51
|
Aziz M, Wang X, Tripathi A, Bankaitis VA, Chapman KD. Structural analysis of a plant fatty acid amide hydrolase provides insights into the evolutionary diversity of bioactive acylethanolamides. J Biol Chem 2019; 294:7419-7432. [PMID: 30894416 PMCID: PMC6509493 DOI: 10.1074/jbc.ra118.006672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/20/2019] [Indexed: 01/09/2023] Open
Abstract
N-Acylethanolamines (NAEs) are fatty acid derivatives that in animal systems include the well-known bioactive metabolites of the endocannabinoid signaling pathway. Plants use NAE signaling as well, and these bioactive molecules often have oxygenated acyl moieties. Here, we report the three-dimensional crystal structures of the signal-terminating enzyme fatty acid amide hydrolase (FAAH) from Arabidopsis in its apo and ligand-bound forms at 2.1- and 3.2-Å resolutions, respectively. This plant FAAH structure revealed features distinct from those of the only other available FAAH structure (rat). The structures disclosed that although catalytic residues are conserved with the mammalian enzyme, AtFAAH has a more open substrate-binding pocket that is partially lined with polar residues. Fundamental differences in the organization of the membrane-binding "cap" and the membrane access channel also were evident. In accordance with the observed structural features of the substrate-binding pocket, kinetic analysis showed that AtFAAH efficiently uses both unsubstituted and oxygenated acylethanolamides as substrates. Moreover, comparison of the apo and ligand-bound AtFAAH structures identified three discrete sets of conformational changes that accompany ligand binding, suggesting a unique "squeeze and lock" substrate-binding mechanism. Using molecular dynamics simulations, we evaluated these conformational changes further and noted a partial unfolding of a random-coil helix within the region 531-537 in the apo structure but not in the ligand-bound form, indicating that this region likely confers plasticity to the substrate-binding pocket. We conclude that the structural divergence in bioactive acylethanolamides in plants is reflected in part in the structural and functional properties of plant FAAHs.
Collapse
Affiliation(s)
- Mina Aziz
- From the BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203 and
| | - Xiaoqiang Wang
- From the BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203 and
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Kent D Chapman
- From the BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203 and
| |
Collapse
|
52
|
Sabatucci A, Simonetti M, Tortolani D, Angelucci CB, Dainese E, Maccarrone M. Role of Steroids on the Membrane Binding Ability of Fatty Acid Amide Hydrolase. Cannabis Cannabinoid Res 2019; 4:42-50. [PMID: 30944869 PMCID: PMC6446164 DOI: 10.1089/can.2018.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that gets in contact with a lipophilic substrate in the lipid bilayer, and then cleaves it into water soluble products. FAAH plays a critical role in modulating in vivo content and biological activity of endocannabinoids (eCBs), and its function is affected by membrane lipids. Increasing evidence suggests that also steroids can modulate endocannabinoid signaling, both in the central nervous system and at the periphery. Methods: In this study, we interrogated the effect of six steroids with relevant biological activity (testosterone, hydrocortisone, estradiol, pregnenolone, progesterone, and cortisone) on the membrane binding ability of rat FAAH. The experimental data analysis obtained by Fluorescence Resonance Energy Transfer Spectroscopy was paralleled by computational docking analysis. Results: Our data revealed distinct effects of the different steroids on the interaction of rat FAAH with model membranes. Among them, pregnenolone was found to be the most effective in raising rat FAAH affinity for model membranes. A possible binding pocket for steroid molecules was identified by docking analysis in the membrane-embedded region of the enzyme; such a pocket could account for the observed increase of the membrane affinity in the presence of the tested molecules. Conclusions: Overall, the results point to steroids as new regulators of FAAH interaction with membranes, which may impact the biological activity of eCBs.
Collapse
Affiliation(s)
- Annalaura Sabatucci
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Daniel Tortolani
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Enrico Dainese
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.,European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
53
|
Bhuniya D, Kharul RK, Hajare A, Shaikh N, Bhosale S, Balwe S, Begum F, De S, Athavankar S, Joshi D, Madgula V, Joshi K, Raje AA, Meru AV, Magdum A, Mookhtiar KA, Barbhaiya R. Discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett 2019; 29:238-243. [DOI: 10.1016/j.bmcl.2018.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
54
|
Allen KN, Entova S, Ray LC, Imperiali B. Monotopic Membrane Proteins Join the Fold. Trends Biochem Sci 2019; 44:7-20. [PMID: 30337134 PMCID: PMC6309722 DOI: 10.1016/j.tibs.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
55
|
Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: Synthesis and evaluation. Biomed Pharmacother 2018; 107:1611-1623. [DOI: 10.1016/j.biopha.2018.08.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
|
56
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
57
|
Kiss LE, Beliaev A, Ferreira HS, Rosa CP, Bonifácio MJ, Loureiro AI, Pires NM, Palma PN, Soares-da-Silva P. Discovery of a Potent, Long-Acting, and CNS-Active Inhibitor (BIA 10-2474) of Fatty Acid Amide Hydrolase. ChemMedChem 2018; 13:2177-2188. [PMID: 30113139 PMCID: PMC6582431 DOI: 10.1002/cmdc.201800393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Indexed: 11/06/2022]
Abstract
Fatty acid amide hydrolase (FAAH) can be targeted for the treatment of pain associated with various medical conditions. Herein we report the design and synthesis of a novel series of heterocyclic-N-carboxamide FAAH inhibitors that have a good alignment of potency, metabolic stability and selectivity for FAAH over monoacylglycerol lipase (MAGL) and carboxylesterases (CEs). Lead optimization efforts carried out with benzotriazolyl- and imidazolyl-N-carboxamide series led to the discovery of clinical candidate 8 l (3-(1-(cyclohexyl(methyl)carbamoyl)-1H-imidazol-4-yl)pyridine 1-oxide; BIA 10-2474) as a potent and long-acting inhibitor of FAAH. However, during a Phase I clinical trial with compound 8 l, unexpected and unpredictable serious neurological adverse events occurred, affecting five healthy volunteers, including the death of one subject.
Collapse
Affiliation(s)
- László E Kiss
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Alexandre Beliaev
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Humberto S Ferreira
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Carla P Rosa
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Maria João Bonifácio
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Ana I Loureiro
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Nuno M Pires
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - P Nuno Palma
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Patrício Soares-da-Silva
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal.,MedInUp-Center for Drug Discovery and Innovative Medicines, University of Porto, Praça Gomes Teixeira, 4099-002, Porto, Portugal
| |
Collapse
|
58
|
Brindisi M, Borrelli G, Brogi S, Grillo A, Maramai S, Paolino M, Benedusi M, Pecorelli A, Valacchi G, Di Cesare Mannelli L, Ghelardini C, Allarà M, Ligresti A, Minetti P, Campiani G, di Marzo V, Butini S, Gemma S. Development of Potent Inhibitors of Fatty Acid Amide Hydrolase Useful for the Treatment of Neuropathic Pain. ChemMedChem 2018; 13:2090-2103. [DOI: 10.1002/cmdc.201800397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Giuseppe Borrelli
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Marco Paolino
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology; University of Ferrara; Via Borsari 46 441212 Ferrara Italy
| | - Alessandra Pecorelli
- Department of Animal Science; North Carolina State University; NC Research Campus, PHHI Building, 600 Laureate Way Kannapolis NC 28081 USA
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology; University of Ferrara; Via Borsari 46 441212 Ferrara Italy
- Department of Animal Science; North Carolina State University; NC Research Campus, PHHI Building, 600 Laureate Way Kannapolis NC 28081 USA
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology; Drug Research and Child Health; Section of Pharmacology and Toxicology (NEUROFARBA); University of Florence; Viale G. Pieraccini, 6 50139 Firenze Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology; Drug Research and Child Health; Section of Pharmacology and Toxicology (NEUROFARBA); University of Florence; Viale G. Pieraccini, 6 50139 Firenze Italy
| | - Marco Allarà
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
- EPITECH Group SpA; Via Egadi 7 20144 Milano Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
| | | | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
- Département de Médecine; Université Laval; 1050, Avenue de la Médecine Québec City QC G1V 0A6 Canada
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| |
Collapse
|
59
|
Spadoni G, Bedini A, Furiassi L, Mari M, Mor M, Scalvini L, Lodola A, Ghidini A, Lucini V, Dugnani S, Scaglione F, Piomelli D, Jung KM, Supuran CT, Lucarini L, Durante M, Sgambellone S, Masini E, Rivara S. Identification of Bivalent Ligands with Melatonin Receptor Agonist and Fatty Acid Amide Hydrolase (FAAH) Inhibitory Activity That Exhibit Ocular Hypotensive Effect in the Rabbit. J Med Chem 2018; 61:7902-7916. [DOI: 10.1021/acs.jmedchem.8b00893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Lucia Furiassi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Michele Mari
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A I-43124 Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A I-43124 Parma, Italy
| | - Andrea Ghidini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A I-43124 Parma, Italy
| | - Valeria Lucini
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Silvana Dugnani
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Francesco Scaglione
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Daniele Piomelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A I-43124 Parma, Italy
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697, United States
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697, United States
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, via Ugo Shiff 6, I-50019 Sesto Fiorentino (FI), Italy
| | - Laura Lucarini
- Dipartimento NEUROFARBA, Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale G. Pieraccini 6, I-50019 Firenze, Italy
| | - Mariaconcetta Durante
- Dipartimento NEUROFARBA, Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale G. Pieraccini 6, I-50019 Firenze, Italy
| | - Silvia Sgambellone
- Dipartimento NEUROFARBA, Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale G. Pieraccini 6, I-50019 Firenze, Italy
| | - Emanuela Masini
- Dipartimento NEUROFARBA, Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale G. Pieraccini 6, I-50019 Firenze, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A I-43124 Parma, Italy
| |
Collapse
|
60
|
Dato FM, Sheikh M, Uhl RZ, Schüller AW, Steinkrüger M, Koch P, Neudörfl JM, Gütschow M, Goldfuss B, Pietsch M. ω-Phthalimidoalkyl Aryl Ureas as Potent and Selective Inhibitors of Cholesterol Esterase. ChemMedChem 2018; 13:1833-1847. [PMID: 30004170 DOI: 10.1002/cmdc.201800388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Indexed: 11/09/2022]
Abstract
Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure-activity relationship study of a small library of ω-phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5-bis(trifluoromethyl)phenyl group and the aromatic character of the ω-phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so-optimized compounds 2 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(3-(1,3-dioxoisoindolin-2-yl)propyl)urea] and 21 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(1,3-dioxoisoindolin-2-yl)butyl)urea] exhibited dissociation constants (Ki ) of 1-19 μm on the two CEases and showed either a competitive (2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases-monoacylglycerol lipase and fatty acid amide hydrolase-were inhibited by ω-phthalimidoalkyl aryl ureas to a lesser extent.
Collapse
Affiliation(s)
- Florian M Dato
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany.,Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Miriam Sheikh
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Rocky Z Uhl
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Alexandra W Schüller
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany.,Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Michaela Steinkrüger
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Peter Koch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Jörg-Martin Neudörfl
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| |
Collapse
|
61
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
62
|
Kodani SD, Bhakta S, Hwang SH, Pakhomova S, Newcomer ME, Morisseau C, Hammock BD. Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 2018; 28:762-768. [PMID: 29366648 DOI: 10.1016/j.bmcl.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
Abstract
Multi-target inhibitors have become increasing popular as a means to leverage the advantages of poly-pharmacology while simplifying drug delivery. Here, we describe dual inhibitors for soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH), two targets known to synergize when treating inflammatory and neuropathic pain. The structure activity relationship (SAR) study described herein initially started with t-TUCB (trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid), a potent sEH inhibitor that was previously shown to weakly inhibit FAAH. Inhibitors with a 6-fold increase of FAAH potency while maintaining high sEH potency were developed by optimization. Interestingly, compared to most FAAH inhibitors that inhibit through time-dependent covalent modification, t-TUCB and related compounds appear to inhibit FAAH through a time-independent, competitive mechanism. These inhibitors are selective for FAAH over other serine hydrolases. In addition, FAAH inhibition by t-TUCB appears to be higher in human FAAH over other species; however, the new dual sEH/FAAH inhibitors have improved cross-species potency. These dual inhibitors may be useful for future studies in understanding the therapeutic application of dual sEH/FAAH inhibition.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, United States
| | - Saavan Bhakta
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, United States
| | - Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70809, United States
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70809, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, United States.
| |
Collapse
|
63
|
Pavlopoulos S, Pelekoudas DN, Benchama O, Rawlins CM, Agar JN, West JM, Malamas M, Zvonok N, Makriyannis A. Secretion, isotopic labeling and deglycosylation of N-acylethanolamine acid amidase for biophysical studies. Protein Expr Purif 2017; 145:108-117. [PMID: 29253688 DOI: 10.1016/j.pep.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/24/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) enzyme with a catalytic cysteine residue that has highest activity at acidic pH. The most prominent substrate hydrolyzed is palmitoylethanolamine (PEA), which regulates inflammation. Inhibitors of NAAA have been shown to increase endogenous levels of PEA, and are of interest as potential treatments for inflammatory disorders and other maladies. Currently, there are no X-ray or NMR structures of NAAA available to inform medicinal chemistry. Additionally, there are a limited number of enzyme structures available that are within the Ntn-hydrolase family, have a catalytic cysteine residue, and have a high sequence homology. For these reasons, we developed expression and purification methods for the production of enzyme samples amenable to structural characterization. Mammalian cells are necessary for post-translational processing, including signal sequence cleavage and glycosylation, that are required for a correctly folded zymogen before conversion to active, and mature enzyme. We have identified an expression construct, mammalian cell line, specific media and additives to express and secrete hNAAA zymogen and we further optimized propagation conditions and show this secretion method is suitable for isotopic labeling of the protein. We refined purification methods to achieve a high degree of protein purity potentially suited to crystallography. Glycosylated proteins can present challenges to biophysical methods. Therefore we deglycosylate the enzyme and show that the activity of the mature enzyme is not affected by deglycosylation.
Collapse
Affiliation(s)
- Spiro Pavlopoulos
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States.
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Othman Benchama
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Catherine M Rawlins
- Barnett Institute of Chemical and Biological Analysis Northeastern University, Boston, MA, 02115-5000, United States
| | - Jeffrey N Agar
- Barnett Institute of Chemical and Biological Analysis Northeastern University, Boston, MA, 02115-5000, United States; Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Jay M West
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Michael Malamas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Nikolai Zvonok
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States; King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| |
Collapse
|
64
|
Molecular Targets of the Phytocannabinoids: A Complex Picture. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:103-131. [PMID: 28120232 DOI: 10.1007/978-3-319-45541-9_4] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects. These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L. To date, over 120 phytocannabinoids have been isolated from Cannabis. For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets. This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.
Collapse
|
65
|
Maccarrone M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci 2017; 10:166. [PMID: 28611591 PMCID: PMC5447297 DOI: 10.3389/fnmol.2017.00166] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC) was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB)” was identified as N-arachidonoylethanolamine (or anandamide (AEA)), and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of RomeRome, Italy.,European Center for Brain Research, IRCCS Santa Lucia FoundationRome, Italy
| |
Collapse
|
66
|
Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid Turnover. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:31-66. [PMID: 28826539 DOI: 10.1016/bs.apha.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, we consider the biosynthetic, hydrolytic, and oxidative metabolism of the endocannabinoids anandamide and 2-arachidonoylglycerol. We describe the enzymes associated with these events and their characterization. We identify the inhibitor profile for these enzymes and the status of therapeutic exploitation, which to date has been limited to clinical trials for fatty acid amide hydrolase inhibitors. To bring the review to a close, we consider whether point block of a single enzyme is likely to be the most successful approach for therapeutic exploitation of the endocannabinoid system.
Collapse
Affiliation(s)
| | - Patrick Doherty
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | | |
Collapse
|
67
|
Adediran SA, Wang PF, Shilabin AG, Baron CA, McLeish MJ, Pratt RF. Specificity and mechanism of mandelamide hydrolase catalysis. Arch Biochem Biophys 2017; 618:23-31. [PMID: 28129982 DOI: 10.1016/j.abb.2017.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
Abstract
The best-studied amidase signature (AS) enzyme is probably fatty acid amide hydrolase (FAAH). Closely related to FAAH is mandelamide hydrolase (MAH), whose substrate specificity and mechanism of catalysis are described in this paper. First, we developed a convenient chromogenic substrate, 4-nitrophenylacetamide, for MAH. The lack of reactivity of MAH with the corresponding ethyl ester confirmed the very limited size of the MAH leaving group site. The reactivity of MAH with 4-nitrophenyl acetate and methyl 4-nitrophenyl carbonate, therefore, suggested formation of an "inverse" acyl-enzyme where the small acyl-group occupies the normal leaving group site. We have interpreted the specificity of MAH for phenylacetamide substrates and small leaving groups in terms of its active site structure, using a homology model based on a FAAH crystal structure. The relevant structural elements were compared with those of FAAH. Phenylmethylboronic acid is a potent inhibitor of MAH (Ki = 27 nM), presumably because it forms a transition state analogue structure with the enzyme. O-Acyl hydroxamates were not irreversible inactivators of MAH but some were found to be transient inhibitors.
Collapse
Affiliation(s)
- S A Adediran
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Pan-Fen Wang
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
| | - Abbas G Shilabin
- Department of Chemistry, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Charles A Baron
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Michael J McLeish
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - R F Pratt
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
68
|
Sunduru N, Svensson M, Cipriano M, Marwaha S, Andersson CD, Svensson R, Fowler CJ, Elofsson M. N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors. J Enzyme Inhib Med Chem 2017; 32:513-521. [PMID: 28114819 PMCID: PMC6009913 DOI: 10.1080/14756366.2016.1265520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35 µM.
Collapse
Affiliation(s)
- Naresh Sunduru
- a Department of Chemistry , Umeå University , Umeå , Sweden
| | - Mona Svensson
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Mariateresa Cipriano
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Sania Marwaha
- a Department of Chemistry , Umeå University , Umeå , Sweden
| | | | - Richard Svensson
- c Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling platform (UDOPP) , Uppsala University , Uppsala , Sweden
| | - Christopher J Fowler
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | | |
Collapse
|
69
|
Qiu Y, Ren J, Ke H, Zhang Y, Gao Q, Yang L, Lu C, Li Y. Design and synthesis of uracil urea derivatives as potent and selective fatty acid amide hydrolase inhibitors. RSC Adv 2017. [DOI: 10.1039/c7ra02237a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is one of the key enzymes involved in the biological degradation of endocannabinoids, especially anandamide.
Collapse
Affiliation(s)
- Yan Qiu
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Jie Ren
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Hongwei Ke
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
- College of Ocean and Earth Science
| | - Yang Zhang
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Qi Gao
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Longhe Yang
- Engineering Research Centre of Marine Biological Resource Comprehensive Utilization
- Third Institute of Oceanography
- State Oceanic Administration
- Xiamen 361102
- P. R. China
| | - Canzhong Lu
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
| | - Yuhang Li
- Medical College
- Xiamen University
- Xiamen
- P. R. China
- Xiamen Institute of Rare-earth Materials
| |
Collapse
|
70
|
Cristino L, Imperatore R, Di Marzo V. Techniques for the Cellular and Subcellular Localization of Endocannabinoid Receptors and Enzymes in the Mammalian Brain. Methods Enzymol 2017; 593:61-98. [PMID: 28750816 DOI: 10.1016/bs.mie.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
71
|
Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamentivorans ZJB14001. Protein Expr Purif 2017; 129:60-68. [DOI: 10.1016/j.pep.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
72
|
Preface. Methods Enzymol 2017; 593:xvii-xxiv. [DOI: 10.1016/s0076-6879(17)30257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Jakowiecki J, Filipek S. Hydrophobic Ligand Entry and Exit Pathways of the CB1 Cannabinoid Receptor. J Chem Inf Model 2016; 56:2457-2466. [DOI: 10.1021/acs.jcim.6b00499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jakub Jakowiecki
- Faculty of Chemistry, Biological
and Chemical Research Centre, University of Warsaw, ul. Pasteura
1, 02-093 Warsaw, Poland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological
and Chemical Research Centre, University of Warsaw, ul. Pasteura
1, 02-093 Warsaw, Poland
| |
Collapse
|
74
|
Akiyama T, Ishii M, Takuwa A, Oinuma KI, Sasaki Y, Takaya N, Yajima S. Structural basis of the substrate recognition of hydrazidase isolated from Microbacterium sp. strain HM58-2, which catalyzes acylhydrazide compounds as its sole carbon source. Biochem Biophys Res Commun 2016; 482:1007-1012. [PMID: 27908731 DOI: 10.1016/j.bbrc.2016.11.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 11/26/2022]
Abstract
Hydrazidase was an enzyme that remained unidentified for a half century. However, recently, it was purified, and its encoding gene was cloned. Microbacterium sp. strain HM58-2 grows with acylhydrazides as its sole carbon source; it produces hydrazidase and degrades acylhydrazides to acetate and hydrazides. The bacterial hydrazidase belongs to the amidase signature enzyme family and contains a Ser-cisSer-Lys catalytic motif. The condensation of hydrazine and carbonic acid produces various hydrazides, some of which are raw materials for synthesizing pharmaceuticals and other useful chemicals. Although natural hydrazide compounds have been identified, the metabolic systems for hydrazides are not fully understood. Here, we report the crystal structure of hydrazidase from Microbacterium sp. strain HM58-2. The active site was revealed to consist of a Ser-cisSer-Lys catalytic triad, in which Ser179 forms a covalent bond with a carbonyl carbon of the substrate. 4-Hydroxybenzoic acid hydrazide bound to the S179A mutant, showing an oxyanion hole composed of the three backbone amide groups. Furthermore, H336 in the non-conserved region in the amidase family may define the substrate specificity, which was confirmed by mutation analysis. A wild-type apoenzyme structure revealed an unidentified molecule covalently bound to S179, representing a tetrahedral intermediate.
Collapse
Affiliation(s)
- Tomonori Akiyama
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Misaki Ishii
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Takuwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8572, Japan
| | - Ken-Ichi Oinuma
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8572, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8572, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
75
|
Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem 2016; 60:4-46. [DOI: 10.1021/acs.jmedchem.6b00538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Tuo
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Régis Millet
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Philippe Chavatte
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|
76
|
Rodriguez-Sanchez IP, Guindon J, Ruiz M, Tejero ME, Hubbard G, Martinez-de-Villarreal LE, Barrera-Saldaña HA, Dick EJ, Comuzzie AG, Schlabritz-Loutsevitch NE. The endocannabinoid system in the baboon (Papio spp.) as a complex framework for developmental pharmacology. Neurotoxicol Teratol 2016; 58:23-30. [PMID: 27327781 PMCID: PMC5897907 DOI: 10.1016/j.ntt.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The consumption of marijuana (exogenous cannabinoid) almost doubled in adults during last decade. Consumption of exogenous cannabinoids interferes with the endogenous cannabinoid (or "endocannabinoid" (eCB)) system (ECS), which comprises N-arachidonylethanolamide (anandamide, AEA), 2-arachidonoyl glycerol (2-AG), endocannabinoid receptors (cannabinoid receptors 1 and 2 (CB1R and CB2R), encoded by CNR1 and CNR2, respectively), and synthesizing/degrading enzymes (FAAH, fatty-acid amide hydrolase; MAGL, monoacylglycerol lipase; DAGL-α, diacylglycerol lipase-alpha). Reports regarding the toxic and therapeutic effects of pharmacological compounds targeting the ECS are sometimes contradictory. This may be caused by the fact that structure of the eCBs varies in the species studied. OBJECTIVES First: to clone and characterize the cDNAs of selected members of ECS in a non-human primate (baboon, Papio spp.), and second: to compare those cDNA sequences to known human structural variants (single nucleotide polymorphisms and haplotypes). MATERIALS AND METHODS Polymerase chain reaction-amplified gene products from baboon tissues were transformed into Escherichia coli. Amplicon-positive clones were sequenced, and the obtained sequences were conceptually translated into amino-acid sequences using the genetic code. RESULTS Among the ECS members, CNR1 was the best conserved gene between humans and baboons. The phenotypes associated with mutations in the untranslated regions of this gene in humans have not been described in baboons. One difference in the structure of CNR2 between humans and baboons was detected in the region with the only known clinically relevant polymorphism in a human receptor. All of the differences in the amino-acid structure of DAGL-α between humans and baboons were located in the hydroxylase domain, close to phosphorylation sites. None of the differences in the amino-acid structure of MAGL observed between baboons and humans were located in the area critical for enzyme function. CONCLUSION The evaluation of the data, obtained in non-human primate model of cannabis-related developmental exposure should take into consideration possible evolutionary-determined species-specific differences in the CB1R expression, CB2R transduction pathway, and FAAH and DAGLα substrate-enzyme interactions.
Collapse
Affiliation(s)
- Iram P Rodriguez-Sanchez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Genética, Monterrey, Nuevo León, Mexico
| | - Josee Guindon
- Department of Pharmacology and Neurobiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marco Ruiz
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
| | - M Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | - Gene Hubbard
- Department of Pathology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Hugo A Barrera-Saldaña
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, Mexico
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | |
Collapse
|
77
|
Yue T, Li S, Xu Y, Zhang X, Huang F. Interplay between Nanoparticle Wrapping and Clustering of Inner Anchored Membrane Proteins. J Phys Chem B 2016; 120:11000-11009. [DOI: 10.1021/acs.jpcb.6b08667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | - Xianren Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | | |
Collapse
|
78
|
Deutsch DG. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs). Front Pharmacol 2016; 7:370. [PMID: 27790143 PMCID: PMC5062061 DOI: 10.3389/fphar.2016.00370] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to be expected, this discovery raised the issues of AEA's synthesis and breakdown.
Collapse
Affiliation(s)
- Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
79
|
Mishra P, Kaur S, Sharma AN, Jolly RS. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid. PLoS One 2016; 11:e0159009. [PMID: 27391673 PMCID: PMC4938524 DOI: 10.1371/journal.pone.0159009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022] Open
Abstract
Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of our knowledge this is the first application of IaaH in production of industrially important molecules.
Collapse
Affiliation(s)
- Pradeep Mishra
- Department of Bioorganic Chemistry, CSIR-Institute of Microbial Technology, Sector 39, Chandigarh, India
| | - Suneet Kaur
- Department of Bioorganic Chemistry, CSIR-Institute of Microbial Technology, Sector 39, Chandigarh, India
| | - Amar Nath Sharma
- Department of Bioorganic Chemistry, CSIR-Institute of Microbial Technology, Sector 39, Chandigarh, India
| | - Ravinder S. Jolly
- Department of Bioorganic Chemistry, CSIR-Institute of Microbial Technology, Sector 39, Chandigarh, India
- * E-mail:
| |
Collapse
|
80
|
Montanari S, Scalvini L, Bartolini M, Belluti F, Gobbi S, Andrisano V, Ligresti A, Di Marzo V, Rivara S, Mor M, Bisi A, Rampa A. Fatty Acid Amide Hydrolase (FAAH), Acetylcholinesterase (AChE), and Butyrylcholinesterase (BuChE): Networked Targets for the Development of Carbamates as Potential Anti-Alzheimer's Disease Agents. J Med Chem 2016; 59:6387-406. [PMID: 27309570 DOI: 10.1021/acs.jmedchem.6b00609] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The modulation of the endocannabinoid system is emerging as a viable avenue for the treatment of neurodegeneration, being involved in neuroprotective and anti-inflammatory processes. In particular, indirectly enhancing endocannabinoid signaling to therapeutic levels through FAAH inhibition might be beneficial for neurodegenerative disorders such as Alzheimer's disease, effectively preventing or slowing the progression of the disease. Hence, in the search for a more effective treatment for Alzheimer's disease, in this paper, the multitarget-directed ligand paradigm was applied to the design of carbamates able to simultaneously target the recently proposed endocannabinoid system and the classic cholinesterase system, and achieve effective dual FAAH/cholinesterase inhibitors. Among the two series of synthesized compounds, while some derivatives proved to be extremely potent on a single target, compounds 9 and 19 were identified as effective dual FAAH/ChE inhibitors, with well-balanced nanomolar activities. Thus, 9 and 19 might be considered as new promising candidates for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Serena Montanari
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Laura Scalvini
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna , Corso d'Augusto 237, 47921 Rimini, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council , Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council , Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Silvia Rivara
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Marco Mor
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
81
|
Scarpelli R, Sasso O, Piomelli D. A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation. ChemMedChem 2016; 11:1242-51. [PMID: 26486424 PMCID: PMC4840092 DOI: 10.1002/cmdc.201500395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/10/2022]
Abstract
Pain states that arise from non-resolving inflammation, such as inflammatory bowel disease or arthritis, pose an unusually difficult challenge for therapy because of the complexity and heterogeneity of their underlying mechanisms. It has been suggested that key nodes linking interactive pathogenic pathways of non-resolving inflammation might offer novel targets for the treatment of inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the cyclooxygenase (COX)-mediated production of pain- and inflammation-inducing prostanoids, are a common first-line treatment for this condition, but their use is limited by mechanism-based side effects. The endogenous levels of anandamide, an endocannabinoid mediator with analgesic and tissue-protective functions, are regulated by fatty acid amide hydrolase (FAAH). This review outlines the pharmacological and chemical rationale for the simultaneous inhibition of COX and FAAH activities with designed multitarget agents. Preclinical studies indicate that such agents may combine superior anti-inflammatory efficacy with reduced toxicity.
Collapse
Affiliation(s)
- Rita Scarpelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Oscar Sasso
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
82
|
Pember SO, Mejia GL, Price TJ, Pasteris RJ. Piperidinyl thiazole isoxazolines: A new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties. Bioorg Med Chem Lett 2016; 26:2965-2973. [PMID: 27130358 PMCID: PMC4936272 DOI: 10.1016/j.bmcl.2016.02.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane anchored serine hydrolase that has a principle role in the metabolism of the endogenous cannabinoid anandamide. Docking studies using representative FAAH crystal structures revealed that compounds containing a novel piperidinyl thiazole isoxazoline core fit within the ligand binding domains. New potential FAAH inhibitors were designed and synthesized incorporating urea, carbamate, alkyldione and thiourea reactive centers as potential pharmacophores. A small library of candidate compounds (75) was then screened against human FAAH leading to the identification of new carbamate and urea based inhibitors (Ki=pM and nM, respectively). Representative carbamate and urea based chemotypes displayed slow, time dependent inhibition kinetics leading to enzyme inactivation which was slowly reversible. However, evidence indicated that features of the mechanism of inactivation differ between the two pharmacophore types. Selected compounds were also evaluated for analgesic activity in the mouse-tail flick test.
Collapse
Affiliation(s)
- Stephen O Pember
- E.I. Du Pont de Nemours and Company, Stine Haskell Research Center, 1090 Elkton Rd., Newark, DE 19711, USA.
| | - Galo L Mejia
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080, USA; University of Arizona, Department of Pharmacology, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080, USA; University of Arizona, Department of Pharmacology, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.
| | - Robert J Pasteris
- E.I. Du Pont de Nemours and Company, Stine Haskell Research Center, 1090 Elkton Rd., Newark, DE 19711, USA.
| |
Collapse
|
83
|
Wu ZM, Zheng RC, Zheng YG. Exploitation and characterization of three versatile amidase super family members from Delftia tsuruhatensis ZJB-05174. Enzyme Microb Technol 2016; 86:93-102. [DOI: 10.1016/j.enzmictec.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
84
|
Tuo W, Leleu-Chavain N, Barczyk A, Renault N, Lemaire L, Chavatte P, Millet R. Design, synthesis and biological evaluation of potent FAAH inhibitors. Bioorg Med Chem Lett 2016; 26:2701-5. [PMID: 27117424 DOI: 10.1016/j.bmcl.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 11/15/2022]
Abstract
A new series of 3-carboxamido-5-aryl-isoxazoles was designed, synthesized and evaluated for their biological activity. Different pharmacomodulations have been explored and the lipophilicity of these compounds was assessed. Investigation of the in vitro biological activity led to the identification of 5 compounds as potent FAAH inhibitors, their good FAAH inhibition capacity is probably correlated with their suitable lipophilicity. Specifically, compound 25 showed similar inhibition potency against FAAH in comparison with URB597, one of the most potent FAAH inhibitor known to date.
Collapse
Affiliation(s)
- Wei Tuo
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Natascha Leleu-Chavain
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Amélie Barczyk
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Nicolas Renault
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Lucas Lemaire
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Philippe Chavatte
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Régis Millet
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France.
| |
Collapse
|
85
|
Wang L, Yui J, Wang Q, Zhang Y, Mori W, Shimoda Y, Fujinaga M, Kumata K, Yamasaki T, Hatori A, Rotstein BH, Collier TL, Ran C, Vasdev N, Zhang MR, Liang SH. Synthesis and Preliminary PET Imaging Studies of a FAAH Radiotracer ([¹¹C]MPPO) Based on α-Ketoheterocyclic Scaffold. ACS Chem Neurosci 2016; 7:109-18. [PMID: 26505525 DOI: 10.1021/acschemneuro.5b00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is one of the principle enzymes for metabolizing endogenous cannabinoid neurotransmitters such as anandamide, and thus regulates endocannabinoid (eCB) signaling. Selective pharmacological blockade of FAAH has emerged as a potential therapy to discern the endogenous functions of anandamide-mediated eCB pathways in anxiety, pain, and addiction. Quantification of FAAH in the living brain by positron emission tomography (PET) would help our understanding of the endocannabinoid system in these conditions. While most FAAH radiotracers operate by an irreversible ("suicide") binding mechanism, a FAAH tracer with reversibility would facilitate quantitative analysis. We have identified and radiolabeled a reversible FAAH inhibitor, 7-(2-[(11)C]methoxyphenyl)-1-(5-(pyridin-2-yl)oxazol-2-yl)heptan-1-one ([(11)C]MPPO) in 13% radiochemical yield (nondecay corrected) with >99% radiochemical purity and 2 Ci/μmol (74 GBq/μmol) specific activity. The tracer showed moderate brain uptake (0.8 SUV) with heterogeneous brain distribution. However, blocking studies with a potent FAAH inhibitor URB597 demonstrated a low to modest specificity to the target. Measurement of lipophilicity, metabolite, and efflux pathway analysis were also performed to study the pharmacokinetic profile of [(11)C]MPPO. In all, we reported an efficient radiolabeling and preliminary evaluation of the first-in-class FAAH inhibitor [(11)C]MPPO with α-ketoheterocyclic scaffold.
Collapse
Affiliation(s)
- Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Joji Yui
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Qifan Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yiding Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Wakana Mori
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Benjamin H. Rotstein
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Advion BioSystems, 10 Brown Road, Suite 101, Ithaca, New York 14850, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ming-Rong Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
86
|
Brindisi M, Brogi S, Maramai S, Grillo A, Borrelli G, Butini S, Novellino E, Allarà M, Ligresti A, Campiani G, Di Marzo V, Gemma S. Harnessing the pyrroloquinoxaline scaffold for FAAH and MAGL interaction: definition of the structural determinants for enzyme inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra12524g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pharmacogenic pyrroloquinoxaline scaffold has been exploited for developing piperazine and 4-aminopiperidine carboxamides/carbamates as inhibitors of the endocannabinoids’ catabolic enzymes fatty acid amide hydrolase and monoacylglycerol lipase.
Collapse
|
87
|
Shoup TM, Bonab AA, Wilson AA, Vasdev N. Synthesis and preclinical evaluation of [¹⁸F]FCHC for neuroimaging of fatty acid amide hydrolase. Mol Imaging Biol 2015; 17:257-63. [PMID: 25273322 DOI: 10.1007/s11307-014-0789-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Fatty acid amide hydrolase (FAAH), a catabolic enzyme which regulates lipid transmitters in the endocannabinoid system, is an avidly sought therapeutic and positron emission tomography (PET) imaging target for studies involving addiction and neurological disorders. We report the synthesis of a new fluorine-18-labeled FAAH inhibitor, trans-3-(4, 5-dihydrooxazol-2-yl)phenyl-4-[(18)F]fluorocyclohexylcarbamate ([(18)F]FCHC), and its evaluation in rat brain. PROCEDURES The synthesis of [(18)F]FCHC was conducted via a 3-step, 1-pot reaction, resulting in uncorrected radiochemical yields between 10 and 20% (n = 5) relative to [(18)F]fluoride, with specific activities of >5 Ci/μmol at the end of the synthesis. The radiosynthesis was seamlessly automated using a commercial radiofluorination apparatus. Ex vivo biodistribution and preliminary PET imaging studies were carried out in male Sprague-Dawley rats. RESULTS Rat brain biodistribution at 2 min post-injection showed a standard uptake value of 4.6 ± 0.1 in the cortex, which increased to 7.8 ± 0.1 at 40 min. Pretreatment with the selective FAAH inhibitor URB597 reduced uptake of radioactivity in all brain regions by >90%, with 98 % blockade in the FAAH-rich cortex. PET imaging was consistent with biodistribution studies. CONCLUSIONS [(18)F]FCHC appears to be a highly sensitive (18)F-labeled radiotracer for imaging FAAH in the central nervous system, and these results warrant further imaging in nonhuman primates.
Collapse
Affiliation(s)
- Timothy M Shoup
- Division of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
88
|
Palermo G, Favia AD, Convertino M, De Vivo M. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition. ChemMedChem 2015; 11:1252-8. [PMID: 26593700 PMCID: PMC5063142 DOI: 10.1002/cmdc.201500507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/20/2022]
Abstract
The design of multitarget‐directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget‐directed ligand named ARN2508 (2‐[3‐fluoro‐4‐[3‐(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2‐arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti‐inflammatory agents that simultaneously act on FAAH and COX.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Angelo D Favia
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marino Convertino
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy. .,Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| |
Collapse
|
89
|
Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode. PLoS One 2015; 10:e0142711. [PMID: 26565710 PMCID: PMC4643906 DOI: 10.1371/journal.pone.0142711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/26/2015] [Indexed: 01/12/2023] Open
Abstract
Background Combined fatty acid amide hydrolase (FAAH) and cyclooxygenase (COX) inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here. Methodology/Principal Findings FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAHT488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R)- and (S)-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively), whereas the (S)-enantiomer of Ibu-AM5 (IC50 0.59 μM) was more potent than the (R)-enantiomer (IC50 5.7 μM). Multiple inhibition experiments indicated that both (R)-Flu-AM1 and (S)-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R)-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH. Conclusions/Significance The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors.
Collapse
|
90
|
Lodola A, Castelli R, Mor M, Rivara S. Fatty acid amide hydrolase inhibitors: a patent review (2009-2014). Expert Opin Ther Pat 2015; 25:1247-66. [PMID: 26413912 DOI: 10.1517/13543776.2015.1067683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a key enzyme responsible for the degradation of the endocannabinoid anandamide. FAAH inactivation is emerging as a strategy to treat several CNS and peripheral diseases, including inflammation and pain. The search for effective FAAH inhibitors has thus become a key focus in present drug discovery. AREAS COVERED Patents and patent applications published from 2009 to 2014 in which novel chemical classes are claimed to inhibit FAAH. EXPERT OPINION FAAH is a promising target for treating many disease conditions including pain, inflammation and mood disorders. In the last few years, remarkable efforts have been made to develop new FAAH inhibitors (either reversible and irreversible) characterized by excellent potency and selectivity, to complete the arsenal of tools for modulating FAAH activity. The failure of PF-04457845 in a Phase II study on osteoarthritis pain has not flattened the interest in FAAH inhibitors. New clinical trials on 'classical' FAAH inhibitors are now ongoing, and new strategies based on compounds with peculiar in vivo distribution (e.g., peripheral) or with multiple pharmacological activities (e.g., FAAH and COX) are under investigation and could boost the therapeutic potential of this class in the next future.
Collapse
Affiliation(s)
- Alessio Lodola
- a 1 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| | - Riccardo Castelli
- b 2 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| | - Marco Mor
- c 3 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy +39 0521 905059 ; +39 0521 905006 ;
| | - Silvia Rivara
- a 1 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| |
Collapse
|
91
|
Onyango MG, Beebe NW, Gopurenko D, Bellis G, Nicholas A, Ogugo M, Djikeng A, Kemp S, Walker PJ, Duchemin JB. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet Res 2015; 231:39-58. [PMID: 26408175 DOI: 10.1007/978-3-319-20825-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia. .,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, Victoria, 3216, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia. .,CSIRO Health & Biosecurity Ecosciences Precinct, 41, Boggo Road, Dutton Park, Queensland, 4102, Australia.
| | - David Gopurenko
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, New South Wales, 2650, Australia. .,Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Glenn Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, Northern Territory, 0812, Australia.
| | - Adrian Nicholas
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Moses Ogugo
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya. .,Biosciences eastern and central Africa - ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya.
| | - Steve Kemp
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Peter J Walker
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| | - Jean-Bernard Duchemin
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| |
Collapse
|
92
|
Chen K, Jih A, Kavaler ST, Lagakos WS, Oh D, Watkins SM, Kim JJ. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance. Am J Physiol Endocrinol Metab 2015; 309:E293-301. [PMID: 26058862 PMCID: PMC4525113 DOI: 10.1152/ajpendo.00045.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
Abstract
Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9-39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation.
Collapse
Affiliation(s)
- Katherine Chen
- Department of Pediatrics, University of California at San Diego, La Jolla, California
| | - Alice Jih
- Department of Pediatrics, University of California at San Diego, La Jolla, California
| | - Sarah T Kavaler
- Department of Pediatrics, University of California at San Diego, La Jolla, California
| | - William S Lagakos
- Department of Medicine, University of California at San Diego, La Jolla, California
| | - Dayoung Oh
- Department of Medicine, University of California at San Diego, La Jolla, California
| | | | - Jane J Kim
- Department of Pediatrics, University of California at San Diego, La Jolla, California; Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
93
|
Boileau I, Tyndale RF, Williams B, Mansouri E, Westwood DJ, Le Foll B, Rusjan PM, Mizrahi R, De Luca V, Zhou Q, Wilson AA, Houle S, Kish SJ, Tong J. The fatty acid amide hydrolase C385A variant affects brain binding of the positron emission tomography tracer [11C]CURB. J Cereb Blood Flow Metab 2015; 35:1237-40. [PMID: 26036940 PMCID: PMC4527995 DOI: 10.1038/jcbfm.2015.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/30/2015] [Indexed: 11/09/2022]
Abstract
The common functional single-nucleotide polymorphism (rs324420, C385A) of the endocannabinoid inactivating enzyme fatty acid amide hydrolase (FAAH) has been associated with anxiety disorder relevant phenotype and risk for addictions. Here, we tested whether the FAAH polymorphism affects in vivo binding of the FAAH positron emission tomography (PET) probe [(11)C]CURB ([(11)C-carbonyl]-6-hydroxy-[1,10-biphenyl]-3-yl cyclohexylcarbamate (URB694)). Participants (n=24) completed one [(11)C]CURB/PET scan and were genotyped for rs324420. Relative to C/C (58%), A-allele carriers (42%) had 23% lower [(11)C]CURB binding (λk3) in brain. We report evidence that the genetic variant rs324420 in FAAH is associated with measurable differences in brain FAAH binding as per PET [(11)C]CURB measurement.
Collapse
Affiliation(s)
- Isabelle Boileau
- 1] Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [4] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [5] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada [6] Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- 1] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada [3] Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda Williams
- 1] Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [4] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Esmaeil Mansouri
- 1] Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [4] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Duncan J Westwood
- 1] Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [4] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [5] Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Bernard Le Foll
- 1] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada [3] Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada [4] Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- 1] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- 1] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada [4] Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo De Luca
- 1] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada [3] Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Qian Zhou
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Alan A Wilson
- 1] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- 1] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- 1] Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [4] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada [5] Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada [6] Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Junchao Tong
- 1] Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [3] Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [4] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
94
|
Palermo G, Bauer I, Campomanes P, Cavalli A, Armirotti A, Girotto S, Rothlisberger U, De Vivo M. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets. PLoS Comput Biol 2015; 11:e1004231. [PMID: 26111155 PMCID: PMC4481349 DOI: 10.1371/journal.pcbi.1004231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. We describe a new structural enzymatic framework to regulate substrate specificity in lipid-degrading enzymes such as fatty acid amide hydrolase (FAAH), a key enzyme for the endocannabinoid lipid signaling that hydrolyzes a variety of lipids, however with different catalytic rates. The identified novel mechanism and key features for lipid selection in FAAH are then analysed in the context of other relevant lipid-degrading enzymes. Through the integration of microsecond-long molecular dynamics simulations with mutagenesis and kinetic experiments, our study suggests that structural flexibility, gating residues and multiple cavities in one catalytic site are keys to lipid selection in the endocannabinoid system. Our results suggest that the structural framework proposed here could likely be a general enzymatic strategy of other lipid-degrading enzymes to select the preferred lipid substrate within a broad spectrum of biologically active lipids. This new, and likely general, structural framework for lipid selection in FAAH could therefore now encourage additional experimental verifications of the role of ligand and structural flexibility, as regulated by key gating residues at the boundaries of multiple cavities forming a single catalytic site, as observed in several other lipid-degrading enzymes.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
| | - Inga Bauer
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pablo Campomanes
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| |
Collapse
|
95
|
Vacondio F, Bassi M, Silva C, Castelli R, Carmi C, Scalvini L, Lodola A, Vivo V, Flammini L, Barocelli E, Mor M, Rivara S. Amino Acid Derivatives as Palmitoylethanolamide Prodrugs: Synthesis, In Vitro Metabolism and In Vivo Plasma Profile in Rats. PLoS One 2015; 10:e0128699. [PMID: 26053855 PMCID: PMC4460047 DOI: 10.1371/journal.pone.0128699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/29/2015] [Indexed: 12/02/2022] Open
Abstract
Palmitoylethanolamide (PEA) has antinflammatory and antinociceptive properties widely exploited in veterinary and human medicine, despite its poor pharmacokinetics. Looking for prodrugs that could progressively release PEA to maintain effective plasma concentrations, we prepared carbonates, esters and carbamates at the hydroxyl group of PEA. Chemical stability (pH 7.4) and stability in rat plasma and liver homogenate were evaluated by in vitro assays. Carbonates and carbamates resulted too labile and too resistant in plasma, respectively. Ester derivatives, prepared by conjugating PEA with various amino acids, allowed to modulate the kinetics of PEA release in plasma and stability in liver homogenate. L-Val-PEA, with suitable PEA release in plasma, and D-Val-PEA, with high resistance to hepatic degradation, were orally administered to rats and plasma levels of prodrugs and PEA were measured at different time points. Both prodrugs showed significant release of PEA, but provided lower plasma concentrations than those obtained with equimolar doses of PEA. Amino-acid esters of PEA are a promising class to develop prodrugs, even if they need further chemical optimization.
Collapse
Affiliation(s)
- Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Michele Bassi
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Claudia Silva
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Riccardo Castelli
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Caterina Carmi
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Valentina Vivo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Lisa Flammini
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | | | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
96
|
Aghazadeh Tabrizi M, Baraldi PG, Ruggiero E, Saponaro G, Baraldi S, Romagnoli R, Martinelli A, Tuccinardi T. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH). Eur J Med Chem 2015; 97:289-305. [DOI: 10.1016/j.ejmech.2015.04.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
97
|
Abstract
The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
98
|
Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L, Sweeney JM, Miyauchi JT, Tsirka SE, Ojima I, Deutsch DG. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem 2015; 290:8711-21. [PMID: 25666611 DOI: 10.1074/jbc.m114.618447] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 01/03/2023] Open
Abstract
Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders.
Collapse
Affiliation(s)
| | - Martin Kaczocha
- From the Departments of Biochemistry and Cell Biology, Anesthesiology, and
| | - William T Berger
- Chemistry, the Institute of Chemical Biology and Drug Discovery, and
| | - KwanNok Leung
- From the Departments of Biochemistry and Cell Biology
| | - Brian P Ralph
- From the Departments of Biochemistry and Cell Biology
| | - Liqun Wang
- From the Departments of Biochemistry and Cell Biology
| | | | - Jeremy T Miyauchi
- the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11795-5215
| | - Stella E Tsirka
- the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11795-5215
| | - Iwao Ojima
- Chemistry, the Institute of Chemical Biology and Drug Discovery, and
| | | |
Collapse
|
99
|
Giedroyć-Piasecka W, Dyguda-Kazimierowicz E, Beker W, Mor M, Lodola A, Sokalski WA. Physical Nature of Fatty Acid Amide Hydrolase Interactions with Its Inhibitors: Testing a Simple Nonempirical Scoring Model. J Phys Chem B 2014; 118:14727-36. [PMID: 25420234 DOI: 10.1021/jp5059287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the deactivating hydrolysis of fatty acid ethanolamide neuromodulators. FAAH inhibitors have gained considerable interest due to their possible application in the treatment of anxiety, inflammation, and pain. In the context of inhibitor design, the availability of reliable computational tools for predicting binding affinity is still a challenging task, and it is now well understood that empirical scoring functions have several limitations that in principle could be overcome by quantum mechanics. Herein, systematic ab initio analyses of FAAH interactions with a series of inhibitors belonging to the class of the N-alkylcarbamic acid aryl esters have been performed. In contrast to our earlier studies of other classes of enzyme-inhibitor complexes, reasonable correlation with experimental results required us to consider correlation effects along with electrostatic term. Therefore, the simplest comprehensive nonempirical model allowing for qualitative predictions of binding affinities for FAAH ligands consists of electrostatic multipole and second-order dispersion terms. Such a model has been validated against the relative stabilities of the benchmark S66 set of biomolecular complexes. As it does not involve parameters fitted to experimentally derived data, this model offers a unique opportunity for generally applicable inhibitor design and virtual screening.
Collapse
Affiliation(s)
| | | | - Wiktor Beker
- Department of Chemistry, Wrocław University of Technology , Wrocław, Poland
| | - Marco Mor
- Pharmacy Department, Università di Parma , Parma, Italy
| | | | - W Andrzej Sokalski
- Department of Chemistry, Wrocław University of Technology , Wrocław, Poland
| |
Collapse
|
100
|
Little DJ, Bamford NC, Pokrovskaya V, Robinson H, Nitz M, Howell PL. Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria. J Biol Chem 2014; 289:35907-17. [PMID: 25359777 DOI: 10.1074/jbc.m114.611400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni(2+), Co(2+), and Zn(2+). From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci.
Collapse
Affiliation(s)
- Dustin J Little
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Natalie C Bamford
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Varvara Pokrovskaya
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, and
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, and
| | - P Lynne Howell
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada,
| |
Collapse
|