCID: PMC4266630 DOI: 10.1371/journal.pone.0114909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/15/2014] [Indexed: 12/26/2022] Open
Abstract
BNG-1 is a herb complex used in traditional Chinese medicine to treat stroke. In this study, we attempted to identify the neuroprotective mechanism of BNG-1 by using neuroimaging and neurotrophin analyses of a stroke animal model. Rats were treated with either saline or BNG-1 for 7 d after 60-min middle cerebral artery occlusion by filament model. The temporal change of magnetic resonance (MR) imaging of brain was studied using a 7 Tesla MR imaging (MRI) system and the temporal expressions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in brain were analyzed before operation and at 4 h, 2 d, and 7 d after operation. Compared with the saline group, the BNG-1 group exhibited a smaller infarction volume in the cerebral cortex in T2 image from as early as 4 h to 7 d, less edema in the cortex in diffusion weighted image from 2 to 7 d, earlier reduction of postischemic hyperperfusion in both the cortex and striatum in perfusion image at 4 h, and earlier normalization of the ischemic pattern in the striatum in susceptibility weighted image at 2 d. NT-3 and BDNF levels were higher in the BNG-1 group than the saline group at 7 d. We concluded that the protective effect of BNG-1 against cerebral ischemic injury might act through improving cerebral hemodynamics and recovering neurotrophin generation.
Collapse
|
93
|
Igami K, Shimojo Y, Ito H, Miyazaki T, Kashiwada Y. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury. J Pharm Pharmacol 2014; 67:565-72. [DOI: 10.1111/jphp.12342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022]
Abstract
Abstract
Objectives
This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)).
Methods
Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K.
Key findings
Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells.
Conclusions
FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver.
Collapse
Affiliation(s)
- Kentaro Igami
- Research & Development Center, Nagase and CO., LTD, Kobe, Hyogo, Japan
| | - Yosuke Shimojo
- Research & Development Center, Nagase and CO., LTD, Kobe, Hyogo, Japan
| | - Hisatomi Ito
- Research & Development Center, Nagase and CO., LTD, Kobe, Hyogo, Japan
| | | | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi, Tokushima, Japan
| |
Collapse
|
94
|
Geng C, Yin JY, Yu XH, Liu JY, Yang YX, Sun DY, Meng Q, Wei ZL, Liu JH. Tissue distribution and excretion study of neopanaxadiol in rats by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2014; 29:333-40. [DOI: 10.1002/bmc.3274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Cong Geng
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Jian-yuan Yin
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Xiu-hua Yu
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
- Chinese Medicine Research Center; The Affiliated Hospital To Changchun University of Chinese Medicine; 1478 Gongnong Road Changchun 130021 People's Republic of China
| | - Jing-yan Liu
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Yu-xia Yang
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - De-ya Sun
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Qin Meng
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Zhong-lin Wei
- College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Ji-hua Liu
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| |
Collapse
|
95
|
Yan K, Zhang R, Chen L, Chen F, Liu Y, Peng L, Sun H, Huang W, Sun C, Lv B, Li F, Cai Y, Tang Y, Zou Y, Du M, Qin L, Zhang H, Jiang X. Nitric oxide-mediated immunosuppressive effect of human amniotic membrane-derived mesenchymal stem cells on the viability and migration of microglia. Brain Res 2014; 1590:1-9. [PMID: 24909791 DOI: 10.1016/j.brainres.2014.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
Human amniotic membrane-derived mesenchymal stem cells (AMSCs) are considered a novel and promising source of stem cells for cell replacement-based therapy. Current research is mostly limited to investigating the cellular differentiation potential of AMSCs, while few have focused on their immunosuppressive properties. This study is aimed at exploring and evaluating the immunosuppressive effect of human AMSCs on the viability and migratory properties of microglia. We found, from results of cell viability assays, that AMSCs can reduce the activity of inflammatory cells by secreting nitric oxide (NO). Also, based on results from wound healing and transwell migration assays, we show that AMSCs can inhibit the migration of human microglia as well as the mouse microglial cell line BV2, suggesting that they have the ability to inhibit the recruitment of certain immune cells to injury sites. Furthermore, we found that NO contributes significantly to this inhibitory effect. Our study provides evidence that human AMSCs can have detrimental effects on the viability and migration of microglia, through secretion of NO. This mechanism may contribute to anti-inflammatory processes in the central nervous system.
Collapse
Affiliation(s)
- Ke Yan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China; Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lei Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Fanfan Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yi Liu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lingmei Peng
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Haitao Sun
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Weiyi Huang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Chengmei Sun
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Bingke Lv
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Feng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yingqian Cai
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yanping Tang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yuxi Zou
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Mouxuan Du
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lingsha Qin
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Xiaodan Jiang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
96
|
Jiang S, Ren D, Li J, Yuan G, Li H, Xu G, Han X, Du P, An L. Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 2014; 95:58-64. [DOI: 10.1016/j.fitote.2014.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
|
97
|
Korean red ginseng saponin fraction rich in ginsenoside-Rb1, Rc and Rb2 attenuates the severity of mouse collagen-induced arthritis. Mediators Inflamm 2014; 2014:748964. [PMID: 24833816 PMCID: PMC4009181 DOI: 10.1155/2014/748964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 11/17/2022] Open
Abstract
Despite a multitude of reports on anti-inflammatory properties of ginseng extracts or individual ginsenosides, data on antiarthritic effect of ginseng saponin preparation with mixed ginsenosides is limited. On the other hand, a combined therapy of safe and inexpensive plant-derived natural products such as ginsenosides can be considered as an alternative to treat arthritis. Our previous in vitro data displayed a strong anti-inflammatory action of red ginseng saponin fraction-A (RGSF-A). We, herein, report a marked antiarthritic property of RGSF-A rich in ginsenoside Rb1, Rc, and Rb2. Collagen-induced arthritic (CIA) mice were treated with RGSF-A or methotrexate (MTX) for 5 weeks. Joint pathology, serum antibody production and leukocye activation, cytokine production in the circulation, lymph nodes, and joints were examined. RGSF-A markedly reduced severity of arthritis, cellular infiltration, and cartilage damage. It suppressed CD3(+)/CD69(+), CD4(+)/CD25(+), CD8(+) T-cell, CD19(+), B220/CD23(+) B-cell, MHCII(+)/CD11c(+), and Gr-1(+)/CD11b(+) cell activations. It further suppressed anti-CII- or anti-RF-IgG/IgM, TNF-α, IL-1β, IL-17, and IL-6 secretions but stimulated IL-10 levels in the serum, joint, or splenocyte. RGSF-A attenuated arthritis severity, modified leukocyte activations, and restored cytokine imbalances, suggesting that it can be considered as an antiarthritic agent with the capacity to ameliorate the immune and inflammatory responses in CIA mice.
Collapse
|
98
|
Law CKM, Kwok HH, Poon PY, Lau CC, Jiang ZH, Tai WCS, Hsiao WWL, Mak NK, Yue PYK, Wong RNS. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor. Chin Med 2014; 9:11. [PMID: 24690317 PMCID: PMC4021625 DOI: 10.1186/1749-8546-9-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism. Methods The cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry. Results Four ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death. Conclusion Ginsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patrick Ying-Kit Yue
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| | | |
Collapse
|
99
|
Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr Rev 2014; 72:319-33. [DOI: 10.1111/nure.12099] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Imogen Smith
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | - Elizabeth M Williamson
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | | | | | - Benjamin J Whalley
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| |
Collapse
|
100
|
Shi SS, Yang WZ, Chen Y, Chen JP, Tu XK. Propofol reduces inflammatory reaction and ischemic brain damage in cerebral ischemia in rats. Neurochem Res 2014; 39:793-9. [PMID: 24610527 DOI: 10.1007/s11064-014-1272-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Our previous studies demonstrated that inflammatory reaction and neuronal apoptosis are the most important pathological mechanisms in ischemia-induced brain damage. Propofol has been shown to attenuate ischemic brain damage via inhibiting neuronal apoptosis. The present study was performed to evaluate the effect of propofol on brain damage and inflammatory reaction in rats of focal cerebral ischemia. Sprague-Dawley rats underwent permanent middle cerebral artery occlusion, then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 h of ischemia. Neurological deficit scores, cerebral infarct size and morphological characteristic were measured 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was assessed 24 h after cerebral ischemia. Nuclear factor-kappa B (NF-κB) p65 expression in ischemic rat brain was detected by western blot. Cyclooxygenase-2 (COX-2) expression in ischemic rat brain was determined by immunohistochemistry. ELISA was performed to detect the serum concentration of tumor necrosis factor-α (TNF-α). Neurological deficit scores, cerebral infarct size and MPO activity were significantly reduced by propofol administration. Furthermore, expression of NF-κB, COX-2 and TNF-α were attenuated by propofol administration. Our results demonstrated that propofol (10 and 50 mg/kg) reduces inflammatory reaction and brain damage in focal cerebral ischemia in rats. Propofol exerts neuroprotection against ischemic brain damage, which might be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory genes.
Collapse
Affiliation(s)
- Song-sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | | | | | | | | |
Collapse
|