51
|
Ott LC, Han CY, Mueller JL, Rahman AA, Hotta R, Goldstein AM, Stavely R. Bone Marrow Stem Cells Derived from Nerves Have Neurogenic Properties and Potential Utility for Regenerative Therapy. Int J Mol Sci 2023; 24:5211. [PMID: 36982286 PMCID: PMC10048809 DOI: 10.3390/ijms24065211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Neurons and glia of the peripheral nervous system are derived from progenitor cell populations, originating from embryonic neural crest. The neural crest and vasculature are intimately associated during embryonic development and in the mature central nervous system, in which they form a neurovascular unit comprised of neurons, glia, pericytes, and vascular endothelial cells that play important roles in health and disease. Our group and others have previously reported that postnatal populations of stem cells originating from glia or Schwann cells possess neural stem cell qualities, including rapid proliferation and differentiation into mature glia and neurons. Bone marrow receives sensory and sympathetic innervation from the peripheral nervous system and is known to contain myelinating and unmyelinating Schwann cells. Herein, we describe a population of neural crest-derived Schwann cells residing in a neurovascular niche of bone marrow in association with nerve fibers. These Schwann cells can be isolated and expanded. They demonstrate plasticity in vitro, generating neural stem cells that exhibit neurogenic potential and form neural networks within the enteric nervous system in vivo following transplantation to the intestine. These cells represent a novel source of autologous neural stem cells for the treatment of neurointestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
52
|
Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM, Goldstein JM, Gasperini C, Gampierakis IA, Lipnick SL, Simmons SK, Buchanan SM, Wagers AJ, Regev A, Levin JZ, Rubin LL. Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. NATURE AGING 2023; 3:327-345. [PMID: 37118429 PMCID: PMC10154248 DOI: 10.1038/s43587-023-00373-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023]
Abstract
Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.
Collapse
Affiliation(s)
- Methodios Ximerakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ceren Ozek
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Monika Saxena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samara Santiago
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kavya M Shah
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Caterina Gasperini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ioannis A Gampierakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Scott L Lipnick
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
53
|
Chevillard PM, Batailler M, Dubois JP, Estienne A, Pillon D, Vaudin P, Piégu B, Blache MC, Dupont J, Just N, Migaud M. Seasonal remodeling of the progenitor pool and its distribution in the ewe mediobasal hypothalamus. Cell Tissue Res 2023:10.1007/s00441-023-03745-x. [PMID: 36795154 DOI: 10.1007/s00441-023-03745-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Recent studies have reported the presence of adult neurogenesis in the arcuate nucleus periventricular space (pvARH) and in the median eminence (ME), two structures involved in reproductive function. In sheep, a seasonal mammal, decreasing daylight in autumn induces a higher neurogenic activity in these two structures. However, the different types of neural stem and progenitor cells (NSCs/NPCs) that populate the arcuate nucleus and median eminence, as well as their location, have not been evaluated. Here, using semi-automatic image analyzing processes, we identified and quantified the different populations of NSCs/NPCs, showing that, during short days, higher densities of [SOX2 +] cells are found in pvARH and ME. In the pvARH, higher densities of astrocytic and oligodendrocitic progenitors mainly contribute to these variations. The different populations of NSCs/NPCs were mapped according to their position relative to the third ventricle and their proximity to the vasculature. We showed that [SOX2 +] cells extended deeper into the hypothalamic parenchyma during short days. Similarly, [SOX2 +] cells were found further from the vasculature in the pvARH and the ME, at this time of year, indicating the existence of migratory signals. The expression levels of neuregulin transcripts (NRGs), whose proteins are known to stimulate proliferation and adult neurogenesis and to regulate progenitor migration, as well as the expression levels of ERBB mRNAs, cognate receptors for NRGs, were assessed. We showed that mRNA expression changed seasonally in pvARH and ME, suggesting that the ErbB-NRG system is potentially involved in the photoperiodic regulation of neurogenesis in seasonal adult mammals.
Collapse
Affiliation(s)
| | - Martine Batailler
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Delphine Pillon
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Vaudin
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Benoît Piégu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Joelle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Nathalie Just
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Martine Migaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
54
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular vesicle-Serpine-1 affects neural progenitor cell mitochondrial functions and synaptic density: modulation by amyloid beta and HIV-1. RESEARCH SQUARE 2023:rs.3.rs-2551245. [PMID: 36824983 PMCID: PMC9949237 DOI: 10.21203/rs.3.rs-2551245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology and mitochondrial function alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E András
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nelson Serrano
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Irina Djuraskovic
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michal Toborek
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
55
|
Duzan A, Reinken D, McGomery TL, Ferencz NM, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:120-129. [PMID: 36805391 DOI: 10.1016/j.joim.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ashraf Duzan
- School of Pharmacy, Wingate University, Wingate, NC 28174, USA; Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| | - Desiree Reinken
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | - Jacob M Plummer
- Collage of Arts and Science, Department of Chemistry and Physics, Wingate University, Wingate, NC 28174, USA
| | - Mufeed M Basti
- Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| |
Collapse
|
56
|
McIntosh R, Hidalgo M, Lobo J, Dillon K, Szeto A, Hurwitz BE. Circulating endothelial and angiogenic cells predict hippocampal volume as a function of HIV status. J Neurovirol 2023; 29:65-77. [PMID: 36418739 DOI: 10.1007/s13365-022-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated. The present study examined differences in these associations in 51 postmenopausal women with and without HIV infection. Gray matter volume was quantified using MRI. CECs and MACs were enumerated using fluorescence-activated cell sorting. Analyses examined the association of these cell counts with left and right hippocampal gray matter volume while controlling for age and hypertension status. The main finding was an interaction suggesting that compared to controls, postmenopausal PWH with greater levels of CECs and MACs had significantly greater hippocampus GMV. Further research is necessary to examine potential underlying pathophysiological mechanisms in HIV infection linking morpho-functional circulatory reparative processes with more diminished hippocampal volume in postmenopausal women.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA.
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA.
- Division of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Melissa Hidalgo
- Department of Internal Medicine, Broward Health North, Fort Lauderdale, FL, USA
| | - Judith Lobo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Kaitlyn Dillon
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Barry E Hurwitz
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
57
|
Jin J, Zhao T. Niche formation and function in developing tissue: studies from the Drosophila ovary. Cell Commun Signal 2023; 21:23. [PMID: 36707894 PMCID: PMC9881360 DOI: 10.1186/s12964-022-01035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells have a unique ability to self-renew and to generate differentiated daughter cells that are required in the body tissues. The identity of adult stem cells is maintained by extrinsic signals from other cell types, known as niche cells. Thus, the niche is required for appropriate tissue homeostasis. Niche is formed and recruits stem cells during tissue development; therefore, it is essential to establish niche cells and stem cells in proper numbers during development. A small niche may recruit too few stem cells and cause tissue degeneration, while a large niche may maintain too many stem cells and lead to tumorigenesis. Given that vertebrate tissues are not suitable for large-scale forward genetics studies, the Drosophila ovary stands out as an excellent model for studying how multiple niche cell types and germ cells (GCs) are coordinately regulated in vivo. Recent studies are beginning to reveal how various signaling molecules regulate niche formation and how niche cells non-autonomously influence GC number. In this review, we summarize the ovarian niche structure, the key signaling pathways for niche formation, and how niche cells generate extrinsic factors to control GC proliferation during ovarian development. Video abstract.
Collapse
Affiliation(s)
- Jian Jin
- grid.440646.40000 0004 1760 6105School of Educational Science, Anhui Normal University, Wuhu, 241000 People’s Republic of China
| | - Ting Zhao
- grid.411407.70000 0004 1760 2614School of Life Science, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079 People’s Republic of China
| |
Collapse
|
58
|
Abstract
Nerves not only regulate the homeostasis and energetic metabolism of normal epithelial cells but also are critical for cancer, as cancer recapitulates the biology of neural regulation of epithelial tissues. Cancer cells rarely develop in denervated organs, and denervation affects tumorigenesis, in vivo and in humans. Axonogenesis occurs to supply the new malignant epithelial growth with nerves. Neurogenesis happens later, first in ganglia around organs or the spinal column and subsequently through recruitment of neuroblasts from the central nervous system. The hallmark of this stage is regulation of homeostasis and energetic metabolism. Perineural invasion is the most efficient interaction between cancer cells and nerves. The hallmark of this stage is increased proliferation and decreased apoptosis. Finally, carcinoma cells transdifferentiate into a neuronal profile in search of neural independence. The latter is the last stage in neuroepithelial interactions. Treatments for cancer must address the biology of neural regulation of cancer.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, McGovern School of Medicine, Houston, Texas, USA;
| |
Collapse
|
59
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
60
|
Du Y, Gao H, He C, Xin S, Wang B, Zhang S, Gong F, Yu X, Pan L, Sun F, Wang W, Xu J. An update on the biological characteristics and functions of tuft cells in the gut. Front Cell Dev Biol 2023; 10:1102978. [PMID: 36704202 PMCID: PMC9872863 DOI: 10.3389/fcell.2022.1102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The intestine is a powerful digestive system and one of the most sophisticated immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial cell with distinct morphological characteristics, play a significant role in various physiological processes. TCs can be broadly categorized into different subtypes depending on different molecular criteria. In this review, we discuss its biological properties and role in maintaining homeostasis in the gastrointestinal tract. We also emphasize its relevance to the immune system and highlight its powerful influence on intestinal diseases, including inflammations and tumors. In addition, we provide fresh insights into future clinical diagnostic and therapeutic strategies related to TCs.
Collapse
Affiliation(s)
- Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fanglin Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Jingdong Xu,
| |
Collapse
|
61
|
Marshall AJ, Gaubert A, Kapoor A, Tan A, McIntosh E, Jang JY, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Rodgers K, Nation DA. Blood-Derived Progenitor Cells Are Depleted in Older Adults with Cognitive Impairment: A Role for Vascular Resilience? J Alzheimers Dis 2023; 93:1041-1050. [PMID: 37154177 PMCID: PMC10258882 DOI: 10.3233/jad-220269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Elissa McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
62
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
63
|
Yuan B, Upton Z, Leavesley D, Fan C, Wang XQ. Vascular and Collagen Target: A Rational Approach to Hypertrophic Scar Management. Adv Wound Care (New Rochelle) 2023; 12:38-55. [PMID: 34328823 PMCID: PMC9595647 DOI: 10.1089/wound.2020.1348] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significance: Hypertrophic scarring is a challenging issue for patients and clinicians. The prevalence of hypertrophic scarring can be up to 70% after burns, and patients suffer from pain, itching, and loss of joint mobility. To date, the exact mechanisms underlying hypertrophic scar formation are unclear, and clinical options remain limited. Recent Advances: Several studies have demonstrated that pathological scars are a type of hyperactive vascular response to wounding. Scar regression has been found to be accompanied by microvessel occlusion, which causes severe hypoxia, malnutrition, and endothelial dysfunction, suggesting the essential roles of microvessels in scar regression. Therefore, interventions that target the vasculature, such as intense pulsed light, pulsed dye lasers, vascular endothelial growth factor antibodies, and Endostar, represent potential treatments. In addition, the mass of scar-associated collagen is usually not considered by current treatments. However, collagen-targeted therapies such as fractional CO2 laser and collagenase have shown promising outcomes in scar treatment. Critical Issues: Traditional modalities used in current clinical practice only partially target scar-associated microvessels or collagen. As a result, the effectiveness of current treatments is limited and is too often accompanied by undesirable side effects. The formation of scars in the early stage is mainly affected by microvessels, whereas the scars in later stages are mostly composed of residual collagen. Traditional therapies do not utilize specific targets for scars at different stages. Therefore, more precise treatment strategies are needed. Future Directions: Scars should be classified as either "vascular-dominant" or "collagen-dominant" before selecting a treatment. In this way, strategies that are vascular-targeted, collagen-targeted, or a combination thereof could be recommended to treat scars at different stages.
Collapse
Affiliation(s)
- Bo Yuan
- Burns and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zee Upton
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Leavesley
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Correspondence: Chen Fan, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xi-Qiao Wang
- Burns and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Correspondence: Xi-Qiao Wang, Burns and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, P.R. China
| |
Collapse
|
64
|
Yuan Y, Sun J, Dong Q, Cui M. Blood-brain barrier endothelial cells in neurodegenerative diseases: Signals from the "barrier". Front Neurosci 2023; 17:1047778. [PMID: 36908787 PMCID: PMC9998532 DOI: 10.3389/fnins.2023.1047778] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
As blood-brain barrier (BBB) disruption emerges as a common problem in the early stages of neurodegenerative diseases, the crucial roles of barrier-type brain endothelial cells (BECs), the primary part of the BBB, have been reported in the pathophysiology of neurodegenerative diseases. The mechanisms of how early vascular dysfunction contributes to the progress of neurodegeneration are still unclear, and understanding BEC functions is a promising start. Our understanding of the BBB has gone through different stages, from a passive diffusion barrier to a mediator of central-peripheral interactions. BECs serve two seemingly paradoxical roles: as a barrier to protect the delicate brain from toxins and as an interface to constantly receive and release signals, thus maintaining and regulating the homeostasis of the brain. Most previous studies about neurodegenerative diseases focus on the loss of barrier functions, and far too little attention has been paid to the active regulations of BECs. In this review, we present the current evidence of BEC dysfunction in neurodegenerative diseases and explore how BEC signals participate in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
65
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
66
|
Endothelial cells regulate astrocyte to neural progenitor cell trans-differentiation in a mouse model of stroke. Nat Commun 2022; 13:7812. [PMID: 36535938 PMCID: PMC9763251 DOI: 10.1038/s41467-022-35498-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The concept of the neurovascular unit emphasizes the importance of cell-cell signaling between neural, glial, and vascular compartments. In neurogenesis, for example, brain endothelial cells play a key role by supplying trophic support to neural progenitors. Here, we describe a surprising phenomenon where brain endothelial cells may release trans-differentiation signals that convert astrocytes into neural progenitor cells in male mice after stroke. After oxygen-glucose deprivation, brain endothelial cells release microvesicles containing pro-neural factor Ascl1 that enter into astrocytes to induce their trans-differentiation into neural progenitors. In mouse models of focal cerebral ischemia, Ascl1 is upregulated in endothelium prior to astrocytic conversion into neural progenitor cells. Injecting brain endothelial-derived microvesicles amplifies the process of astrocyte trans-differentiation. Endothelial-specific overexpression of Ascl1 increases the local conversion of astrocytes into neural progenitors and improves behavioral recovery. Our findings describe an unexpected vascular-regulated mechanism of neuroplasticity that may open up therapeutic opportunities for improving outcomes after stroke.
Collapse
|
67
|
Probing Interleukin-6 in Stroke Pathology and Neural Stem Cell Transplantation. Int J Mol Sci 2022; 23:ijms232415453. [PMID: 36555094 PMCID: PMC9779061 DOI: 10.3390/ijms232415453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell transplantation is historically understood as a powerful preclinical therapeutic following stroke models. Current clinical strategies including clot busting/retrieval are limited by their time windows (tissue plasminogen activator: 3-4 h) and inevitable reperfusion injuries. However, 24+ h post-stroke, stem cells reduce infarction size, improve neurobehavioral performance, and reduce inflammatory agents including interleukins. Typically, interleukin-6 (IL-6) is regarded as proinflammatory, and thus, preclinical studies often discuss it as beneficial for neurological recuperation when stem cells reduce IL-6's expression. However, some studies have also demonstrated neurological benefit with upregulation of IL-6 or preconditioning of stem cells with IL-6. This review specifically focuses on stem cells and IL-6, and their occasionally disparate, occasionally synergistic roles in the setting of ischemic cerebrovascular insults.
Collapse
|
68
|
Namiki J, Suzuki S, Shibata S, Kubota Y, Kaneko N, Yoshida K, Yamaguchi R, Matsuzaki Y, Masuda T, Ishihama Y, Sawamoto K, Okano H. Chitinase-like protein 3: A novel niche factor for mouse neural stem cells. Stem Cell Reports 2022; 17:2704-2717. [PMID: 36368330 PMCID: PMC9768575 DOI: 10.1016/j.stemcr.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
The concept of a perivascular niche has been proposed for neural stem cells (NSCs). This study examined endothelial colony-forming cell (ECFC)-secreted proteins as potential niche factors for NSCs. Intraventricle infusion with ECFC-secreted proteins increased the number of NSCs. ECFC-secreted proteins were more effective in promoting NSC self-renewal than marrow stromal cell (MSC)-secreted proteins. Differential proteomics analysis of MSC-secreted and ECFC-secreted proteins was performed, which revealed chitinase-like protein 3 (CHIL3; also called ECF-L or Ym1) as a candidate niche factor for NSCs. Experiments with recombinant CHIL3, small interfering RNA, and neutralizing antibodies demonstrated that CHIL3 stimulated NSC self-renewal with neurogenic propensity. CHIL3 was endogenously expressed in the neurogenic niche of the brain and retina as well as in the injured brain and retina. Transcriptome and phosphoproteome analyses revealed that CHIL3 activated various genes and proteins associated with NSC maintenance or neurogenesis. Thus, CHIL3 is a novel niche factor for NSCs.
Collapse
Affiliation(s)
- Jun Namiki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Corresponding author
| | - Sayuri Suzuki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kenji Yoshida
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Sumitomo Pharma Co. Ltd., Osaka, Osaka 541-0045, Japan
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Sumitomo Pharma Co. Ltd., Osaka, Osaka 541-0045, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Yasushi Ishihama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Corresponding author
| |
Collapse
|
69
|
Li J, Feng Y, Zhao J, Fang Z, Liu H. Telomerase reverse transcriptase promotes angiogenesis in neonatal rats after hypoxic-ischemic brain damage. PeerJ 2022; 10:e14220. [PMID: 36299510 PMCID: PMC9590416 DOI: 10.7717/peerj.14220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Background Angiogenesis is an endogenous repair mechanism following hypoxic-ischemic brain damage (HIBD). Interestingly, recent studies have shown that angiogenesis can be regulated by telomerase reverse transcriptase (TERT), a critical component of telomerase. As telomerase reverse transcriptase can promote angiogenesis after stroke, we hypothesized that it could also promote angiogenesis after HIBD. To test this hypothesis, we developed in vivo and in vitro HIBD models in neonatal rats. Methods TERT was overexpressed by lentivirus and adenovirus infection, and levels were measured using quantitative real-time polymerase chain reaction. We used a cell counting kit to quantify the proliferation rate of brain microvascular endothelial cells (BMECs), and immunofluorescence staining to measure CD34 expression levels. A microvessel formation assay was used to evaluate angiogenesis. Blood-brain barrier (BBB) integrity was assessed using immunohistochemical staining for ZO-1 and Evans Blue staining. Lastly, the expression level of Notch-1 was measured by western blotting. Results Overexpression of TERT promoted the proliferation of BMECs after hypoxic-ischemic damage in vitro. TERT overexpression increased the formation of microvessels in the neonatal brain after HIBD both in vivo and in vitro. Overexpression of TERT improved BBB integrity in the brains of neonatal rats after HIBD. In addition, the expression level of Notch-1 was increased in BMECs following oxygen glucose deprivation, and overexpression of TERT further increased Notch-1 expression levels in BMECs following oxygen glucose deprivation. Discussion Our results reveal that telomerase reverse transcriptase promotes angiogenesis and maintains the integrity of the blood-brain barrier after neonatal hypoxic-ischemic brain damage. Furthermore, the Notch-1 signaling pathway appears to contribute to the angiogenic function of telomerase reverse transcriptase. This protective effect of telomerase reverse transcriptase opens new horizons for future investigations aimed at uncovering the full potential of telomerase reverse transcriptase as a promising new target for the treatment of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Jiao Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Fang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haiting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Muthukrishnan SD, Kawaguchi R, Nair P, Prasad R, Qin Y, Johnson M, Wang Q, VanderVeer-Harris N, Pham A, Alvarado AG, Condro MC, Gao F, Gau R, Castro MG, Lowenstein PR, Deb A, Hinman JD, Pajonk F, Burns TC, Goldman SA, Geschwind DH, Kornblum HI. P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells. Nat Commun 2022; 13:6202. [PMID: 36261421 PMCID: PMC9582000 DOI: 10.1038/s41467-022-33943-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pooja Nair
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachna Prasad
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qin
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maverick Johnson
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Qing Wang
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nathan VanderVeer-Harris
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amy Pham
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alvaro G Alvarado
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael C Condro
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fuying Gao
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raymond Gau
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maria G Castro
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Coppenhagen School of Medicine, Coppenhagen, Denmark
| | - Daniel H Geschwind
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harley I Kornblum
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
71
|
Abstract
ABSTRACT
Deconstructing and then reconstructing developmental processes ex vivo is crucial to understanding how organs assemble and how physiology can be disrupted in disease. Human 3D stem cell-derived systems, such as organoids, have facilitated this pursuit; however, they often do not capture inter-tissue or inter-lineage cellular interactions that give rise to emergent tissue properties during development. Assembloids are self-organizing 3D cellular systems that result from the integration of multiple organoids or the combination of organoids with missing cell types or primary tissue explants. Here, we outline the concept and types of assembloids and present their applications for studying the nervous system and other tissues. We describe tools that are used to probe and manipulate assembloids and delineate current challenges and the potential for this new approach to interrogate development and disease.
Collapse
Affiliation(s)
- Sabina Kanton
- Stanford University 1 Department of Psychiatry and Behavioral Sciences , , Stanford, CA 94305, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neuroscience Institute & Bio-X 2 , Stanford, CA 94305, USA
| | - Sergiu P. Paşca
- Stanford University 1 Department of Psychiatry and Behavioral Sciences , , Stanford, CA 94305, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neuroscience Institute & Bio-X 2 , Stanford, CA 94305, USA
| |
Collapse
|
72
|
Stover PJ, Field MS, Brawley HN, Angelin B, Iversen PO, Frühbeck G. Nutrition and stem cell integrity in aging. J Intern Med 2022; 292:587-603. [PMID: 35633146 DOI: 10.1111/joim.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells (SCs) represent the regenerative capacity of organisms throughout their lifespan. The maintenance of robust SC populations capable of renewing organs and physiological systems is one hallmark of healthy aging. The local environment of SCs, referred to as the niche, includes the nutritional milieu, which is essential to maintain the quantity and quality of SCs available for renewal and regeneration. There is increased recognition that SCs have unique metabolism and conditional nutrient needs compared to fully differentiated cells. However, the contribution of SC nutrition to overall human nutritional requirements is an understudied and underappreciated area of investigation. Nutrient needs vary across the lifespan and are modified by many factors including individual health, disease, physiological states including pregnancy, age, sex, and during recovery from injury. Although current nutrition guidance is generally derived for apparently healthy populations and to prevent nutritional deficiency diseases, there are increased efforts to establish nutrient-based and food-based recommendations based on reducing chronic disease. Understanding the dynamics of SC nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. This review summarizes a 3-day symposium of the Marabou Foundation (www.marabousymposium.org) held to examine the metabolic properties and unique nutritional needs of adult SCs and their role in healthy aging and age-related chronic disease.
Collapse
Affiliation(s)
- P J Stover
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - M S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - H N Brawley
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - B Angelin
- Cardiometabolic Unit, Clinical Department of Endocrinology, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Stockholm, Sweden
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - G Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Navarra, Spain
| |
Collapse
|
73
|
Yuan Y, Liu L, Du Y, Fan R, Zhang R, Zhou N. p-hydroxy benzaldehyde revitalizes the microenvironment of peri-infarct cortex in rats after cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154379. [PMID: 35987017 DOI: 10.1016/j.phymed.2022.154379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The formation of glial scar around the ischemic core following cerebral blood interruption exerts a protective effect in the subacute phase but impedes neurorepair in the chronic phase. Therefore, the present study aimed to explore whether p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, can cut the Gordian knot of glial scar and promote brain repair after cerebral ischemia. METHODS The effects of p-HBA on neurorepair were evaluated using a rat model of transient middle cerebral artery occlusion (tMCAO). The motor functions were evaluated by neurobehavioral tests, the pathophysiological processes in the peri-infarct cortex (PIC) were detected by viral-based lineage tracking or immunofluorescence staining, and the putative signaling pathway was analyzed by western blot. RESULTS Administration of p-HBA in the acute stage after stroke onset alleviated the motor impairment in tMCAO rats in a time-dependent manner. The corresponding cellular events were inhibition of astrogliosis, facilitating the conversion of reactive astrocytes (RAs) into neurons, and prompting angiogenesis in PIC, thereby protecting the structure of the neurovascular unit (NVU). One of the underlying molecular mechanisms is the activation of the neurogenic switch of the Wnt/β-catenin signaling pathway. Notably, p-HBA only promotes astrocyte-to-neuron conversion in the PIC, and only partial RAs were converted to neurons. This pattern of conversion ensures that the brain structure remains unaltered, and the beneficial role of glial scarring is preserved during the subacute phase after ischemia. CONCLUSIONS These results provided a potential approach to address the dilemma of glial scarring after brain injury, i.e., the pharmacological promotion of astrocyte-to-neuron conversion in the PIC without interfering with normal brain tissue, which mitigates but does not eliminate the glial scar. Subsequently, the neuron rescue-unfriendly environment is switched to a beneficial reconstruction milieu in PIC, which is conducive to neurorepair. Moreover, p-HBA could be a candidate for pharmacological intervention.
Collapse
Affiliation(s)
- Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Lijun Liu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Yao Du
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Rongping Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China.
| |
Collapse
|
74
|
Angiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cells. Nat Commun 2022; 13:5494. [PMID: 36123372 PMCID: PMC9485157 DOI: 10.1038/s41467-022-33235-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an incurable form of primary astrocytic brain tumor driven by glioma stem cell (GSC) compartment closely associated with the vascular niche. GSC phenotypes are heterogeneous and range from proneural to mesenchymal-like, the latter characterised by greater invasiveness. Here we document the secretory (angiocrine) role of endothelial cells and their derived extracellular vesicles (EVs) as drivers of proneural-to-mesenchymal reprogramming of GSCs. These changes involve activation of matrix metalloproteinases (MMPs) and NFκB, and inactivation of NOTCH, while altering responsiveness to chemotherapy and driving infiltrative growth in the brain. Our findings suggest that EV-mediated angiocrine interactions impact the nature of cellular stemness in GBM with implications for disease biology and therapy.
Collapse
|
75
|
Ma X, Li H, Zhu S, Hong Z, Kong W, Yuan Q, Wu R, Pan Z, Zhang J, Chen Y, Wang X, Wang K. Angiorganoid: vitalizing the organoid with blood vessels. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R44-R57. [PMID: 35994010 PMCID: PMC9513648 DOI: 10.1530/vb-22-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
The emergence of the organoid simulates the native organs and this mini organ offers an excellent platform for probing multicellular interaction, disease modeling and drug discovery. Blood vessels constitute the instructive vascular niche which is indispensable for organ development, function and regeneration. Therefore, it is expected that the introduction of infiltrated blood vessels into the organoid might further pump vitality and credibility into the system. While the field is emerging and growing with new concepts and methodologies, this review aims at presenting various sources of vascular ingredients for constructing vascularized organoids and the paired methodology including de- and recellularization, bioprinting and microfluidics. Representative vascular organoids corresponding to specific tissues are also summarized and discussed to elaborate on the next generation of organoid development.
Collapse
Affiliation(s)
- Xiaojing Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Hongfei Li
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Shuntian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qihang Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Runlong Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
76
|
Moon JE, Lawrence JB. Chromosome silencing in vitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Rep 2022; 40:111174. [PMID: 35947952 PMCID: PMC9505374 DOI: 10.1016/j.celrep.2022.111174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/24/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of Down syndrome (DS), little is known regarding the specific cell pathologies that underlie this multi-system disorder. To understand which cell types and pathways are more directly affected by trisomy 21 (T21), we used an inducible-XIST system to silence one chromosome 21 in vitro. T21 caused the dysregulation of Notch signaling in iPSCs, potentially affecting cell-type programming. Further analyses identified dysregulation of pathways important for two cell types: neurogenesis and angiogenesis. Angiogenesis is essential to many bodily systems, yet is understudied in DS; therefore, we focused next on whether T21 affects endothelial cells. An in vitro assay for microvasculature formation revealed a cellular pathology involving delayed tube formation in response to angiogenic signals. Parallel transcriptomic analysis of endothelia further showed deficits in angiogenesis regulators. Results indicate a direct cell-autonomous impact of T21 on endothelial function, highlighting the importance of angiogenesis, with wide-reaching implications for development and disease progression. Moon and Lawrence examine the immediate effects of trisomy 21 silencing and find angiogenesis and neurogenesis pathways, including Notch signaling, affected as early as pluripotency. In endothelial cells, functional analyses show that trisomy delays the angiogenic response for microvessel formation and transcriptomics show a parallel impact on angiogenic regulators and signal-response and cytoskeleton processes.
Collapse
Affiliation(s)
- Jennifer E Moon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
77
|
Yousaf M, Chang D, Liu Y, Liu T, Zhou X. Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders. Molecules 2022; 27:4961. [PMID: 35956911 PMCID: PMC9370304 DOI: 10.3390/molecules27154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer's disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD's effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD's derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.
Collapse
Affiliation(s)
- Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
78
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
79
|
Zhang L, Li C, Huang R, Teng H, Zhang Y, Zhou M, Liu X, Fan B, Luo H, He A, Zhao A, Lu M, Chopp M, Zhang ZG. Cerebral endothelial cell derived small extracellular vesicles improve cognitive function in aged diabetic rats. Front Aging Neurosci 2022; 14:926485. [PMID: 35912073 PMCID: PMC9330338 DOI: 10.3389/fnagi.2022.926485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) mediate cell-cell communication by transferring their cargo biological materials into recipient cells. Diabetes mellitus (DM) induces cerebral vascular dysfunction and neurogenesis impairment, which are associated with cognitive decline and an increased risk of developing dementia. Whether the sEVs are involved in DM-induced cerebral vascular disease, is unknown. Therefore, we studied sEVs derived from cerebral endothelial cells (CEC-sEVs) of aged DM rats (DM-CEC-sEVs) and found that DM-CEC-sEVs robustly inhibited neural stem cell (NSC) generation of new neuroblasts and damaged cerebral endothelial function. Treatment of aged DM-rats with CEC-sEVs derived from adult healthy normal rats (N-CEC-sEVs) ameliorated cognitive deficits and improved cerebral vascular function and enhanced neurogenesis. Intravenously administered N-CEC-sEVs crossed the blood brain barrier and were internalized by neural stem cells in the neurogenic region, which were associated with augmentation of miR-1 and –146a and reduction of myeloid differentiation primary response gene 88 and thrombospondin 1 proteins. In addition, uptake of N-CEC-sEVs by the recipient cells was mediated by clathrin and caveolin dependent endocytosis signaling pathways. The present study provides ex vivo and in vivo evidence that DM-CEC-sEVs induce cerebral vascular dysfunction and neurogenesis impairment and that N-CEC-sEVs have a therapeutic effect on improvement of cognitive function by ameliorating dysfunction of cerebral vessels and increasing neurogenesis in aged DM rats, respectively.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Li Zhang,
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rui Huang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xiangshuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Annie He
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Anna Zhao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
80
|
Sirichoat A, Anosri T, Kaewngam S, Aranarochana A, Pannangrong W, Wigmore P, Welbat JU. Neuroprotective properties of chrysin on decreases of cell proliferation, immature neurons and neuronal cell survival in the hippocampal dentate gyrus associated with cognition induced by methotrexate. Neurotoxicology 2022; 92:15-24. [PMID: 35779630 DOI: 10.1016/j.neuro.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Methotrexate (MTX) is a drug widely used for chemotherapy and can reduce cancer cell production by inhibiting dihydrofolate reductase and decreasing cancer cell growth. MTX has a neurotoxic effect on neural stem and glial cells, leading to memory deficits. Chrysin is a natural flavonoid that contains essential biological activities, such as neuroprotective and cognitive-improving properties. Therefore, the aim of the present study was to investigate the protective effect of chrysin against MTX-induced memory impairments related to hippocampal neurogenesis. Seventy-two male Sprague Dawley rats were divided into six groups: control, MTX, chrysin (10 and 30 mg/kg), and MTX+ chrysin (10 and 30 mg/kg) groups. Chrysin (10 and 30 mg/kg) was administered by oral gavage for 15 days. MTX (75 mg/kg) was administered by intravenous injection on days 8 and 15. Spatial and recognition memories were evaluated using the novel object location (NOL) and novel object recognition (NOR) tests, respectively. Moreover, cell proliferation, neuronal cell survival, and immature neurons in the subgranular zone of the hippocampal dentate gyrus were quantified by Ki-67, bromodeoxyuridine/neuronal nuclear protein (BrdU/NeuN), and doublecortin (DCX) immunohistochemistry staining. The results of the MTX group demonstrated that spatial and recognition memories were both impaired. Furthermore, cell division reduction, neuronal cell survival reduction, and immature neuron decreases were detected in the MTX group and not observed in the co-administration groups. Therefore, these results revealed that chrysin could alleviate memory and neurogenesis impairments in MTX-treated rats.
Collapse
Affiliation(s)
- Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanaporn Anosri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Kaewngam
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
81
|
Sun XY, Luo ZG. Vascularizing the brain organoids. J Mol Cell Biol 2022; 14:6617885. [PMID: 35751626 PMCID: PMC9412824 DOI: 10.1093/jmcb/mjac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
82
|
Marra KV, Aguilar E, Wei G, Usui-Ouchi A, Ideguchi Y, Sakimoto S, Friedlander M. Bioactive extracellular vesicles from a subset of endothelial progenitor cells rescue retinal ischemia and neurodegeneration. JCI Insight 2022; 7:e155928. [PMID: 35639473 PMCID: PMC9309054 DOI: 10.1172/jci.insight.155928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Disruption of the neurovascular unit (NVU) underlies the pathophysiology of various CNS diseases. One strategy to repair NVU dysfunction uses stem/progenitor cells to provide trophic support to the NVU's functionally coupled and interdependent vasculature and surrounding CNS parenchyma. A subset of endothelial progenitor cells, endothelial colony-forming cells (ECFCs) with high expression of the CD44 hyaluronan receptor (CD44hi), provides such neurovasculotrophic support via a paracrine mechanism. Here, we report that bioactive extracellular vesicles from CD44hi ECFCs (EVshi) are paracrine mediators, recapitulating the effects of intact cell therapy in murine models of ischemic/neurodegenerative retinopathy; vesicles from ECFCs with low expression levels of CD44 (EVslo) were ineffective. Small RNA sequencing comparing the microRNA cargo from EVshi and EVslo identified candidate microRNAs that contribute to these effects. EVshi may be used to repair NVU dysfunction through multiple mechanisms to stabilize hypoxic vasculature, promote vascular growth, and support neural cells.
Collapse
Affiliation(s)
- Kyle V. Marra
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Guoqin Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayumi Usui-Ouchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yoichiro Ideguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Susumu Sakimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Martin Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Lowy Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
83
|
The neural stem cell secretome across neurodevelopment. Exp Neurol 2022; 355:114142. [PMID: 35709983 DOI: 10.1016/j.expneurol.2022.114142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) based therapies are at the forefront of regenerative medicine strategies to combat illness and injury of the central nervous system (CNS). In addition to their ability to produce new cells, NSCs secrete a variety of products, known collectively as the NSC secretome, that have been shown to ameliorate CNS disease pathology and promote recovery. As pre-clinical and clinical research to harness the NSC secretome for therapeutic purposes advances, a more thorough understanding of the endogenous NSC secretome can provide useful insight into the functional capabilities of NSCs. In this review, we focus on research investigating the autocrine and paracrine functions of the endogenous NSC secretome across life. Throughout development and adulthood, we find evidence that the NSC secretome is a critical component of how endogenous NSCs regulate themselves and their niche. We also find gaps in current literature, most notably in the clinically-relevant domain of endogenous NSC paracrine function in the injured CNS. Future investigations to further define the endogenous NSC secretome and its role in CNS tissue regulation are necessary to bolster our understanding of NSC-niche interactions and to aid in the generation of safe and effective NSC-based therapies.
Collapse
|
84
|
Wang W, Su L, Wang Y, Li C, Ji F, Jiao J. Endothelial Cells Mediated by UCP2 Control the Neurogenic-to-Astrogenic Neural Stem Cells Fate Switch During Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105208. [PMID: 35488517 PMCID: PMC9218656 DOI: 10.1002/advs.202105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
During mammalian cortical development, neural stem/progenitor cells (NSCs) gradually alter their characteristics, and the timing of generation of neurons and glial cells is strictly regulated by internal and external factors. However, whether the blood vessels located near NSCs affect the neurogenic-to-gliogenic transition remain unknown. Here, it is demonstrated that endothelial uncoupling protein 2 (UCP2) deletion reduces blood vessel diameter and affects the transition timing of neurogenesis and gliogenesis. Deletion of endothelial UCP2 results in a persistent increase in astrocyte production at the postnatal stage. Mechanistically, the endothelial UCP2/ROS/ERK1/2 pathway increases chymase-1 expression to enhance angiotensin II (AngII) secretion outside the brain endothelium. The endotheliocyte-driven AngII-gp130-JAK-STAT pathway also regulates gliogenesis initiation. Moreover, endothelial UCP2 knockdown decreases human neural precursor cell (hNPC) differentiation into neurons and accelerates hNPC differentiation into astrocytes. Altogether, this work provides mechanistic insights into how endothelial UCP2 regulates the neurogenic-to-gliogenic fate switch in the developing neocortex.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chenxiao Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
85
|
Varga BV, Faiz M, Pivonkova H, Khelifi G, Yang H, Gao S, Linderoth E, Zhen M, Karadottir RT, Hussein SM, Nagy A. Signal requirement for cortical potential of transplantable human neuroepithelial stem cells. Nat Commun 2022; 13:2844. [PMID: 35606347 PMCID: PMC9126949 DOI: 10.1038/s41467-022-29839-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-β1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.
Collapse
Affiliation(s)
- Balazs V Varga
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
| | - Maryam Faiz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Helena Pivonkova
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emma Linderoth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ragnhildur Thora Karadottir
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Samer M Hussein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Obstetrics and Gynaecology, and Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
86
|
Lei Z, Hu X, Wu Y, Fu L, Lai S, Lin J, Li X, Lv Y. The Role and Mechanism of the Vascular Endothelial Niche in Diseases: A Review. Front Physiol 2022; 13:863265. [PMID: 35574466 PMCID: PMC9092213 DOI: 10.3389/fphys.2022.863265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial cells, forming the inner wall of the blood vessels, participate in the body’s pathological and physiological processes of immunity, tumors, and infection. In response to an external stimulus or internal pathological changes, vascular endothelial cells can reshape their microenvironment, forming a “niche”. Current research on the vascular endothelial niche is a rapidly growing field in vascular biology. Endothelial niches not only respond to stimulation by external information but are also decisive factors that act on neighboring tissues and circulating cells. Intervention through the vascular niche is meaningful for improving the treatment of several diseases. This review aimed to summarize reported diseases affected by endothelial niches and signal molecular alterations or release within endothelial niches. We look forward to contributing knowledge to increase the understanding the signaling and mechanisms of the vascular endothelial niche in multiple diseases.
Collapse
Affiliation(s)
- Zhiqiang Lei
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Songqing Lai
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Lin
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaobing Li
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
87
|
Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, Shen LB, Dong J, Chen Y, Luo ZG. Generation of vascularized brain organoids to study neurovascular interactions. eLife 2022; 11:76707. [PMID: 35506651 PMCID: PMC9246368 DOI: 10.7554/elife.76707] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 12/05/2022] Open
Abstract
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche. Understanding how the organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases. However, studying most organs in live animals or humans is technically difficult, expensive and invasive. To address this issue, scientists have developed models called ‘organoids’ that recapitulate the development of organs using stem cells in the lab. These models are easier to study and manipulate than the live organs. Brain organoids have been used to recapitulate brain formation as well as developmental, degenerative and psychiatric brain conditions such as microcephaly, autism and Alzheimer’s disease. However, these brain organoids lack the vasculature (the network of blood vessels) that supplies a live brain with nutrients and regulates its development, and which has important roles in brain disorders. Partly due to this lack of blood vessels, brain organoids also do not develop a blood brain barrier, the structure that prevents certain contents of the blood, including pathogens, toxins and even certain drugs from entering the brain. These characteristics limit the utility of existing brain organoids. To overcome these limitations, Sun, Ju et al. developed brain organoids and blood vessel organoids independently, and then fused them together to obtain vascularized brain organoids. These fusion organoids developed a robust network of blood vessels that was well integrated with the brain cells, and produced more neural cell precursors than brain organoids that had not been fused. This result is consistent with the idea that blood vessels can regulate brain development. Analyzing the fusion organoids revealed that they contain structures similar to the blood-brain barrier, as well as microglial cells (immune cells specific to the brain). When exposed to lipopolysaccharide – a component of the cell wall of certain bacteria – these cells responded by initiating an immune response in the fusion organoids. Notably, the microglial cells were also able to engulf connections between brain cells, a process necessary for the brain to develop the correct structures and work normally. Sun, Ju et al. have developed a new organoid system that will be of broad interest to researchers studying interactions between the brain and the circulatory system. The development of brain-blood-barrier-like structures in the fusion organoids could also facilitate the development of drugs that can cross this barrier, making it easier to treat certain conditions that affect the brain. Refining this model to allow the fusion organoids to grow for longer times in the lab, and adding blood flow to the system will be the next steps to establish this system.
Collapse
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Ying Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li-Bing Shen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
88
|
Morton JS, Patton B, Morse CJ, El Karsh Z, Rodrigues LA, Mousseau DD, Ferguson DP, Columbus DA, Weber LP, Olver TD. Altered cerebrovascular regulation in low birthweight swine. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111163. [PMID: 35151870 DOI: 10.1016/j.cbpa.2022.111163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Full-term low birthweight (LBW) offspring exhibit peripheral vascular dysfunction in the postnatal period; however, whether such impairments extend to the cerebrovasculature remains to be elucidated. We used a swine model to test the hypothesis that LBW offspring would exhibit cerebrovascular dysfunction at later stages of life. Offspring from 14 sows were identified as normal birthweight (NBW) or LBW and were assessed at 28 (similar to end of infancy) and 56 (similar to childhood) days of age. LBW swine had lower absolute brain mass, but demonstrated evidence of brain sparing (increased brain mass scaled to body mass) at 56 days of age. The cerebral pulsatility index, based on transcranial Doppler, was increased in LBW swine. Moreover, arterial myography of isolated cerebral arteries revealed impaired vasoreactivity to bradykinin and reduced contribution of nitric oxide (NO) to vasorelaxation in the LBW swine. Immunoblotting demonstrated a lower ratio of phosphorylated-to-total endothelial NO synthase in LBW offspring. This impairment in NO signaling was greater at 28 vs. 56 days of age. Vasomotor responses to sodium nitroprusside (NO-donor) were unaltered, while Leu31, Pro34 neuropeptide Y-induced vasoconstriction was enhanced in LBW swine. Increases in total Y1 receptor protein content in the LBW group were not significant. In summary, LBW offspring displayed signs of cerebrovascular dysfunction at 28 and 56 days of age, evidenced by altered cerebral hemodynamics (reflective of increased impedance) coupled with endothelial dysfunction and altered vasomotor control. Overall, the data reveal that normal variance in birthweight of full-term offspring can influence cerebrovascular function later in life.
Collapse
Affiliation(s)
- Jude S Morton
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Breanna Patton
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cameron J Morse
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zeyad El Karsh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lucas A Rodrigues
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada; Prairie Swine Center, Inc., Saskatoon, SK, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Daniel A Columbus
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada; Prairie Swine Center, Inc., Saskatoon, SK, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
89
|
The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants (Basel) 2022; 11:antiox11050882. [PMID: 35624750 PMCID: PMC9137669 DOI: 10.3390/antiox11050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.
Collapse
|
90
|
Vogenstahl J, Parrilla M, Acker-Palmer A, Segarra M. Vascular Regulation of Developmental Neurogenesis. Front Cell Dev Biol 2022; 10:890852. [PMID: 35573692 PMCID: PMC9099230 DOI: 10.3389/fcell.2022.890852] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Evolutionary studies indicate that the nervous system evolved prior to the vascular system, but the increasing complexity of organisms prompted the vascular system to emerge in order to meet the growing demand for oxygen and nutrient supply. In recent years, it has become apparent that the symbiotic communication between the nervous and the vascular systems goes beyond the exclusive covering of the demands on nutrients and oxygen carried by blood vessels. Indeed, this active interplay between both systems is crucial during the development of the central nervous system (CNS). Several neural-derived signals that initiate and regulate the vascularization of the CNS have been described, however less is known about the vascular signals that orchestrate the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of blood vessels in the process of neurogenesis during CNS development in vertebrates. In mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two brain regions that exhibit different neurogenic complexity in their germinal zone, the hindbrain and the forebrain.
Collapse
Affiliation(s)
- Johanna Vogenstahl
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Marta Parrilla
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| | - Marta Segarra
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| |
Collapse
|
91
|
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front Bioeng Biotechnol 2022; 10:805299. [PMID: 35547166 PMCID: PMC9081537 DOI: 10.3389/fbioe.2022.805299] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Reproduction of different tissues using scaffolds and materials is a major element in regenerative medicine. The regeneration of whole organs with decellularized extracellular matrix (dECM) has remained a goal despite the use of these materials for different purposes. Recently, decellularization techniques have been widely used in producing scaffolds that are appropriate for regenerating damaged organs and may be able to overcome the shortage of donor organs. Decellularized ECM offers several advantages over synthetic compounds, including the preserved natural microenvironment features. Different decellularization methods have been developed, each of which is appropriate for removing cells from specific tissues under certain conditions. A variety of methods have been advanced for evaluating the decellularization process in terms of cell removal efficiency, tissue ultrastructure preservation, toxicity, biocompatibility, biodegradability, and mechanical resistance in order to enhance the efficacy of decellularization methods. Modification techniques improve the characteristics of decellularized scaffolds, making them available for the regeneration of damaged tissues. Moreover, modification of scaffolds makes them appropriate options for drug delivery, disease modeling, and improving stem cells growth and proliferation. However, considering different challenges in the way of decellularization methods and application of decellularized scaffolds, this field is constantly developing and progressively moving forward. This review has outlined recent decellularization and sterilization strategies, evaluation tests for efficient decellularization, materials processing, application, and challenges and future outlooks of decellularization in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Afarin Neishabouri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Daghigh
- Department of Physiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| |
Collapse
|
92
|
Yang Q, Hong Y, Zhao T, Song H, Ming GL. What Makes Organoids Good Models of Human Neurogenesis? Front Neurosci 2022; 16:872794. [PMID: 35495031 PMCID: PMC9048596 DOI: 10.3389/fnins.2022.872794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Human neurogenesis occurs mainly in embryonic, fetal, and neonatal stages and generates tremendously diverse neural cell types that constitute the human nervous system. Studies on human neurogenesis have been limited due to a lack of access to human embryonic and fetal tissues. Brain organoids derived from human pluripotent stem cells not only recapitulate major developmental processes during neurogenesis, but also exhibit human-specific features, thus providing an unprecedented opportunity to study human neurodevelopment. First, three-dimensional brain organoids resemble early human neurogenesis with diverse stem cell pools, including the presence of primate-enriched outer radial glia cells. Second, brain organoids recapitulate human neurogenesis at the cellular level, generating diverse neuronal cell types and forming stratified cortical layers. Third, brain organoids also capture gliogenesis with the presence of human-specific astrocytes. Fourth, combined with genome-editing technologies, brain organoids are promising models for investigating functions of human-specific genes at different stages of human neurogenesis. Finally, human organoids derived from patient iPSCs can recapitulate specific disease phenotypes, providing unique models for studying developmental brain disorders of genetic and environmental causes, and for mechanistic studies and drug screening. The aim of this review is to illustrate why brain organoids are good models to study various steps of human neurogenesis, with a focus on corticogenesis. We also discuss limitations of current brain organoid models and future improvements.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States,The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Guo-li Ming,
| |
Collapse
|
93
|
Ma L, Ye Z, Zhang Y, Shi W, Wang J, Yang H. Irradiated microvascular endothelial cells may induce bystander effects in neural stem cells leading to neurogenesis inhibition. JOURNAL OF RADIATION RESEARCH 2022; 63:192-201. [PMID: 35059710 PMCID: PMC8944295 DOI: 10.1093/jrr/rrab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Radiation-induced neurocognitive dysfunction (RIND) has attracted a lot of attention lately due to the significant improvement of the survival of cancer patients after receiving cranial radiotherapy. The detailed mechanisms are not completely understood, but extensive evidence supports an involvement of the inhibition of hippocampal neurogenesis, which may result from radiation-induced depletion of neural stem cells (NSCs) as well as the damage to neurogenic niches. As an important component of neurogenic niches, vascular cells interact with NSCs through different signaling mechanisms, which is similar to the characteristics of radiation-induced bystander effect (RIBE). But whether RIBE is involved in neurogenesis inhibition contributed by the damaged vascular cells is unknown. Thus, the purpose of the present study was to investigate the occurrence of RIBEs in non-irradiated bystander NSCs induced by irradiated bEnd.3 vascular endothelial cells in a co-culture system. The results show that compared with the NSCs cultured alone, the properties of NSCs were significantly affected after co-culture with bEnd.3 cells, and further change was induced without obvious oxidative stress and apoptosis when bEnd.3 cells were irradiated, manifesting as a reduction in the proliferation, neurosphere-forming capability and differentiation potential of NSCs. All these results suggest that the damaged vascular endothelial cells may contribute to neurogenesis inhibition via inducing RIBEs in NSCs, thus leading to RIND.
Collapse
Affiliation(s)
- Linlin Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Zhujing Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Wenyu Shi
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Hongying Yang
- Corresponding author. H. Yang, Tel: +86-512-65882637; Fax: +86-512-65884830;
| |
Collapse
|
94
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
95
|
Mohamud Yusuf A, Hagemann N, Ludewig P, Gunzer M, Hermann DM. Roles of Polymorphonuclear Neutrophils in Ischemic Brain Injury and Post-Ischemic Brain Remodeling. Front Immunol 2022; 12:825572. [PMID: 35087539 PMCID: PMC8787127 DOI: 10.3389/fimmu.2021.825572] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023] Open
Abstract
Following ischemic stroke, polymorphonuclear neutrophils (PMNs) are rapidly recruited to the ischemic brain tissue and exacerbate stroke injury by release of reactive oxygen species (ROS), proteases and proinflammatory cytokines. PMNs may aggravate post-ischemic microvascular injury by obstruction of brain capillaries, contributing to reperfusion deficits in the stroke recovery phase. Thus, experimental studies which specifically depleted PMNs by delivery of anti-Ly6G antibodies or inhibited PMN brain entry, e.g., by CXC chemokine receptor 2 (CXCR2) or very late antigen-4 (VLA-4) blockade in the acute stroke phase consistently reduced neurological deficits and infarct volume. Although elevated PMN responses in peripheral blood are similarly predictive for large infarcts and poor stroke outcome in human stroke patients, randomized controlled clinical studies targeting PMN brain infiltration did not improve stroke outcome or even worsened outcome due to serious complications. More recent studies showed that PMNs have decisive roles in post-ischemic angiogenesis and brain remodeling, most likely by promoting extracellular matrix degradation, thereby amplifying recovery processes in the ischemic brain. In this minireview, recent findings regarding the roles of PMNs in ischemic brain injury and post-ischemic brain remodeling are summarized.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| |
Collapse
|
96
|
Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact Mater 2022; 16:271-284. [PMID: 35386320 PMCID: PMC8965728 DOI: 10.1016/j.bioactmat.2022.02.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis and neurogenesis play irreplaceable roles in bone repair. Although biomaterial implantation that mimics native skeletal tissue is extensively studied, the nerve-vascular network reconstruction is neglected in the design of biomaterials. Our goal here is to establish a periosteum-simulating bilayer hydrogel and explore the efficiency of bone repair via enhancement of angiogenesis and neurogenesis. In this contribution, we designed a bilayer hydrogel platform incorporated with magnesium-ion-modified black phosphorus (BP) nanosheets for promoting neuro-vascularized bone regeneration. Specifically, we incorporated magnesium-ion-modified black phosphorus (BP@Mg) nanosheets into gelatin methacryloyl (GelMA) hydrogel to prepare the upper hydrogel, whereas the bottom hydrogel was designed as a double-network hydrogel system, consisting of two interpenetrating polymer networks composed of GelMA, PEGDA, and β-TCP nanocrystals. The magnesium ion modification process was developed to enhance BP nanosheet stability and provide a sustained release platform for bioactive ions. Our results demonstrated that the upper layer of hydrogel provided a bionic periosteal structure, which significantly facilitated angiogenesis via induction of endothelial cell migration and presented multiple advantages for the upregulation of nerve-related protein expression in neural stem cells (NSCs). Moreover, the bottom layer of the hydrogel significantly promoted bone marrow mesenchymal stem cells (BMSCs) activity and osteogenic differentiation. We next employed the bilayer hydrogel structure to correct rat skull defects. Based on our radiological and histological examinations, the bilayer hydrogel scaffolds markedly enhanced early vascularization and neurogenesis, which prompted eventual bone regeneration and remodeling. Our current strategy paves way for designing nerve-vascular network biomaterials for bone regeneration. Developing a periosteum-simulating bilayer hydrogel to improve the efficiency of neuro-vascularized bone repair. A magnesium-ion-modified black phosphorus (BP) nanosheets incorporated hydrogel platform was designed. Designing nerve-vascular network biomaterials for bone regeneration.
Collapse
|
97
|
Heft Neal ME, Brenner JC, Prince MEP, Chinn SB. Advancement in Cancer Stem Cell Biology and Precision Medicine-Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Front Cell Dev Biol 2022; 9:660210. [PMID: 35047489 PMCID: PMC8762309 DOI: 10.3389/fcell.2021.660210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Head and Neck cancer survival has continued to remain around 50% despite treatment advances. It is thought that cancer stem cells play a key role in promoting tumor heterogeneity, treatment resistance, metastasis, and recurrence in solid malignancies including head and neck cancer. Initial studies identified cancer stem cell markers including CD44 and ALDH in head and neck malignancies and found that these cells show aggressive features in both in vitro and in vivo studies. Recent evidence has now revealed a key role of the tumor microenvironment in maintaining a cancer stem cell niche and promoting cancer stem cell plasticity. There is an increasing focus on identifying and targeting the crosstalk between cancer stem cells and surrounding cells within the tumor microenvironment (TME) as new therapeutic potential, however understanding how CSC maintain a stem-like state is critical to understanding how to therapeutically alter their function. Here we review the current evidence for cancer stem cell plasticity and discuss how interactions with the TME promote the cancer stem cell niche, increase tumor heterogeneity, and play a role in treatment resistance.
Collapse
Affiliation(s)
- Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Mark E P Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Steven B Chinn
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
98
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
99
|
Acid sphingomyelinase deactivation post-ischemia promotes brain angiogenesis and remodeling by small extracellular vesicles. Basic Res Cardiol 2022; 117:43. [PMID: 36038749 PMCID: PMC9424180 DOI: 10.1007/s00395-022-00950-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.
Collapse
|
100
|
Ngo MT, Barnhouse VR, Gilchrist AE, Mahadik BP, Hunter CJ, Hensold JN, Petrikas N, Harley BAC. Hydrogels Containing Gradients in Vascular Density Reveal Dose-Dependent Role of Angiocrine Cues on Stem Cell Behavior. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101541. [PMID: 35558090 PMCID: PMC9090181 DOI: 10.1002/adfm.202101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan E Gilchrist
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine J Hunter
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joy N Hensold
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan Petrikas
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|