51
|
Schmidt S, Willers J, Stahl F, Mutz KO, Scheper T, Hahn A, Schuchardt JP. Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation. Lipids Health Dis 2012; 11:172. [PMID: 23241455 PMCID: PMC3543286 DOI: 10.1186/1476-511x-11-172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Background Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results Several transcription factors (peroxisome proliferator-activated receptor α (PPARα), retinoid X receptor (RXR) α, RXRγ, hepatic nuclear factor (HNF) 6, and HNF1ß) as well as other genes related to triacylglycerol (TG) synthesis or high-density lipoprotein (HDL-C) and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT) 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor) were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration ClinicalTrials.gov (ID: NCT01089231)
Collapse
Affiliation(s)
- Simone Schmidt
- Institute of Food Science and Human Nutrition, Faculty of Natural Sciences at the Leibniz University of Hannover, Am Kleinen Felde 30, Hannover, 30167, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Shamitko-Klingensmith N, Molchanoff KM, Burke KA, Magnone GJ, Legleiter J. Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13411-13422. [PMID: 22924735 DOI: 10.1021/la302705f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It has been demonstrated that many biological processes are influenced by mechanical changes in membranes comprised of a variety of lipid components. As a result, the ability to map physicomechanical properties of surfaces with high temporal and spatial resolution is desirable. Tapping mode atomic force microscopy (AFM) has proven to be a useful technique for imaging biological surfaces due to its ability to operate in solution; however, access to information concerning the mechanical properties of these surfaces can also be obtained by reconstructing the time-resolved tip/sample force interactions during the imaging process. An advantage of such an approach is the direct correlation of topographical features with mechanical properties. Reconstruction of the tip/sample force is achievable by a technique called scanning probe acceleration microscopy (SPAM), which treats the cantilever as an accelerometer. The acceleration, which is directly related to the tip/sample force, of the cantilever is obtained by taking the second derivative of the cantilever deflection signal during a tapping mode AFM experiment in solution with standard cantilevers. Herein, we describe the applicability of SPAM to study mechanical properties of supported lipid bilayers with nanoscale spatial resolution via numerical simulations and experiment. The maximum and minimum tapping forces respond to changes in specific surface mechanical properties. Furthermore, we demonstrate how these changes can be used to map relative changes in the Young's modulus and adhesive properties of supported total brain lipid extract bilayers containing exogenous cholesterol. Finally, the ability of SPAM to distinguish nanoscale lipid raft domains based on changes in local mechanical properties is demonstrated.
Collapse
|
53
|
Miscellaneous non-inflammatory musculoskeletal conditions. Rare thesaurismosis and xanthomatosis. Best Pract Res Clin Rheumatol 2012; 25:683-701. [PMID: 22142747 DOI: 10.1016/j.berh.2011.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
The focus will be on xanthomatosis, a tissue danger signal which needs to be recognized by the clinician, and its relationship with monogenetic lipoprotein disorders (cholesterol, triglycerides), bile acid and sterol metabolism, particularly on metabolic pathways and genetics as well as on musculoskeletal and cardiovascular involvement, and their implications for clinical management. The critical question is to assess coronary heart disease risk, requiring correct identification of the pattern of lipoprotein disorders and of the causes (primary or secondary). Familial hypercholesterolemia must be suspected in adults and children with raised total cholesterol, especially when there is a personal or a family history of premature coronary heart disease, usually requiring potent statins to achieve adequate LDL-cholesterol lowering, even if we do not know safety of long-term therapy and whether treatments of dyslipidemia early in life prevent cardiovascular diseases in adulthood. Cerebrotendinous xanthomatosis is a treatable disease and must be suspected if there is a history of infantile chronic diarrhea and/or juvenile cataracts, even in the absence of tendon xanthomas. Current evidence for the prevention and screening, diagnosis, and treatment of dyslipidemia are available for the clinicians.
Collapse
|
54
|
Yuan C, Chen M, Covey DF, Johnston LJ, Treistman SN. Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids. PLoS One 2011; 6:e27572. [PMID: 22140451 PMCID: PMC3226590 DOI: 10.1371/journal.pone.0027572] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022] Open
Abstract
In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK) has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE)/sphingomyelin (SPM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio) supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS). We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM) images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein. Finally, our results suggest that an understanding of membrane protein function and modulation is impossible unless protein and surrounding lipid are considered as a functional unit.
Collapse
Affiliation(s)
- Chunbo Yuan
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Maohui Chen
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linda J. Johnston
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Steven N. Treistman
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
55
|
Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. Clan genomics and the complex architecture of human disease. Cell 2011; 147:32-43. [PMID: 21962505 PMCID: PMC3656718 DOI: 10.1016/j.cell.2011.09.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 01/12/2023]
Abstract
Human diseases are caused by alleles that encompass the full range of variant types, from single-nucleotide changes to copy-number variants, and these variations span a broad frequency spectrum, from the very rare to the common. The picture emerging from analysis of whole-genome sequences, the 1000 Genomes Project pilot studies, and targeted genomic sequencing derived from very large sample sizes reveals an abundance of rare and private variants. One implication of this realization is that recent mutation may have a greater influence on disease susceptibility or protection than is conferred by variations that arose in distant ancestors.
Collapse
Affiliation(s)
- James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, University of Texas Health Science Center at Houston, Houston, TX 77030-1501, USA
| | - John W. Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030-1501, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
56
|
Vaca G, Vàzquez A, Magaña MT, Ramìrez ML, Dàvalos IP, Martìnez E, Marìn B, Carrillo G. Mutational analysis of the LDL receptor and APOB genes in Mexican individuals with autosomal dominant hypercholesterolemia. Atherosclerosis 2011; 218:391-6. [PMID: 21722902 DOI: 10.1016/j.atherosclerosis.2011.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The goal of this project was to identify families with autosomal dominant hypercholesterolemia (ADH) to facilitate early detection and treatment and to provide genetic counselling as well as to approximate the mutational diversity of ADH in Mexico. Mutational analysis of the LDLR and APOB genes in 62 index cases with a clinical and/or biochemical diagnosis of ADH was performed. Twenty-five mutations (24 LDLR, 1 APOB) were identified in 38 index cases. A total of 162 individuals with ADH were identified using familial segregation analysis performed in 269 relatives of the index cases. In addition, a novel PCSK9 mutation, c.1850 C>A (p.Ala617Asp), was detected. The LDLR mutations showed the following characteristics: (1) four mutations are novel: c.695 -1G>T, c.1034_1035insA, c.1586 G>A, c.2264_2273del; (2) the most common mutations were c.682 G>A (FH-Mexico), c.1055 G>A (FH-Mexico 2), and c.1090 T>C (FH-Mexico 3); (3) five mutations were identified in 3 or more apparently unrelated probands; (4) three mutations were observed in a true homozygous state; and (5) four index cases were compound heterozygous, and one was a carrier of two mutations in the same allele. These results suggest that, in Mexico, ADH exhibits allelic heterogeneity with 5 relatively common LDLR mutations and that mutations in the APOB gene are not a common cause of ADH. This knowledge is important for the genotype-phenotype correlation and for optimising both cholesterol lowering therapies and mutational analysis protocols. In addition, these data contribute to the understanding of the molecular basis of ADH in Mexico.
Collapse
Affiliation(s)
- Gerardo Vaca
- Divisiòn de Genètica, Centro de Investigaciòn Biomèdica de Occidente, IMSS, Guadalajara, Jalisco, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Clinicians who treat patients with stroke need to be aware of several single-gene disorders that have ischemic stroke as a major feature, including sickle cell disease, Fabry disease, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and retinal vasculopathy with cerebral leukodystrophy. The reported genome-wide association studies of ischemic stroke and several related phenotypes (for example, ischemic white matter disease) have shown that no single common genetic variant imparts major risk. Larger studies with samples numbering in the thousands are ongoing to identify common variants with smaller effects on risk. Pharmacogenomic studies have uncovered genetic determinants of response to warfarin, statins and clopidogrel. Despite increasing knowledge of stroke genetics, incorporating this new knowledge into clinical practice remains a challenge. The goals of this article are to review common single-gene disorders relevant to ischemic stroke, summarize the status of candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors, and to briefly discuss pharmacogenomics related to stroke treatment.
Collapse
Affiliation(s)
- James F Meschia
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
58
|
Guo J, Bei W, Hu Y, Tang C, He W, Liu X, Huang L, Cao Y, Hu X, Zhong X, Cao L. A new TCM formula FTZ lowers serum cholesterol by regulating HMG-CoA reductase and CYP7A1 in hyperlipidemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:299-307. [PMID: 21396994 DOI: 10.1016/j.jep.2011.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/26/2011] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on a theory of Chinese Medicine, Regulating Gan (liver) to lower lipids that is in brief to regulate the lipid metabolic related factors in the liver will improve serum lipid profile, we have developed Fufang Zhenzhu Tiao Zhi (FTZ) which includes eight herbs that are quality assured. FTZ has been developed with the potential to correct abnormal lipid metabolism. This Chinese herbal medicine has been prescribed for 20 years, which has been issued patent and clinically proven for use in the treatment of dyslipidemia. AIM OF THE STUDY To investigate the cholesterol-lowering effect and the mode of action of FTZ extract on high lipid diet induced hyperlipidemic rats. MATERIALS AND METHODS The FTZ was prepared by alcohol and water extraction of eight herbs that have been quality-controlled according to the protocol. The cholesterol-lowering effect of FTZ was evaluated on SD rats fed with high-lipid diet. RT-PCR and western blot were used to analyze the gene expression of cholesterol metabolism-related enzymes including HMG-CoA reductase and cholesterol 7α-hydroxylase (CYP7A1) in the livers of the rats. The activity of HMG-CoA reductase and CYP7A1 were assessed by colorimetrical method and by quantification of the cholesterol metabolite of CYP7A1 using HPLC analysis respectively. RESULTS AND CONCLUSIONS FTZ significantly decreased the levels of serum total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), whilst elevated the serum high-density lipoprotein cholesterol (HDL-C) and decreased serum atherogenic index (A.I.) values in high lipid diet induced hyperlipidemic rats. Furthermore, FTZ showed significant antihyperlipidemic effect by at least three pathways in the high lipid diet induced hyperlipidemic rats: (1) upregulating the gene expression and activity of CYP7A1 which promotes the conversion of cholesterol into bile acid; (2) downregulating the gene expression and activity of HMG-CoA reductase to reduce de novo synthesis of cholesterol; (3) increasing the cholesterol excretion from feces. In these three pathways, HMG-CoA reductase and CYP7A1 are two pivotal enzymes in lipid cholesterol metabolism and are expressed mainly in hepatic cells, which support our new TCM treatment strategy: Modulating Liver to Treat Hyperlipemia.
Collapse
Affiliation(s)
- Jiao Guo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ueda SI, Miyake I, Takata K, Shimizu N, Shirotani K, Ishida S, Yonemitsu K, Maeyama T, Saito F, Saito H, Yamagishi SI. Ezetimibe, an inhibitor of intestinal cholesterol absorption, decreases serum level of malondialdehyde-modified low-density lipoprotein in patients with hypercholesterolemia. Int J Cardiol 2011; 146:420-1. [DOI: 10.1016/j.ijcard.2010.10.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/23/2010] [Indexed: 11/29/2022]
|
60
|
Lipoproteinstoffwechsel und koronare Herzkrankheit. MED GENET-BERLIN 2011. [DOI: 10.1007/s11825-010-0259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zusammenfassung
Untersuchungen von genetischen Störungen des Lipoproteinstoffwechsels und deren Zusammenhang mit der koronaren Herzkrankheit (KHK) haben eine VorreiteroIIe für das Verständnis der Genetik komplexer Erkrankungen gespielt. Sie haben darüber hinaus zur Entwicklung von Medikamenten zur Prävention der Atherosklerose als häufigster Todesursache in den lndustrieländem geführt. So hat die Analyse der familiären Hypercholesterinämie (FH), deren häufigste Ursache Mutationen im LDLR-Gen sind, zur Entwicklung der HMG-CoA-Reduktasehemmer (Statine) beigetragen. Mittlerweile wurden durch genomweite Assoziationsstudien (GWAS) Varianten in über 90 Genen gefunden, die die Konzentrationen von Plasmalipiden beeinflussen. Diese erklären aber nur einen geringen Teil der genetischen Varianz. Am Beispiel des klassischen Apo-E-Polymorphismus wird als ein möglicher Grund für die „missing heritability“ die Auswahl der auf den Arrays repräsentierten SNPs diskutiert und gezeigt, dass Interaktionen dazu führen können, dass Assoziationen von Genotypen mit Erkrankungen übersehen werden. Aufgrund genetischer Untersuchungen nach dem Prinzip der „Mendelian randomization“ ist die pathophysiologische Relevanz einer hohen Lp(a)-Konzentration als Risikofaktor für KHK heutzutage unbestritten. Für Patienten mit terminaler Niereninsuffizienz ist jedoch ein Polymorphismus (KIV-2-CNV) im LPA-Gen ein besserer Prädiktor für die KHK als erhöhte Lp(a)-Konzentrationen im Plasma.
Collapse
|
61
|
Lawson HA, Zelle KM, Fawcett GL, Wang B, Pletscher LS, Maxwell TJ, Ehrich TH, Kenney-Hunt JP, Wolf JB, Semenkovich CF, Cheverud JM. Genetic, epigenetic, and gene-by-diet interaction effects underlie variation in serum lipids in a LG/JxSM/J murine model. J Lipid Res 2010; 51:2976-84. [PMID: 20601649 PMCID: PMC2936764 DOI: 10.1194/jlr.m006957] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/02/2010] [Indexed: 11/20/2022] Open
Abstract
Variation in serum cholesterol, free-fatty acids, and triglycerides is associated with cardiovascular disease (CVD) risk factors. There is great interest in characterizing the underlying genetic architecture of these risk factors, because they vary greatly within and among human populations and between the sexes. We present results of a genome-wide scan for quantitative trait loci (QTL) affecting serum cholesterol, free-fatty acids, and triglycerides in an F(16) advanced intercross line of LG/J and SM/J (Wustl:LG,SM-G16). Half of the population was fed a high-fat diet and half was fed a relatively low-fat diet. Context-dependent genetic (additive and dominance) and epigenetic (imprinting) effects were characterized by partitioning animals into sex, diet, and sex-by-diet cohorts. Here we examine genetic, environmental, and genetic-by-environmental interactions of QTL overlapping previously identified loci associated with CVD risk factors, and we add to the serum lipid QTL landscape by identifying new loci.
Collapse
Affiliation(s)
- Heather A Lawson
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 2010; 115:55-68. [PMID: 19900395 DOI: 10.1016/j.actatropica.2009.10.023] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/31/2023]
Abstract
A critical review of the development of specific chemotherapeutic approaches for the management of American Trypanosomiasis or Chagas disease is presented, including controversies on the pathogenesis of the disease, the initial efforts that led to the development of currently available drugs (nifurtimox and benznidazole), limitations of these therapies and novel approaches for the development of anti-Trypanosoma cruzi drugs, based on our growing understanding of the biology of this parasite. Among the later, the most promising approaches are ergosterol biosynthesis inhibitors such as posaconazole and ravuconazole, poised to enter clinical trials for chronic Chagas disease in the short term; inhibitors of cruzipain, the main cysteine protease of T. cruzi, essential for its survival and proliferation in vitro and in vivo; bisphosphonates, metabolic stable pyrophosphate analogs that have trypanocidal activity through the inhibition of the parasite's farnesyl-pyrophosphate synthase or hexokinase; inhibitors of trypanothione synthesis and redox metabolism and inhibitors of hypoxanthine-guanine phosphoribosyl-transferase, an essential enzyme for purine salvage in T. cruzi and related organisms. Finally, the economic and political challenges faced by development of drugs for the treatment of neglected tropical diseases, which afflict almost exclusively poor populations in developing countries, are analyzed and recent potential solutions for this conundrum are discussed.
Collapse
|
63
|
Li H, Liu J. Identification of heterogeneous nuclear ribonucleoprotein K as a transactivator for human low density lipoprotein receptor gene transcription. J Biol Chem 2010; 285:17789-97. [PMID: 20371611 PMCID: PMC2878543 DOI: 10.1074/jbc.m109.082057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/05/2010] [Indexed: 01/09/2023] Open
Abstract
hnRNP K, a member of the family of heterogeneous ribonucleoproteins, is known to exert various functional roles in the nucleus, cytoplasm, and mitochondria to affect different cellular processes including chromatin remodeling, transcription, splicing, and translation. Here we report, for the first time, that hnRNP K is specifically involved in human LDL receptor (LDLR) gene transcription in HepG2 cells. We show that depletion of hnRNP K by siRNA transfection reduces the expression of LDLR mRNA and protein by more than 50% as measured by quantitative real-time PCR and Western blot analysis. Importantly, we show that the decay rate of LDLR mRNA is not affected by hnRNP K siRNA transfection, whereas the LDLR promoter activity is significantly decreased. Furthermore, overexpression of hnRNP K increased the LDLR promoter activity by the luciferase reporter assay. By utilizing a series of mutational and deletional constructs of LDLR promoter luciferase reporters, we mapped the K-responsive element to the repeat 3 (R3) sequence of the LDLR promoter. Electrophoretic mobility shift assays show that the K protein binds to a single-stranded DNA probe containing the CT-rich element of R3, which is in contrast to the requirement of double-stranded DNA for Sp1 to bind to R3. Finally, chromatin immunoprecipitation assays reveal a direct interaction of hnRNP K with the LDLR promoter in intact HepG2 cells. These new findings provide strong evidence demonstrating that hnRNP K is an important transactivator for human LDLR gene transcription. This work sheds new light on our current understanding of how LDLR gene expression is controlled at the transcriptional level.
Collapse
Affiliation(s)
- Hai Li
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Jingwen Liu
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW The genetic basis for a variety of vascular malformation syndromes have been described, with an increasing functional understanding of the associated genes. RECENT FINDINGS Genes responsible for familial vascular malformation syndromes have increasingly been shown to be involved in the control of vascular stability. SUMMARY Genes involved in vascular stability pathways are good candidates for causing vascular malformation syndromes. Although these findings confirm the biologic importance of the involved pathways, further explanations are required to describe the focal nature of disease.
Collapse
Affiliation(s)
- Matthew C.P. Smith
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dean Y. Li
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kevin J. Whitehead
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
65
|
Ma MT, Zhang J, Farooqui AA, Chen P, Ong WY. Effects of cholesterol oxidation products on exocytosis. Neurosci Lett 2010; 476:36-41. [DOI: 10.1016/j.neulet.2010.03.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/13/2022]
|
66
|
Lawson HA, Cheverud JM. Metabolic syndrome components in murine models. Endocr Metab Immune Disord Drug Targets 2010; 10:25-40. [PMID: 20088816 PMCID: PMC2854879 DOI: 10.2174/187153010790827948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/20/2009] [Indexed: 01/04/2023]
Abstract
Animal models have enriched understanding of the physiological basis of metabolic disorders and advanced identification of genetic risk factors underlying the metabolic syndrome (MetS). Murine models are especially appropriate for this type of research, and are an excellent resource not only for identifying candidate genomic regions, but also for illuminating the possible molecular mechanisms or pathways affected in individual components of MetS. In this review, we briefly discuss findings from mouse models of metabolic disorders, particularly in light of issues raised by the recent flood of human genome-wide association studies (GWAS) results. We describe how mouse models are revealing that genotype interacts with environment in important ways, indicating that the underlying genetics of MetS is highly context dependant. Further we show that epistasis, imprinting and maternal effects each contribute to the genetic architecture underlying variation in metabolic traits, and mouse models provide an opportunity to dissect these aspects of the genetic architecture that are difficult if not impossible to ascertain in humans. Finally we discuss how knowledge gained from mouse models can be used in conjunction with comparative genomic methods and bioinformatic resources to inform human MetS research.
Collapse
Affiliation(s)
- Heather A Lawson
- The Department of Anatomy and Neurobiology, Washington University School of Medicine in St Louis, MO, USA.
| | | |
Collapse
|
67
|
Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:311-8. [PMID: 19753490 DOI: 10.1590/s0074-02762009000900041] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022] Open
Abstract
This article presents an overview of the currently available drugs nifurtimox (NFX) and benznidazole (BZN) used against Trypanosoma cruzi, the aetiological agent of Chagas disease; herein we discuss their limitations along with potential alternatives with a focus on ergosterol biosynthesis inhibitors (EBI). These compounds are currently the most advanced candidates for new anti-T. cruzi agents given that they block de novo production of 24-alkyl-sterols, which are essential for parasite survival and cannot be replaced by a host's own cholesterol. Among these compounds, new triazole derivatives that inhibit the parasite's C14alpha sterol demethylase are the most promising, as they have been shown to have curative activity in murine models of acute and chronic Chagas disease and are active against NFX and BZN-resistant T. cruzi strains; among this class of compounds, posaconazole (Schering-Plough Research Institute) and ravuconazole (Eisai Company) are poised for clinical trials in Chagas disease patients in the short term. Other T. cruzi-specific EBI, with in vitro and in vivo potency, include squalene synthase, lanosterol synthase and squalene epoxidase-inhibitors as well as compounds with dual mechanisms of action (ergosterol biosynthesis inhibition and free radical generation), but they are less advanced in their development process. The main putative advantages of EBI over currently available therapies include their higher potency and selectivity in both acute and chronic infections, activity against NFX and BZN-resistant T. cruzi strains, and much better tolerability and safety profiles. Limitations may include complexity and cost of manufacture of the new compounds. As for any new drug, such compounds will require extensive clinical testing before being introduced for clinical use, and the complexity of such studies, particularly in chronic patients, will be compounded by the current limitations in the verification of true parasitological cures for T. cruzi infections.
Collapse
Affiliation(s)
- Julio A Urbina
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
68
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
69
|
Harada K, Miyamoto Y, Morisaki H, Ohta N, Yamanaka I, Kokubo Y, Makino H, Harada-Shiba M, Okayama A, Tomoike H, Tomonori O, Saito Y, Yoshimasa Y, Morisaki T. A Novel Thr56Met Mutation of the Autosomal Recessive Hypercholesterolemia Gene Associated with Hypercholesterolemia. J Atheroscler Thromb 2010; 17:131-40. [DOI: 10.5551/jat.2873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
70
|
Georgoulias P, Wozniak G, Samara M, Chiotoglou I, Kontos A, Tzavara C, Valotassiou V, Georgitsi M, Aleporou-Marinou V, Patrinos GP, Kollia P. Impact of ACE and ApoE polymorphisms on myocardial perfusion: correlation with myocardial single photon emission computed tomographic imaging. J Hum Genet 2009; 54:595-602. [PMID: 19713976 DOI: 10.1038/jhg.2009.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coronary artery disease is associated with multiple genetic and environmental risk factors. In this study, we evaluated the correlation of angiotensin l-converting enzyme (ACE) (I/D) and ApoE gene polymorphisms (E2, E3, E4 and g.-219G/T) with myocardial perfusion. We examined 410 patients using exercise-rest myocardial perfusion single photon emission computed tomography (SPECT), in which the summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) indexes were calculated. Homozygotes for the ACE D allele had greater mean values of SSS (P<0.001) and SDS (P<0.001). In addition, E3 homozygotes, E4 heterozygotes and E4 homozygotes had significantly higher values of SSS and SDS compared with E3 heterozygotes (P<0.001); E4 homozygotes had significantly higher values of SSS and SDS compared with E3 homozygotes. Furthermore, for the g.-219G>T polymorphic site at the promoter region of ApoE gene, the mean values of SSS and SDS were significantly higher for T heterozygotes/homozygotes than for GG homozygotes. Adjusting for all demographic and clinical data using multiple linear regression analysis it was found that ACE D and both ApoE genotypes were independent predictors with a cumulative contribution for the prediction of SSS and SDS. Furthermore, logistic regression analysis revealed that all three genotypes had an independent predictive ability for abnormal SSS (SSS>2). These data provide the first evidence of an association and significant cumulative contribution of the aforementioned genotypes in myocardial perfusion with E4 allele having the strongest association followed by ACE D and ApoE g.-219T alleles.
Collapse
Affiliation(s)
- Panagiotis Georgoulias
- Department of Nuclear Medicine, School of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Huang S, Henry L, Ho YK, Pownall HJ, Rudenko G. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. J Lipid Res 2009; 51:297-308. [PMID: 19674976 DOI: 10.1194/jlr.m000422] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LDL receptor (LDL-R) mediates cholesterol metabolism in humans by binding and internalizing cholesterol transported by LDL. Several different molecular mechanisms have been proposed for the binding of LDL to LDL-R at neutral plasma pH and for its release at acidic endosomal pH. The crystal structure of LDL-R at acidic pH shows that the receptor folds back on itself in a closed form, obscuring parts of the ligand binding domain with the epidermal growth factor (EGF)-precursor homology domain. We have used a structure-based site-directed mutagenesis approach to examine 12 residues in the extracellular domain of LDL-R for their effect on LDL binding and release. Our studies show that the interface between the ligand binding domain and the EGF-precursor homology domain seen at acidic pH buries residues mediating both LDL binding and release. Our results are consistent with an alternative model of LDL-R whereby multiple modules of the extracellular domain interact with LDL at neutral pH, concurrently positioning key residues so that at acidic pH the LDL-R:LDL interactions become unfavorable, triggering release. After LDL release, the closed form of LDL-R may target its return to the cell surface.
Collapse
Affiliation(s)
- Sha Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
72
|
Holla ØL, Kulseth MA, Berge KE, Leren TP, Ranheim T. Nonsense‐mediated decay of human LDL receptor mRNA. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:409-17. [DOI: 10.1080/00365510802707163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Øystein Lunde Holla
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Knut Erik Berge
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Trond Paul Leren
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Trine Ranheim
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| |
Collapse
|
73
|
Affiliation(s)
- John Hardy
- Institute of Neurology, University College London, London, United Kingdom. at
| | | |
Collapse
|
74
|
Wang W, Fu YJ, Zu YG, Wu N, Reichling J, Efferth T. Lipid rafts play an important role in the vesicular stomatitis virus life cycle. Arch Virol 2009; 154:595-600. [PMID: 19288237 DOI: 10.1007/s00705-009-0348-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Lipid rafts are involved in the life cycle of many viruses. In this study, we investigated the role of lipids in the life cycle of vesicular stomatitis virus (VSV). Cholesterol depletion by pretreatment of BHK cells or VSV particles with methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering drug, inhibited the production of VSV dramatically. This effect was reversible, and virus production was restored by the addition of cholesterol, indicating that the reduction was caused by the loss of cholesterol in the cell membrane and virus, respectively. Cholesterol depletion at the adsorption stage also reduced the production of VSV significantly, but in contrast, only had a limited effect on virus production at the post-entry stage. Inhibition of sphingomyelin by myriocin treatment only showed a minor effect on VSV production. However, reduction of cholesterol and sphingomyelin at the same time dramatically reduced VSV production, showed a significant synergistic effect. These results suggest that lipid rafts play an important role in the life cycle of VSV.
Collapse
Affiliation(s)
- W Wang
- Northeast Forestry University, Harbin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
75
|
Renshaw PF, Parsegian A, Yang CK, Novero A, Yoon SJ, Lyoo IK, Cohen BM, Carlezon WA. Lovastatin potentiates the antidepressant efficacy of fluoxetine in rats. Pharmacol Biochem Behav 2009; 92:88-92. [PMID: 19026674 PMCID: PMC2666925 DOI: 10.1016/j.pbb.2008.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cholesterol may have a role in the pathophysiology of depression. Lowering cholesterol levels with statins reduces risks for cardiovascular events, and there is clinical evidence that statins exert neuroprotective properties not fully explained by their effects on serum cholesterol levels. Altered cholesterol levels can affect serotonergic neurotransmission, which might be involved in the clinical efficacy of standard antidepressants. METHODS We examined interactions between a statin (lovastatin) and a selective serotonin reuptake inhibitor (fluoxetine) using the forced swim test (FST) in rats, a behavioral assay that identifies treatments with antidepressant effects in humans. Specifically, we determined if the addition of lovastatin to the diet would increase the efficacy of a subeffective dose of fluoxetine. RESULTS Rats maintained on a lovastatin-enriched diet for 30 days were more sensitive to the antidepressant-like effects of a low (subthreshold) dose of fluoxetine. The behavior of rats treated with this combination resembled that normally seen with higher doses of fluoxetine. No effects were observed in rats maintained on a lovastatin-enriched diet for 3 days. CONCLUSIONS Lovastatin can augment the antidepressant-like effects of a low dose of fluoxetine in rats, raising the possibility that statins could be used to facilitate the effects of antidepressants in humans.
Collapse
Affiliation(s)
- Perry F Renshaw
- Department of Psychiatry, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Griffiths WJ, Wang Y. Sterol lipidomics in health and disease: Methodologies and applications. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
77
|
Mandelshtam MY, Vasilyev VB. Monogenic hypercholesterolemias: New genes, new drug targets. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408100025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Kwiterovich PO. Clinical and laboratory assessment of cardiovascular risk in children: Guidelines for screening, evaluation, and treatment. J Clin Lipidol 2008; 2:248-66. [PMID: 21291741 DOI: 10.1016/j.jacl.2008.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 05/21/2008] [Accepted: 06/07/2003] [Indexed: 11/24/2022]
Abstract
The early lesions of atherosclerosis begin in childhood and are related to antecedent cardiovascular disease (CVD) risk factors. Environmental and genetic factors (eg, diet, obesity, exercise, and certain inherited dyslipidemias) influence progression of such lesions. Identification of youth at risk for atherosclerosis includes an integrated assessment of these predisposing factors. Treatment starts with a diet low in total and saturated fat and cholesterol, use of water-soluble fiber, plant stanols and plant sterols, weight control, and exercise. Drug therapy, for example, with inhibitors of hydroxymethylglutaryl-CoA reductase, bile acid sequestrants, and cholesterol absorption inhibitors, can be considered in those with a positive family history of premature CVD and low-density lipoprotein cholesterol >160 mg/dL after dietary and hygienic measures. Candidates for drug therapy often include those with familial hypercholesterolemia, familial combined hyperlipidemia, the metabolic syndrome, polycystic ovarian syndrome, type 1 diabetes, and the nephrotic syndrome. Such dietary and drug therapy appears safe and efficacious. Early identification and treatment of youth with CVD risk factors and dyslipidemia are likely to retard the atherosclerotic process. Optimal detection and treatment of high-risk children either from the general population or from families with premature CVD will require a comprehensive universal screening and evaluation program.
Collapse
Affiliation(s)
- Peter O Kwiterovich
- Division of Lipid Research Atherosclerosis, Johns Hopkins Medical Institutions, 550 North Broadway, Suite 310, Baltimore, MD 21205, USA
| |
Collapse
|
79
|
Functional analysis of low-density lipoprotein receptor in homozygous familial hypercholesterolemia patients with novel 1439 C→T mutation of low-density lipoprotein receptor gene. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200805010-00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
80
|
Kathiresan S, Musunuru K, Orho-Melander M. Defining the spectrum of alleles that contribute to blood lipid concentrations in humans. Curr Opin Lipidol 2008; 19:122-7. [PMID: 18388691 DOI: 10.1097/mol.0b013e3282f70296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Recently, genome-wide genetic screening of common DNA sequence variants has proven a successful approach to identify novel genetic contributors to complex traits. This review summarizes recent genome-wide association studies for lipid phenotypes, and evaluates the next steps needed to obtain a full picture of genotype-phenotype correlation and apply these findings to inform clinical practice. RECENT FINDINGS So far, genome-wide association studies have defined at least 19 genomic regions that contain common DNA single nucleotide polymorphisms associated with LDL cholesterol, HDL cholesterol and/or triglycerides. Of these, eight represent novel loci in humans, whereas 11 genes have been previously implicated in lipoprotein metabolism. Many of the same loci with common variants have already been shown to lead to monogenic lipid disorders in humans and/or mice, suggesting that a spectrum of common and rare alleles at each validated locus contributes to blood lipid concentrations. SUMMARY At least 19 loci harbor common variations that contribute to blood lipid concentrations in humans. Larger scale genome-wide association studies should identify additional loci, and sequencing of these loci should pinpoint all relevant alleles. With a full catalog of DNA polymorphisms in hand, a panel of lipid-related variants can be studied to provide clinical risk stratification and targeting of therapeutic interventions.
Collapse
Affiliation(s)
- Sekar Kathiresan
- Cardiovascular Disease Prevention Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
81
|
Brunham LR, Kruit JK, Verchere CB, Hayden MR. Cholesterol in islet dysfunction and type 2 diabetes. J Clin Invest 2008; 118:403-8. [PMID: 18246189 DOI: 10.1172/jci33296] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic beta cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D.
Collapse
Affiliation(s)
- Liam R Brunham
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
82
|
Teltsh O, Kanyas K, Karni O, Levi A, Korner M, Ben-Asher E, Lancet D, Hamdan A, Lerer B, Kohn Y. Genome-wide linkage scan, fine mapping, and haplotype analysis in a large, inbred, Arab Israeli pedigree suggest a schizophrenia susceptibility locus on chromosome 20p13. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:209-15. [PMID: 17823922 DOI: 10.1002/ajmg.b.30591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Linkage and association studies in schizophrenia have repeatedly drawn attention to several chromosomal regions and to genes within them. Conflicting patterns of association and the lack of a clear functional significance of the associated variants limit the interpretation of these results. The use of rare pedigrees, where genes with a major effect cause the disorder, has been proven beneficial in studies of other complex disorders. Our objective was to use this advantage by performing a genome wide linkage analysis for schizophrenia in a large, multiplex Israeli Arab pedigree. We genotyped 346 microsatellite markers in 24 pedigree members affected with schizophrenia spectrum disorders and 32 unaffected relatives. Two-point linkage analysis with SUPERLINK demonstrated a LOD score of 2.47 for D20S116 on chromosome 20p13 under an autosomal dominant mode of inheritance. Further fine mapping yielded a two-point LOD score of 2.56 for the adjacent marker D20S193 and narrowed down the linked region to 2-5 cM. A haplotype containing the markers D20S193, D20S889, and D20S116, 0.7 Mb in length, was found to be shared by most affected pedigree members. Genotyping of 43 SNPs in the interval supported these results with a multipoint LOD score of 2.7 around D20S193. We were also able to better define the boundaries of the shared haplotype which contains strong candidate genes for schizophrenia. Our study exemplifies the power of rare and unique pedigrees in drawing attention to novel regions for genetic studies of schizophrenia.
Collapse
Affiliation(s)
- Omri Teltsh
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Nagasaka H, Miida T, Hirano K, Ota A, Yorifuji T, Takatani T, Tsukahara H, Takayanagi M, Hui SP, Kobayashi K, Chiba H. Reduced apolipoprotein E-rich high-density lipoprotein level at birth is restored to the normal range in patients with familial hypercholesterolemia in the first year of life. J Clin Endocrinol Metab 2008; 93:779-83. [PMID: 18182454 DOI: 10.1210/jc.2007-1621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND High-density lipoprotein (HDL) consists of apolipoprotein E (apoE)-rich and apoE-poor HDL particles. ApoE-rich HDL level is high at birth but decreases after birth with reciprocal elevation in low-density lipoprotein (LDL)-cholesterol. OBJECTIVES The objective of the study was to clarify whether apoE-rich HDL decreases after birth in children with familial hypercholesterolemia (FH), a disorder caused by impaired LDL clearance. METHODS We measured apoE-rich HDL-cholesterol and LDL-cholesterol during the first year of life in 10 FH children (one homozygote and nine heterozygotes), 12 non-FH siblings, and 75 healthy controls. RESULTS At birth, apoE-rich HDL-cholesterol was undetectable in a homozygous FH child and lower in heterozygous FH children than non-FH siblings and controls (4+/-2 vs. 12+/-4 and 11+/-4 mg/dl, P<0.001). At 3-4 months, apoE-rich HDL-cholesterol increased in homozygous and heterozygous FH children and decreased in non-FH siblings and controls. At 12 months, apoE-rich HDL-cholesterol levels were similar among these four groups (6-7 mg/dl). In contrast, LDL-cholesterol concentration was always twice as high in heterozygous FH children as non-FH siblings and controls (at birth, 50+/-15 vs. 25+/-7 and 25+/-5 mg/dl, P<0.001; at 3-4 months of age, 159+/-29 vs. 71+/-16 and 73+/-15 mg/dl, P<0.001; at 12 months of age, 156+/-29 vs. 75+/-18 and 76+/-17 mg/dl, P<0.001). CONCLUSION ApoE-rich HDL level is low at birth in FH children and increases to the normal level in the first year of life, opposite to the change in normal children.
Collapse
Affiliation(s)
- Hironori Nagasaka
- Division of Metabolism, Chiba Children's Hospital, 579-1 Heta Cho, Midori-Ku, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Miyake Y, Kimura R, Kokubo Y, Okayama A, Tomoike H, Yamamura T, Miyata T. Genetic variants in PCSK9 in the Japanese population: Rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis 2008; 196:29-36. [PMID: 17316651 DOI: 10.1016/j.atherosclerosis.2006.12.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 11/21/2006] [Accepted: 12/02/2006] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate whether plasma low-density lipoprotein cholesterol (LDL-C) levels in the general population are influenced by rare sequence variations in the PCSK9 gene. We sequenced the promoter and coding regions of the PCSK9 gene in individuals from the general population (n=3655) with the lowest (n=78) and highest (n=96) LDL-C levels and in individuals taking antihypercholesterolemia medication (n=96). We identified 33 sequence variants in the PCSK9 gene among which 24 were specific for Japanese. Statistical analysis showed that one missense mutation, R93C, was associated with low LDL-C levels. The other variants had no association with LDL-C levels or the numbers of individuals with the variants were too small for statistical analysis. A comparison of the numbers of individuals with nonsynonymous mutations between the low LDL-C and high LDL-C/treatment groups found that four missense mutations and one nonsense mutation were identified only in the low LDL-C group and six missense mutations were identified only in the high LDL-C/treatment group. As we have analyzed groups at opposite ends of the LDL-C spectrum, it is likely that some of these nonsynonymous mutations may be associated with either low or high LDL-C in the Japanese population. Based on the extremely high frequencies of the nonsynonymous mutations in PCSK9 compared with those of LDLR or apoB-100, PCSK9 mutations could be important factors that cumulatively influence plasma LDL-C levels in the general population.
Collapse
Affiliation(s)
- Yasuko Miyake
- Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Rina Kimura
- Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Yoshihiro Kokubo
- Division of Preventive Cardiology, National Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Akira Okayama
- Division of Preventive Cardiology, National Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Hitonobu Tomoike
- National Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Taku Yamamura
- Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Miyata
- Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
85
|
Marín-García J, Goldenthal MJ, Moe GW. Metabolic Syndrome, Diabetes and Cardiometabolic Risks in Aging. AGING AND THE HEART 2007:277-305. [DOI: 10.1007/978-0-387-74072-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
86
|
Geeraert B, De Keyzer D, Davey PC, Crombé F, Benhabilès N, Holvoet P. Oxidized low-density lipoprotein-induced expression of ABCA1 in blood monocytes precedes coronary atherosclerosis and is associated with plaque complexity in hypercholesterolemic pigs. J Thromb Haemost 2007; 5:2529-36. [PMID: 17922810 DOI: 10.1111/j.1538-7836.2007.02786.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Elevated oxidized low-density lipoprotein (oxLDL) is associated with atherosclerosis and high cardiovascular risk. Previously, we identified 18 genes in coronary plaque macrophages of hypercholesterolemic pigs that correlated with plaque oxLDL. OBJECTIVE To determine which of these genes were differentially expressed in blood monocytes and correlated with blood and plaque oxLDL and with plaque complexity. METHODS RNA expression in monocytes of 27 hypercholesterolemic and 12 control pigs was analyzed with quantitative real-time polymerase chain reaction. RESULTS Five of 12 genes with detectable expression in monocytes were overexpressed (at P < 0.01 level) in blood monocytes of hypercholesterolemic pigs: ABCA1, SCD, IRF1, SDC2, and TLR2. ABCA1 RNA expression in blood monocytes correlated with blood oxLDL, and its RNA and protein expression was increased prior to atherosclerotic plaque formation. Higher expression of ABCA1 in monocytes was associated with higher plaque complexity and higher plaque oxLDL. Immunostaining of coronary plaques showed the association of ABCA1 with macrophages, lipids, and oxLDL; ABCA1 protein correlated with plaque oxLDL (R(2) = 0.66; P < 0.0001). In THP-1 monocytes, oxLDL induced ABCA1 expression. OxLDL-induced foam cell generation in THP-1 and human monocyte-derived macrophages was associated with a further increase of ABCA1 expression. CONCLUSIONS The increase of ABCA1 in monocytes in association with blood oxLDL prior to atherosclerotic lesion formation and the association of higher ABCA1 with higher plaque complexity suggests that ABCA1 is an early biomarker of atherosclerosis. Studies in humans are warranted.
Collapse
Affiliation(s)
- B Geeraert
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
87
|
Infante RE, Radhakrishnan A, Abi-Mosleh L, Kinch LN, Wang ML, Grishin NV, Goldstein JL, Brown MS. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem 2007; 283:1064-75. [PMID: 17989072 DOI: 10.1074/jbc.m707944200] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and three large loops that project into the lumen of lysosomes. We showed earlier that NPC1 binds cholesterol and oxysterols. Here we localize the binding site to luminal loop-1, a 240-amino acid domain with 18 cysteines. When produced in cultured cells, luminal loop-1 was secreted as a soluble dimer. This loop bound [(3)H]cholesterol (K(d), 130 nM) and [(3)H]25-hydroxycholesterol (25-HC, K(d), 10 nM) with one sterol binding site per dimer. Binding of both sterols was competed by oxysterols (24-, 25-, and 27-HC). Unlabeled cholesterol competed strongly for binding of [(3)H]cholesterol, but weakly for [(3)H]25-HC binding. Binding of [(3)H]cholesterol but not [(3)H]25-HC was inhibited by detergents. We also studied NPC2, a soluble protein whose deficiency causes a similar disease phenotype. NPC2 bound cholesterol, but not oxysterols. Epicholesterol and cholesteryl sulfate competed for [(3)H]cholesterol binding to NPC2, but not NPC1. Glutamine 79 in luminal loop-1 of NPC-1 is important for sterol binding; a Q79A mutation abolished binding of [(3)H]cholesterol and [(3)H]25-HC to full-length NPC1. Nevertheless, the Q79A mutant restored cholesterol transport to NPC1-deficient Chinese hamster ovary cells. Thus, the sterol binding site on luminal loop-1 is not essential for NPC1 function in fibroblasts, but it may function in other cells where NPC1 deficiency produces more complicated lipid abnormalities.
Collapse
Affiliation(s)
- Rodney E Infante
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56:2328-38. [PMID: 17575085 DOI: 10.2337/db07-0056] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Type 2 diabetes is often accompanied by abnormal blood lipid and lipoprotein levels, but most studies on the link between hyperlipidemia and diabetes have focused on free fatty acids (FFAs). In this study, we examined the relationship between cholesterol and insulin secretion from pancreatic beta-cells that is independent of the effects of FFAs. RESEARCH DESIGN AND METHODS Several methods were used to modulate cholesterol levels in intact islets and cultured beta-cells, including a recently developed mouse model that exhibits elevated cholesterol but normal FFA levels. Acute and metabolic alteration of cholesterol was done using pharmacological reagents. RESULTS We found a direct link between elevated serum cholesterol and reduced insulin secretion, with normal secretion restored by cholesterol depletion. We further demonstrate that excess cholesterol inhibits secretion by downregulation of metabolism through increased neuronal nitric oxide synthase dimerization. CONCLUSIONS This direct effect of cholesterol on beta-cell metabolism opens a novel set of mechanisms that may contribute to beta-cell dysfunction and the onset of diabetes in obese patients.
Collapse
Affiliation(s)
- Mingming Hao
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
89
|
Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007; 14:413-9. [PMID: 17435765 DOI: 10.1038/nsmb1235] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 03/16/2007] [Indexed: 02/07/2023]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.
Collapse
|
90
|
Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D, Lifton RP. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007; 315:1278-82. [PMID: 17332414 PMCID: PMC2945222 DOI: 10.1126/science.1136370] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide and is commonly caused by a constellation of risk factors called the metabolic syndrome. We characterized a family with autosomal dominant early CAD, features of the metabolic syndrome (hyperlipidemia, hypertension, and diabetes), and osteoporosis. These traits showed genetic linkage to a short segment of chromosome 12p, in which we identified a missense mutation in LRP6, which encodes a co-receptor in the Wnt signaling pathway. The mutation, which substitutes cysteine for arginine at a highly conserved residue of an epidermal growth factor-like domain, impairs Wnt signaling in vitro. These results link a single gene defect in Wnt signaling to CAD and multiple cardiovascular risk factors.
Collapse
Affiliation(s)
- Arya Mani
- Departments of Internal Medicine, Genetics and Molecular Biophysics, and Biochemistry, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jayaram Radhakrishnan
- Departments of Internal Medicine, Genetics and Molecular Biophysics, and Biochemistry, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, CT 06510, USA
| | - He Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alaleh Mani
- Department of Material Science, Amir Kabir University of Technology, Tehran 15875/4413, Iran
| | - Mohammad-Ali Mani
- Department of Human Sciences, Azad University of Tehran, Tehran 13185/786, Iran
| | - Carol Nelson-Williams
- Departments of Internal Medicine, Genetics and Molecular Biophysics, and Biochemistry, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, CT 06510, USA
| | - Khary S Carew
- Departments of Internal Medicine, Genetics and Molecular Biophysics, and Biochemistry, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shrikant Mane
- Departments of Internal Medicine, Genetics and Molecular Biophysics, and Biochemistry, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hossein Najmabadi
- Genetics Research Center, The Social Welfare and Rehabilitation Sciences University, Tehran 19875/383, Iran
| | - Dan Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P. Lifton
- Departments of Internal Medicine, Genetics and Molecular Biophysics, and Biochemistry, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
91
|
Elespuru RK, Sankaranarayanan K. New approaches to assessing the effects of mutagenic agents on the integrity of the human genome. Mutat Res 2007; 616:83-9. [PMID: 17174354 DOI: 10.1016/j.mrfmmm.2006.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heritable genetic alterations, although individually rare, have a substantial collective health impact. Approximately 20% of these are new mutations of unknown cause. Assessment of the effect of exposures to DNA damaging agents, i.e. mutagenic chemicals and radiations, on the integrity of the human genome and on the occurrence of genetic disease remains a daunting challenge. Recent insights may explain why previous examination of human exposures to ionizing radiation, as in Hiroshima and Nagasaki, failed to reveal heritable genetic effects. New opportunities to assess the heritable genetic damaging effects of environmental mutagens are afforded by: (1) integration of knowledge on the molecular nature of genetic disorders and the molecular effects of mutagens; (2) the development of more practical assays for germline mutagenesis; (3) the likely use of population-based genetic screening in personalized medicine.
Collapse
Affiliation(s)
- R K Elespuru
- Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, The Netherlands.
| | | |
Collapse
|
92
|
Abstract
Statins are potent inhibitors of the hydroxy-methyl-glutaryl-coenzyme A reductase, the rate limiting enzyme for cholesterol biosynthesis. Experimental and clinical studies with statins suggest that they have beneficial effects on neurodegenerative disorders. Thus, it was of interest to characterize the direct effects of statins on CNS neurons and glial cells. We have treated defined cultures of neurons and astrocytes of newborn rats with two lipophilic statins, atorvastatin and simvastatin, and analyzed their effects on morphology and survival. Treatment of astrocytes with statins induced a time- and dose-dependent stellation, followed by apoptosis. Similarly, statins elicited programmed cell death of cerebellar granule neurons but with a higher sensitivity. Analysis of different signaling cascades revealed that statins fail to influence classical pathways such as Akt or MAP kinases, known to be activated in CNS cells. In addition, astrocyte stellation triggered by statins resembled dibutryl-cyclic AMP (db-cAMP) induced morphological differentiation. However, in contrast to db-cAMP, statins induced upregulation of low-density lipoprotein receptors, without affecting GFAP expression, indicating separate underlying mechanisms. Analysis of the cholesterol biosynthetic pathway revealed that lack of mevalonate and of its downstream metabolites, mainly geranylgeranyl-pyrophosphate (GGPP), is responsible for the statin-induced apoptosis of neurons and astrocytes. Moreover, astrocytic stellation triggered by statins was inhibited by mevalonate and GGPP. Interestingly, neuronal cell death was significantly reduced in astrocyte/neuron co-cultures treated with statins. We postulate that under these conditions signals provided by astrocytes, e.g., isoprenoids play a key role in neuronal survival.
Collapse
Affiliation(s)
- Pia März
- Institute of Physiology, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
93
|
Stone NJ. Drugs for Elevated LDL-Cholesterol. Cardiovasc Ther 2007. [DOI: 10.1016/b978-1-4160-3358-5.50033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
94
|
Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 2006; 26:105-29. [PMID: 16704350 DOI: 10.1146/annurev.nutr.26.061505.111214] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cholesterol and its metabolites play a variety of essential roles in living systems. Virtually all animal cells require cholesterol, which they acquire through synthesis or uptake, but only the liver can degrade cholesterol. The ABCA1 gene product regulates the rate-controlling step in the removal of cellular cholesterol: the efflux of cellular cholesterol and phospholipids to an apolipoprotein acceptor. Mutations in ABCA1, as seen in Tangier disease, result in accumulation of cellular cholesterol, reduced plasma high-density lipoprotein cholesterol, and increased risk for coronary artery disease. To date, more than 100 coding variants have been identified in ABCA1, and these variants result in a broad spectrum of biochemical and clinical phenotypes. Here we review genetic variation in ABCA1 and its critical role in cholesterol metabolism and atherosclerosis in the general population.
Collapse
Affiliation(s)
- Liam R Brunham
- Center for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, V6T 1Z4 British Columbia
| | | | | |
Collapse
|
95
|
Holvoet P, Davey PC, De Keyzer D, Doukouré M, Deridder E, Bochaton-Piallat ML, Gabbiani G, Beaufort E, Bishay K, Andrieux N, Benhabilès N, Marguerie G. Oxidized low-density lipoprotein correlates positively with toll-like receptor 2 and interferon regulatory factor-1 and inversely with superoxide dismutase-1 expression: studies in hypercholesterolemic swine and THP-1 cells. Arterioscler Thromb Vasc Biol 2006; 26:1558-65. [PMID: 16690872 DOI: 10.1161/01.atv.0000226553.01555.02] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidized low-density lipoprotein (LDL) is associated with cardiovascular disease. Macrophages contribute to LDL oxidation, and oxidized LDL (oxLDL) affects macrophage function. We searched for the strongest gene correlates of oxLDL in macrophages in coronary plaques and studied the effect of oxLDL on their expression in THP-1 cells. METHODS AND RESULTS Gene expression in macrophages isolated from coronary plaque macrophages from hypercholesterolemic swine was measured on Agilent Human cDNA microarrays. Compared with a universal reference, 1653 transcripts were deregulated. The expression of 11 genes correlated positively and the expression of 5 genes correlated negatively with plaque oxLDL. Interferon regulatory factor-1 (IRF1; R2 = 0.69) and toll-like receptor 2 (TLR2; R2 = 0.18) were the strongest positive correlates of oxLDL. Superoxide dismutase 1 (SOD1) was the strongest inverse correlate of oxLDL (R2 = 0.57). Immunohistochemical analysis showed colocalization of IRF1, TLR2, and SOD1 protein in macrophages and confirmed the RNA expression data. OxLDL-induced foam cell formation in THP-1 macrophages was associated with increased expression of IRF1 and TLR2 and decreased expression of SOD1. CONCLUSIONS Our data support the hypothesis that oxLDL is a proinflammatory stimulus that induces the expression of TLR2 and IRF1, 2 important gene regulators of innate immune response, and inhibits the expression of the antioxidant SOD1.
Collapse
Affiliation(s)
- Paul Holvoet
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Herestraat 49, PB 705, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dorfman SE, Lichtenstein AH. Dietary fatty acids differentially modulate messenger RNA abundance of low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and microsomal triglyceride transfer protein in Golden-Syrian hamsters. Metabolism 2006; 55:635-41. [PMID: 16631440 DOI: 10.1016/j.metabol.2005.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 12/09/2005] [Indexed: 12/16/2022]
Abstract
Dietary fatty acids modulate plasma and intracellular cholesterol concentrations. Circulating non-high-density lipoprotein cholesterol (nHDL-C) concentration is determined by rates of hepatic very low-density lipoprotein assembly and secretion, and clearance of subsequent metabolic products. The effect of dietary fat (butter, traditional margarine, soybean oil, and canola oil) was assessed with respect to plasma lipids, hepatic lipid composition, and messenger RNA (mRNA) abundance of low-density lipoprotein (LDL) receptor, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, sterol regulatory element-binding protein (SREBP) 2, and microsomal triglyceride transfer protein (MTP) in the Golden-Syrian hamster (Charles River Laboratories, Wilmington, MA). Hamsters were fed with a nonpurified diet (6.25 fat g/100 g) with 0.1 g cholesterol/100 g (control diet) or control diet with an additional 10 g experimental fat/100 g for 12 weeks. Hamsters fed with the control diet, unsaturated fats (canola and soybean oils), and margarine, relative to butter, had significantly lower total cholesterol and nHDL-C and triglyceride concentrations. Additional dietary fat, regardless of fatty acid profile, resulted in higher hepatic cholesterol concentrations. In contrast, relative to the control diet-, butter-, or margarine-fed hamsters, these changes were associated with a 4- and 8-fold higher LDL receptor and 5- and 9-fold higher SREBP mRNA abundance, in hamsters fed with canola and soybean oils, respectively. MTP mRNA, a marker of very low-density lipoprotein particle formation, was higher in canola- and soybean oil-fed hamsters relative to the control diet-fed hamsters, although differences were modest. These results suggest that the substitution of canola and soybean oils for butter results in lower nHDL-C concentrations that may be related to increased mRNA abundance of the LDL receptor, SREBP-2, and MTP genes.
Collapse
Affiliation(s)
- Suzanne E Dorfman
- Cardiovascular Nutrition Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | |
Collapse
|
97
|
Lambert G, Krempf M, Costet P. PCSK9: a promising therapeutic target for dyslipidemias? Trends Endocrinol Metab 2006; 17:79-81. [PMID: 16487721 DOI: 10.1016/j.tem.2006.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 01/25/2006] [Accepted: 02/02/2006] [Indexed: 11/25/2022]
Abstract
PCSK9 is the third gene to be implicated in autosomal dominant hypercholesterolemia. The recent discovery of mutations in PCSK9 protein associated with low plasma low-density lipoprotein in humans, the characterization of PCSK9-deficient mice hypersensitive to statins and the severely pathological phenotype of D374Y PCSK9-mutated patients shed a new light on this gene: is it a promising therapeutic target for dyslipidemias?
Collapse
Affiliation(s)
- Gilles Lambert
- University of Nantes, Medical School, INSERM U539, CHU Hôtel-Dieu, 3(e) Nord, 1 Place Alexis Ricordeau, F-44093 Nantes cedex 1, France.
| | | | | |
Collapse
|
98
|
Holvoet P, Macy E, Landeloos M, Jones D, Jenny NS, Nancy JS, Van de Werf F, Tracy RP. Analytical Performance and Diagnostic Accuracy of Immunometric Assays for the Measurement of Circulating Oxidized LDL. Clin Chem 2006; 52:760-4. [PMID: 16497937 DOI: 10.1373/clinchem.2005.064337] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Oxidized LDL (ox-LDL) plays an important role in the pathogenesis of coronary heart disease (CHD). Several tests for circulating ox-LDL have been published. We believe it is critical to carefully evaluate these assays because small differences in performance may have profound effects when results are compared; we therefore compared the analytical and clinical performances of 2 assays: one developed in our laboratory and a commercial assay (Mercodia) that uses the same monoclonal antibody (4E6).
Methods: We determined the variance of ox-LDL in both tests, including its longitudinal stability (n = 225; 3 time points per person) and its diagnostic accuracy, by ROC analysis of 95 consecutive CHD patients and 20 controls.
Results: The between-person variability was 77% for the in-house assay (with the remaining 23% being within-person and analytical variance) and 74% for the commercial assay. For comparison, previously reported values were 66% for high-sensitivity C-reactive protein and 82% for total cholesterol. The areas under the curves for CHD in the 2 assays were identical (0.85). The odds ratios (logistic regression) for CHD among persons with high ox-LDL (≥15 mg/L) compared with persons with low ox-LDL were not different: 4.3 (95% confidence interval, 1.4–12) for the in-house assay and 3.3 (1.1–10) for the commercial assay.
Conclusions: The longitudinal stability of ox-LDL, as assessed by multiple measures in people over time, is similar to that of total cholesterol and high-sensitivity C-reactive protein. Both assays tested similarly distinguish between healthy controls and CHD patients.
Collapse
Affiliation(s)
- Paul Holvoet
- Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Fan CL, Qian Y, Wo XD, Yan J, Gao LP. [Effect of curcumin on the gene expression of low density lipoprotein receptors]. Chin J Integr Med 2006; 11:201-4. [PMID: 16181535 DOI: 10.1007/bf02836505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the molecular mechanisms and effective target points of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. METHODS Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of DiI labeled LDL uptake by flow cytometer. RESULTS It was found for the first time that 10 micromol/L-50 micromol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. CONCLUSION One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.
Collapse
Affiliation(s)
- Chun-lei Fan
- Faculty of Life Science, Zhejiang College of Traditional Chinese Medicine, Hangzhou 310053, China.
| | | | | | | | | |
Collapse
|
100
|
Aitken M, Metcalfe S. The Social Imperative for Community Genetic Screening: An Australian Perspective. THE MORAL, SOCIAL, AND COMMERCIAL IMPERATIVES OF GENETIC TESTING AND SCREENING 2006. [DOI: 10.1007/978-1-4020-4619-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|