51
|
Ketamine-induced hypnosis and neuroplasticity in mice is associated with disrupted p-MEK/p-ERK sequential activation and sustained upregulation of survival p-FADD in brain cortex: Involvement of GABA A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:121-131. [PMID: 30003929 DOI: 10.1016/j.pnpbp.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022]
Abstract
Ketamine (KET) is an antidepressant and hypnotic drug acting as an antagonist at excitatory NMDA glutamate receptors. The working hypothesis postulated that KET-induced sleep in mice results in dysregulation of mitogen-activated protein kinases (MAPK) MEK-ERK sequential phosphorylation and upregulation of survival p-FADD and other neuroplastic markers in brain. Low (5-15 mg/kg) and high (150 mg/kg) doses of KET on target proteins were assessed by Western immunoblot in mouse brain cortex. During the time course of KET (150 mg/kg)-induced sleep (up to 50 min) p-MEK was increased (up to +79%) and p-ERK decreased (up to -46%) indicating disruption of MEK to ERK signal. Subhypnotic KET (5-15 mg/kg) also revealed uncoupling of p-MEK (+13-81%) to p-ERK (unchanged content). KET did not alter contraregulatory MAPK mechanisms such as inactivated p-MEK1 (ERK dampening) and phosphatases MKP1/2/3 (ERK dephosphorylation). As other relevant findings, KET (5, 15 and 150 mg/kg) upregulated p-FADD in a dose-dependent manner, and for the hypnotic dose the effect paralleled the time course of sleep which resulted in increased p-FADD/FADD ratios. KET (150 mg/kg) also increased NF-κΒ and PSD-95 neuroplastic markers. Flumazenil (a neutral allosteric antagonist at GABAA receptor) prolonged KET sleep and blocked p-MEK upregulation, indicating the involvement of this receptor as a negative modulator. SL-327 (a MEK inhibitor) augmented KET sleep, further indicating the relevance of reduced p-ERK1/2 in KET-induced hypnosis. These findings suggest that hypnotic and subhypnotic doses of KET inducing uncoupling of p-MEK to p-ERK signal and regulation of p-ERK (downregulation) and p-FADD (upregulation) may participate in the expression of some of its adverse effects (e.g. amnesia, dissociative effects).
Collapse
|
52
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Pentobarbital and other anesthetic agents induce opposite regulations of MAP kinases p-MEK and p-ERK, and upregulate p-FADD/FADD neuroplastic index in brain during hypnotic states in mice. Neurochem Int 2018; 122:59-72. [PMID: 30423425 DOI: 10.1016/j.neuint.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Abstract
Midazolam and ketamine-induced anesthesia were recently shown to induce a disruption of MEK/ERK sequential phosphorylation with parallel upregulation of p-FADD in the mouse brain. The present study was designed to assess whether other structurally diverse anesthetic agents (pentobarbital, ethanol, chloral hydrate, isoflurane) also impair brain p-MEK to p-ERK signal and increase p-FADD during the particular time course of 'sleep' in mice. Pentobarbital (50 mg/kg)-, ethanol (4000 mg/kg)-, chloral hydrate (400 mg/kg)-, and isoflurane (2% in O2)-induced anesthesia (range: 24-60 min) were associated with unaltered or increased p-MEK1/2 (up to +155%) and decreased p-ERK1/2 (up to -60%) contents, revealing disruption of MEK to ERK activation in mouse brain cortex. These anesthetic agents also upregulated cortical p-FADD (up to +110%), but not total FADD (moderately decreased), which resulted in increased neuroplastic/survival p-FADD/FADD ratios (up to +2.8 fold). The inhibition of pentobarbital metabolism with SKF525-A (a cytochrome P450 inhibitor) augmented barbiturate anesthesia (2.6 times) and induced a greater and sustained upregulation of p-MEK with p-ERK downregulation, as well as prolonged increases of p-FADD content and p-FADD/FADD ratio (effects lasting for more than 240 min). Pentobarbital also upregulated significantly the cortical contents of other markers of neuroplasticity such as the ERK inhibitor p-PEA-15 (up to +46%), the transcription factor NF-κB (up to +27%) and the synaptic density protein PSD-95 (up to +20%) during 'sleep'. The results reveal a paradoxical stimulation of p-MEK without the concomitant (canonical) activation of p-ERK (e.g. with pentobarbital and isoflurane), for which various molecular mechanisms are discussed. The downregulation of brain p-ERK may participate in the manifestations of adverse effects displayed by most hypnotic/anesthetic agents in clinical use (e.g. amnesia).
Collapse
Affiliation(s)
- Glòria Salort
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| |
Collapse
|
53
|
Khoshroo A, Hosseinzadeh L, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ehrlich H. Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
54
|
Should Benzodiazepines and Anticonvulsants Be Used During Electroconvulsive Therapy?: A Case Study and Literature Review. J ECT 2017; 33:237-242. [PMID: 28767528 DOI: 10.1097/yct.0000000000000441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study aims to investigate the clinical effects of benzodiazepines or anticonvulsant use during a course of electroconvulsive therapy (ECT). METHOD A case report study of a patient who received ECT with and without concomitant flurazepam and pregabalin is presented. The literature on the use of benzodiazepines and anticonvulsants during ECT is reviewed. RESULTS A woman with treatment resistant depression received a course of ECT while taking flurazepam and pregabalin, but seizures were of short duration and symptomatic improvement was minimal. After discontinuation of flurazepam and pregabalin, a course of right unilateral ultrabrief ECT was associated with adequate seizures and remission of depression and suicidal ideation. Our literature review suggests that benzodiazepines decrease seizure duration, but most evidence shows no association with increased seizure threshold. One prospective RCT and 3 large retrospective studies found that benzodiazepines compromise the efficacy of unilateral but not bilateral ECT. Regarding anticonvulsants, several studies had varied and contradictory results on their effect on seizure duration and seizure threshold. Of the 2 large retrospective studies and 3 RCTs, only 1 retrospective study showed that anticonvulsants decrease the efficacy of ECT. CONCLUSIONS Judicious assessment of all medications used in combination with ECT is recommended. Overall, published studies suggest that benzodiazepines and anticonvulsants impact the clinical outcomes of ECT less than what would be expected given their pharmacologic effects. However, there are significant gaps in the literature, including a lack of study on suprathreshold stimulation of right unilateral ECT and the possibility of a greater effect with higher medication doses.
Collapse
|
55
|
Dilokpattanamongkol P, Tangsujaritvijit V, Suansanae T, Suthisisang C. Impact of pharmaceutical care on pain and agitation in a medical intensive care unit in Thailand. Int J Clin Pharm 2017; 39:573-581. [PMID: 28357623 DOI: 10.1007/s11096-017-0456-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Background Currently, a lack of pharmaceutical care exists concerning pain and agitation in medical intensive care units (MICU) in Thailand. Pharmaceutical care focusing on analgesics/sedatives would improve clinical outcomes. Objective To investigate the impact of pharmaceutical care of pain and agitation on ICU length of stay (LOS), hospital LOS, ventilator days and mortality. Setting The MICU of a university hospital. Method A before/after study was conducted on mechanically ventilated patients receiving analgesics/sedatives. Medical chart reviews and data collection were conducted in the retrospective group (no pharmacists involved). In the prospective group, pharmacists involved with the critical care team helped select analgesics/sedatives for individual patients. Main outcome measure ICU LOS Results In total, 90 and 66 patients were enrolled in retrospective and prospective groups, respectively. The median duration of ICU LOS was reduced from 10.00 (2.00-72.00) in the retrospective group to 6.50 days (2.00-30.00) in the prospective group (p = 0.002). The median hospital stay was reduced from 30.50 days (2.00-119.00) in the retrospective group to 17.50 days (2.00-110.00) in the prospective group (p < 0.001). Also, the median ventilator days was reduced from 14.00 days (2.00-90.00) to 8.50 days (1.00-45.00), p = 0.008. Mortality was 53.03% in the prospective group and 46.67% in the retrospective group (p = 0.432). Conclusion Pharmacist participation in a critical care team resulted in a significant reduction in the duration of ICU LOS, hospital LOS and ventilator days, but not mortality.
Collapse
Affiliation(s)
- Pitchaya Dilokpattanamongkol
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Viratch Tangsujaritvijit
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thanarat Suansanae
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Chuthamanee Suthisisang
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
56
|
Takahashi S, Inamura K, Yarimizu J, Yamazaki M, Murai N, Ni K. Neurochemical and neuropharmacological characterization of ASP2905, a novel potent selective inhibitor of the potassium channel KCNH3. Eur J Pharmacol 2017; 810:26-35. [PMID: 28552344 DOI: 10.1016/j.ejphar.2017.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/11/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
Abstract
KCNH3 (BEC1) is a member of the ether-à-go-go (KCNH) family of voltage-gated K+ channels. The aim of this study was to determine the pharmacological profiles in vitro and in vivo of a KCNH3 inhibitor N-(4-fluorophenyl)-N'-phenyl-N''-(pyrimidin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine (ASP2905). We analyzed the effects of ASP2905 on channel activity in vitro and its neuropharmacological properties in young and aged rats as well as in mice. ASP2905 potently inhibited potassium currents in CHO cells expressing KCNH3 (IC50 = 9.0nM). In contrast, ASP2905 (≤ 10μM) minimally bound with low affinities to 55 transmembrane proteins. ASP2905 (0.1µM, 1µM) decreased the frequency of spontaneous inhibitory postsynaptic currents in cultured rat hippocampal neurons. In mice, ASP2905 reversed the disruption of spontaneous alternation behavior induced by MK-801 and scopolamine (minimum effective dose of ASP2905: 0.0625mg/kg, po). ASP2905 ameliorated the cognitive deficits of aged rats in step-through passive avoidance (0.0313 and 0.0625mg/kg, po) and Morris water-maze tasks (0.01mg/kg, po) and effectively penetrated the brain. The mean plasma and brain concentrations of ASP2905 reached their maxima (Cmax = 0.399ng/ml and 1.77ng/g, respectively) 1h after a single oral administration and then decreased (t1/2 = 1.5-1.6h) (brain plasma ratio = 2.7-4.9). The present study suggests that ASP2905 is a selective, orally administered inhibitor of KCNH3, which can enhance cognitive performance.
Collapse
Affiliation(s)
- Shinji Takahashi
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan.
| | - Kohei Inamura
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan
| | - Junko Yarimizu
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan
| | - Mayako Yamazaki
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan
| | - Nobuhito Murai
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan
| | - Keni Ni
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan
| |
Collapse
|
57
|
Álvaro-Bartolomé M, Salort G, García-Sevilla JA. Disruption of brain MEK-ERK sequential phosphorylation and activation during midazolam-induced hypnosis in mice: Roles of GABA A receptor, MEK1 inactivation, and phosphatase MKP-3. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:84-93. [PMID: 28111292 DOI: 10.1016/j.pnpbp.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/08/2023]
Abstract
Midazolam is a positive allosteric modulator at GABAA receptor that induces a short hypnosis and neuroplasticity, in which the sequential phosphorylation of MEK1/2 and ERK1/2 was shown to play a role. This study investigated the parallel activation of p-MEK and p-ERK and regulatory mechanisms induced by midazolam through the stimulation of GABAA receptors in the mouse brain. During the time course of midazolam (60mg/kg)-induced sleep in mice (lasting for about 2h) p-Ser217/221 MEK1/2 was increased (+146% to +258%) whereas, unexpectedly, p-Tyr204/Thr202 ERK1/2 was found decreased (-16% to -38%), revealing uncoupling of MEK to ERK signals in various brain regions. Midazolam-induced p-MEK1/2 upregulation was prevented by pretreatment (30min) with flumazenil (10mg/kg), indicating the involvement of GABAA receptors. Also unexpectedly, midazolam-induced p-ERK1/2 downregulation was not prevented by flumazenil (10 or 30mg/kg). Notably, during midazolam-induced sleep the content of inactivated p-Thr286 MEK1, which can dampen ERK1/2 activation, was increased (+33% to +149%) through a mechanism sensitive to flumazenil (10mg/kg). Midazolam also increased MKP-3 (+13% to +73%) content and this upregulation was prevented by flumazenil (10mg/kg); an effect suggesting ERK inactivation because MKP-3 is the phosphatase selective for ERK1/2 dephosphorylation. The results indicate that during midazolam-induced sleep in mice there is an uncoupling of p-MEK (increased) to p-ERK (decreased) signals. p-ERK1/2 downregulation (not involving GABAA receptors) is the result of increased inactivated MEK1 and phosphatase MKP-3 (both effects involving GABAA receptors). These findings are relevant for the neurobiology and clinical use of benzodiazepines.
Collapse
Affiliation(s)
- María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Glòria Salort
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
58
|
Bodnar J. A Review of Agents for Palliative Sedation/Continuous Deep Sedation: Pharmacology and Practical Applications. J Pain Palliat Care Pharmacother 2017; 31:16-37. [PMID: 28287357 DOI: 10.1080/15360288.2017.1279502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous deep sedation at the end of life is a specific form of palliative sedation requiring a care plan that essentially places and maintains the patient in an unresponsive state because their symptoms are refractory to any other interventions. Because this application is uncommon, many providers may lack practical experience in this specialized area and resources they can access are outdated, nonspecific, and/or not comprehensive. The purpose of this review is to provide an evidence- and experience-based reference that specifically addresses those medications and regimens and their practical applications for this very narrow, but vital, aspect of hospice care. Patient goals in a hospital and hospice environments are different, so the manner in which widely used sedatives are dosed and applied can differ greatly as well. Parameters applied in end-of-life care that are based on experience and a thorough understanding of the pharmacology of those medications will differ from those applied in an intensive care unit or other medical environments. By recognizing these different goals and applying well-founded regimens geared specifically for end-of-life sedation, we can address our patients' symptoms in a more timely and efficacious manner.
Collapse
|
59
|
Affiliation(s)
- Kammy KS Poon
- Department of Anaesthesiology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Steven HS Wong
- Department of Anaesthesiology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| |
Collapse
|
60
|
Voineskos D, Levinson AJ, Sun Y, Barr MS, Farzan F, Rajji TK, Fitzgerald PB, Blumberger DM, Daskalakis ZJ. The Relationship Between Cortical Inhibition and Electroconvulsive Therapy in the Treatment of Major Depressive Disorder. Sci Rep 2016; 6:37461. [PMID: 27934881 PMCID: PMC5146669 DOI: 10.1038/srep37461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
Dysfunctional cortical inhibition (CI) is postulated as a key neurophysiological mechanism in major depressive disorder. Electroconvulsive therapy (ECT) is the treatment of choice for resistant depression and ECT has been associated with enhanced CI. The objective of this study was to evaluate the relationship between CI and ECT response in resistant depression. Twenty-five patients with treatment resistant depression underwent an acute course of ECT. CI was indexed by the cortical silent period (CSP) and short-interval cortical inhibition (SICI), through TMS-EMG. CI and clinical response was measured prior to beginning an acute ECT course and within 48 hours of the last ECT treatment in the course. Clinical response to ECT was assessed by HDRS-17 before and after an acute course of ECT. We found that there was a significant difference in CSP at baseline between responder and non-responder groups (p = 0.044). Baseline CSP predicted therapeutic response to ECT with sensitivity of 80% and specificity of 60%. There were no changes in CSP or SICI after administration of the ECT course. Our findings suggest that duration of pre-treatment CSP may be a useful predictor of therapeutic response to ECT in patients with TRD.
Collapse
Affiliation(s)
- Daphne Voineskos
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Andrea J. Levinson
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Health & Wellness Centre, The University of Toronto, Ontario, Canada
| | - Yinming Sun
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mera S. Barr
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Faranak Farzan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul B. Fitzgerald
- Monash Alfred Psychiatry Research Centre, Alfred and Monash University Central Clinical School, Victoria, Australia
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Chagraoui A, Skiba M, Thuillez C, Thibaut F. To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:189-202. [PMID: 27495357 DOI: 10.1016/j.pnpbp.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023]
Abstract
The relatively common view indicates a possible dissociation between the anxiolytic and sedative/hypnotic properties of benzodiazepines (BZs). Indeed, GABAA receptor (GABAAR) subtypes have specific cerebral distribution in distinct neural circuits. Thus, GABAAR subtype-selective drugs may be expected to perform distinct functions. However, standard behavioral test assays provide limited direction towards highlighting new action mechanisms of ligands targeting GABAARs. Automated behavioral tests, lack sensitivity as some behavioral characteristics or subtle behavioral changes of drug effects or that are not considered in the overall analysis (Ohl et al., 2001) and observation-based analyses are not always performed. In addition, despite the use of genetically engineered mice, any possible dissociation between the anxiolytic and sedative properties of BZs remains controversial. Moreover, the involvement the different subtypes of GABAAR subtypes in the anxious behavior and the mechanism of action of anxiolytic agents remains unclear since there has been little success in the pharmacological investigations so far. This raises the question of the involvement of the different subunits in anxiolytic-like and/or sedative effects; and the actual implication of these subunits, particularly, α-subunits in the modulation of sedation and/or anxiety-related disorders. This present review was prompted by several conflicting studies on the degree of involvement of these subunits in anxiolytic-like and/or sedative effects. To this end, we explored the GABAergic system, particularly, the role of different subunits containing synaptic GABAARs. We report herein the targeting gene encoding the different subunits and their contribution in anxiolytic-like and/or sedative actions, as well as, the mechanism underlying tolerance to BZs.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, and INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| |
Collapse
|
62
|
Heynen M, Backström T, Fick J, Jonsson M, Klaminder J, Brodin T. Home alone-The effects of isolation on uptake of a pharmaceutical contaminant in a social fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:71-77. [PMID: 27658223 DOI: 10.1016/j.aquatox.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 05/14/2023]
Abstract
A wide range of biologically active pharmaceutical residues is present in aquatic systems worldwide. As uptake potential and the risk of effects in aquatic wildlife are directly coupled, the aim of this study was to investigate the relationships between stress by isolation, uptake and effects of the psychiatric pharmaceutical oxazepam in fish. To do this, we measured cortisol levels, behavioral stress responses, and oxazepam uptake under different stress and social conditions, in juvenile perch (Perca fluviatilis) that were either exposed (1.03μgl-1) or not exposed to oxazepam. We found single exposed individuals to take up more oxazepam than individuals exposed in groups, likely as a result of stress caused by isolation. Furthermore, the bioconcentration factor (BCF) was significantly negatively correlated with fish weight in both social treatments. We found no effect of oxazepam exposure on body cortisol concentration or behavioral stress response. Most laboratory experiments, including standardized bioconcentration assays, are designed to minimize stress for the test organisms, however wild animals experience stress naturally. Hence, differences in stress levels between laboratory and natural environments can be one of the reasons why predictions from artificial laboratory experiments largely underestimate uptake of oxazepam, and other pharmaceuticals, in the wild.
Collapse
Affiliation(s)
- Martina Heynen
- Department of Ecology and Environmental Science, Umeå University, Sweden; Department of Chemistry, Umeå University, Sweden.
| | - Tobias Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - Micael Jonsson
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Sweden
| |
Collapse
|
63
|
Schroeck JL, Ford J, Conway EL, Kurtzhalts KE, Gee ME, Vollmer KA, Mergenhagen KA. Review of Safety and Efficacy of Sleep Medicines in Older Adults. Clin Ther 2016; 38:2340-2372. [DOI: 10.1016/j.clinthera.2016.09.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023]
|
64
|
Yanagawa Y, Osanai H, Tateno T. Transcranial flavoprotein-autofluorescence imaging of sound-evoked responses in the mouse auditory cortex under three types of anesthesia. Neurosci Lett 2016; 633:189-195. [PMID: 27641319 DOI: 10.1016/j.neulet.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 11/26/2022]
|
65
|
Neural response differences in the rat primary auditory cortex under anesthesia with ketamine versus the mixture of medetomidine, midazolam and butorphanol. Hear Res 2016; 339:69-79. [DOI: 10.1016/j.heares.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
|
66
|
Heynen M, Fick J, Jonsson M, Klaminder J, Brodin T. Effect of bioconcentration and trophic transfer on realized exposure to oxazepam in 2 predators, the dragonfly larvae (Aeshna grandis) and the Eurasian perch (Perca fluviatilis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:930-937. [PMID: 26762222 DOI: 10.1002/etc.3368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/16/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Psychoactive substances are used worldwide and constitute one of the most common groups of pharmaceutical contaminants in surface waters. Although these pharmaceuticals are designed to be efficiently eliminated from the human body, very little is known about their trophic-transfer potential in aquatic wildlife. Therefore, the goal of the present study was to quantify and compare uptake of an anxiolytic (oxazepam) from water (bioconcentration) and via the consumption of contaminated diet (trophic transfer) in 2 common freshwater predators: Eurasian perch (Perca fluviatilis) and the dragonfly larvae Aeshna grandis. Bioconcentration and trophic transfer of oxazepam were found in both predator species. However, higher bioconcentrations were observed for perch (bioconcentration factor [BCF], 3.7) than for dragonfly larvae (BCF, 0.5). Perch also retained more oxazepam from consumed prey (41%) than dragonfly larvae (10%), whereas the relative contribution via prey consumption was 14% and 42% for perch and dragonflies, respectively. In addition, bioconcentration was negatively correlated with perch weight, indicating that exposure levels in natural contaminated environments differ between individuals of different size or between different developmental stages. Hence, trophic transfer of pharmaceuticals may indeed occur, and estimates of environmental exposures that do not consider intake via food or size-dependent bioconcentration may therefore lead to wrongful estimations of realized exposure levels in natural contaminated ecosystems.
Collapse
Affiliation(s)
- Martina Heynen
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - Micael Jonsson
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Sweden
| |
Collapse
|
67
|
Klein AB, Nittegaard-Nielsen M, Christensen JT, Al-Khawaja A, Wellendorph P. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00442j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Within the continuous quest for the discovery of pharmacologically interesting compounds, the development of new and superior drug screening assays is desired.
Collapse
Affiliation(s)
- Anders B. Klein
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Mia Nittegaard-Nielsen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Julie T. Christensen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Anas Al-Khawaja
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| |
Collapse
|
68
|
Ramirez K, Niraula A, Sheridan JF. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations. Brain Behav Immun 2016; 51:154-168. [PMID: 26342944 PMCID: PMC4679551 DOI: 10.1016/j.bbi.2015.08.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Psychosocial stress is associated with altered immunity, anxiety, and depression. Repeated social defeat (RSD), a model of social stress, triggers egress of inflammatory myeloid progenitor cells (MPCs; CD11b(+)/Ly6C(hi)) that traffic to the brain, promoting anxiety-like behavior. In parallel, RSD enhances neuroinflammatory signaling and long-lasting social avoidant behavior. Lorazepam and clonazepam are routinely prescribed anxiolytics that act by enhancing GABAergic activity in the brain. Besides binding to the central benzodiazepine binding site (CBBS) in the central nervous system (CNS), lorazepam binds to the translocator protein (TSPO) with high affinity causing immunomodulation. Clonazepam targets the CBBS and has low affinity for the TSPO. Here the aims were to determine if lorazepam and clonazepam would: (1) prevent stress-induced peripheral and central inflammatory responses, and (2) block anxiety and social avoidance behavior in mice subjected to RSD. METHODS C57/BL6 mice were divided into experimental groups, and treated with either lorazepam (0.10mg/kg), clonazepam (0.25mg/kg) or vehicle (0.9% NaCl). Behavioral data and tissues were collected the morning after the last cycle of RSD. RESULTS Lorazepam and clonazepam were effective in attenuating mRNA expression of CRH in the hypothalamus and corticosterone in plasma in mice subjected to RSD. Both drugs blocked stress-induced levels of IL-6 in plasma. Lorazepam and clonazepam had different effects on stress-induced enhancement of myelopoiesis and inhibited trafficking of monocytes and granulocytes in circulation. Furthermore, lorazepam, but not clonazepam, inhibited splenomegaly and the production of pro-inflammatory cytokines in the spleen following RSD. Additionally, lorazepam and clonazepam, blocked stress-induced accumulation of macrophages (CD11b(+)/CD45(high)) in the CNS. In a similar manner, both lorazepam and clonazepam prevented neuroinflammatory signaling and reversed anxiety-like and depressive-like behavior in mice exposed to RSD. CONCLUSION These data support the notion that lorazepam and clonazepam, aside from exerting anxiolytic and antidepressant effects, may have therapeutic potential as neuroimmunomodulators during psychosocial stress. The reversal of RSD-induced behavioral outcomes may be due to the enhancement of GABAergic neurotransmission, or some other off-target effect. The peripheral actions of lorazepam, but not clonazepam, seem to be mediated by TSPO activation.
Collapse
Affiliation(s)
- Karol Ramirez
- Division of Biosciences, The Ohio State University, College of Dentistry, Columbus, OH 43210, USA; Facultad de Odontología, Universidad de Costa Rica, San Pedro, San José 11501-2060, Costa Rica.
| | - Anzela Niraula
- Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43212, USA.
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, College of Dentistry, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
69
|
|
70
|
Liebrenz M, Schneider M, Buadze A, Gehring MT, Dube A, Caflisch C. High-Dose Benzodiazepine Dependence: A Qualitative Study of Patients' Perceptions on Initiation, Reasons for Use, and Obtainment. PLoS One 2015; 10:e0142057. [PMID: 26556055 PMCID: PMC4640837 DOI: 10.1371/journal.pone.0142057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background High-dose benzodiazepine (BZD) dependence is associated with a wide variety of negative health consequences. Affected individuals are reported to suffer from severe mental disorders and are often unable to achieve long-term abstinence via recommended discontinuation strategies. Although it is increasingly understood that treatment interventions should take subjective experiences and beliefs into account, the perceptions of this group of individuals remain under-investigated. Methods We conducted an exploratory qualitative study with 41 adult subjects meeting criteria for (high-dose) BZD-dependence, as defined by ICD-10. One-on-one in-depth interviews allowed for an exploration of this group’s views on the reasons behind their initial and then continued use of BZDs, as well as their procurement strategies. Mayring’s qualitative content analysis was used to evaluate our data. Results In this sample, all participants had developed explanatory models for why they began using BZDs. We identified a multitude of reasons that we grouped into four broad categories, as explaining continued BZD use: (1) to cope with symptoms of psychological distress or mental disorder other than substance use, (2) to manage symptoms of physical or psychological discomfort associated with somatic disorder, (3) to alleviate symptoms of substance-related disorders, and (4) for recreational purposes, that is, sensation-seeking and other social reasons. Subjects often considered BZDs less dangerous than other substances and associated their use more often with harm reduction than as recreational. Specific obtainment strategies varied widely: the majority of participants oscillated between legal and illegal methods, often relying on the black market when faced with treatment termination. Conclusions Irrespective of comorbidity, participants expressed a clear preference for medically related explanatory models for their BZD use. We therefore suggest that clinicians consider patients’ motives for long-term, high-dose BZD use when formulating treatment plans for this patient group, especially since it is known that individuals are more compliant with approaches they perceive to be manageable, tolerable, and effective.
Collapse
Affiliation(s)
- Michael Liebrenz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Forensic Psychiatry, Institute of Legal Medicine, University of Bern, Bern, Switzerland
- * E-mail: (ML)
| | - Marcel Schneider
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Anna Buadze
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Anish Dube
- University of Pennsylvania Health System, Philadelphia, Pennsylvania, United States of America
| | - Carlo Caflisch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
71
|
Álvaro-Bartolomé M, García-Sevilla JA. The neuroplastic index p-FADD/FADD and phosphoprotein PEA-15, interacting at GABAA receptor, are upregulated in brain cortex during midazolam-induced hypnosis in mice. Eur Neuropsychopharmacol 2015; 25:2131-44. [PMID: 26282360 DOI: 10.1016/j.euroneuro.2015.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
Abstract
Fas-associated death domain (FADD) adaptor is involved in the signaling of metabotropic G protein-coupled receptors, whose agonists stimulate its phosphoryaltion (p) increasing p-FADD/FADD ratio in brain. Whether FADD might also participate in the activation of dissimilar receptors such as the ligand-gated ion channels is not known. This study investigated the role of FADD and phosphoprotein-enriched in astrocytes of 15 kDa (PEA-15, a FADD partner) in the activation of γ-aminobutyric acid-A (GABAA) receptor, which mediates the hypnotic effect of midazolam. The main findings revealed that during the time course of midazolam (60 mg/kg)-induced hypnosis in mice (about 2 h) p-FADD (and p-FADD/FADD ratio) as well as p-PEA (and its phosphorylating Akt1 kinase) were markedly increased (36-80%) in brain cortex, and these effects were partially (only p-FADD) or fully prevented by flumazenil (a neutral allosteric ligand) and FG 7142 (a partial negative allosteric ligand) acting at GABAA receptors. The upregulation of cortical p-FADD/FADD was exclusively observed in the nucleus (up to 2.8-fold), where the transciption factor NF-κB was also increased (up to 46%), and that of p-PEA/p-Akt1 only in the cytosol (up to 53%), suggesting that p-FADD/p-PEA/p-Akt1 are involved in sleep-induced neuroplasticity. Repeated treatment with midazolam (60 mg/kg, 4 days) induced behavioral (prolonged sleep latency and reduced sleeping time) and neurochemical (reduced p-FADD/p-PEA contents) tolerance. These findings indicated that p-FADD/p-PEA are novel molecules in GABAA receptor signaling and that cortical p-PEA and p-FADD, working in tandem, are involved in the complex molecular processes leading to the hypnotic effect of midazolam in mice.
Collapse
Affiliation(s)
- María Álvaro-Bartolomé
- Laboratorio de Neurofarmacología, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratorio de Neurofarmacología, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
72
|
Abstract
The translocator protein (TSPO; 18k Da) is an evolutionarily conserved outer mitochondrial membrane (OMM) protein highly expressed in steroid-synthesizing cells and found to possess a number of physiological and drug-binding partners. Extensive pharmacological, biochemical and cell biological research over the years has led to a model of TSPO involvement in mitochondrial cholesterol transport and promotion of steroid synthesis, a model guiding the design of drugs useful in stimulating neurosteroid synthesis and alleviating psychopathological symptoms. The involvement of TSPO in these processes has been called into question; however, with the publication of TSPO-deletion mouse models which saw no changes in steroid production. Here, we review work characterizing TSPO in steroidogenesis and offer perspective to research into TSPO pharmacology and its involvement in steroid biosynthesis.
Collapse
|
73
|
Maeda S, Tomoyasu Y, Higuchi H, Ishii-Maruhama M, Egusa M, Miyawaki T. Independent predictors of delay in emergence from general anesthesia. Anesth Prog 2015; 62:8-13. [PMID: 25849468 DOI: 10.2344/0003-3006-62.1.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Some patients with intellectual disabilities spend longer than others in emergence from ambulatory general anesthesia for dental treatment. Although antiepileptic drugs and anesthetics might be involved, an independent predictor for delay of the emergence remains unclear. Thus, a purpose of this study is to identify independent factors affecting the delay of emergence from general anesthesia. This was a retrospective cohort study in dental patients with intellectual disabilities. Patients in need of sedative premedication were removed from participants. The outcome was time until emergence from general anesthesia. Stepwise multivariate regression analysis was used to extract independent factors affecting the outcome. Antiepileptic drugs and anesthetic parameters were included as predictor variables. The study included 102 cases. Clobazam, clonazepam, and phenobarbital were shown to be independent determinants of emergence time. Parameters relating to anesthetics, patients' backgrounds, and dental treatment were not independent factors. Delay in emergence time in ambulatory general anesthesia is likely to be related to the antiepileptic drugs of benzodiazepine or barbiturates in patients with intellectual disability.
Collapse
|
74
|
Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 2015; 408:90-8. [PMID: 25818881 PMCID: PMC4417383 DOI: 10.1016/j.mce.2015.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jinjiang Fan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Midzak
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
75
|
Effect of Midazolam on Memory During Fiberoptic Gastroscopy Under Conscious Sedation. Clin Neuropharmacol 2015; 38:47-51. [DOI: 10.1097/wnf.0000000000000067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
76
|
Vonderlin N, Fischer F, Zitron E, Seyler C, Scherer D, Thomas D, Katus HA, Scholz EP. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:867-77. [PMID: 25733807 PMCID: PMC4338257 DOI: 10.2147/dddt.s72765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.
Collapse
Affiliation(s)
- Nadine Vonderlin
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Fathima Fischer
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Edgar Zitron
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany ; German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Claudia Seyler
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Scherer
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany ; German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany ; German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Eberhard P Scholz
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
77
|
Joo K, Yoon SH, Rhie DJ, Jang HJ. Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:517-24. [PMID: 25598667 PMCID: PMC4296042 DOI: 10.4196/kjpp.2014.18.6.517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/16/2014] [Accepted: 10/31/2014] [Indexed: 12/05/2022]
Abstract
Phasic and tonic γ-aminobutyric acidA (GABAA) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the GABAA receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via Ca2+ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.
Collapse
Affiliation(s)
- Kayoung Joo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Duck-Joo Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 137-701, Korea
| | - Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
78
|
Abstract
Ever since Stone Age men discovered that knapping flint produced sharp stone edges that could be used in combat as well as for cooking and hunting, technological advances of all kinds have been adapted and adopted by the military.The opportunities provided by modern neuroscience are proving no exception, but their application in a military context is accompanied by complex practical and ethical considerations.
Collapse
Affiliation(s)
- Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain and at the Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences. University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Rod Flower
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
79
|
Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, Dugovic C, Yun S, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope. PLoS One 2014; 9:e112068. [PMID: 25372144 PMCID: PMC4221229 DOI: 10.1371/journal.pone.0112068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Tamara Berdyyeva
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Stephani Otte
- Inscopix, Palo Alto, California, United States of America
| | - Leah Aluisio
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Yaniv Ziv
- Inscopix, Palo Alto, California, United States of America
| | | | - Christine Dugovic
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Sujin Yun
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Kunal K. Ghosh
- Inscopix, Palo Alto, California, United States of America
| | | | - Timothy Lovenberg
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Pascal Bonaventure
- Janssen Research & Development, LLC, San Diego, California, United States of America
| |
Collapse
|
80
|
Shityakov S, Sohajda T, Puskás I, Roewer N, Förster C, Broscheit JA. Ionization states, cellular toxicity and molecular modeling studies of midazolam complexed with trimethyl-β-cyclodextrin. Molecules 2014; 19:16861-76. [PMID: 25338177 PMCID: PMC6270744 DOI: 10.3390/molecules191016861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/06/2014] [Accepted: 10/15/2014] [Indexed: 11/24/2022] Open
Abstract
We investigated the ionization profiles for open-ring (OR) and closed-ring (CR) forms of midazolam and drug-binding modes with heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (trimethyl-β-cyclodextrin; TRIMEB) using molecular modeling techniques and quantum mechanics methods. The results indicated that the total net charges for different molecular forms of midazolam tend to be cationic for OR and neutral for CR at physiological pH levels. The thermodynamic calculations demonstrated that CR is less water-soluble than OR, mainly due to the maximal solvation energy ( = −9.98 kcal·mol−1), which has a minimal of −67.01 kcal·mol−1. A cell viability assay did not detect any signs of TRIMEB and OR/CR-TRIMEB complex toxicity on the cEND cells after 24 h of incubation in either Dulbecco’s Modified Eagles Medium or in heat-inactivated human serum. The molecular docking studies identified the more flexible OR form of midazolam as being a better binder to TRIMEB with the fluorophenyl ring introduced inside the amphiphilic cavity of the host molecule. The OR binding affinity was confirmed by a minimal Gibbs free energy of binding (ΔGbind) value of −5.57 ± 0.02 kcal·mol−1, an equilibrium binding constant (Kb) of 79.89 ± 2.706 μM, and a ligand efficiency index (LElig) of −0.21 ± 0.001. Our current data suggest that in order to improve the clinical applications of midazolam via its complexation with trimethyl-β-cyclodextrin to increase drug’s overall aqueous solubility, it is important to concern the different forms and ionization states of this anesthetic. All mean values are indicated with their standard deviations.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Tamás Sohajda
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., H-1097 Budapest, Hungary.
| | - István Puskás
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., H-1097 Budapest, Hungary.
| | - Norbert Roewer
- Department of Anaesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Carola Förster
- Department of Anaesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Jens-Albert Broscheit
- Department of Anaesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
81
|
Abstract
Remimazolam (CNS 7056) is a new drug innovation in anesthesia. It combines the properties of two unique drugs already established in anesthesia - Midazolam and remifentanil. It acts on GABA receptors like midazolam and has organ-independent metabolism like remifentanil. It is likely to be the sedative of the future, as preliminary phase II trials have shown minimal residual effects on prolonged infusions. It has potential to be used as a sedative in ICU and as a novel agent for procedural sedation. Unlike most rapidly acting intravenous sedatives available presently, the propensity to cause apnea is very low. Availability of a specific antagonist (flumazenil) adds to its safety even in cases of overdose. The present review discusses remimazolam's potential as a new drug in anesthesia along with the presently available literary evidence.
Collapse
Affiliation(s)
- Basavana Gouda Goudra
- Department of Clinical Anesthesiology and Critical Care, Perelman School of Medicine, 680 Dulles Building, 3400 Spruce Street, Philadelphia, United States
| | - Preet Mohinder Singh
- Department of Anesthesiology and Critical Care medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|
82
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
83
|
Houtman CJ, ten Broek R, de Jong K, Pieterse B, Kroesbergen J. A multicomponent snapshot of pharmaceuticals and pesticides in the river Meuse basin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2449-2459. [PMID: 24065206 DOI: 10.1002/etc.2351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/10/2013] [Accepted: 07/20/2013] [Indexed: 06/02/2023]
Abstract
The river Meuse serves as a drinking-water source for more than 6 million people in France, Belgium, and The Netherlands. Pharmaceuticals and pesticides, both designed to be biologically active, are important classes of contaminants present in this river. The variation in the presence of pharmaceuticals in time and space in the Dutch part of the Meuse was studied using a multicomponent analytical method for pharmaceuticals combined with univariate and multivariate statistical analyses of the results. Trends and variation in time in the presence of pharmaceuticals were investigated in a dead-end side stream of the Meuse that serves as an intake point for the production of drinking water, and 93% of the selected compounds were detected. Highest concentrations were found for the antidiabetic metformin. Furthermore, a spatial snapshot of the presence of pharmaceuticals and pesticides was made along the river Meuse. Principal component analysis was successfully applied to reveal that wastewater-treatment plant effluent and water composition at the Belgian border were the main factors determining which compounds are found at different locations. The Dutch part of the river basin appeared responsible for approximately one-half of the loads of pharmaceuticals and pesticides discharged by the Meuse into the North Sea. The present study showed that multicomponent monitoring in combination with principal component analysis is a powerful tool to provide insight into contamination patterns in surface waters.
Collapse
|
84
|
Chitilian HV, Eckenhoff RG, Raines DE. Anesthetic drug development: Novel drugs and new approaches. Surg Neurol Int 2013; 4:S2-S10. [PMID: 23653886 PMCID: PMC3642742 DOI: 10.4103/2152-7806.109179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 12/17/2022] Open
Abstract
The ideal sedative–hypnotic drug would be a rapidly titratable intravenous agent with a high therapeutic index and minimal side effects. The current efforts to develop such agents are primarily focused on modifying the structures of existing drugs to improve their pharmacodynamic and pharmacokinetic properties. Drugs currently under development using this rational design approach include analogues of midazolam, propofol, and etomidate, such as remimazolam, PF0713, and cyclopropyl methoxycarbonyl-etomidate (MOC-etomidate), respectively. An alternative approach involves the rapid screening of large libraries of molecules for activity in structural or phenotypic assays that approximate anesthetic and target receptor interactions. Such high-throughput screening offers the potential for identifying completely novel classes of drugs. Anesthetic drug development is experiencing a resurgence of interest because there are new demands on our clinical practice that can be met, at least in part, with better agents. The goal of this review is to provide the reader with a glimpse of the novel anesthetic drugs and new developmental approaches that lie on the horizon.
Collapse
Affiliation(s)
- Hovig V Chitilian
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
85
|
Vanini G, Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. Sleep 2013; 36:337-43. [PMID: 23450652 DOI: 10.5665/sleep.2444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). INTERVENTIONS Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. MEASUREMENTS AND RESULTS Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. CONCLUSION Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. CITATION Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5615, USA.
| | | |
Collapse
|
86
|
Yousefi OS, Wilhelm T, Maschke-Neuß K, Kuhny M, Martin C, Molderings GJ, Kratz F, Hildenbrand B, Huber M. The 1,4-benzodiazepine Ro5-4864 (4-chlorodiazepam) suppresses multiple pro-inflammatory mast cell effector functions. Cell Commun Signal 2013; 11:13. [PMID: 23425659 PMCID: PMC3598916 DOI: 10.1186/1478-811x-11-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/16/2013] [Indexed: 11/25/2022] Open
Abstract
Activation of mast cells (MCs) can be achieved by the high-affinity receptor for IgE (FcεRI) as well as by additional receptors such as the lipopolysaccharide (LPS) receptor and the receptor tyrosine kinase Kit (stem cell factor [SCF] receptor). Thus, pharmacological interventions which stabilize MCs in response to different receptors would be preferable in diseases with pathological systemic MC activation such as systemic mastocytosis. 1,4-Benzodiazepines (BDZs) have been reported to suppress MC effector functions. In the present study, our aim was to analyze molecularly the effects of BDZs on MC activation by comparison of the effects of the two BDZs Ro5-4864 and clonazepam, which markedly differ in their affinities for the archetypical BDZ recognition sites, i.e., the GABAA receptor and TSPO (previously termed peripheral-type BDZ receptor). Ro5-4864 is a selective agonist at TSPO, whereas clonazepam is a selective agonist at the GABAA receptor. Ro5-4864 suppressed pro-inflammatory MC effector functions in response to antigen (Ag) (degranulation/cytokine production) and LPS and SCF (cytokine production), whereas clonazepam was inactive. Signaling pathway analyses revealed inhibitory effects of Ro5-4864 on Ag-triggered production of reactive oxygen species, calcium mobilization and activation of different downstream kinases. The initial activation of Src family kinases was attenuated by Ro5-4864 offering a molecular explanation for the observed impacts on various downstream signaling elements. In conclusion, BDZs structurally related to Ro5-4864 might serve as multifunctional MC stabilizers without the sedative effect of GABAA receptor-interacting BDZs.
Collapse
Affiliation(s)
- Omid Sascha Yousefi
- Medical Faculty, Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Midazolam impairs acquisition and retrieval, but not consolidation of reference memory in the Morris water maze. Behav Brain Res 2012; 241:198-205. [PMID: 23261388 DOI: 10.1016/j.bbr.2012.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Abstract
Amnesia is one of the most discussed properties of the benzodiazepine class of drugs. The effects of benzodiazepines on human memory are usually anterograde, while changes in retrograde memory functions were seldom reported. Such inconsistent findings have prompted numerous animal studies investigating the influences of these positive modulators of inhibitory neurotransmission on different stages of memory. Among the benzodiazepines, memory effects of midazolam are of special interest due to its many and varied clinical applications. The present Morris water maze study in adult male Wistar rats was performed in three experiments in which midazolam was administered at doses of 0.5, 1 and 2 mg/kg intraperitoneally, before or immediately after each of five daily learning sessions, with two trials in a session, as well as before the probe test. Midazolam impaired acquisition and subsequent retention of spatial learning of the position of the hidden platform even at a pre-training dose of 0.5 mg/kg. This low dose was not associated with impairment of the procedural component of learning, manifested by increased time spent in the periphery of the pool. The lack of midazolam effect on consolidation has not been confounded by the observed below-chance performance of the control group since our additional experiment using diazepam also administered immediately after each of five learning sessions has revealed a similar pattern of results. Finally, midazolam administered before the probe test impaired retrieval of reference memory at all tested doses. Hence, induction of retrograde, besides anterograde amnesia should be kept in mind as a possibility when midazolam is used in clinical settings.
Collapse
|
88
|
Lebovitz EE, Keller JM, Kominsky H, Kaszas K, Maric D, Iadarola MJ. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism. Mol Pain 2012; 8:70. [PMID: 22998799 PMCID: PMC3556054 DOI: 10.1186/1744-8069-8-70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022] Open
Abstract
Background The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. Results Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing nerve terminals. The loss of nerve endings was manifested by an increase in levels of axotomy markers assessed by qRT-PCR and colocalization of ATF3 in TRPV1+ cells visualized via immunohistochemistry. Conclusions The present observations suggest a novel, non-narcotic, selective, long-lasting TRPV1-based approach for analgesia that may be effective in acute, persistent, or chronic pain disorders.
Collapse
Affiliation(s)
- Evan E Lebovitz
- Neurobiology and Pain Therapeutics Section, Laboratory Of Sensory Biology, NIDCR, NIH, Bldg 49 Rm 1C2049 Convent Dr, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
89
|
Jin S, St-Jean O, Baltatu SI, Santhakumar V, Tomaszewski MJ. Rapid access to pyrido[1,2,5]triazepin-4-ones through intramolecular nucleophilic aromatic substitution. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
90
|
Wille-Ledon C, Chappuy H, Giraud C, Tréluyer JM, Chéron G. Comparison of a morphine and midazolam combination with morphine alone for paediatric displaced fractures: a randomized study. Acta Paediatr 2011; 100:e203-7. [PMID: 21480984 DOI: 10.1111/j.1651-2227.2011.02311.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To compare the efficacy of sublingual midazolam with oral morphine versus that of oral morphine with placebo in a paediatric population attending an emergency department (ED) with acute long-bone fractures. METHODS A sample of children aged 5-16 years with clinically deformed closed long-bone fractures was randomized to groups receiving either oral morphine (0.5 mg/kg)/sublingual placebo or oral morphine (0.5 mg/kg)/sublingual midazolam (0.2 mg/kg). The main exclusion criteria were narcotic or benzodiazepine use, significant head injury, multiple organ failure, femoral fracture and allergy. Pain scores were rated on a 100-mm visual analogue scale (VAS) at 0, 15, 30, 60, 90 and 120 min. RESULTS Fifty-eight children were enrolled (mean age: 10.5 years, SD 2.7). Fractures concerned the radius or ulna in 43 cases (74.1%), the humerus (22.4%) and the tibia or fibula (3.5%). No significant difference in VAS scores was observed between the two treatment arms (p = 0.72). Drowsiness was significantly more frequent in the midazolam group (p = 0.007) during the first 2 h after administration. No serious adverse event was observed. CONCLUSION The analgesic performances of morphine and the combination of morphine with midazolam assessed by VAS were similar in children presenting at the ED with a long-bone fracture.
Collapse
Affiliation(s)
- Chrystèle Wille-Ledon
- Service d'Urgences pédiatriques, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, France
| | | | | | | | | |
Collapse
|
91
|
O' Mahony SM, Coelho AM, Fitzgerald P, Lee K, Winchester W, Dinan TG, Cryan JF. The effects of gabapentin in two animal models of co-morbid anxiety and visceral hypersensitivity. Eur J Pharmacol 2011; 667:169-74. [PMID: 21645509 DOI: 10.1016/j.ejphar.2011.05.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/18/2011] [Accepted: 05/22/2011] [Indexed: 11/18/2022]
Abstract
Visceral hypersensitivity and an increased response to stress are two of the main symptoms of irritable bowel syndrome. Thus efforts to develop animal models of irritable bowel syndrome have centred on both of these parameters. The anticonvulsant gabapentin, which is widely used as an analgesic agent, also reduces anxiety. No data exists to our knowledge of the effects of gabapentin in animal models of co-morbid exaggerated stress response and visceral pain. Our aim was to assess the effect of gabapentin on stress and visceral hypersensitivity in two different animal models of irritable bowel syndrome. The animal models employed were the genetically susceptible Wistar Kyoto rat and the neonatally stressed maternal separation model. These animals were subjected to the open field paradigm to assess stress-induced defecation rates and colorectal distension to assess the level of visceral sensitivity. Gabapentin (30 mg/kg) prevented the stress-induced increase in faecal pellet output in the maternally separated rat, but not the Wistar Kyoto animals. On the other hand gabapentin (30 mg/kg) reduced the number of pain behaviours in response to colorectal distension in both models. These results show that whilst both models have similar responses to gabapentin in terms of visceral pain they differ in terms of their physiological response to stress. This indicates that the origin of anxiety and perhaps then visceral hypersensitivity differs in these models. Overall, these data suggest that gabapentin may be a useful treatment in disorders of co-morbid pain and an overactive stress system such as irritable bowel syndrome.
Collapse
Affiliation(s)
- Siobhain M O' Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|