51
|
Mohamad Hazir NS, Yahaya NHM, Zawawi MSF, Damanhuri HA, Mohamed N, Alias E. Changes in Metabolism and Mitochondrial Bioenergetics during Polyethylene-Induced Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23158331. [PMID: 35955464 PMCID: PMC9368566 DOI: 10.3390/ijms23158331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Changes in mitochondrial bioenergetics are believed to take place during osteoclastogenesis. This study aims to assess changes in mitochondrial bioenergetics and reactive oxygen species (ROS) levels during polyethylene (PE)-induced osteoclastogenesis in vitro. For this purpose, RAW264.7 cells were cultured for nine days and allowed to differentiate into osteoclasts in the presence of PE and RANKL. The total TRAP-positive cells, resorption activity, expression of osteoclast marker genes, ROS level, mitochondrial bioenergetics, glycolysis, and substrate utilization were measured. The effect of tocotrienols-rich fraction (TRF) treatment (50 ng/mL) on those parameters during PE-induced osteoclastogenesis was also studied. During PE-induced osteoclastogenesis, as depicted by an increase in TRAP-positive cells and gene expression of osteoclast-related markers, higher proton leak, higher extracellular acidification rate (ECAR), as well as higher levels of ROS and NADPH oxidases (NOXs) were observed in the differentiated cells. The oxidation level of some substrates in the differentiated group was higher than in other groups. TRF treatment significantly reduced the number of TRAP-positive osteoclasts, bone resorption activity, and ROS levels, as well as modulating the gene expression of antioxidant-related genes and mitochondrial function. In conclusion, changes in mitochondrial bioenergetics and substrate utilization were observed during PE-induced osteoclastogenesis, while TRF treatment modulated these changes.
Collapse
Affiliation(s)
- Nur Shukriyah Mohamad Hazir
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Clinical Laboratory Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedics, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Muhamad Syahrul Fitri Zawawi
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Correspondence: ; Tel.: +60-3-91459559
| |
Collapse
|
52
|
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19:184. [PMID: 35836200 PMCID: PMC9281066 DOI: 10.1186/s12974-022-02551-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.
Collapse
Affiliation(s)
- Ye Yingze
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Zhihong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yina
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Xiaoxing
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gu Lijuan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
53
|
Mir S, Ormsbee Golden BD, Griess BJ, Vengoji R, Tom E, Kosmacek EA, Oberley-Deegan RE, Talmon GA, Band V, Teoh-Fitzgerald ML. Upregulation of Nox4 induces a pro-survival Nrf2 response in cancer-associated fibroblasts that promotes tumorigenesis and metastasis, in part via Birc5 induction. Breast Cancer Res 2022; 24:48. [PMID: 35836253 PMCID: PMC9281082 DOI: 10.1186/s13058-022-01548-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND A pro-oxidant enzyme, NADPH oxidase 4 (Nox4) has been reported to be a critical downstream effector of TGFβ-induced myofibroblast transformation during fibrosis. While there are a small number of studies suggesting an oncogenic role of Nox4 derived from activated fibroblasts, direct evidence linking this pro-oxidant to the tumor-supporting CAF phenotype and the mechanisms involved are lacking, particularly in breast cancer. METHODS We targeted Nox4 in breast patient-derived CAFs via siRNA-mediated knockdown or administration of a pharmaceutical inhibitor (GKT137831). We also determine primary tumor growth and metastasis of implanted tumor cells using a stable Nox4-/- syngeneic mouse model. Autophagic flux of CAFs was assessed using a tandem fluorescent-tagged ptfl-LC3 plasmid via confocal microscopy analysis and determination of the expression level of autophagy markers (beclin-1 and LC3B). Nox4 overexpressing CAFs depend on the Nrf2 (nuclear factor-erythroid factor 2-related factor 2) pathway for survival. We then determined the dependency of Nox4-overexpressing CAFs on the Nrf2-mediated adaptive stress response pathway for survival. Furthermore, we investigated the involvement of Birc5 on CAF phenotype (viability and collagen contraction activity) as well as the expression level of CAF markers, FAP and αSMA. CONCLUSIONS We found that deletion of stroma Nox4 and pharmaceutically targeting its activity with GKT137831 significantly inhibited orthotopic tumor growth and metastasis of implanted E0771 and 4T1 murine mammary carcinoma cell lines in mice. More importantly, we found a significant upregulation of Nox4 expression in CAFs isolated from human breast tumors versus normal mammary fibroblasts (RMFs). Our in situ RNA hybridization analysis for Nox4 transcription on a human breast tumor microarray further support a role of this pro-oxidant in the stroma of breast carcinomas. In addition, we found that Nox4 promotes autophagy in CAFs. Moreover, we found that Nox4 promoted survival of CAFs via activation of Nrf2, a master regulator of oxidative stress response. We have further shown Birc5 is involved as a downstream modulator of Nrf2-mediated pro-survival phenotype. Together these studies indicate a role of redox signaling via the Nox4-Nrf2 pathway in tumorigenesis and metastasis of breast cancer cells by promoting autophagy and survival of CAFs.
Collapse
Affiliation(s)
- Shakeel Mir
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Briana D Ormsbee Golden
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Brandon J Griess
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Eric Tom
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melissa Lt Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
54
|
Liu Y, Cai Y, Li G, Wang W, Wong PK, An T. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. WATER RESEARCH 2022; 218:118407. [PMID: 35453030 DOI: 10.1016/j.watres.2022.118407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO2 system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
55
|
Lee SH, Won GW, Choi SH, Kim MY, Oh CH, Park JT, Park JI. Antiaging effect of inotodiol on oxidative stress in human dermal fibroblasts. Biomed Pharmacother 2022; 153:113311. [PMID: 35759867 DOI: 10.1016/j.biopha.2022.113311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative damage is one of the major causes of human skin aging. Inotodiol is a lanostane triterpenoid that demonstrates antiviral, anticancer, and anti-inflammatory activities. Previous studies have reported that inotodiol also has antiallergic effects. However, whether inotodiol inhibits oxidative stress-induced human skin aging is not known. Stimulation of human dermal fibroblast cells with hydrogen peroxide is related to skin aging. Inotodiol inhibited the expression of mitogen-activated protein kinase (MAPK) and NADPH Oxidase 5 (NOX5). Moreover, inotodiol effectively decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as nitric oxide (NO), reactive oxygen species (ROS), cyclooxygenase-2 (COX-2), and cytokines such as IL-1β, IL-6, and TNF-α. Based on our results, inotodiol protects human dermal fibroblast by preventing MAPK-NOX5 and NF-κB activation and attenuates the expression of aging genes. Inotodiol may therefore be considered a potential candidate for developing natural antiaging products, because it protects the human skin from oxidative stress-induced skin aging by inhibiting the MAPK-NOX5 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Gun-Woo Won
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Seung-Hyeon Choi
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Mi-Yoon Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Cheong-Hae Oh
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
56
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
57
|
Upamalika SWAM, Wannige CT, Vidanagamachchi SM, Gunasekara SC, Kolli RT, De Silva PMCS, Kulasiri D, Jayasundara N. A review of molecular mechanisms linked to potential renal injury agents in tropical rural farming communities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103850. [PMID: 35301132 DOI: 10.1016/j.etap.2022.103850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The chronic kidney disease of unknown etiology (CKDu) is a global health concern primarily impacting tropical farming communities. Although the precise etiology is debated, CKDu is associated with environmental exposures including heat stress and chemical contaminants such as fluoride, heavy metals, and herbicide glyphosate. However, a comprehensive synthesis is lacking on molecular networks underpinning renal damage induced by these factors. Addressing this gap, here we present key molecular events associated with heat and chemical exposures. We identified that caspase activation and lipid peroxidation are common endpoints of glyphosate exposure, while vasopressin and polyol pathways are associated with heat stress and dehydration. Heavy metal exposure is shown to induce lipid peroxidation and endoplasmic reticulum stress from ROS activated MAPK, NFĸB, and caspase. Collectively, we identify that environmental exposure induced increased cellular oxidative stress as a common mechanism mediating renal cell inflammation, apoptosis, and necrosis, likely contributing to CKDu initiation and progression.
Collapse
Affiliation(s)
| | | | | | | | - Ramya Tulasi Kolli
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| | | | - Don Kulasiri
- Department of Molecular Biosciences, and Centre for Advanced Computational Solutions (C-fACS), Lincoln University, New Zealand.
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| |
Collapse
|
58
|
Chatterjee S, Sil PC. ROS-Influenced Regulatory Cross-Talk With Wnt Signaling Pathway During Perinatal Development. Front Mol Biosci 2022; 9:889719. [PMID: 35517861 PMCID: PMC9061994 DOI: 10.3389/fmolb.2022.889719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Over a century ago, it was found that a rapid burst of oxygen is needed and produced by the sea urchin oocyte to activate fertilization and block polyspermy. Since then, scientific research has taken strides to establish that Reactive Oxygen Species (ROS), besides being toxic effectors of cellular damage and death, also act as molecular messengers in important developmental signaling cascades, thereby modulating them. Wnt signaling pathway is one such developmental pathway, which has significant effects on growth, proliferation, and differentiation of cells at the earliest embryonic stages of an organism, apart from being significant role-players in the instances of cellular transformation and cancer when this tightly-regulated system encounters aberrations. In this review, we discuss more about the Wnt and ROS signaling pathways, how they function, what roles they play overall in animals, and mostly about how these two major signaling systems cross paths and interplay in mediating major cellular signals and executing the predestined changes during the perinatal condition, in a systematic manner.
Collapse
Affiliation(s)
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
59
|
Kostić S, Vilotić A, Pirković A, Dekanski D, Borozan S, Nacka-Aleksić M, Vrzić-Petronijević S, Krivokuća MJ. Caffeic acid protects human trophoblast HTR-8/SVneo cells from H 2O 2-induced oxidative stress and genotoxicity. Food Chem Toxicol 2022; 163:112993. [PMID: 35398184 DOI: 10.1016/j.fct.2022.112993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Caffeic acid is highlighted as one of the major phenolic compounds present in foods with known antioxidant activity. This phenolic is among commonly consumed substances in everyday diet of pregnant women. However, there is not enough information on its effects during pregnancy, especially the most vulnerable early stage. Extravillous trophoblast cells are specific cells of the placenta that come in direct contact with maternal uterine tissue. Through this study we investigated the cytoprotective effects of caffeic acid on H2O2-induced oxidative damage in first trimester extravillous trophoblast cell line HTR-8/SVneo. Investigated concentrations (1-100 μM) of caffeic acid showed neither cytotoxic nor genotoxic effects on HTR-8/SVneo cells. The treatment with caffeic acid 100 μM significantly increased the percentage of cells in G2/M phase of the cell cycle, compared to non-treated cells. Pretreatment with caffeic acid (10 and 100 μM) attenuated oxidative DNA damage significantly, reduced cytotoxicity, protein and lipid peroxidation, and restored antioxidant capacity in trophoblast cells following H2O2 exposure. This beneficial outcome is probably mediated by the augmentation of GSH and effective ROS scavenging by caffeic acid. These promising results require further investigations to reveal the additional mechanisms/pathways and confirmation through studies in vivo.
Collapse
Affiliation(s)
- Sanja Kostić
- University of Belgrade, Faculty of Medicine, Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Andrea Pirković
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Dragana Dekanski
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Sunčica Borozan
- University of Belgrade, Faculty of Veterinary medicine, Department of Chemistry, Bulevar oslobođenja 18, 11000, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Svetlana Vrzić-Petronijević
- University of Belgrade, Faculty of Medicine, Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
60
|
Synergistic effect of long-term feed deprivation and temperature on the cellular physiology of meagre (Argyrosomus regius). J Therm Biol 2022; 105:103207. [DOI: 10.1016/j.jtherbio.2022.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
61
|
Ma X, Yan W, He N. Lidocaine attenuates hypoxia/reoxygenation‑induced inflammation, apoptosis and ferroptosis in lung epithelial cells by regulating the p38 MAPK pathway. Mol Med Rep 2022; 25:150. [PMID: 35244190 PMCID: PMC8941375 DOI: 10.3892/mmr.2022.12666] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022] Open
Abstract
Lung ischemia-reperfusion (I/R) injury poses a serious threat to human health, worldwide. The current study aimed to determine the role of lidocaine in A549 cells, in addition to the involvement of the p38 MAPK pathway. Oxygen deprivation/reoxygenation-induced A549 cells were utilized to simulate I/R injury in vitro. Cell viability and apoptosis were detected using MTT and TUNEL assays, respectively. The levels of IL-6, IL-8, TNF-α, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, iron and reactive oxygen species (ROS) were measured using corresponding commercial kits. The corresponding protein expression levels were also measured using western blotting. Moreover, a monolayer cell paracellular permeability assay was performed to determine the permeability of A549 cells. The results demonstrated that, whilst lidocaine had no influence on untreated A549 cells, it significantly increased the viability of hypoxia/reoxygenation (H/R)-induced A549 cells. A549 cell apoptosis and the release of inflammatory cytokines in the H/R group were decreased after the addition of lidocaine. When compared with the H/R group, increased MDA level and decreased SOD level were observed in H/R-induced A549 cells following lidocaine treatment. In addition, the permeability of H/R-induced A549 cells was markedly decreased following lidocaine treatment. Compared with the H/R group, the expression levels of tight junction and ferroptosis-related proteins were significantly upregulated by lidocaine, whereas the expression of transferrin was downregulated. However, p79350, an agonist of p38, reversed the effects of lidocaine on H/R-induced A549 cells. In conclusion, lidocaine exerted a protective role in HR-induced lung epithelial cell injury, which may serve as a potential agent for the treatment of patients with lung I/R injury.
Collapse
Affiliation(s)
- Xiaojun Ma
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihua Yan
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na He
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| |
Collapse
|
62
|
Topcu Y, Nambeesan SU, van der Knaap E. Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. MOLECULAR HORTICULTURE 2022; 2:1. [PMID: 37789437 PMCID: PMC10515260 DOI: 10.1186/s43897-021-00022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 10/05/2023]
Abstract
Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.
Collapse
Affiliation(s)
- Yasin Topcu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | | | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
63
|
Rao Y, Gai X, Xiong J, Le Y, Sun Y. Transient Receptor Potential Cation Channel Subfamily V Member 4 Mediates Pyroptosis in Chronic Obstructive Pulmonary Disease. Front Physiol 2022; 12:783891. [PMID: 35002766 PMCID: PMC8740047 DOI: 10.3389/fphys.2021.783891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
TRPV4, a calcium permeable cation selective channel, was found to be involved in chronic obstructive pulmonary disease (COPD) through releasing ATP and IL-1β. Pyroptosis, a newly discovered pro-inflammatory cell death, was induced by cigarette smoke (CS) in airway epithelial cells (AECs). More recent studies indicated that blocking Ca2+ influx effectively inhibited pyroptosis. Therefore, we asked whether TRPV4 mediated CS-induced pyroptosis of AECs and hence participated in the pathogenesis of COPD. We found that pyroptosis and TRPV4 were upregulated in AECs from patients with COPD and long-term CS-exposed mice. Moreover, pharmacological inhibition or knockdown of TRPV4 function alleviated CS extract (CSE)-induced pyroptosis by inhibiting NACHT, LRP, PYD domains-containing protein 3 (NLRP3) inflammasome/activated caspase-1/gasdermin D pathway, decreasing the number of PI positive cells and lactate dehydrogenase (LDH) release, decreasing the expression of pro- inflammatory interleukin gene (IL)-1β, IL-8, and IL-18 expression, as well as increasing anti-inflammatory gene expression [NAD(P)H quinone dehydrogenase 1 (NQO1), superoxide dismutase 2 (mitochondrial) (MNSOD), and catalase, (CAT)]. Moreover, pharmacological inhibition or knockdown of TRPV4 function significantly relieved CSE-induced mitochondrial damage including decreased mitochondrial membrane potential, mitochondrial fusion protein (OPA1, MFN2) expression, and increased mitochondrial fission protein (DRP1, MFF) expression. Taken together, these findings indicate that TRPV4 mediates AEC pyroptosis via NLRP3/caspase-1/GSDMD pathway in COPD.
Collapse
Affiliation(s)
- Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
64
|
Eid BG, Alhakamy NA, Fahmy UA, Ahmed OAA, Md S, Abdel-Naim AB, Caruso G, Caraci F. Melittin and diclofenac synergistically promote wound healing in a pathway involving TGF-β1. Pharmacol Res 2022; 175:105993. [PMID: 34801680 DOI: 10.1016/j.phrs.2021.105993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
A dysregulation of the wound healing process can lead to the development of various intractable ulcers or excessive scar formation. Therefore it is essential to identify novel pharmacological strategies to promote wound healing and restore the mechanical integrity of injured tissue. The goal of the present study was to formulate a nano-complex containing melittin (MEL) and diclofenac (DCL) with the aim to evaluate their synergism and preclinical efficacy in an in vivo model of acute wound. After its preparation and characterization, the therapeutic potential of the combined nano-complexes was evaluated. MEL-DCL nano-complexes exhibited better regenerated epithelium, keratinization, epidermal proliferation, and granulation tissue formation, which in turn showed better wound healing activity compared to MEL, DCL, or positive control. The nano-complexes also showed significantly enhanced antioxidant activity. Treatment of wounded skin with MEL-DCL nano-complexes showed significant reduction of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) pro-inflammatory markers that was paralleled by a substantial increase in mRNA expression levels of collagen, type I, alpha 1 (Col1A1) and collagen, type IV, alpha 1 (Col4A1), and hydroxyproline content as compared to individual drugs. Additionally, MEL-DCL nano-complexes were able to significantly increase hypoxia-inducible factor 1-alpha (HIF-1α) and transforming growth factor beta 1 (TGF-β1) proteins expression compared to single drugs or negative control group. SB431542, a selective inhibitor of type-1 TGF-β receptor, significantly prevented in our in vitro assay the wound healing process induced by the MEL-DCL nano-complexes, suggesting a key role of TGF-β1 in the wound closure. In conclusion, the nano-complex of MEL-DCL represents a novel pharmacological tool that can be topically applied to improve wound healing.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Scientific chair "Mohamed Saeed Tamer Chair for Pharmaceutical industries", King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Scientific chair "Mohamed Saeed Tamer Chair for Pharmaceutical industries", King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| |
Collapse
|
65
|
Chung J, Huda MN, Shin Y, Han S, Akter S, Kang I, Ha J, Choe W, Choi TG, Kim SS. Correlation between Oxidative Stress and Transforming Growth Factor-Beta in Cancers. Int J Mol Sci 2021; 22:ijms222413181. [PMID: 34947978 PMCID: PMC8707703 DOI: 10.3390/ijms222413181] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022] Open
Abstract
The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-β) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-β can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-β signaling by enhancing its expression and activation. Thus, TGF-β signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-β is critical for tumorigenesis and cancer progression. Thus, both TGF-β and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-β and oxidative stress in cancer, exposing new potential approaches in cancer biology.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
| | - Md Nazmul Huda
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, UAMS Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences UAMS, Little Rock, AR 72205, USA
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Joohun Ha
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Wonchae Choe
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| |
Collapse
|
66
|
Qiu X, Wu Y, Zhang D, Zhang H, Yu A, Li Z. Roles of Oxidative Stress and Raftlin in Wound Healing Under Negative-Pressure Wound Therapy. Clin Cosmet Investig Dermatol 2021; 14:1745-1753. [PMID: 34848985 PMCID: PMC8612843 DOI: 10.2147/ccid.s334248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022]
Abstract
Background Negative-pressure wound therapy (NPWT) is an effective way to promote wound healing. However, its mechanisms have not been investigated thoroughly. Growing evidence suggests that oxidative stress and Raftlin levels play important roles in wound healing. However, whether NPWT promotes wound healing through this mechanism remains unclear. Purpose Our study focuses on the different levels of oxidative stress and antioxidant response between wounds treated by NPWT and routine dressing change. The objective of this study was to measure the differences in Raftlin levels between the two groups, which is a new biomarker related to wound healing. Methods We divided 48 male Sprague-Dawley rats with identical full-thickness skin defects into two groups. At specific times (0, 3, 5, 7, 9, 11, and 13 days after surgery), wound tissue samples were obtained for immunohistochemistry and biochemical analysis. The expression of Raftlin and levels of oxidative stress, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were measured by biochemical analysis. Wound-healing times were also compared. Results In the NPWT group, MDA levels were significantly decreased on days 3, 5, and 7. Furthermore, the expressions of SOD and CAT were significantly reduced on days 3 and 5. Our data also revealed that Raftlin was significantly upregulated across the whole period of wound healing. Moreover, wound healing in the NPWT group was significantly more rapid (16 days on average) than in the control group (24 days on average). On day 13 post surgery, the wound-healing percentage in the NPWT group was 91%, while that in the control group was 48%. Conclusion NPWT may promote wound healing by upregulating Raftlin and inhibiting oxidative stress levels.
Collapse
Affiliation(s)
- Xingan Qiu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Yifan Wu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Dong Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Zonghuan Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| |
Collapse
|
67
|
Chung KS, Yoo CB, Lee JH, Lee HH, Park SE, Han HS, Lee SY, Kwon BM, Choi JH, Lee KT. Regulation of ROS-Dependent JNK Pathway by 2'-Hydroxycinnamaldehyde Inducing Apoptosis in Human Promyelocytic HL-60 Leukemia Cells. Pharmaceutics 2021; 13:pharmaceutics13111794. [PMID: 34834209 PMCID: PMC8618870 DOI: 10.3390/pharmaceutics13111794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Chae-Bin Yoo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Byoung-Mok Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
68
|
Zawani M, Fauzi MB. Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies. Polymers (Basel) 2021; 13:3656. [PMID: 34771213 PMCID: PMC8587897 DOI: 10.3390/polym13213656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Immediate treatment for cutaneous injuries is a realistic approach to improve the healing rate and minimise the risk of complications. Multifunctional biomaterials have been proven to be a potential strategy for chronic skin wound management, especially for future advancements in precision medicine. Hence, antioxidant incorporated biomaterials play a vital role in the new era of tissue engineering. A bibliographic investigation was conducted on articles focusing on in vitro, in vivo, and clinical studies that evaluate the effect and the antioxidants mechanism exerted by epigallocatechin gallate (EGCG) in wound healing and its ability to act as reactive oxygen species (ROS) scavengers. Over the years, EGCG has been proven to be a potent antioxidant efficient for wound healing purposes. Therefore, several novel studies were included in this article to shed light on EGCG incorporated biomaterials over five years of research. However, the related papers under this review's scope are limited in number. All the studies showed that biomaterials with scavenging ability have a great potential to combat chronic wounds and assist the wound healing process against oxidative damage. However, the promising concept has faced challenges extending beyond the trial phase, whereby the implementation of these biomaterials, when exposed to an oxidative stress environment, may disrupt cell proliferation and tissue regeneration after transplantation. Therefore, thorough research should be executed to ensure a successful therapy.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
69
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
70
|
Zhang S, Li Y, Qiu X, Jiao A, Luo W, Lin X, Zhang X, Zhang Z, Hong J, Cai P, Zhang Y, Wu Y, Gao J, Liu C, Li Y. Incorporating redox-sensitive nanogels into bioabsorbable nanofibrous membrane to acquire ROS-balance capacity for skin regeneration. Bioact Mater 2021; 6:3461-3472. [PMID: 33817421 PMCID: PMC7988352 DOI: 10.1016/j.bioactmat.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Facing the high incidence of skin diseases, it is urgent to develop functional materials with high bioactivity for wound healing, where reactive oxygen species (ROS) play an important role in the wound healing process mainly via adjustment of immune response and neovasculation. In this study, we developed a kind of bioabsorbable materials with ROS-mediation capacity for skin disease therapy. Firstly, redox-sensitive poly(N-isopropylacrylamide-acrylic acid) (PNA) nanogels were synthesized by radical emulsion polymerization method using a disulfide molecule as crosslinker. The resulting nanogels were then incorporated into the nanofibrous membrane of poly(l-lactic acid) (PLLA) via airbrushing approach to offer bioabsorbable membrane with redox-sensitive ROS-balance capacity. In vitro biological evaluation indicated that the PNA-contained bioabsorbable membrane improved cell adhesion and proliferation compared to the native PLLA membrane. In vivo study using mouse wound skin model demonstrated that PNA-doped nanofibrous membranes could promote the wound healing process, where the disulfide bonds in them were able to adjust the ROS level in the wound skin for mediation of redox potential to achieve higher wound healing efficacy.
Collapse
Affiliation(s)
- Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yamin Li
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaofeng Qiu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Anqi Jiao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Luo
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiajie Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zeren Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiachan Hong
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peihao Cai
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Changsheng Liu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
71
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
72
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
73
|
Zoccarato A, Nabeebaccus AA, Oexner RR, Santos CXC, Shah AM. The nexus between redox state and intermediary metabolism. FEBS J 2021; 289:5440-5462. [PMID: 34496138 DOI: 10.1111/febs.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Zoccarato
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Adam A Nabeebaccus
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Rafael R Oexner
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| |
Collapse
|
74
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
75
|
Ko YH, Jeong M, Jang DS, Choi JH. Gomisin L1, a Lignan Isolated from Schisandra Berries, Induces Apoptosis by Regulating NADPH Oxidase in Human Ovarian Cancer Cells. Life (Basel) 2021; 11:life11080858. [PMID: 34440602 PMCID: PMC8398161 DOI: 10.3390/life11080858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
The fruits of Schisandra chinensis (Schisandra berries) are used as health food supplements and popular food ingredients in East Asia. Lignans, major and characteristic polyphenol compounds of Schisandra berries, possess various biological activities, including hepatoprotective and anticancer effects. However, the biological activities of gomisin L1, a lignan isolated from Schisandra berries, are less to be investigated. In this study, the antitumor activity of gomisin L1 and its underlying molecular mechanism in human ovarian cancer cells were investigated. Gomisin L1 exhibited potent cytotoxic activity against A2780 and SKOV3 ovarian cancer cells. Flow cytometry analysis revealed that the growth inhibitory effects of gomisin L1 were mediated by the induction of apoptosis. Furthermore, gomisin L1 induced an increase in intracellular reactive oxygen species (ROS) levels, and the antioxidant N-acetyl cysteine significantly negated gomisin L1-induced cell death. Moreover, inhibition of NADPH oxidase (NOX) using an inhibitor and siRNA attenuated gomisin L1-induced death of, and ROS production in, human ovarian cancer cells. Taken together, these data indicate that the lignan gomisin L1 from Schisandra berries induces apoptotic cell death by regulating intracellular ROS production via NOX.
Collapse
Affiliation(s)
- Young Hyun Ko
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
| | - Miran Jeong
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
| | - Jung-Hye Choi
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
- Correspondence:
| |
Collapse
|
76
|
Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685204. [PMID: 34336113 PMCID: PMC8315852 DOI: 10.1155/2021/6685204] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia. Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress, including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.
Collapse
|
77
|
Nutrition Strategy and Life Style in Polycystic Ovary Syndrome-Narrative Review. Nutrients 2021; 13:nu13072452. [PMID: 34371961 PMCID: PMC8308732 DOI: 10.3390/nu13072452] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Here we present an extensive narrative review of the broadly understood modifications to the lifestyles of women with polycystic ovary syndrome (PCOS). The PubMed database was analyzed, combining PCOS entries with causes, diseases, diet supplementation, lifestyle, physical activity, and use of herbs. The metabolic pathways leading to disturbances in lipid, carbohydrate, and hormonal metabolism in targeted patients are described. The article refers to sleep disorders, changes in mental health parameters, and causes of oxidative stress and inflammation. These conditions consistently lead to the occurrence of severe diseases in patients suffering from diabetes, the fatty degeneration of internal organs, infertility, atherosclerosis, cardiovascular diseases, dysbiosis, and cancer. The modification of lifestyles, diet patterns and proper selection of nutrients, pharmacological and natural supplementation in the form of herbs, and physical activity have been proposed. The progress and consequences of PCOS are largely modifiable and depend on the patient’s approach, although we have to take into account also the genetic determinants.
Collapse
|
78
|
Zhao Z, Ozcan EE, VanArsdale E, Li J, Kim E, Sandler AD, Kelly DL, Bentley WE, Payne GF. Mediated Electrochemical Probing: A Systems-Level Tool for Redox Biology. ACS Chem Biol 2021; 16:1099-1110. [PMID: 34156828 DOI: 10.1021/acschembio.1c00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biology uses well-known redox mechanisms for energy harvesting (e.g., respiration), biosynthesis, and immune defense (e.g., oxidative burst), and now we know biology uses redox for systems-level communication. Currently, we have limited abilities to "eavesdrop" on this redox modality, which can be contrasted with our abilities to observe and actuate biology through its more familiar ionic electrical modality. In this Perspective, we argue that the coupling of electrochemistry with diffusible mediators (electron shuttles) provides a unique opportunity to access the redox communication modality through its electrical features. We highlight previous studies showing that mediated electrochemical probing (MEP) can "communicate" with biology to acquire information and even to actuate specific biological responses (i.e., targeted gene expression). We suggest that MEP may reveal an extent of redox-based communication that has remained underappreciated in nature and that MEP could provide new technological approaches for redox biology, bioelectronics, clinical care, and environmental sciences.
Collapse
Affiliation(s)
- Zhiling Zhao
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Evrim E. Ozcan
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eric VanArsdale
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony D. Sandler
- Department of General and Thoracic Surgery, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, United States
| | - William E. Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
79
|
Qasemi R, Ghavamzadeh S, Faghfouri AH, Valizadeh N, Mohammadi A, Sayyadi H. The effect of vitamin D supplementation on flow-mediated dilatation, oxidized LDL and intracellular adhesion molecule 1 on type 2 diabetic patients with hypertension: A randomized, placebo-controlled, double-blind trial. Diabetes Metab Syndr 2021; 15:102200. [PMID: 34265491 DOI: 10.1016/j.dsx.2021.102200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 12/31/2022]
Abstract
AIMS Current study aimed to evaluate the effect of vitamin D supplementation on flow-mediated dilatation (FMD), oxidized LDL (oxLDL) and intracellular adhesion molecule 1 (ICAM1) in type 2 diabetic patients with hypertension. METHODS In a double-blinded, placebo-controlled trial, 44 patients were randomly divided into vitamin D group (2000 IU/d, n = 23) and placebo group (control, n = 21) for 12 weeks. Vascular function with FMD, Serum 25-OH vitamin D, oxLDL and ICAM1 were assessed at the baseline and after the intervention. This clinical trial was registered at Iranian Registry of Clinical Trials (IRCT20191223045861N1). RESULTS In intervention group serum level of vitamin D increased from 32.42 ± 10.56 to 40.45 ± 12.94 (p < 0.001). In the vitamin D group, oxLDL and ICAM1 significantly decreased and FMD increased significantly in both groups (p < 0.001). The level of oxLDL (p = 0.017) and ICAM1 (p < 0.001) were significantly lower in the vitamin D group than the placebo group and FMD (p < 0.001) was significantly higher in the vitamin D group. CONCLUSIONS Vitamin D supplementation of 2000 IU/d for 12 weeks can improve endothelial function and decrease ICAM1 and oxLDL in type 2 diabetic patients with hypertension.
Collapse
Affiliation(s)
- Reyhaneh Qasemi
- Department of Nutrition, Medicine Faculty, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeid Ghavamzadeh
- Department of Nutrition, Medicine Faculty, Urmia University of Medical Sciences, Urmia, Iran; Food and Beverage Safety Research Center, Medicine Faculty, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Neda Valizadeh
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshin Mohammadi
- Radiology Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojjat Sayyadi
- Department of Biostatistics, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
80
|
Sanchez-Aranguren L, Nadeem S. Bioenergetics adaptations and redox homeostasis in pregnancy and related disorders. Mol Cell Biochem 2021; 476:4003-4018. [PMID: 34196872 PMCID: PMC8473347 DOI: 10.1007/s11010-021-04215-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Pregnancy is a challenging physiological process that involves maternal adaptations to the increasing energetics demands imposed by the growing conceptus. Failure to adapt to these requirements may result in serious health complications for the mother and the baby. The mitochondria are biosynthetic and energy-producing organelles supporting the augmented energetic demands of pregnancy. Evidence suggests that placental mitochondria display a dynamic phenotype through gestation. At early stages of pregnancy placental mitochondria are mainly responsible for the generation of metabolic intermediates and reactive oxygen species (ROS), while at later stages of gestation, the placental mitochondria exhibit high rates of oxygen consumption. This review describes the metabolic fingerprint of the placental mitochondria at different stages of pregnancy and summarises key signs of mitochondrial dysfunction in pathological pregnancy conditions, including preeclampsia, gestational diabetes and intrauterine growth restriction (IUGR). So far, the effects of placental-driven metabolic changes governing the metabolic adaptations occurring in different maternal tissues in both, healthy and pathological pregnancies, remain to be uncovered. Understanding the function and molecular aspects of the adaptations occurring in placental and maternal tissue's mitochondria will unveil potential targets for further therapeutic exploration that could address pregnancy-related disorders. Targeting mitochondrial metabolism is an emerging approach for regulating mitochondrial bioenergetics. This review will also describe the potential therapeutic use of compounds with a recognised effect on mitochondria, for the management of preeclampsia.
Collapse
Affiliation(s)
| | - Sarah Nadeem
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
| |
Collapse
|
81
|
Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death. Cancers (Basel) 2021; 13:cancers13102411. [PMID: 34067602 PMCID: PMC8156203 DOI: 10.3390/cancers13102411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.
Collapse
|
82
|
Hakami NY, Dusting GJ, Chan EC, Shah MH, Peshavariya HM. Wound Healing After Alkali Burn Injury of the Cornea Involves Nox4-Type NADPH Oxidase. Invest Ophthalmol Vis Sci 2021; 61:20. [PMID: 33079994 PMCID: PMC7585390 DOI: 10.1167/iovs.61.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Corneal injury that occurs after burning with alkali initiates wound-healing processes, including inflammation, neovascularization, and fibrosis. Excessive reactions to injury can reduce corneal transparency and thereby compromise vision. The NADPH oxidase (Nox) enzyme complex is known to be involved in cell signaling for wound-healing angiogenesis, but its role in corneal neovascularization has been little studied. Methods The center corneas of wild-type and Nox4 knockout (KO) mice were injured with 3 µL 1 M NaOH, while the contralateral corneas remained untouched. On day 7, mRNA expression levels of NADPH oxidase isoforms, the proangiogenic factors VEGF-A and TGFβ1, and proinflammatory genes ICAM-1 and VCAM-1 were determined. Corneal neovascularization and fibrosis were visualized using PECAM-1 antibody and picrosirius red staining, respectively, on the same day. Results Expressions of both Nox2 and Nox4 gene isoforms as well as the above genes were markedly increased in the injured corneas at 7 days. Injured corneas showed neovascularization and fibrosis as well as an increase in clinical opacity score. All responses stimulated by alkali burn were abrogated in Nox4 KO mice. Conclusions Nox4 could be a new target to treat pathologic corneal wound-healing responses and such targeting might prevent blindness caused by burn injuries.
Collapse
Affiliation(s)
- Nora Y Hakami
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Gregory J Dusting
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| |
Collapse
|
83
|
Xu Z, Liang Y, Delaney MK, Zhang Y, Kim K, Li J, Bai Y, Cho J, Ushio-Fukai M, Cheng N, Du X. Shear and Integrin Outside-In Signaling Activate NADPH-Oxidase 2 to Promote Platelet Activation. Arterioscler Thromb Vasc Biol 2021; 41:1638-1653. [PMID: 33691478 PMCID: PMC8057529 DOI: 10.1161/atvbaha.120.315773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Ying Liang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - M. Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Dupage Medical Technology, Inc (M.K.D.)
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Jing Li
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Department of Medicine (Cardiology), Vascular Biology Center, Medical College of Georgia at Augusta University (M.U.-F.)
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| |
Collapse
|
84
|
Cheung IMY, Mcghee CNJ, Sherwin T. Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matrix elements, antioxidants and oxidases in keratoconic stromal cells. Clin Exp Optom 2021; 97:349-55. [DOI: 10.1111/cxo.12138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Affiliation(s)
- Isabella M Y Cheung
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| | - Charles N J Mcghee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| | - Trevor Sherwin
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
85
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
86
|
A Randomized, Double-Blind, Placebo-Controlled Trial to Determine the Effectiveness of a Polyphenolic Extract ( Hibiscus sabdariffa and Lippia citriodora) for Reducing Blood Pressure in Prehypertensive and Type 1 Hypertensive Subjects. Molecules 2021; 26:molecules26061783. [PMID: 33810049 PMCID: PMC8005037 DOI: 10.3390/molecules26061783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Hypertension is an important factor of cardiovascular diseases and contributes to their negative consequences including mortality. The World Health Organization estimated that 54% of strokes and 47% of cases of ischemic heart illness are related to high blood pressure. Recently, Hibiscus sabdariffa (HS) and Lippia citriodora (LC) have attracted scientific interest, and they are recognized for their high content of polyphenols as these may prevent several disease factors, such as hypertension. The aim of the present study is to determine if supplementation with an HS-LC blend (MetabolAid®) may be effective for the treatment of type 1 hypertensive sedentary populations. A total of 80 type 1 hypertensive subjects of both sexes were included in the study and were treated with placebo or the HS-LC extract, and both groups were treated over 84 days. The blood pressure (diastolic, systolic, and pulse pressure) was measured throughout the day, for each of the days of the study duration and determined using Ambulatory Blood Pressure Monitoring (ABPM). Physical activity was determined throughout the study to ensure similar conditions related to exercise. The results showed the capacity for reducing the blood pressure parameters in the case of the HS-LC extract. The daily consumption of the HS-LC extract but not the placebo over 84 days was able to reduce the daytime parameters related to blood pressure. The most remarkable results were observed in the measurements performed during the daytime, especially in the systolic blood pressure showing statistically significant variation.
Collapse
|
87
|
NOX4-Derived ROS Promotes Collagen I Deposition in Bronchial Smooth Muscle Cells by Activating Noncanonical p38MAPK/Akt-Mediated TGF- β Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6668971. [PMID: 33824697 PMCID: PMC8007363 DOI: 10.1155/2021/6668971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
Background Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD). NADPH oxidase 4- (NOX4-) mediated reactive oxygen species (ROS) production plays a crucial role in cell differentiation and extracellular matrix (ECM) synthesis in ASM remodeling. However, the precise mechanisms underpinning its pathogenic roles remain elusive. Methods The expression of NOX4 and TGF-β1 in the airway of the lung was measured in COPD patients and the control group. Cigarette smoke- (CS-) induced emphysema mice were generated, and the alteration of α-SMA, NOX4, TGF-β1, and collagen I was accessed. The changes of the expression of ECM markers, NOX4, components of TGF-β/Smad, and MAPK/Akt signaling in human bronchial smooth muscle cells (HBSMCs) were ascertained for delineating mechanisms of NOX4-mediated ROS production on cell differentiation and remodeling in human ASM cells. Results An increased abundance of NOX4 and TGF-β1 proteins in the epithelial cells and ASM of lung was observed in COPD patients compared with the control group. Additionally, an increased abundance expression of NOX4 and α-SMA was observed in the lungs of the CS-induced emphysema mouse model. TGF-β1 displayed abilities to increase the oxidative burden and collagen I production, along with enhanced phosphorylation of ERK, p38MAPK, and p-Akt473 in HBSMCs. These effects of TGF-β1 could be inhibited by the ROS scavenger N-acetylcysteine (NAC), siRNA-mediated knockdown of Smad3 and NOX4, and pharmacological inhibitors SB203580 (p38MAPK inhibitor) and LY294002 (Akt inhibitor). Conclusions NOX4-mediated ROS production alters TGF-β1-induced cell differentiation and collagen I protein synthesis in HBSMCs in part through the p38MAPK/Akt signaling pathway in a Smad-dependent manner.
Collapse
|
88
|
Zolkipli-Cunningham Z, Naviaux JC, Nakayama T, Hirsch CM, Monk JM, Li K, Wang L, Le TP, Meinardi S, Blake DR, Naviaux RK. Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS One 2021; 16:e0248771. [PMID: 33735311 PMCID: PMC7971557 DOI: 10.1371/journal.pone.0248771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls. Basal metabolic rates and locomotor activity were measured in CLAMS cages. Plasma metabolomics measured 401 metabolites. Breathomics measured 98 volatile organic compounds. Intraperitoneal eATP dropped basal metabolic rate measured by whole body oxygen consumption by 74% ± 6% (mean ± SEM) and rectal temperature by 6.2˚ ± 0.3˚C in 30 minutes. Over 200 metabolites from 37 different biochemical pathways where changed. Breathomics showed an increase in exhaled carbon monoxide, dimethylsulfide, and isoprene. Metabolomics revealed an acute increase in lactate, citrate, purines, urea, dopamine, eicosanoids, microbiome metabolites, oxidized glutathione, thiamine, niacinamide, and pyridoxic acid, and decreased folate-methylation-1-carbon intermediates, amino acids, short and medium chain acyl-carnitines, phospholipids, ceramides, sphingomyelins, cholesterol, bile acids, and vitamin D similar to some children with ASD. MIA animals were hypersensitive to postnatal exposure to eATP or poly(IC), which produced a rebound increase in body temperature that lasted several weeks before returning to baseline. Acute hyperpurinergia produced metabolic and behavioral changes in mice. The behaviors and metabolic changes produced by ATP injection were associated with mitochondrial functional changes that were profound but reversible.
Collapse
Affiliation(s)
- Zarazuela Zolkipli-Cunningham
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Tomohiro Nakayama
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Charlotte M. Hirsch
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Jonathan M. Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
89
|
Renal Tubular Epithelial TRPA1 Acts as An Oxidative Stress Sensor to Mediate Ischemia-Reperfusion-Induced Kidney Injury through MAPKs/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms22052309. [PMID: 33669091 PMCID: PMC7956664 DOI: 10.3390/ijms22052309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and inflammation play important roles in the pathophysiology of acute kidney injury (AKI). Transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable ion channel that is sensitive to reactive oxygen species (ROS). The role of TRPA1 in AKI remains unclear. In this study, we used human and animal studies to assess the role of renal TRPA1 in AKI and to explore the regulatory mechanism of renal TRPA1 in inflammation via in vitro experiments. TRPA1 expression increased in the renal tubular epithelia of patients with AKI. The severity of tubular injury correlated well with tubular TRPA1 or 8-hydroxy-2'-deoxyguanosine expression. In an animal model, renal ischemia-reperfusion injury (IR) increased tubular TRPA1 expression in wild-type (WT) mice. Trpa1-/- mice displayed less IR-induced tubular injury, oxidative stress, inflammation, and dysfunction in kidneys compared with WT mice. In the in vitro model, TRPA1 expression increased in renal tubular cells under hypoxia-reoxygenation injury (H/R) conditions. We demonstrated that H/R evoked a ROS-dependent TRPA1 activation, which elevated intracellular Ca2+ level, increased NADPH oxidase activity, activated MAPK/NF-κB signaling, and increased IL-8. Renal tubular TRPA1 may serve as an oxidative stress sensor and a crucial regulator in the activation of signaling pathways and promote the subsequent transcriptional regulation of IL-8. These actions might be evident in mice with IR or patients with AKI.
Collapse
|
90
|
da Silva BTA, Peloi KE, Ximenes VF, Nakamura CV, de Oliveira Silva Lautenschlager S. 2-acetylphenothiazine protects L929 fibroblasts against UVB-induced oxidative damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112130. [PMID: 33561688 DOI: 10.1016/j.jphotobiol.2021.112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Ultraviolet B (UVB) light corresponds to 5% of ultraviolet radiation. It is more genotoxic and mutagenic than UVA and causes direct and indirect cellular damage through the generation of reactive oxygen species (ROS). Even after radiation, ROS generation may continue through activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme. Long-term exposure can progress to premature skin aging and photocarcinogenesis. To prevent damage that is caused by UVB radiation, several studies have focused on the topical administration of compounds that have antioxidant properties. 2-Acetylphenothiazine (ML171) is a potent and selective inhibitor of NOX1. The present study investigated the antioxidant potential and photoprotective ability of ML171 in UVB-irradiated L929 fibroblasts. ML171 had considerable antioxidant activity in both the DPPH• and xanthine/luminol/xanthine oxidase assays. ML171 did not induce cytotoxicity in L929 fibroblasts and increased the viability of UVB-irradiated cells. ML171 also inhibited ROS production, the enzymatic activity of NOX, depolarization of the mitochondrial membrane, and DNA damage. Additionally, ML171 protected cell membrane integrity and induced fibroblast migration. These results suggest that the incorporation of ML171 in topical administration systems may be a promising strategy to mitigate UVB-induced oxidative damage in L929 fibroblasts.
Collapse
Affiliation(s)
| | - Karen Elaine Peloi
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil.
| |
Collapse
|
91
|
Brucein D modulates MAPK signaling cascade to exert multi-faceted anti-neoplastic actions against breast cancer cells. Biochimie 2021; 182:140-151. [PMID: 33484785 DOI: 10.1016/j.biochi.2021.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is a prominent type of malignancy among women with a high rate of mortality. A number of previous studies have demonstrated the anticancer potential of brucein D (BD), a quassinoid extracted from Brucea javanica, against the cancers of the pancreas, bone, and liver. We investigated the impact of BD on apoptotic as well on mitogen-activated protein kinase (MAPK) signaling cascades in breast cancer cells. The effect of BD on p38 MAPK and JNK signaling pathways and its downstream functions was deciphered in both MDA-MB-231 and MCF-7 cell lines. We noted that BD decreased the viability of breast cancer cells without affecting the growth of healthy mammary epithelial cells (MCF-10A). Flow cytometric analysis revealed that BD can increase sub-G1 cells and enhanced annexin-V-PI stained cells. The apoptogenic impact of BD was further substantiated by cleavage of procaspase-3/8 and downregulation of antiapoptotic proteins (Bcl-xL, XIAP, and survivin). Furthermore, BD also downmodulated the migratory ability, and chemokine triggered invasion of breast cancer cells. Interestingly, the pharmacological inhibition of p38 MAPK and JNK kinases abrogated the observed anticancer actions of BD. Overall, the data indicated that BD can induce substantial apoptosis and interfere with cellular invasion by modulating MAPK signaling pathway in breast cancer cells.
Collapse
|
92
|
Tanriverdi B, Sarac O, Cubukcu HC, Caglayan M, Durak ZE, Durak I, Cagil N. Xanthine oxidase enzyme activity in keratoconic corneal epithelium. Int Ophthalmol 2021; 41:1063-1069. [PMID: 33389422 DOI: 10.1007/s10792-020-01665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE To assess the activity of xanthine oxidase (XO) enzyme in keratoconic corneal epithelium and to evaluate its relationship with the keratoconus (KC) severity. METHODS This prospective and randomized study included 66 eyes of 54 KC patients who received corneal collagen cross-linking treatment and 43 eyes of 32 patients who underwent photorefractive keratectomy due to their refractive error. During surgical procedures, the corneal epithelium was mechanically scraped and gathered to analyze the XO enzyme activity spectrophotometrically. The KC group was subdivided into three groups (stages 1, 2, and 3) according to the Amsler-Krumeich classification. The results were compared between the KC and the control group and in between KC subgroups. RESULTS No significant differences in age and gender were found between the KC and control groups (p = 0.064 and p = 0.296, respectively). The mean XO activity levels of the KC and control groups were 173.57 ± 87.61 and 223.70 ± 99.52 mIU/mg, respectively (p < 0.001). In KC group, 33 eyes were at stage 1, 19 were at stage 2, and 14 were at stage 3. No significant difference was observed between KC subgroups regarding XO activity levels (p = 0.681). CONCLUSION In this study, our findings revealed that ultraviolet-related pro-oxidant XO enzyme may have a role in the etiopathogenesis of KC. Further studies are needed to support our result. CLINICAL TRIALS REGISTRATION When we started this study in 2018, we did not have a "Clinical Trials Registration." However, we have ethics committee approval (date: 21. 02. 2018/No: 22).
Collapse
Affiliation(s)
| | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| | - Hikmet Can Cubukcu
- Department of Medical Biochemistry, Maresal Cakmak State Hospital, Erzurum, Turkey
| | - Mehtap Caglayan
- Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | | | - Ilker Durak
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Morphology Building, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
93
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
94
|
Abstract
Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
95
|
Liang Y, Liu H, Fang Y, Lin P, Lu Z, Zhang P, Jiao X, Teng J, Ding X, Dai Y. Salvianolate ameliorates oxidative stress and podocyte injury through modulation of NOX4 activity in db/db mice. J Cell Mol Med 2021; 25:1012-1023. [PMID: 33332718 PMCID: PMC7812253 DOI: 10.1111/jcmm.16165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Podocyte injury is associated with albuminuria and the progression of diabetic nephropathy (DN). NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and NOX4 is up-regulated in podocytes in response to high glucose. In the present study, the effects of Salvianolate on DN and its underlying mechanisms were investigated in diabetic db/db mice and human podocytes. We confirmed that the Salvianolate administration exhibited similar beneficial effects as the NOX1/NOX4 inhibitor GKT137831 treated diabetic mice, as reflected by attenuated albuminuria, reduced podocyte loss and mesangial matrix accumulation. We further observed that Salvianolate attenuated the increase of Nox4 protein, NOX4-based NADPH oxidase activity and restored podocyte loss in the diabetic kidney. In human podocytes, NOX4 was predominantly localized to mitochondria and Sal B treatment blocked HG-induced mitochondrial NOX4 derived superoxide generation and thereby ameliorating podocyte apoptosis, which can be abrogated by AMPK knockdown. Therefore, our results suggest that Sal B possesses the reno-protective capabilities in part through AMPK-mediated control of NOX4 expression. Taken together, our results identify that Salvianolate could prevent glucose-induced oxidative podocyte injury through modulation of NOX4 activity in DN and have a novel therapeutic potential for DN.
Collapse
Affiliation(s)
- Yiran Liang
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Hong Liu
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Yi Fang
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Pan Lin
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Zhihui Lu
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Pan Zhang
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Xiaoyan Jiao
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Jie Teng
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Xiaoqiang Ding
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| | - Yan Dai
- Department of NephrologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Kidney and DialysisShanghaiChina
- Shanghai Key Laboratory of Kidney and Blood PurificationShanghaiChina
| |
Collapse
|
96
|
Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J Inflamm Res 2020; 13:1057-1073. [PMID: 33293849 PMCID: PMC7719303 DOI: 10.2147/jir.s275595] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism’s lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.
Collapse
Affiliation(s)
- Javier Checa
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
97
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
98
|
Ko HK, Lin AH, Perng DW, Lee TS, Kou YR. Lung Epithelial TRPA1 Mediates Lipopolysaccharide-Induced Lung Inflammation in Bronchial Epithelial Cells and Mice. Front Physiol 2020; 11:596314. [PMID: 33281629 PMCID: PMC7705107 DOI: 10.3389/fphys.2020.596314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor (TLR) 4 was originally thought to be the sole pattern recognition receptor for lipopolysaccharide (LPS). Transient receptor potential ankyrin 1 (TRPA1), a Ca2+-permeant channel, has been suggested as a non-TLR receptor membrane-bound sensor of LPS. We recently reported that TRPA1 is expressed in lung epithelial cells (LECs) and mediates lung inflammation induced by cigarette smoke. However, the role of TRPA1 in LPS-induced lung inflammation has not been conclusively defined, and its underlying cellular mechanisms remain unclear. In this study, our in vitro results showed that LPS sequentially produced a cascade of events, including the elevation of intracellular Ca2+, the activation of NADPH oxidase, increase in intracellular reactive oxygen species (ROS), the activation of mitogen-activated protein kinase (MAPK)/nuclear factor-kB (NF-κB) signaling, and the induction of IL-8. The increase in intracellular Ca2+ was inhibited by HC030031 (a TRPA1 antagonist) but was unaffected by TAK-242 (a TLR-4 inhibitor). The activation of NADPH oxidase was prevented by its inhibitor apocynin, EGTA (an extracellular Ca2+ chelator), and HC030031. The increase in intracellular ROS was attenuated by apocynin, N-acetyl-cysteine (NAC, a ROS scavenger), EGTA, and HC030031. The activation of the MAPK/NF-κB signaling was halted by NAC, EGTA, and HC030031. IL-8 induction was suppressed by HC030031 and TRPA1 siRNA, and further reduced by the combination of HC030031 and TAK-242. Our in vivo studies showed that trpa1–/– mice exhibited a reduced level of LPS-induced lung inflammation compared with wild-type mice as evidenced by the alleviations of increases in vascular permeability, inflammatory cell infiltration, inflammatory cytokine levels, oxidative stress, and MAPK signaling activation. Thus, in LECs, LPS may activate TRPA1 resulting in an increase in Ca2+ influx. The increased intracellular Ca2+ leads to NADPH oxidase activation, which causes an increase in intracellular ROS. The intracellular ROS activates the MAPK/NF-κB signaling resulting in IL-8 induction. This mechanism may possibly be at work to induce lung inflammation in mice.
Collapse
Affiliation(s)
- Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
99
|
Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel) 2020; 12:E3336. [PMID: 33187272 PMCID: PMC7698080 DOI: 10.3390/cancers12113336] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
Collapse
Affiliation(s)
- Debasish Basak
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| | | | - Jake Hancock
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| |
Collapse
|
100
|
Janpoom S, Kaewduang M, Prasertlux S, Rongmung P, Ratdee O, Lirdwitayaprasit T, Klinbunga S, Khamnamtong B. A SNP of the hemocyanin gene (LvHc) is a marker for high growth and ammonia-tolerance in Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 106:491-501. [PMID: 32750547 DOI: 10.1016/j.fsi.2020.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Expression levels of hemocyanin (LvHc), activating transcription factor 4 (LvAtf4), glutathione S-transferase (LvGst), caspase 2 (LvCasp2) and anti-lipopolysaccharide factor (LvAlf) were examined in the hepatopancreas of Pacific white shrimp Litopenaeus vannamei juveniles exposed to a lethal concentration of ammonia-N (32.15 mg/l). The expression levels of all transcripts except LvAlf were significantly greater (P < 0.05) in tolerant shrimp (Lv-AT; N = 30) that survived up to 72 h post treatment (hpt) than in susceptible shrimp (Lv-AS24 and Lv-AS72; N = 45 and 15), that died within 24 h or between 24 and 72 hpt, respectively. Subsequently, effects of non-lethal concentrations of ammonia-N (control, 10 and 20 mg/l) on the expression of LvHc in juvenile shrimp were examined. Compared to the control, expression levels of LvHc transcripts in hemocytes and the hepatopancreas of tested shrimp changed after exposure to ammonia-N. One SNP (C > T545) was found in the LvHc322 gene segment. Real-time PCR amplification of specific alleles (real-time PASA) was developed for detection of C > T545 genotypes. Juveniles in the lethal exposure test that carried a C/T545 genotype showed a greater average body weight and total length (8.46 ± 0.36 g and 10.05 ± 0.16 cm) than those with a C/C545 genotype (7.48 ± 0.31 g and 9.60 ± 0.13 cm) (P < 0.05). Similar results were found in the second generation (G2) of a growth-improved stock (3 and 4 families of BIOTEC-G2-L1 and BIOTEC-G2-L2) and in commercially farmed shrimp (2 groups). Accordingly, expression levels and SNP of LvHc can serve as markers for selection high growth performance in ammonia-tolerant L. vannamei.
Collapse
Affiliation(s)
- Sirithorn Janpoom
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 11120, Thailand
| | - Mookthida Kaewduang
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirikan Prasertlux
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 11120, Thailand
| | - Puttawan Rongmung
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 11120, Thailand
| | - Onchuda Ratdee
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 11120, Thailand
| | | | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 11120, Thailand
| | - Bavornlak Khamnamtong
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 11120, Thailand.
| |
Collapse
|