51
|
Colineau L, Laabei M, Liu G, Ermert D, Lambris JD, Riesbeck K, Blom AM. Interaction of Streptococcus pyogenes with extracellular matrix components resulting in immunomodulation and bacterial eradication. Matrix Biol Plus 2020; 6-7:100020. [PMID: 33543018 PMCID: PMC7852299 DOI: 10.1016/j.mbplus.2020.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes is a major human pathogen that causes a variety of diseases ranging from mild skin and throat infections to fatal septicemia. In severe invasive infections, S. pyogenes encounters and interacts with components of the extracellular matrix (ECM), including small leucine rich-proteoglycans (SLRPs). In this study, we report a novel antimicrobial role played by SLRPs biglycan, decorin, fibromodulin and osteoadherin, specifically in promoting the eradication of S. pyogenes in a human sepsis model of infection. SLRPs can be released from the ECM and de novo synthesized by a number of cell types. We reveal that infection of human monocytes by S. pyogenes induces the expression of decorin. Furthermore, we show that the majority of genetically distinct and clinically relevant S. pyogenes isolates interact with SLRPs resulting in decreased survival in blood killing assays. Biglycan and decorin induce TLR2 and TLR4 signaling cascades resulting in secretion of proinflammatory and chemotactic molecules and recruitment of professional phagocytes. Surprisingly, SLRP-mediated elimination of S. pyogenes occurs independently of TLR activation. Our results indicate that SLRPs act in concert with human serum, enhancing deposition of complement activation fragments and the classical activator C1q on the bacterial surface, facilitating efficient microbial eradication. Addition of the complement C3 inhibitor compstatin significantly reverses SLRP-induced blood killing, confirming active complement as a key mediator in SLRP-mediated bacterial destruction. Taken together our results add to the functional repertoire of SLRPs, expanding to encompass their role in controlling bacterial infection. Streptococcus pyogenes bind short leucine rich-proteoglycans (SLRPs) These SLRPs are biglycan, decorin, fibromodulin, osteoadherin Decorin expression is increased in S. pyogenes-infected human monocytes SLRPs decrease the survival of S. pyogenes in a whole blood model SLRP-mediated bacteria elimination is mediated by complement
Collapse
Key Words
- AF647, Alexa Fluor 647
- BSA, bovine serum albumin
- Bacteria
- C4BP, C4b-binding protein
- CFSE, Carboxyfluorescein succinimidyl ester
- Complement
- Cp40, compstatin
- ECM, extracellular matrix
- GAG, glycosaminoglycan
- HI, heat-inactivated
- MAC, membrane attack complex
- NHS, normal human serum
- PMB, polymyxin B
- Pathogenesis
- SLRP, small leucine-rich proteoglycan
- Small leucine-rich proteoglycans
- Streptococcus pyogenes
- TLR, toll-like receptors
Collapse
Affiliation(s)
- Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Guanghui Liu
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
52
|
Ploplis VA, Castellino FJ. Host Pathways of Hemostasis that Regulate Group A Streptococcus pyogenes Pathogenicity. Curr Drug Targets 2020; 21:193-201. [PMID: 31556853 PMCID: PMC7670306 DOI: 10.2174/1389450120666190926152914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
A hallmark feature of severe Group A Streptococcus pyogenes (GAS) infection is dysregulated hemostasis. Hemostasis is the primary pathway for regulating blood flow through events that contribute towards clot formation and its dissolution. However, a number of studies have identified components of hemostasis in regulating survival and dissemination of GAS. Several proteins have been identified on the surface of GAS and they serve to either facilitate invasion to host distal sites or regulate inflammatory responses to the pathogen. GAS M-protein, a surface-exposed virulence factor, appears to be a major target for interactions with host hemostasis proteins. These interactions mediate biochemical events both on the surface of GAS and in the solution when M-protein is released into the surrounding environment through shedding or regulated proteolytic processes that dictate the fate of this pathogen. A thorough understanding of the mechanisms associated with these interactions could lead to novel approaches for altering the course of GAS pathogenicity.
Collapse
Affiliation(s)
- Victoria A. Ploplis
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
53
|
Rivera-Hernandez T, Walker MJ. Humanized Plasminogen Mouse Model to Study Group A Streptococcus Invasive Disease. Methods Mol Biol 2020; 2136:309-316. [PMID: 32430832 DOI: 10.1007/978-1-0716-0467-0_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This chapter presents the methodology to carry out infection of humanized plasminogen mice with Group A Streptococcus (GAS). This model of invasive disease has been widely used within the field to study the virulence of different GAS strains, host-pathogen interactions, the importance of particular virulence factors, and preclinical evaluation of novel treatments and vaccines. The model has shown to be highly reproducible and therefore represents an invaluable tool for GAS research.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Cátedras CONACYT-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, CDMX, Mexico.
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
54
|
Ramesh K, Walvekar VA, Wong B, Sayed AMM, Missé D, Kini RM, Mok YK, Pompon J. Increased Mosquito Midgut Infection by Dengue Virus Recruitment of Plasmin Is Blocked by an Endogenous Kazal-type Inhibitor. iScience 2019; 21:564-576. [PMID: 31726374 PMCID: PMC6854080 DOI: 10.1016/j.isci.2019.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Dengue symptoms include alteration of blood coagulation and fibrinolysis, causing severe hemorrhage and death. Here, we demonstrate that higher concentration of plasmin, the human fibrinolytic factor, in blood meal enhances dengue virus (DENV) infection in mosquito midgut and dissemination in mosquitoes. We also show that mosquitoes express a plasmin-selective Kazal-type inhibitor (AaTI) in the midgut to inhibit plasmin proteolysis and revert the enhanced infection. Using bio-layer interferometry, we show that DENV, plasmin, and AaTI interact to form a tripartite complex. Eventually, plasmin increases midgut internalization of dextran molecules and this is reverted by AaTI. Our study demonstrates that (1) DENV recruits plasmin to increase local proteolytic activity in the midgut, thus degrading the glycocalyx and enhancing DENV internalization and (2) AaTI can act as a transmission-blocking agent by inhibiting plasmin proteolysis. Our results indicate that dengue pathogenesis enhances DENV fitness by increasing its infectivity to mosquitoes.
Collapse
Affiliation(s)
- Karthik Ramesh
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Varsha A Walvekar
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Benjamin Wong
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ahmed Mahmoud Mohammed Sayed
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Assiut University, Department of Chemistry, Faculty of Science, Assiut 71516, Egypt
| | - Dorothée Missé
- MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Julien Pompon
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, Montpellier, France.
| |
Collapse
|
55
|
Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. J Control Release 2019; 317:96-108. [PMID: 31758971 DOI: 10.1016/j.jconrel.2019.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
Abstract
Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.
Collapse
|
56
|
Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, Henderson IR, Watson SP, Cunningham AF. Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Front Immunol 2019; 10:2569. [PMID: 31749809 PMCID: PMC6848062 DOI: 10.3389/fimmu.2019.02569] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Thrombosis is a common consequence of infection that is associated with poor patient outcome. Nevertheless, the mechanisms by which infection-associated thrombosis is induced, maintained and resolved are poorly understood, as is the contribution thrombosis makes to host control of infection and pathogen spread. The key difference between infection-associated thrombosis and thrombosis in other circumstances is a stronger inflammation-mediated component caused by the presence of the pathogen and its products. This inflammation triggers the activation of platelets, which may accompany damage to the endothelium, resulting in fibrin deposition and thrombus formation. This process is often referred to as thrombo-inflammation. Strikingly, despite its clinical importance and despite thrombi being induced to many different pathogens, it is still unclear whether the mechanisms underlying this process are conserved and how we can best understand this process. This review summarizes thrombosis in a variety of models, including single antigen models such as LPS, and infection models using viruses and bacteria. We provide a specific focus on Salmonella Typhimurium infection as a useful model to address all stages of thrombosis during infection. We highlight how this model has helped us identify how thrombosis can appear in different organs at different times and thrombi be detected for weeks after infection in one site, yet largely be resolved within 24 h in another. Furthermore, we discuss the observation that thrombi induced to Salmonella Typhimurium are largely devoid of bacteria. Finally, we discuss the value of different therapeutic approaches to target thrombosis, the potential importance of timing in their administration and the necessity to maintain normal hemostasis after treatment. Improvements in our understanding of these processes can be used to better target infection-mediated mechanisms of thrombosis.
Collapse
Affiliation(s)
- Nonantzin Beristain-Covarrubias
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
57
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
58
|
Bernard PE, Kachroo P, Eraso JM, Zhu L, Madry JE, Linson SE, Ojeda Saavedra M, Cantu C, Musser JM, Olsen RJ. Polymorphisms in Regulator of Cov Contribute to the Molecular Pathogenesis of Serotype M28 Group A Streptococcus. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2002-2018. [PMID: 31369755 PMCID: PMC6892226 DOI: 10.1016/j.ajpath.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica E Madry
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Sarah E Linson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Concepcion Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
59
|
Ly D, Donahue D, Walker MJ, Ploplis VA, McArthur JD, Ranson M, Castellino FJ, Sanderson-Smith ML. Characterizing the role of tissue-type plasminogen activator in a mouse model of Group A streptococcal infection. Microbes Infect 2019; 21:412-417. [PMID: 31009808 PMCID: PMC7707001 DOI: 10.1016/j.micinf.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/20/2022]
Abstract
Plasmin(ogen) acquisition is critical for invasive disease initiation by Streptococcus pyogenes (GAS). Host urokinase plasminogen activator (uPA) plays a role in mediating plasminogen activation for GAS dissemination, however the contribution of tissue-type plasminogen activator (tPA) to GAS virulence is unknown. Using novel tPA-deficient ALBPLG1 mice, our study revealed no difference in mouse survival, bacterial dissemination or the pathology of GAS infection in the absence of tPA in AlbPLG1/tPA-/- mice compared to AlbPLG1 mice. This study suggests that tPA has a limited role in this humanized model of GAS infection, further highlighting the importance of its counterpart uPA in GAS disease.
Collapse
Affiliation(s)
- Diane Ly
- Illawarra Health and Medical Research Institute and School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Deborah Donahue
- W. M. Keck Center for Transgene Research, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Mark J Walker
- School of Chemistry and Molecular Bioscience, Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland, Australia
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Jason D McArthur
- Illawarra Health and Medical Research Institute and School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute and School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia.
| |
Collapse
|
60
|
Yuan Y, Ayinuola YA, Singh D, Ayinuola O, Mayfield JA, Quek A, Whisstock JC, Law RHP, Lee SW, Ploplis VA, Castellino FJ. Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. J Struct Biol 2019; 208:18-29. [PMID: 31301349 PMCID: PMC6983471 DOI: 10.1016/j.jsb.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.
Collapse
Affiliation(s)
- Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Damini Singh
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A Mayfield
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
61
|
Köhler J, Maletzki C, Koczan D, Frank M, Trepesch C, Revenko AS, Crosby JR, Macleod AR, Mikkat S, Oehmcke-Hecht S. The contact system proteases play disparate roles in streptococcal sepsis. Haematologica 2019; 105:1424-1435. [PMID: 31320552 PMCID: PMC7193472 DOI: 10.3324/haematol.2019.223545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III -Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technologie, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Trepesch
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Jeffrey R Crosby
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - A Robert Macleod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
62
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
63
|
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins (Basel) 2019; 11:toxins11060332. [PMID: 31212697 PMCID: PMC6628391 DOI: 10.3390/toxins11060332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies.
Collapse
|
64
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
65
|
Hammerschmidt S, Rohde M, Preissner KT. Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0041-2018. [PMID: 31004421 PMCID: PMC11590433 DOI: 10.1128/microbiolspec.gpp3-0041-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 01/10/2023] Open
Abstract
The main strategies used by pathogenic bacteria to infect eukaryotic tissue include their adherence to cells and the extracellular matrix (ECM), the subsequent colonization and invasion as well as the evasion of immune defences. A variety of structurally and functionally characterized adhesins and binding proteins of gram-positive bacteria facilitate these processes by specifically recognizing and interacting with various components of the host ECM, including different collagens, fibronectin and other macromolecules. The ECM affects the cellular physiology of our body and is critical for adhesion, migration, proliferation, and differentiation of many host cell types, but also provides the support for infiltrating pathogens, particularly under conditions of injury and trauma. Moreover, microbial binding to a variety of adhesive components in host tissue fluids leads to structural and/or functional alterations of host proteins and to the activation of cellular mechanisms that influence tissue and cell invasion of pathogens. Since the diverse interactions of gram-positive bacteria with the ECM represent important pathogenicity mechanisms, their characterization not only allows a better understanding of microbial invasion but also provides clues for the design of novel therapeutic strategies to manage infectious diseases.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Center for Infection Research, D-38124 Braunschweig, Germany
| | - Klaus T Preissner
- Institute for Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany
| |
Collapse
|
66
|
Osowicki J, Azzopardi KI, McIntyre L, Rivera-Hernandez T, Ong CLY, Baker C, Gillen CM, Walker MJ, Smeesters PR, Davies MR, Steer AC. A Controlled Human Infection Model of Group A Streptococcus Pharyngitis: Which Strain and Why? mSphere 2019; 4:e00647-18. [PMID: 30760615 PMCID: PMC6374595 DOI: 10.1128/msphere.00647-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Group A Streptococcus (GAS) is a major cause of global infection-related morbidity and mortality. A modern controlled human infection model (CHIM) of GAS pharyngitis can accelerate vaccine development and pathogenesis research. A robust rationale for strain selection is central to meeting ethical, scientific, and regulatory requirements. Multifaceted characterization studies were done to compare a preferred candidate emm75 (M75) GAS strain to three other strains: an alternative candidate emm12 (M12) strain, an M1 strain used in 1970s pharyngitis CHIM studies (SS-496), and a representative (5448) of the globally disseminated M1T1 clone. A range of approaches were used to explore strain growth, adherence, invasion, delivery characteristics, short- and long-term viability, phylogeny, virulence factors, vaccine antigens, resistance to killing by human neutrophils, and lethality in a murine invasive model. The strains grew reliably in a medium without animal-derived components, were consistently transferred using a swab method simulating the CHIM protocol, remained viable at -80°C, and carried genes for most candidate vaccine antigens. Considering GAS molecular epidemiology, virulence factors, in vitro assays, and results from the murine model, the contemporary strains show a spectrum of virulence, with M75 appearing the least virulent and 5448 the most. The virulence profile of SS-496, used safely in 1970s CHIM studies, was similar to that of 5448 in the animal model and virulence gene carriage. The results of this multifaceted characterization confirm the M75 strain as an appropriate choice for initial deployment in the CHIM, with the aim of safely and successfully causing pharyngitis in healthy adult volunteers.IMPORTANCE GAS (Streptococcus pyogenes) is a leading global cause of infection-related morbidity and mortality. A modern CHIM of GAS pharyngitis could help to accelerate vaccine development and drive pathogenesis research. Challenge strain selection is critical to the safety and success of any CHIM and especially so for an organism such as GAS, with its wide strain diversity and potential to cause severe life-threatening acute infections (e.g., toxic shock syndrome and necrotizing fasciitis) and postinfectious complications (e.g., acute rheumatic fever, rheumatic heart disease, and acute poststreptococcal glomerulonephritis). In this paper, we outline the rationale for selecting an emm75 strain for initial use in a GAS pharyngitis CHIM in healthy adult volunteers, drawing on the findings of a broad characterization effort spanning molecular epidemiology, in vitro assays, whole-genome sequencing, and animal model studies.
Collapse
Affiliation(s)
- Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Kristy I Azzopardi
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ciara Baker
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christine M Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Pierre R Smeesters
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Paediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
67
|
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133:511-520. [PMID: 30523120 PMCID: PMC6367649 DOI: 10.1182/blood-2018-07-818211] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
The canonical role of the hemostatic and fibrinolytic systems is to maintain vascular integrity. Perturbations in either system can prompt primary pathological end points of hemorrhage or thrombosis with vessel occlusion. However, fibrin(ogen) and proteases controlling its deposition and clearance, including (pro)thrombin and plasmin(ogen), have powerful roles in driving acute and reparative inflammatory pathways that affect the spectrum of tissue injury, remodeling, and repair. Indeed, fibrin(ogen) deposits are a near-universal feature of tissue injury, regardless of the nature of the inciting event, including injuries driven by mechanical insult, infection, or immunological derangements. Fibrin can modify multiple aspects of inflammatory cell function by engaging leukocytes through a variety of cellular receptors and mechanisms. Studies on the role of coagulation system activation and fibrin(ogen) deposition in models of inflammatory disease and tissue injury have revealed points of commonality, as well as context-dependent contributions of coagulation and fibrinolytic factors. However, there remains a critical need to define the precise temporal and spatial mechanisms by which fibrinogen-directed inflammatory events may dictate the severity of tissue injury and coordinate the remodeling and repair events essential to restore normal organ function. Current research trends suggest that future studies will give way to the identification of novel hemostatic factor-targeted therapies for a range of tissue injuries and disease.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation
- Department of Pharmacology and Toxicology, and
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Jonathan G Schoenecker
- Department of Orthopaedics
- Department of Pharmacology
- Department of Pediatrics, and
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
68
|
Zhu L, Olsen RJ, Beres SB, Eraso JM, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Charbonneau ARL, Waller AS, Musser JM. Gene fitness landscape of group A streptococcus during necrotizing myositis. J Clin Invest 2019; 129:887-901. [PMID: 30667377 PMCID: PMC6355216 DOI: 10.1172/jci124994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Necrotizing fasciitis and myositis are devastating infections characterized by high mortality. Group A streptococcus (GAS) is a common cause of these infections, but the molecular pathogenesis is poorly understood. We report a genome-wide analysis using serotype M1 and M28 strains that identified GAS genes contributing to necrotizing myositis in nonhuman primates (NHP), a clinically relevant model. Using transposon-directed insertion-site sequencing (TraDIS), we identified 126 and 116 GAS genes required for infection by serotype M1 and M28 organisms, respectively. For both M1 and M28 strains, more than 25% of the GAS genes required for necrotizing myositis encode known or putative transporters. Thirteen GAS transporters contributed to both M1 and M28 strain fitness in NHP myositis, including putative importers for amino acids, carbohydrates, and vitamins and exporters for toxins, quorum-sensing peptides, and uncharacterized molecules. Targeted deletion of genes encoding 5 transporters confirmed that each isogenic mutant strain was significantly (P < 0.05) impaired in causing necrotizing myositis in NHPs. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis showed that these 5 genes are expressed in infected NHP and human skeletal muscle. Certain substrate-binding lipoproteins of these transporters, such as Spy0271 and Spy1728, were previously documented to be surface exposed, suggesting that our findings have translational research implications.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Amelia R. L. Charbonneau
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
69
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
70
|
CpaA Is a Glycan-Specific Adamalysin-like Protease Secreted by Acinetobacter baumannii That Inactivates Coagulation Factor XII. mBio 2018; 9:mBio.01606-18. [PMID: 30563903 PMCID: PMC6299215 DOI: 10.1128/mbio.01606-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ventilator-associated pneumonia and catheter-related bacteremia are the most common and severe infections caused by Acinetobacter baumannii. Besides the capsule, lipopolysaccharides, and the outer membrane porin OmpA, little is known about the contribution of secreted proteins to A. baumannii survival in vivo. Here we focus on CpaA, a potentially recently acquired virulence factor that inhibits blood coagulation in vitro. We identify coagulation factor XII as a target of CpaA, map the cleavage sites, and show that glycosylation is a prerequisite for CpaA-mediated inactivation of factor XII. We propose adding CpaA to a small, but growing list of bacterial proteases that are specific for highly glycosylated components of the host defense system. Antibiotic-resistant Acinetobacter baumannii is increasingly recognized as a cause of difficult-to-treat nosocomial infections, including pneumonia, wound infections, and bacteremia. Previous studies have demonstrated that the metalloprotease CpaA contributes to virulence and prolongs clotting time when added to human plasma as measured by the activated partial thromboplastin time (aPTT) assay. Here, we show that CpaA interferes with the intrinsic coagulation pathway, also called the contact activation system, in human as well as murine plasma, but has no discernible effect on the extrinsic pathway. By utilizing a modified aPTT assay, we demonstrate that coagulation factor XII (fXII) is a target of CpaA. In addition, we map the cleavage by CpaA to two positions, 279-280 and 308-309, within the highly glycosylated proline-rich region of human fXII, and show that cleavage at the 308-309 site is responsible for inactivation of fXII. At both sites, cleavage occurs between proline and an O-linked glycosylated threonine, and deglycosylation of fXII prevents cleavage by CpaA. Consistent with this, mutant fXII (fXII-Thr309Lys) from patients with hereditary angioedema type III (HAEIII) is protected from CpaA inactivation. This raises the possibility that individuals with HAEIII who harbor this mutation may be partially protected from A. baumannii infection if CpaA contributes to human disease. By inactivating fXII, CpaA may attenuate important antimicrobial defense mechanisms such as intravascular thrombus formation, thus allowing A. baumannii to disseminate.
Collapse
|
71
|
Qiu C, Yuan Y, Zajicek J, Liang Z, Balsara RD, Brito-Robionson T, Lee SW, Ploplis VA, Castellino FJ. Contributions of different modules of the plasminogen-binding Streptococcus pyogenes M-protein that mediate its functional dimerization. J Struct Biol 2018; 204:151-164. [PMID: 30071314 PMCID: PMC6544907 DOI: 10.1016/j.jsb.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Group A Streptococcus pyogenes (GAS) is a causative agent of pharyngeal and dermal infections in humans. A major virulence determinant of GAS is its dimeric signature fibrillar M-protein (M-Prt), which is evolutionarily designed in modules, ranging from a hypervariable extracellular N-terminal region to a progressively more highly conserved C-terminus that is covalently anchored to the cell wall. Of the >250 GAS isolates classified, only the subset of skin-trophic Pattern D strains expresses a specific serotype of M-Prt, PAM, that directly binds to host human plasminogen (hPg) via its extracellular NH2-terminal variable A-domain region. This interaction allows these GAS strains to accumulate components of the host fibrinolytic system on their surfaces to serve extracellular functions. While structure-function studies have been accomplished on M-Prts from Pattern A-C GAS isolates with different direct ligand binding properties compared to PAM, much less is known regarding the structure-function relationships of PAM-type M-Prts, particularly their dimerization determinants. To examine these questions, PAMs from seven GAS strains with sequence variations in the NH2-terminal ligand binding domains, as well as truncated versions of PAM, were designed and studied. The results from bioinformatic and biophysical analyses show that the different domains of PAM are disparately engaged in dimerization. From these data, we propose an experimentally-based model for PAM secondary and quaternary structures that is highly dependent on the conserved helical C-terminal C-D-domains. In addition, while the N-terminal regions of PAMs are variable in sequence, the binding properties of hPg and its activated product, plasmin, to the A-domain, remain intact.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jaroslav Zajicek
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rashna D Balsara
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Teresa Brito-Robionson
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
72
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|
73
|
An TJ, Benvenuti MA, Mignemi ME, Thomsen IP, Schoenecker JG. Pediatric Musculoskeletal Infection: Hijacking the Acute-Phase Response. JBJS Rev 2018; 4:01874474-201609000-00004. [PMID: 27760072 DOI: 10.2106/jbjs.rvw.15.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue injury activates the acute-phase response mediated by the liver, which promotes coagulation, immunity, and tissue regeneration. To survive and disseminate, musculoskeletal pathogens express virulence factors that modulate and hijack this response. As the acute-phase reactants required by these pathogens are most abundant in damaged tissue, these infections are predisposed to occur in tissues following traumatic or surgical injury. Staphylococcus aureus expresses the virulence factors coagulase and von Willebrand binding protein to stimulate coagulation and to form a fibrin abscess that protects it from host immune-cell phagocytosis. After the staphylococcal abscess community reaches quorum, which is the colony density that enables cell-to-cell communication and coordinated gene expression, subsequent expression of staphylokinase stimulates activation of fibrinolysis, which ruptures the abscess wall and results in bacterial dissemination. Unlike Staphylococcus aureus, Streptococcus pyogenes expresses streptokinase and other virulence factors to activate fibrinolysis and to rapidly disseminate throughout the body, causing diseases such as necrotizing fasciitis. Understanding the virulence strategies of musculoskeletal pathogens will help to guide clinical diagnosis and decision-making through monitoring of acute-phase markers such as C-reactive protein, erythrocyte sedimentation rate, and fibrinogen.
Collapse
Affiliation(s)
- Thomas J An
- Departments of Orthopaedics (M.E.M. and J.G.S.), Pediatrics (I.P.T. and J.G.S.), Pediatric Infectious Disease (I.P.T.), Pharmacology (J.G.S.), and Pathology (J.G.S.), Vanderbilt University School of Medicine (T.J.A. and M.A.B.), Nashville, Tennessee
| | | | | | | | | |
Collapse
|
74
|
Frick IM, Shannon O, Neumann A, Karlsson C, Wikström M, Björck L. Streptococcal inhibitor of complement (SIC) modulates fibrinolysis and enhances bacterial survival within fibrin clots. J Biol Chem 2018; 293:13578-13591. [PMID: 30002122 PMCID: PMC6120194 DOI: 10.1074/jbc.ra118.001988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/11/2018] [Indexed: 11/06/2022] Open
Abstract
Some strains of the bacterial pathogen Streptococcus pyogenes secrete protein SIC (streptococcal inhibitor of complement), including strains of the clinically relevant M1 serotype. SIC neutralizes the effect of a number of antimicrobial proteins/peptides and interferes with the function of the host complement system. Previous studies have shown that some S. pyogenes proteins bind and modulate coagulation and fibrinolysis factors, raising the possibility that SIC also may interfere with the activity of these factors. Here we show that SIC interacts with both human thrombin and plasminogen, key components of coagulation and fibrinolysis. We found that during clot formation, SIC binds fibrin through its central region and that SIC inhibits fibrinolysis by interacting with plasminogen. Flow cytometry results indicated that SIC and plasminogen bind simultaneously to S. pyogenes bacteria, and fluorescence microscopy revealed co-localization of the two proteins at the bacterial surface. As a consequence, SIC-expressing bacteria entrapped in clots inhibit fibrinolysis, leading to delayed bacterial escape from the clots as compared with mutant bacteria lacking SIC. Moreover, within the clots SIC-expressing bacteria were protected against killing. In an animal model of subcutaneous infection, SIC-expressing bacteria exhibited a delayed systemic spread. These results demonstrate that the bacterial protein SIC interferes with coagulation and fibrinolysis and thereby enhances bacterial survival, a finding that has significant implications for S. pyogenes virulence.
Collapse
Affiliation(s)
- Inga-Maria Frick
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Oonagh Shannon
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Ariane Neumann
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Christofer Karlsson
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Mats Wikström
- the University of Copenhagen, Protein Function and Interactions Group, Novo Nordisk Foundation Center for Protein Research, DK-2200 Copenhagen, Denmark
| | - Lars Björck
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| |
Collapse
|
75
|
New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection. Infect Immun 2018; 86:IAI.00048-18. [PMID: 29581188 DOI: 10.1128/iai.00048-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (ΔadcA ΔadcAII) and export (ΔczcD) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens.
Collapse
|
76
|
Ferrer-Navarro M, Strehlitz A, Medina E, Vila J. Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Streptococcus pneumoniae Infection. Front Microbiol 2018; 9:928. [PMID: 29867838 PMCID: PMC5952171 DOI: 10.3389/fmicb.2018.00928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Infections by Streptococcus pneumoniae are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on S. pneumoniae are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from S. pneumoniae-infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in S. pneumoniae infection.
Collapse
Affiliation(s)
- Mario Ferrer-Navarro
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Anja Strehlitz
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jordi Vila
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
77
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|
78
|
Samuels JM, Moore HB, Moore EE. Coagulopathy in Severe Sepsis: Interconnectivity of Coagulation and the Immune System. Surg Infect (Larchmt) 2018; 19:208-215. [PMID: 29346034 DOI: 10.1089/sur.2017.260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Disseminated intravascular coagulation (DIC) remains a challenging complication of infection with inadequate treatment and significant morbidity and mortality rates. METHODS Review of the English-language literature. RESULTS Disseminated intravascular coagulation arises from the immune system's response to microbial invasion, as well as the byproducts of cell death that result from severe sepsis. This response triggers the coagulation system through an interconnected network of cellular and molecular signals, which developed originally as an evolutionary mechanism intended to isolate micro-organisms via fibrin mesh formation. However, this response has untoward consequences, including hemorrhage and thrombosis caused by dysregulation of the coagulation cascade and fibrinolysis system. Ultimately, diagnosis relies on clinical findings and laboratory studies that recognize excessive activation of the coagulation system, and treatment focuses on supportive measures and correction of coagulation abnormalities. Clinically, DIC secondary to sepsis in the surgical population presents a challenge both in diagnosis and in treatment. Biologically, however, DIC epitomizes the crosstalk between signaling pathways that is essential to normal physiology, while demonstrating the devastating consequences when failure of local control results in systemic derangements. CONCLUSIONS This paper discusses the pathophysiology of coagulopathy and fibrinolysis secondary to sepsis, the diagnostic tools available to identify the abnormalities, and the available treatments.
Collapse
Affiliation(s)
- Jason M Samuels
- 1 Department of General Surgery, University of Colorado Denver , Aurora, Colorado
| | - Hunter B Moore
- 1 Department of General Surgery, University of Colorado Denver , Aurora, Colorado
| | - Ernest E Moore
- 2 Department of Surgery, Denver Health Medical Center , Denver, Colorado
| |
Collapse
|
79
|
Wollein Waldetoft K, Brown SP. Alternative therapeutics for self-limiting infections-An indirect approach to the antibiotic resistance challenge. PLoS Biol 2017; 15:e2003533. [PMID: 29283999 PMCID: PMC5746204 DOI: 10.1371/journal.pbio.2003533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alternative therapeutics for infectious diseases is a top priority, but what infections should be the primary targets? At present there is a focus on therapies for severe infections, for which effective treatment is most needed, but these infections are hard to manage, and progress has been limited. Here, we explore a different approach. Applying an evolutionary perspective to a review of antibiotic prescription studies, we identify infections that likely make a large contribution to resistance evolution across multiple taxa but are clinically mild and thus present easier targets for therapeutics development. Alternative therapeutics for these infections, we argue, would save lives indirectly by preserving the high efficacy of existing antibiotics for the patients who need them the most.
Collapse
Affiliation(s)
- Kristofer Wollein Waldetoft
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
80
|
Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2017; 180:782-798. [PMID: 29265338 DOI: 10.1111/bjh.15062] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coagulation and innate immunity are linked evolutionary processes that orchestrate the host defence against invading pathogens and injury. The complement system is integral to innate immunity and shares numerous interactions with components of the haemostatic pathway, helping to maintain physiological equilibrium. The term 'immunothrombosis' was introduced in 2013 to embrace this process, and has become an area of much recent interest. What is less apparent in the literature however is an appreciation of the clinical manifestations of the coagulation-complement interaction and the consequences of dysregulation of either system, as seen in many inflammatory and thrombotic disease states, such as sepsis, trauma, atherosclerosis, antiphospholipid syndrome (APS), paroxysmal nocturnal haemoglobinuria (PNH) and some thrombotic microangiopathies to name a few. The growing appreciation of this immunothrombotic phenomenon will foster the drive for novel therapies in these disease states, including anticoagulants as immunomodulators and targeted molecular therapies.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Zoe K McQuilten
- Transfusion Research Unit and Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Vic., Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
81
|
Esmon C. Molecular circuits in thrombosis and inflammation. Thromb Haemost 2017; 109:416-20. [DOI: 10.1160/th12-08-0634] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/05/2013] [Indexed: 12/21/2022]
Abstract
SummaryInflammatory cytokines promote the activation of coagulation through the induction of tissue factor, downregulation of thrombomodulin and upregulation of plasminogen activator inhibitor. In addition to these mechanisms, infections can trigger the release of extracellular traps from leukocytes consisting of DNA and histones. Tissue injury results in release of nucleosomes. Either of these histone containing structures activate platelets and form a potent procoagulant surface on polyphosphates secreted from the platelets, thereby augmenting thrombus formation. In addition, the histones can inhibit thrombomodulin function. The combination of augmenting the platelet procoagulant activity and impairing thrombomodulin activity probably explains the microvascular thrombotic problems observed when histones are infused into mice. Of the histones, H4 is the most potent in all of these activities. DNAase or blocking histone H4 can decrease the thrombotic response initiated by either the extracellular traps or nucleosomes. In addition to the direct prothrombotic activity of histone-DNA complexes, the complexes trigger activation of the toll-like receptors 2, 4 and 9 thereby increasing inflammatory cytokine formation and fostering thrombotic responses through the mechanisms mentioned previously. Furthermore, these cytokines are likely to increase cell necrosis and apoptosis releasing nucleosomes and further augmenting the activation of leukocytes with the subsequent release of extracellular traps. Blocking this histone-mediated cascade has the potential to impact a variety of clinical conditions including sepsis, trauma, chemical toxicity, transplant injury and reperfusion injury.
Collapse
|
82
|
Rox K, Jansen R, Loof TG, Gillen CM, Bernecker S, Walker MJ, Chhatwal GS, Müller R. Linoleic and palmitoleic acid block streptokinase-mediated plasminogen activation and reduce severity of invasive group A streptococcal infection. Sci Rep 2017; 7:11798. [PMID: 28924140 PMCID: PMC5603603 DOI: 10.1038/s41598-017-11276-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
In contrast to mild infections of Group A Streptococcus (GAS) invasive infections of GAS still pose a serious health hazard: GAS disseminates from sterile sites into the blood stream or deep tissues and causes sepsis or necrotizing fasciitis. In this case antibiotics do not provide an effective cure as the bacteria are capable to hide from them very quickly. Therefore, new remedies are urgently needed. Starting from a myxobacterial natural products screening campaign, we identified two fatty acids isolated from myxobacteria, linoleic and palmitoleic acid, specifically blocking streptokinase-mediated activation of plasminogen and thereby preventing streptococci from hijacking the host’s plasminogen/plasmin system. This activity is not inherited by other fatty acids such as oleic acid and is not attributable to the killing of streptococci. Moreover, both fatty acids are superior in their inhibitory properties compared to two clinically used drugs (tranexamic or ε-amino caproic acid) as they show 500–1000 fold lower IC50 values. Using a humanized plasminogen mouse model mimicking the clinical situation of a local GAS infection that becomes systemic, we demonstrate that these fatty acids ameliorate invasive GAS infection significantly. Consequently, linoleic and palmitoleic acid are possible new options to combat GAS invasive diseases.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Central facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Torsten G Loof
- Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Infection Immunology Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christine M Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Steffen Bernecker
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Gursharan Singh Chhatwal
- Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany.
| |
Collapse
|
83
|
Bergmann S, Eichhorn I, Kohler TP, Hammerschmidt S, Goldmann O, Rohde M, Fulde M. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G. Front Cell Infect Microbiol 2017; 7:80. [PMID: 28401063 PMCID: PMC5368172 DOI: 10.3389/fcimb.2017.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.
Collapse
Affiliation(s)
- Simone Bergmann
- Department of Medical Microbiology, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Thomas P Kohler
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald Greifswald, Germany
| | - Oliver Goldmann
- Department of Infection Immunology, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Marcus Fulde
- Department of Medical Microbiology, Helmholtz Center for Infection ResearchBraunschweig, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
84
|
Glinton K, Beck J, Liang Z, Qiu C, Lee SW, Ploplis VA, Castellino FJ. Variable region in streptococcal M-proteins provides stable binding with host fibrinogen for plasminogen-mediated bacterial invasion. J Biol Chem 2017; 292:6775-6785. [PMID: 28280245 DOI: 10.1074/jbc.m116.768937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Dimeric M-proteins (M-Prt) in group A Streptococcus pyogenes (GAS) are surface-expressed virulence factors implicated in processes that contribute to the pathogenicity of infection. Sequence analyses of various GAS M-Prts have shown that they contain a highly conserved sortase A-dependent cell wall-anchored C terminus, whereas the surface-exposed N terminus is highly variable, a feature used for identification and serotyping of various GAS strains. This variability also allows for strain-specific responses that suppress host defenses. Previous studies have indeed identified the N-terminal M-Prt B-domain as the site interacting with antiphagocytotic human-host fibrinogen (hFg). Herein, we show that hFg strongly interacts with M-Prts containing highly variable B-domains. We further demonstrate that specific GAS clinical isolates display high affinity for the D-domain of hFg, and this interaction allowed for subsequent surface binding of human-host plasminogen (hPg) to the E-domain of hFg. This GAS surface-bound hPg is then activated by GAS-secreted streptokinase, leading to the generation of an invasive proteolytic bacterial surface. Our results underscore the importance of the human fibrinolytic system in host-pathogen interactions in invasive GAS infections.
Collapse
Affiliation(s)
- Kristofor Glinton
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Julia Beck
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Zhong Liang
- From the W.M. Keck Center for Transgene Research and
| | - Cunjia Qiu
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Shaun W Lee
- From the W.M. Keck Center for Transgene Research and.,Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research and .,the Departments of Chemistry and Biochemistry and
| |
Collapse
|
85
|
Huish S, Thelwell C, Longstaff C. Activity Regulation by Fibrinogen and Fibrin of Streptokinase from Streptococcus Pyogenes. PLoS One 2017; 12:e0170936. [PMID: 28125743 PMCID: PMC5268773 DOI: 10.1371/journal.pone.0170936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
Abstract
Streptokinase is a virulence factor of streptococci and acts as a plasminogen activator to generate the serine protease plasmin which promotes bacterial metastasis. Streptokinase isolated from group C streptococci has been used therapeutically as a thrombolytic agent for many years and its mechanism of action has been extensively studied. However, group A streptococci are associated with invasive and potentially fatal infections, but less detail is available on the mechanism of action of streptokinase from these bacteria. We have expressed recombinant streptokinase from a group C strain to investigate the therapeutic molecule (here termed rSK-H46A) and a molecule isolated from a cluster 2a strain from group A (rSK-M1GAS) which is known to produce the fibrinogen binding, M1 protein, and is associated with life-threatening disease. Detailed enzyme kinetic models have been prepared which show how fibrinogen-streptokinase-plasminogen complexes regulate plasmin generation, and also the effect of fibrin interactions. As is the case with rSK-H46A our data with rSK-M1GAS support a "trigger and bullet" mechanism requiring the initial formation of SK•plasminogen complexes which are replaced by more active SK•plasmin as plasmin becomes available. This model includes the important fibrinogen interactions that stimulate plasmin generation. In a fibrin matrix rSK-M1GAS has a 24 fold higher specific activity than the fibrin-specific thrombolytic agent, tissue plasminogen activator, and 15 fold higher specific activity than rSK-H46A. However, in vivo fibrin specificity would be undermined by fibrinogen stimulation. Given the observed importance of M1 surface receptors or released M1 protein to virulence of cluster 2a strain streptococci, studies on streptokinase activity regulation by fibrin and fibrinogen may provide additional routes to addressing bacterial invasion and infectious diseases.
Collapse
Affiliation(s)
- Sian Huish
- Component development laboratory, NHS Blood and Transplant, Cambridge Donor Centre, Cambridge, United Kingdom
| | - Craig Thelwell
- Biotherapeutics Section, National Institute for Biological Standard and Control, South Mimms, Herts, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standard and Control, South Mimms, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
86
|
Flick MJ, Bugge TH. Plasminogen-receptor KT : plasminogen activation and beyond. J Thromb Haemost 2017; 15:150-154. [PMID: 27740735 PMCID: PMC5280338 DOI: 10.1111/jth.13541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
The cell surface orchestrates plasminogen activation through the concomitant binding of plasminogen and plasminogen activators to specific receptors. In this issue, Miles and colleagues describe their detailed phenotypic characterization of mice deficient in Plg-RKT, a key plasminogen receptor expressed in numerous tissues, but highly expressed by proinflammatory macrophages. The analysis provides critical and surprising new insights into the biology of this receptor.
Collapse
Affiliation(s)
- Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
87
|
Null Mutations of Group A Streptococcus Orphan Kinase RocA: Selection in Mouse Infection and Comparison with CovS Mutations in Alteration of In Vitro and In Vivo Protease SpeB Expression and Virulence. Infect Immun 2016; 85:IAI.00790-16. [PMID: 27795364 DOI: 10.1128/iai.00790-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Group A Streptococcus (GAS) acquires mutations of the virulence regulator CovRS in human and mouse infections, and these mutations result in the upregulation of virulence genes and the downregulation of the protease SpeB. To identify in vivo mutants with novel phenotypes, GAS isolates from infected mice were screened by enzymatic assays for SpeB and the platelet-activating factor acetylhydrolase Sse, and a new type of variant that had enhanced Sse expression and normal levels of SpeB production was identified (the variants had a phenotype referred to as enhanced Sse activity [SseA+] and normal SpeB activity [SpeBA+]). SseA+ SpeBA+ variants had transcript levels of CovRS-controlled virulence genes comparable to those of a covS mutant but had no covRS mutations. Genome resequencing of an SseA+ SpeBA+ isolate identified a C605A nonsense mutation in orphan kinase gene rocA, and 6 other SseA+ SpeBA+ isolates also had nonsense mutations or small indels in rocA RocA and CovS mutants had similar levels of enhancement of the expression of CovRS-controlled virulence genes at the exponential growth phase; however, mutations of RocA but not mutations of CovS did not result in the downregulation of speB transcription at stationary growth phase or in subcutaneous infection of mice. GAS with RocA and CovS mutations caused greater enhancement of the expression of hasA than spyCEP in mouse skin infection than wild-type GAS did. RocA mutants ranked between wild-type GAS and CovS mutants in skin invasion, inhibition of neutrophil recruitment, and virulence in subcutaneous infection of mice. Thus, GAS RocA mutants can be selected in subcutaneous infections in mice and exhibit gene expression patterns and virulences distinct from those of CovS mutants. The findings provide novel information for understanding GAS fitness mutations in vivo, virulence gene regulation, in vivo gene expression, and virulence.
Collapse
|
88
|
Doni A, Garlanda C, Mantovani A. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link. Semin Immunol 2016; 28:570-577. [PMID: 27881292 DOI: 10.1016/j.smim.2016.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
Innate immunity is evolutionarily connected with hemostasis. PTX3 is an essential fluid-phase pattern recognition molecule of the innate immune system that acts as a functional ancestor of antibodies. PTX3 by interacting with defense collagens and fibrinogens amplifies effector functions of the innate immune system. At wound sites, PTX3 regulates the injury-induced thrombotic response and promotes wound healing by favoring timely fibrinolysis. Therefore, PTX3 interacts with ancestral domains conserved in innate immunity, hemostasis and extracellular matrix and exerts functions related to both antimicrobial resistance and tissue repair. These findings strengthen the connection between innate immune system and hemostasis, and suggest that recognition of microbes and extracellular matrix are evolutionarily conserved and integrated functions of the innate immune system.
Collapse
Affiliation(s)
- Andrea Doni
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy.
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| |
Collapse
|
89
|
Kinnby B, Chávez de Paz LE. Plasminogen coating increases initial adhesion of oral bacteria in vitro. Microb Pathog 2016; 100:10-16. [DOI: 10.1016/j.micpath.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/22/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
|
90
|
Davis RW, Eggleston H, Johnson F, Nahrendorf M, Bock PE, Peterson T, Panizzi P. In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model. Mol Imaging Biol 2016; 17:793-801. [PMID: 25921659 DOI: 10.1007/s11307-015-0856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. PROCEDURES Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. RESULTS Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. CONCLUSIONS The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Frances Johnson
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA, 02114, USA
| | - Paul E Bock
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tiffany Peterson
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
91
|
Saliva-Induced Clotting Captures Streptococci: Novel Roles for Coagulation and Fibrinolysis in Host Defense and Immune Evasion. Infect Immun 2016; 84:2813-23. [PMID: 27456827 PMCID: PMC5038080 DOI: 10.1128/iai.00307-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcal pharyngitis is among the most common bacterial infections, but the molecular mechanisms involved remain poorly understood. Here we investigate the interactions among three major players in streptococcal pharyngitis: streptococci, plasma, and saliva. We find that saliva activates the plasma coagulation system through both the extrinsic and the intrinsic pathways, entrapping the bacteria in fibrin clots. The bacteria escape the clots by activating host plasminogen. Our results identify a potential function for the intrinsic pathway of coagulation in host defense and a corresponding role for fibrinolysis in streptococcal immune evasion.
Collapse
|
92
|
Eddy JL, Schroeder JA, Zimbler DL, Caulfield AJ, Lathem WW. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence. J Thromb Haemost 2016; 14:1833-43. [PMID: 27377187 PMCID: PMC5053288 DOI: 10.1111/jth.13408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. SUMMARY Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y. pestis alters the host environment to promote virulence during pneumonic plague.
Collapse
Affiliation(s)
- J L Eddy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J A Schroeder
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D L Zimbler
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A J Caulfield
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - W W Lathem
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
93
|
Nitzsche R, Köhler J, Kreikemeyer B, Oehmcke-Hecht S. Streptococcus pyogenes Escapes Killing from Extracellular Histones through Plasminogen Binding and Activation by Streptokinase. J Innate Immun 2016; 8:589-600. [PMID: 27533300 DOI: 10.1159/000448039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
Histones are small basic proteins and highly conserved among eukaryotes. Their main function is binding, packaging and organizing of DNA in the nucleus, but extracellular histones are also potent antimicrobial proteins. Here we found that Streptococcus pyogenes - an important human pathogen - protects itself from histone-killing by the acquisition of plasminogen. Plasminogen, bound to the streptococcal surface, efficiently prevents histone-mediated killing. Moreover, the streptokinase/plasminogen complex degrades all classes of histones and abrogates their antibacterial and hemolytic effects. This novel streptokinase-mediated virulence mechanism may contribute to the escape of S. pyogenes from the human innate immune system.
Collapse
Affiliation(s)
- Ramona Nitzsche
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Rostock, Germany
| | | | | | | |
Collapse
|
94
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
95
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
96
|
Genomic Characterization of a Pattern D Streptococcus pyogenes emm53 Isolate Reveals a Genetic Rationale for Invasive Skin Tropicity. J Bacteriol 2016; 198:1712-24. [PMID: 27044623 DOI: 10.1128/jb.01019-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The genome of an invasive skin-tropic strain (AP53) of serotype M53 group A Streptococcus pyogenes (GAS) is composed of a circular chromosome of 1,860,554 bp and carries genetic markers for infection at skin locales, viz, emm gene family pattern D and FCT type 3. Through genome-scale comparisons of AP53 with other GAS genomes, we identified 596 candidate single-nucleotide polymorphisms (SNPs) that reveal a potential genetic basis for skin tropism. The genome of AP53 differed by ∼30 point mutations from a noninvasive pattern D serotype M53 strain (Alab49), 4 of which are located in virulence genes. One pseudogene, yielding an inactive sensor kinase (CovS(-)) of the two-component transcriptional regulator CovRS, a major determinant for invasiveness, severely attenuated the expression of the secreted cysteine protease SpeB and enhanced the expression of the hyaluronic acid capsule compared to the isogenic noninvasive AP53/CovS(+) strain. The collagen-binding protein transcript sclB differed in the number of 5'-pentanucleotide repeats in the signal peptides of AP53 and Alab49 (9 versus 15), translating into different lengths of their signal peptides, which nonetheless maintained a full-length translatable coding frame. Furthermore, GAS strain AP53 acquired two phages that are absent in Alab49. One such phage (ΦAP53.2) contains the known virulence factor superantigen exotoxin gene tandem speK-slaA Overall, we conclude that this bacterium has evolved in multiple ways, including mutational variations of regulatory genes, short-tandem-repeat polymorphisms, large-scale genomic alterations, and acquisition of phages, all of which may be involved in shaping the adaptation of GAS in specific infectious environments and contribute to its enhanced virulence. IMPORTANCE Infectious strains of S. pyogenes (GAS) are classified by their serotypes, relating to the surface M protein, the emm-like subfamily pattern, and their tropicity toward the nasopharynx and/or skin. It is generally agreed that M proteins from pattern D strains, which also directly bind human host plasminogen, are skin tropic. We have sequenced and characterized the genome of an invasive pattern D GAS strain (AP53) in comparison to a very similar strain (Alab49) that is noninvasive and developed a genomic rationale as to possible reasons for the skin tropicity of these two strains and the greater invasiveness of AP53.
Collapse
|
97
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
98
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
99
|
Agrahari G, Liang Z, Glinton K, Lee SW, Ploplis VA, Castellino FJ. Streptococcus pyogenes Employs Strain-dependent Mechanisms of C3b Inactivation to Inhibit Phagocytosis and Killing of Bacteria. J Biol Chem 2016; 291:9181-9. [PMID: 26945067 PMCID: PMC4861484 DOI: 10.1074/jbc.m115.704221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/08/2016] [Indexed: 01/08/2023] Open
Abstract
Evasion of complement-mediated opsonophagocytosis enables group A Streptococcus pyogenes (GAS) to establish infection. Different strain-dependent mechanisms are employed by the host to accomplish this goal. In general, GAS inhibits the amplification of the complement cascade on its cell surface by facilitating the degradation of C3b, an opsonin, to an inactive product, inactivated C3b (iC3b), in a step catalyzed by factor I (FI) and its cofactor, factor H (FH), with or without the participation of human host plasmin (hPm). GAS recruits FH to its cell surface via FH receptors, which are transcriptionally controlled by the two-component cluster of virulence responder-sensor system. The manner in which FI-FH and hPm function together on GAS cells is unknown. Using GAS strain AP53, which strongly binds host human plasminogen/plasmin (hPg/hPm) directly via an hPg/hPm surface receptor (PAM), we show that both FI-FH and hPm sequentially cleave C3b. Whereas FI-FH proteolytically cleaves C3b into iC3b, PAM-bound hPm catalyzes cleavage of iC3b into multiple smaller peptides. Unlike AP53, GAS strain M23ND weakly binds FH and recruits hPg/hPm to its cell surface indirectly via fibrinogen bound to M-protein, M23. In this case, FH-FI cleaves C3b into iC3b, with negligible degradation of iC3b by hPm that is bound to fibrinogen on the cells. AP53 and M23ND display similar resistance to human neutrophil-mediated phagocytosis, which results in a corresponding high lethality in mice after injection of these cells. These results suggest that GAS utilizes diverse mechanisms to degrade C3b and thus to protect bacterial cells from the complement response of the host.
Collapse
Affiliation(s)
- Garima Agrahari
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Zhong Liang
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Kristofor Glinton
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Shaun W Lee
- From the W.M. Keck Center for Transgene Research and Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| |
Collapse
|
100
|
The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infect Immun 2016; 84:1016-1031. [PMID: 26787724 DOI: 10.1128/iai.01296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.
Collapse
|