51
|
Gong M, Zhang X, Wang Y, Mao G, Ou Y, Wei C, Hu X, Xiang S. DDX21 interacts with nuclear AGO2 and regulates the alternative splicing of SMN2. Biosci Biotechnol Biochem 2021; 85:272-279. [PMID: 33604619 DOI: 10.1093/bbb/zbaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023]
Abstract
AGO2 is the only member of mammalian Ago protein family that possesses the catalytic activity and plays a central role in gene silencing. Recently researches reported that multiple gene silencing factors, including AGO2, function in the nuclei. The molecular mechanisms of the gene silencing factors functioning in nuclei are conducive to comprehend the roles of gene silencing in pretranslational regulation of gene expression. Here, we report that AGO2 interacts with DDX21 indirectly in an RNA-dependent manner by Co-IP and GST-Pulldown assays and the 2 proteins present nuclei foci in the immunofluorescence experiments. We found that DDX21 up-regulated the protein level of AGO2 and participated in target gene, SNM2, alternative splicing involved in AGO2 by the indirect interaction with AGO2, which produced different transcripts of SMN2 in discrepant expression level. This study laid important experiment foundation for the further analysis of the nuclear functions of gene silencing components.
Collapse
Affiliation(s)
- Mengting Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China.,College of Physical Education, Hunan University of Finance and Economics, Changsha, China
| | - Xi Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaru Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guiyan Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yangqi Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
52
|
Nowak I, Sarshad AA. Argonaute Proteins Take Center Stage in Cancers. Cancers (Basel) 2021; 13:cancers13040788. [PMID: 33668654 PMCID: PMC7918559 DOI: 10.3390/cancers13040788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The dysregulation of RNA interference (RNAi) has often been observed in cancers, where the main focus of research has been on the small RNA molecules directing RNAi. In this review, we focus on the activity of Argonaute proteins, central components of RNAi, in tumorigenesis, and also highlight their potential applications in grading tumors and anti-cancer therapies. Abstract Argonaute proteins (AGOs) play crucial roles in RNA-induced silencing complex (RISC) formation and activity. AGOs loaded with small RNA molecules (miRNA or siRNA) either catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and target destabilization. miRNAs are well characterized and broadly studied in tumorigenesis; nevertheless, the functions of the AGOs in cancers have lagged behind. Here, we discuss the current state of knowledge on the role of AGOs in tumorigenesis, highlighting canonical and non-canonical functions of AGOs in cancer cells, as well as the biomarker potential of AGO expression in different of tumor types. Furthermore, we point to the possible application of the AGOs in development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Nowak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Aishe A. Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
53
|
Shi Y, Shi Q, Shen Q, Zhang Q, Cao X. Dicer-independent snRNA/snoRNA-derived nuclear RNA 3 regulates tumor-associated macrophage function by epigenetically repressing inducible nitric oxide synthase transcription. Cancer Commun (Lond) 2021; 41:140-153. [PMID: 33455092 PMCID: PMC7896748 DOI: 10.1002/cac2.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) extensively mediate gene-specific chromatin regulation in lower organisms. As a dominant type of functional sRNAs in mature mammals, microRNAs mainly regulate gene expression at post-transcription level in the cytoplasm. Currently, whether there exists a type of nuclear-localized sRNAs mediating gene-specific epigenetic regulation in mature mammalian cells remains largely unclear. Here, we profiled sRNAs enriched in the nucleus and investigated their function in mediating gene-specific epigenetic regulation in anti-tumor immunity. METHODS We established cytoplasmic and nuclear transcriptomes of sRNAs of dendritic cells (DCs) using high-throughput sequencing. Transcription abundances of sRNAs and mRNAs were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. The associations between sRNAs and Argonaute (AGO) proteins were detected by RNA immunoprecipitation analysis. Synthesized sRNAs and locked nucleic acid (LNA) -modified sRNA inhibitors were used to screen the function of sRNAs in innate immune cells. The effect of sRNA on the enrichment of either chromatin remodeler or histone modification at the gene promoter was analyzed by chromatin immunoprecipitation (ChIP)-qPCR assay. Chromatin accessibility qPCR assay was used to detect the accessibility of gene promoters. A B16 melanoma-bearing mouse model was established to determine the function of sRNAs in tumor-associated macrophages (TAMs) and their effect on tumor growth. RESULTS We identified a new class of nucleus-localized sRNAs, named snRNA/snoRNA-derived nuclear RNAs (sdnRNAs). Some sdnRNAs were Dicer-independent and had no association with Argonaute proteins. sdnRNA-3, the most abundant Dicer-independent sdnRNAs identified in our analysis, was selected as a representative to examine the biological function of sdnRNAs. sdnRNA-3 selectively inhibited the transcription of Nos2 in macrophages during innate immune response by repressing the chromatin accessibility at Nos2 gene promoter. sdnRNA-3 promoted the enrichments of repressive chromatin-remodeling regulator Mi-2β and the repressive histone modification H3K27me3 at Nos2 gene promoter. In the B16 melanoma mouse model, we found higher expression of sdnRNA-3 in M2 TAMs than M1 TAMs and DCs. Transfer of sdnRNA-3-silenced macrophages inhibited tumor growth with increased expression of inducible nitric oxide synthase (iNOS) in TAMs. CONCLUSIONS Our results demonstrated that the sdnRNA-3 repressed the transcription of Nos2 by repressing chromatin accessibility at the promoter, providing new insights into the regulation of macrophage function in tumor immunity.
Collapse
Affiliation(s)
- Yang Shi
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Qingzhu Shi
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
| | - Xuetao Cao
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
- Department of ImmunologyInstitute of Basic Medical ResearchChinese Academy of Medical SciencesBeijing100005P. R. China
| |
Collapse
|
54
|
Xu Y, Chen F. Acid-Sensing Ion Channel-1a in Articular Chondrocytes and Synovial Fibroblasts: A Novel Therapeutic Target for Rheumatoid Arthritis. Front Immunol 2021; 11:580936. [PMID: 33584647 PMCID: PMC7876322 DOI: 10.3389/fimmu.2020.580936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
55
|
Zhang B, Han X, Gao Q, Liu J, Li S, Zha W, Wang X, Guo X, Gao D. Enhancer II-targeted dsRNA decreases GDNF expression via histone H3K9 trimethylation to inhibit glioblastoma progression. Brain Res Bull 2020; 167:22-32. [PMID: 33278485 DOI: 10.1016/j.brainresbull.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is expressed in both astrocytes and glioblastoma (GBM) cells. GDNF expression is significantly increased in GBM, and inhibiting its expression can retard GBM progression. However, there is no known method for specific inhibition of GDNF in GBM cells. METHODS Promoter-targeted dsRNA-induced transcriptional gene silencing or activation was recently achieved in human cells. This approach has the potential to specifically regulate gene transcription via epigenetic modifications. In this study, we designed six candidate dsRNAs targeting the enhancer or silencer in GDNF gene promoter II to check their effects on GDNF transcription and GBM progression. RESULTS Among these dsRNAs, enhancer II-targeted dsRNA significantly inhibited U251 GBM progression by downregulating GDNF (P < 0.05), while silencer II-targeted dsRNA exerted an opposite effect. Moreover, enhancer II-targeted dsRNA did not significantly change GDNF expression in human astrocytes (HA) and the proliferation and migration of HA cells (P > 0.05). Bisulfate PCR and chromatin immunoprecipitation analyses revealed that both DNA methylation and trimethylation of histone 3 at lysine 9 (H3K9me3) at silencer II-targeted region significantly increased, and H3K9me3 at enhancer II-targeted region significantly decreased, in U251 cells compared with HA cells in non-intervention condition (P < 0.05). Both enhancer II- and silencer II-targeted dsRNA significantly increased H3K9me3 methylation rather than DNA at the targeted site in U251 cells (P < 0.05). The expression and activity of histone methyltransferase SETDB1 increased dramatically in U251 cells compared with HA cells, and it was recruited to enhancer II targeting region after enhancer II-targeted dsRNA treatment in U251 cells (P < 0.05). CONCLUSIONS Our results demonstrate that a promoter-targeted dsRNA can silence or promote gene transcription depending on its targeted site in different cis-acting elements in the gene promoter. Targeted inhibition of GDNF by enhancer II-targeted dsRNA may be explored as a novel treatment for GBM.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Saisai Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wei Zha
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoyu Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
56
|
Kelleher AD, Cortez-Jugo C, Cavalieri F, Qu Y, Glanville AR, Caruso F, Symonds G, Ahlenstiel CL. RNAi therapeutics: an antiviral strategy for human infections. Curr Opin Pharmacol 2020; 54:121-129. [PMID: 33171339 DOI: 10.1016/j.coph.2020.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Gene silencing induced by RNAi represents a promising antiviral development strategy. This review will summarise the current state of RNAi therapeutics for treating acute and chronic human virus infections. The gene silencing pathways exploited by RNAi therapeutics will be described and include both classic RNAi, inducing cytoplasmic mRNA degradation post-transcription and novel RNAi, mediating epigenetic modifications at the transcription level in the nucleus. Finally, the challenge of delivering gene modifications via RNAi will be discussed, along with the unique characteristics of respiratory versus systemic administration routes to highlight recent advances and future potential of RNAi antiviral treatment strategies.
Collapse
Affiliation(s)
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
57
|
Gorabi AM, Kiaie N, Aslani S, Jamialahmadi T, Johnston TP, Sahebkar A. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. J Autoimmun 2020; 114:102529. [PMID: 32782117 DOI: 10.1016/j.jaut.2020.102529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
The identification of RNA interference (RNAi) has caused a growing interest in harnessing its potential in the treatment of different diseases. Modulation of dysregulated genes through targeting by RNAi represents a potential approach with which to alter the biological pathways at a post-transcriptional level, especially as it pertains to autoimmunity and malignancy. Short hairpin RNAs (shRNA), short interfering RNAs (siRNA), and microRNAs (miRNA) are mainly involved as effector mechanisms in the targeting of RNAi biological pathways. The manipulation and delivery of these molecules in an efficient way promotes the specificity and stability of RNAi-based systems, while minimizing the unwanted adverse reactions by the immune system and reducing cytotoxicity and off-target effects. Advances made to date in identifying the etiopathogenesis of autoimmune diseases has prompted the utilization of RNAi-based systems in vitro and in vivo. Future investigations aimed at deciphering the molecular basis of RNAi and optimizing the delivery of RNAi-based targeting systems will hopefully promote the applicability of such regulatory mechanisms and, ultimately, transfer the acquired knowledge from bench-to-bedside to ameliorate human diseases. In this review, we seek to clarify the potential of RNAi, with a focus on siRNAs, in designing therapeutics for potential treatment of human autoimmune disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
58
|
Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188454. [PMID: 33075468 DOI: 10.1016/j.bbcan.2020.188454] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
DNA methylation abnormalities are regarded as critical event for cancer initiation and development. Tumor-associated genes encompassing aberrant DNA methylation alterations at specific locus are correlated with chromatin remodeling and dysregulation of gene expression in various malignancies. Thus, technologies designed to manipulate DNA methylation at specific loci of genome are necessary for the functional study and therapeutic application in the context of cancer management. Traditionally, the method for DNA methylation modifications demonstrates an unspecific feature, adversely causing global-genome epigenetic alterations and confusing the function of desired gene. Novel approaches for targeted DNA methylation regulation have a great advantage of manipulating gene epigenetic alterations in a more specific and efficient method. In this review, we described different targeting DNA methylation techniques, including both their advantages and limitations. Through a comprehensive understanding of these targeting tools, we hope to open a new perspective for cancer treatment.
Collapse
Affiliation(s)
- Jie Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing Yang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
59
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
60
|
Kaundal B, Kushwaha AC, Srivastava AK, Karmakar S, Choudhury SR. A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. J Mater Chem B 2020; 8:8658-8670. [PMID: 32844866 DOI: 10.1039/d0tb01177k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML), which is common in the elderly population, accounts for poor long-term survival with a high possibility of relapse. The associated lack of currently developed therapeutics is directing the search for new therapeutic targets relating to AML. EZH2 (Enhancer of Zeste Homolog 2) is a histone methyltransferase member of the polycomb-group (PcG) family, and its significant overexpression in AML means it has emerged as a potential epigenetic target. Here, we propose the human serum albumin (HSA) nanoparticle based delivery of small interfering RNA (siRNA), which can target EZH2-expressing genes in AML. EZH2 specific siRNA loaded in a polyethyleneimine (PEI) conjugated HSA nanocarrier can overcome the systemic instability of siRNA and precisely target the AML cell population for increased EZH2 gene silencing. A stable nanosized complex (HSANPs-PEI@EZH2siRNA), achieved via the electrostatic interaction of PEI and EZH2 siRNA, shows increased systemic stability and hemocompatibility, and enhanced EZH2 gene silencing activity in vitro, compared to conventional transfection reagents. HSANPs-PEI@EZH2siRNA-treated AML cells showed downregulated EZH2, which is associated with a reduced level of Bmi-1 protein, and H3K27me3 and H2AK119ub modification. The ubiquitin-mediated proteasomal degradation pathway plays a critical role in the downregulation of associated proteins following HSANPs-PEI@EZH2siRNA exposure to AML cells. c-Myb is the AML-responsive transcription factor that directly binds on the EZH2 promoter and was downregulated in HSANPs-PEI@EZH2siRNA-treated AML cells. The systemic exposure to HSANPs-PEI@EZH2siRNA of AML engrafted immunodeficient nude mice displayed efficient EZH2 gene silencing and a reduced AML cell population in peripheral blood and bone marrow. The present study demonstrates a non-viral siRNA delivery system for epigenetic targeting based superior anti-leukemic therapy.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | |
Collapse
|
61
|
Patel RK, West JD, Jiang Y, Fogarty EA, Grimson A. Robust partitioning of microRNA targets from downstream regulatory changes. Nucleic Acids Res 2020; 48:9724-9746. [PMID: 32821933 PMCID: PMC7515711 DOI: 10.1093/nar/gkaa687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/19/2020] [Accepted: 08/08/2020] [Indexed: 11/14/2022] Open
Abstract
The biological impact of microRNAs (miRNAs) is determined by their targets, and robustly identifying direct miRNA targets remains challenging. Existing methods suffer from high false-positive rates and are unable to effectively differentiate direct miRNA targets from downstream regulatory changes. Here, we present an experimental and computational framework to deconvolute post-transcriptional and transcriptional changes using a combination of RNA-seq and PRO-seq. This novel approach allows us to systematically profile the regulatory impact of a miRNA. We refer to this approach as CARP: Combined Analysis of RNA-seq and PRO-seq. We apply CARP to multiple miRNAs and show that it robustly distinguishes direct targets from downstream changes, while greatly reducing false positives. We validate our approach using Argonaute eCLIP-seq and ribosome profiling, demonstrating that CARP defines a comprehensive repertoire of targets. Using this approach, we identify miRNA-specific activity of target sites within the open reading frame. Additionally, we show that CARP facilitates the dissection of complex changes in gene regulatory networks triggered by miRNAs and identification of transcription factors that mediate downstream regulatory changes. Given the robustness of the approach, CARP would be particularly suitable for dissecting miRNA regulatory networks in vivo.
Collapse
Affiliation(s)
- Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Jessica D West
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Ya Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- To whom correspondence should be addressed. Tel: +1 607 254 1307; Fax: +1 607 254 1307;
| |
Collapse
|
62
|
Gómez Acuña LI, Nazer E, Rodríguez-Seguí SA, Pozzi B, Buggiano V, Marasco LE, Agirre E, He C, Alló M, Kornblihtt AR. Nuclear role for human Argonaute-1 as an estrogen-dependent transcription coactivator. J Cell Biol 2020; 219:e201908097. [PMID: 32673398 PMCID: PMC7480116 DOI: 10.1083/jcb.201908097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
In mammals, argonaute (AGO) proteins have been characterized for their roles in small RNA-mediated posttranscriptional and also in transcriptional gene silencing. Here, we report a different role for AGO1 in estradiol-triggered transcriptional activation in human cells. We show that in MCF-7 mammary gland cells, AGO1 associates with transcriptional enhancers of estrogen receptor α (ERα) and that this association is up-regulated by treating the cells with estrogen (E2), displaying a positive correlation with the activation of these enhancers. Moreover, we show that AGO1 interacts with ERα and that this interaction is also increased by E2 treatment, but occurs in the absence of RNA. We show that AGO1 acts positively as a coactivator in estradiol-triggered transcription regulation by promoting ERα binding to its enhancers. Consistently, AGO1 depletion decreases long-range contacts between ERα enhancers and their target promoters. Our results point to a role of AGO1 in transcriptional regulation in human cells that is independent from small RNA binding.
Collapse
Affiliation(s)
- Luciana I Gómez Acuña
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Ezequiel Nazer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Santiago A Rodríguez-Seguí
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Valeria Buggiano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Luciano E Marasco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | | | - Cody He
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Mariano Alló
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
63
|
Lu T, Peng W, Liang Y, Li M, Li DS, Du KH, Zhu JH, Wu JH. PTEN-silencing combined with ChABC-overexpression in adipose-derived stem cells promotes functional recovery of spinal cord injury in rats. Biochem Biophys Res Commun 2020; 532:420-426. [PMID: 32888649 DOI: 10.1016/j.bbrc.2020.08.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022]
Abstract
The efficiency of cell therapy after spinal cord injury (SCI) depend on the survival of transplanted cells. However, sterile microenvironment and glial scar hyperplasia extremely reduce their numbers. Our previous study found overexpression of ChABC gene is positively correlated to migration ability. Expression of PTEN gene is closely associated with proliferation. However, whether manipulation of PTEN and ChABC on adipose-derived mesenchymal stem cells (ADSCs) promote motor recovery is unknown. This study aimed to promote hindlimb function recovery in SCI rats by enhancing proliferation and migration ability of ADSCs, transiently silencing expression of PTEN following overexpression of ChABC (double-gene modified ADSCs, DG-ADSCs). After PTEN silencing, we observed strong proliferation and accelerated G1-S transition in DG-ADSCs using CCK8 assay and flow cytometry. In addition, we demonstrated that migration numbers of DG-ADSCs were higher than control group using Transwell assay. The protein and mRNA levels of MAP2 and βⅢ-tubulin in DG-ADSCs were increased compared with ADSCs. These results were further confirmed in SCI rats. Increased survival cells and reduction of glial scars were quantitatively analyzed in DG-ADSCs groups, which is definitely correlated to function recovery. Recovery of motor function was observed in DG-ADSCs treatment rats using BBB score, which emphasized that improved viability of transplanted cells and reduction of glial scars were an effective strategy for enhancing recovery of neurological function after SCI.
Collapse
Affiliation(s)
- Tao Lu
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wang Peng
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liang
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dong-Sheng Li
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai-Hui Du
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing-Hui Zhu
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Huang Wu
- Department of Spine Surgery and Orthopaedic, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
64
|
Ahlenstiel CL, Symonds G, Kent SJ, Kelleher AD. Block and Lock HIV Cure Strategies to Control the Latent Reservoir. Front Cell Infect Microbiol 2020; 10:424. [PMID: 32923412 PMCID: PMC7457024 DOI: 10.3389/fcimb.2020.00424] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
The HIV latent reservoir represents the major challenge to cure development. Residing in resting CD4+ T cells and myeloid cells at multiple locations in the body, including sanctuary sites such as the brain, the latent reservoir is not eliminated by ART and has the ability to reactivate virus replication to pre-therapy levels when ART is ceased. There are four broad areas of HIV cure research. The only successful cure strategy, thus far, is stem cell transplantation using naturally HIV resistant CCR5Δ32 stem cells. A second potential cure approach uses gene editing technology, such as zinc-finger nucleases and CRISPR/Cas9. Another two cure strategies aim to control the HIV reservoir, with polar opposite concepts; The "shock and kill" approach, which aims to "shock" or reactivate the latent virus and then "kill" infected cells via targeted immune responses. Lastly, the "block and lock" approach, which aims to enhance the latent virus state by "blocking" HIV transcription and "locking" the HIV promoter in a deep latent state via epigenetic modifications. "Shock and kill" approaches are a major focus of cure studies, however we predict that the increased specificity of "block and lock" approaches will be required for the successful development of a sustained HIV clinical remission in the absence of ART. This review focuses on the current research of novel "block and lock" approaches being explored to generate an HIV cure via induction of epigenetic silencing. We will also discuss potential future therapeutic delivery and the challenges associated with progressing "block and lock" cure approaches as these move toward clinical trials.
Collapse
Affiliation(s)
| | | | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
65
|
The Use of RNAi Technology to Interfere with Zfx Gene Increases the Male Rates of Red Deer ( Cervus elaphus) Offspring. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9549765. [PMID: 32509876 PMCID: PMC7254085 DOI: 10.1155/2020/9549765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/02/2022]
Abstract
Zinc finger protein X-linked (Zfx) was regarded to be a sex determination factor and plays a critical role in spermatogenesis. RNAi is an effective method of silencing Zfx mRNA expression. However, there has been little research on the use of RNAi technology to control the sex of the offspring of red deer (Cervus elaphus). The objective of this study was first to explore an efficient method to alter the red deer offspring sex-ratio by silencing the gene Zfx during spermatogenesis. Three recombinant expression vectors pLL3.7/A, pLL3.7/B, and pLL3.7/C were constructed to interrupt the Zfx gene. The results showed that the expression of Zfx mRNA was significantly silenced by pLL3.7/A (P < 0.01), compared with the control group. The group injected with pLL3.7/A produced 94 red deer, including 68 males and 26 females. The male rates (72.34%) were significantly higher than the control groups (P < 0.01). Our result suggests that Zfx siRNA is a useful approach to control offspring sex in red deer. This study further confirms that the Zfx gene plays a significant role in the process of X spermatogenesis.
Collapse
|
66
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
67
|
Jia N, Ma J, Gao Y, Hu H, Chen D, Zhao X, Yuan Y, Qiao M. HA-Modified R8-Based Bola-Amphiphile Nanocomplexes for Effective Improvement of siRNA Delivery Efficiency. ACS Biomater Sci Eng 2020; 6:2084-2093. [DOI: 10.1021/acsbiomaterials.0c00231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nan Jia
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Jingjing Ma
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yan Gao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| |
Collapse
|
68
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
69
|
Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protoc 2019; 4:bpz017. [PMID: 32161809 PMCID: PMC6994087 DOI: 10.1093/biomethods/bpz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) makeup a considerable part of the non-coding human genome and had been well-established as crucial players in an array of biological processes. In spite of their abundance and versatile roles, their functional characteristics remain largely undiscovered mainly due to the lack of suitable genetic manipulation tools. The emerging CRISPR/Cas9 technology has been widely adapted in several studies that aim to screen and identify novel lncRNAs as well as interrogate the functional properties of specific lncRNAs. However, the complexity of lncRNAs genes and the regulatory mechanisms that govern their transcription, as well as their unique functionality pose several limitations the utilization of classic CRISPR methods in lncRNAs functional studies. Here, we overview the unique characteristics of lncRNAs transcription and function and the suitability of the CRISPR toolbox for applications in functional characterization of lncRNAs. We discuss some of the novel variations to the classic CRISPR/Cas9 system that have been tailored and applied previously to study several aspects of lncRNAs functionality. Finally, we share perspectives on the potential applications of various CRISPR systems, including RNA-targeting, in the direct editing and manipulation of lncRNAs.
Collapse
Affiliation(s)
- Dahlia A Awwad
- Center of X-Ray Determination of Structure of Matter (CXDS), Helmi Institute of Biomedical Research, Zewail City of Science and Technology, Giza, Cairo, Egypt
| |
Collapse
|
70
|
Legoff L, D’Cruz SC, Tevosian S, Primig M, Smagulova F. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development. Cells 2019; 8:cells8121559. [PMID: 31816913 PMCID: PMC6953051 DOI: 10.3390/cells8121559] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies traditionally focus on DNA as the molecule that passes information on from parents to their offspring. Changes in the DNA code alter heritable information and can more or less severely affect the progeny's phenotype. While the idea that information can be inherited between generations independently of the DNA's nucleotide sequence is not new, the outcome of recent studies provides a mechanistic foundation for the concept. In this review, we attempt to summarize our current knowledge about the transgenerational inheritance of environmentally induced epigenetic changes. We focus primarily on studies using mice but refer to other species to illustrate salient points. Some studies support the notion that there is a somatic component within the phenomenon of epigenetic inheritance. However, here, we will mostly focus on gamete-based processes and the primary molecular mechanisms that are thought to contribute to epigenetic inheritance: DNA methylation, histone modifications, and non-coding RNAs. Most of the rodent studies published in the literature suggest that transgenerational epigenetic inheritance through gametes can be modulated by environmental factors. Modification and redistribution of chromatin proteins in gametes is one of the major routes for transmitting epigenetic information from parents to the offspring. Our recent studies provide additional specific cues for this concept and help better understand environmental exposure influences fitness and fidelity in the germline. In summary, environmental cues can induce parental alterations and affect the phenotypes of offspring through gametic epigenetic inheritance. Consequently, epigenetic factors and their heritability should be considered during disease risk assessment.
Collapse
Affiliation(s)
- Louis Legoff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Shereen Cynthia D’Cruz
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences Box 100144, 1333 Center Drive, Gainesville, FL 32610, USA;
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Fatima Smagulova
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
- Correspondence:
| |
Collapse
|
71
|
Abstract
The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Collapse
|
72
|
Wu W, Yan Z, Nguyen TC, Bouman Chen Z, Chien S, Zhong S. Mapping RNA-chromatin interactions by sequencing with iMARGI. Nat Protoc 2019; 14:3243-3272. [PMID: 31619811 PMCID: PMC7314528 DOI: 10.1038/s41596-019-0229-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
RNA-chromatin interactions represent an important aspect of the transcriptional regulation of genes and transposable elements. However, analyses of chromatin-associated RNAs (caRNAs) are often limited to one caRNA at a time. Here, we describe the iMARGI (in situ mapping of RNA-genome interactome) technique, which is used to discover caRNAs and reveal their respective genomic interaction loci. iMARGI starts with in situ crosslinking and genome fragmentation, followed by converting each proximal RNA-DNA pair into an RNA-linker-DNA chimeric sequence. These chimeric sequences are subsequently converted into a sequencing library suitable for paired-end sequencing. A standardized bioinformatic software package, iMARGI-Docker, is provided to decode the paired-end sequencing data into caRNA-DNA interactions. Compared to its predecessor MARGI (mapping RNA-genome interactions), the number of input cells for iMARGI is 3-5 million (a 100-fold reduction), experimental time is reduced, and clear checkpoints have been established. It takes a few hours a day and a total of 8 d to complete the construction of an iMARGI sequencing library and 1 d to carry out data processing with iMARGI-Docker.
Collapse
Affiliation(s)
- Weixin Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
73
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
74
|
A novel miRNA identified in GRSF1 complex drives the metastasis via the PIK3R3/AKT/NF-κB and TIMP3/MMP9 pathways in cervical cancer cells. Cell Death Dis 2019; 10:636. [PMID: 31474757 PMCID: PMC6717739 DOI: 10.1038/s41419-019-1841-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) play an important role in carcinogenesis. Typically, miRNAs downregulate the target expression by binding to the 3′ UTR of mRNAs. However, recent studies have demonstrated that miRNAs can upregulate target gene expression, but its mechanism is not fully understood. We previously found that G-rich RNA sequence binding protein (GRSF1) mediates upregulation of miR-346 on hTERT gene. To explore whether GRSF1 mediate other miRNA’s upregulation on their target genes, we obtained profile of GRSF1-bound miRNAs by Flag-GRSF1-RIP-deep sequencing and found 12 novel miRNAs, named miR-G. In this study, we focused on miR-G-10, which is highly expressed in cervical cancer tissues and cell lines and serum from patients with metastatic cervical cancer. miR-G-10 in cervical cancer cells significantly promoted migration/invasion and anoikis resistance in vitro and lung metastasis in vivo. Furthermore, miR-G-10 bound to the 3′ UTR of PIK3R3 and upregulated its expression to activate the AKT/NF-κB signal pathway in a GRSF1-dependent manner, whereas miR-G-10 suppressed TIMP3 in the AGO2 complex to modulate the MMP9 signaling pathway in cervical cancer cells. Taken together, our findings may provide a new insight into the upregulation mechanism mediated by miRNAs and a potential biomarker for cervical cancer.
Collapse
|
75
|
Wei F, Yin C, Zheng J, Zhan Z, Yao L. Rise of cyborg microrobot: different story for different configuration. IET Nanobiotechnol 2019; 13:651-664. [PMID: 31573533 PMCID: PMC8676360 DOI: 10.1049/iet-nbt.2018.5374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 04/05/2024] Open
Abstract
By integrating organic parts achieved through evolution and inorganic parts developed by human civilisation, the cyborg microrobot is rising by taking advantage of the high flexibility, outstanding energy efficiency, extremely exquisite structure in the natural components and the fine upgradability, nice controllability in the artefact parts. Compared to the purely synthetic microrobots, the cyborg microrobots, due to the exceptional biocompatibility and biodegradability, have already been utilised in in situ diagnosis, precise therapy and other biomedical applications. In this review, through a thorough summary of recent advances of cyborg microrobots, the authors categorise the cyborg microrobots into four major classes according to the configuration between biomaterials and artefact materials, i.e. microrobots integrated inside living cell, microrobots modified with biological debris, microrobots integrated with single cell and microrobots incorporated with multiple cells. Cyborg microrobots with the four types of configurations are introduced and summarised with the combination approaches, actuation mechanisms, applications and challenges one by one. Moreover, they conduct a comparison among the four different cyborg microrobots to guide the actuation force promotion, locomotion control refinement and future applications. Finally, conclusions and future outlook of the development and potential applications of the cyborg microrobots are discussed.
Collapse
Affiliation(s)
- Fanan Wei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | - Chao Yin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Jianghong Zheng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ziheng Zhan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
76
|
Abstract
Non-communicable diseases (NCD) such as type-2 diabetes and CVD are now highly prevalent in both developed and developing countries. Evidence from both human and animal studies shows that early-life nutrition is an important determinant of NCD risk in later life. The mechanism by which the early-life environment influences future disease risk has been suggested to include the altered epigenetic regulation of gene expression. Epigenetic processes regulate the accessibility of genes to the cellular proteins that control gene transcription, determining where and when a gene is switched on and its level of activity. Epigenetic processes not only play a central role in regulating gene expression but also allow an organism to adapt to the environment. In this review, we will focus on how both maternal and paternal nutrition can alter the epigenome and the evidence that these changes are causally involved in determining future disease risk.
Collapse
Affiliation(s)
- Mark A Burton
- Academic Unit of Human Development and Health, Faculty of Medicine,University of Southampton,Southampton,UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences,University of Southampton,Southampton,UK
| |
Collapse
|
77
|
Kumar S, Diwan A, Singh P, Gulati S, Choudhary D, Mongia A, Shukla S, Gupta A. Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv 2019; 9:23894-23907. [PMID: 35530631 PMCID: PMC9069781 DOI: 10.1039/c9ra03608c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
Surface-modified gold nanoparticles are recognized as promising gene delivery vehicles in the treatment of cancer owing to their excellent biocompatibility with biomolecules (like DNA or RNA) and their unique optical and structural properties. In this context, this review article focuses on the diverse transfection abilities of the gene to the targeted cell on the basis of different shapes and sizes of gold nanoparticles in order to promote its effective expression for cancer treatment. In addition, recent trends in gold nanoparticle mediated gene silencing, gene delivery, detection and combinatory therapies are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Devanshu Choudhary
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
78
|
Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest 2019; 129:2994-3005. [PMID: 31329166 DOI: 10.1172/jci124619] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune cells are pivotal in the reaction to injury, whereupon, under ideal conditions, repair and resolution phases restore homeostasis following initial acute inflammation. Immune cell activation and reprogramming require transcriptional changes that can only be initiated if epigenetic alterations occur. Recently, accelerated deciphering of epigenetic mechanisms has extended knowledge of epigenetic regulation, including long-distance chromatin remodeling, DNA methylation, posttranslational histone modifications, and involvement of small and long noncoding RNAs. Epigenetic changes have been linked to aspects of immune cell development, activation, and differentiation. Furthermore, genome-wide epigenetic landscapes have been established for some immune cells, including tissue-resident macrophages, and blood-derived cells including T cells. The epigenetic mechanisms underlying developmental steps from hematopoietic stem cells to fully differentiated immune cells led to development of epigenetic technologies and insights into general rules of epigenetic regulation. Compared with more advanced research areas, epigenetic reprogramming of immune cells in injury remains in its infancy. While the early epigenetic mechanisms supporting activation of the immune response to injury have been studied, less is known about resolution and repair phases and cell type-specific changes. We review prominent recent findings concerning injury-mediated epigenetic reprogramming, particularly in stroke and myocardial infarction. Lastly, we illustrate how single-cell technologies will be crucial to understanding epigenetic reprogramming in the complex sequential processes following injury.
Collapse
Affiliation(s)
- Katarzyna Placek
- Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.,Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
79
|
Chalertpet K, Pin-On P, Aporntewan C, Patchsung M, Ingrungruanglert P, Israsena N, Mutirangura A. Argonaute 4 as an Effector Protein in RNA-Directed DNA Methylation in Human Cells. Front Genet 2019; 10:645. [PMID: 31333722 PMCID: PMC6620710 DOI: 10.3389/fgene.2019.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
DNA methylation of specific genome locations contributes to the distinct functions of multicellular organisms. DNA methylation can be governed by RNA-dependent DNA methylation (RdDM). RdDM is carried out by endogenous small-RNA-guided epigenomic editing complexes that add a methyl group to a precise DNA location. In plants, the Argonaute 4 (AGO4) protein is one of the main catalytic components involved in RdDM. Although small interfering RNA or short hairpin RNA has been shown to be able to guide DNA methylation in human cells, AGO protein-regulated RdDM in humans has not yet been evaluated. This study aimed to identify a key regulatory AGO protein involved in human RdDM by bioinformatics and to explore its function in RdDM by a combination of AGO4 knockdown, Alu small interfering RNA transfection, AGO4-expressing plasmid transfection, chromatin immunoprecipitation, cell-penetrating peptide-tagged AGO4 combined Alu single-guide RNA transfection, and methylation analyses. We found that first, human AGO4 showed stronger genome-wide association with DNA methylation than AGO1–AGO3. Second, endogenous AGO4 depletion demethylated DNA of known AGO4 bound loci. Finally, exogenous AGO4 de novo methylated the bound DNA sequences. Therefore, we discovered that AGO4 plays a role in human RdDM.
Collapse
Affiliation(s)
- Kanwalat Chalertpet
- Interdisciplinary Program of Biomedical Sciences, Faculty of the Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Piyapat Pin-On
- Interdisciplinary Program of Biomedical Sciences, Faculty of the Graduate School, Chulalongkorn University, Bangkok, Thailand.,Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Chatchawit Aporntewan
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maturada Patchsung
- Interdisciplinary Program of Biomedical Sciences, Faculty of the Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipan Israsena
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
80
|
Moon IY, Choi JH, Chung JW, Jang ES, Jeong SH, Kim JW. MicroRNA‑20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Mol Med Rep 2019; 20:2285-2293. [PMID: 31257511 PMCID: PMC6691198 DOI: 10.3892/mmr.2019.10435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation was suggested to suppress the transcriptional activity of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in hepatocytes. This may be associated with its low replicative activity during the inactive stage of chronic HBV infection; however, the exact mechanisms of methylation in HBV infection remain unknown. We have previously shown that short hairpin RNAs induced the methylation of the HBV genome in hepatoma cell lines. We also reported that the microRNA (miR) 17–92 cluster negatively regulates HBV replication in human hepatoma cells. In addition, miR-20a, a member of the miR 17–92 cluster, has sequence homology with the short hairpin RNA that induces HBV methylation. In the present study, we investigated whether miR-20a can function as an endogenous effector of HBV DNA methylation. The results indicated that overexpression of miR-20a could suppress the replicative activity of HBV and increased the degree of methylation of HBV cccDNA in the HepAD38 hepatoma cell line. Argonaute (AGO)1 and AGO2, effectors of the RNA-induced silencing complex, were detected in the nucleus of HepAD38 cells; however, only AGO2 was bound to HBV cccDNA. In addition, intranuclear AGO2 was determined to be bound with miR-20a. In conclusion, miR-20a may be loaded onto AGO2, prior to its translocation into the nucleus, inducing the methylation of HBV DNA in human hepatoma cells, leading to the suppression of HBV replication.
Collapse
Affiliation(s)
- In Young Moon
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jae Hee Choi
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jung Wha Chung
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Eun Sun Jang
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sook-Hyang Jeong
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jin-Wook Kim
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| |
Collapse
|
81
|
Di Mauro V, Crasto S, Colombo FS, Di Pasquale E, Catalucci D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci Rep 2019; 9:9320. [PMID: 31249372 PMCID: PMC6597717 DOI: 10.1038/s41598-019-45818-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
MiR-133a is a muscle-enriched miRNA, which plays a key role for proper skeletal and cardiac muscle function via regulation of transduction cascades, including the Wnt signalling. MiR-133a modulates its targets via canonical mRNA repression, a process that has been largely demonstrated to occur within the cytoplasm. However, recent evidence has shown that miRNAs play additional roles in other sub-cellular compartments, such as nuclei. Here, we show that miR-133a translocates to the nucleus of cardiac cells following inactivation of the canonical Wnt pathway. The nuclear miR-133a/AGO2 complex binds to a complementary miR-133a target site within the promoter of the de novo DNA methyltransferase 3B (Dnmt3b) gene, leading to its transcriptional repression, which is mediated by DNMT3B itself. Altogether, these data show an unconventional role of miR-133a that upon its relocalization to the nucleus is responsible for epigenetic repression of its target gene Dnmt3b via a DNMT3B self-regulatory negative feedback loop.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- University of Milan Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Silvia Crasto
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Daniele Catalucci
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy.
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
82
|
Alshiraihi I, Brown MA. Epigenetic Factors of Disease. Diseases 2019; 7:diseases7020042. [PMID: 31197091 PMCID: PMC6630624 DOI: 10.3390/diseases7020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
The development of tissues involves the direction of specific programs for gene expression among distinct cell types. These programs are often established in a heritable state by virtue of epigenetic mechanisms and corresponding pathways of cellular memory. Thus, the broad synchronization in patterns of gene expression ultimately dictates cellular consequences. Aberrations in these epigenetic mechanisms are known to be associated with a range of diseases. Herein, we highlight epigenetic factors that, when aberrantly expressed, lead to a broad range of diseases. Further, we call upon the community of biomedical researchers to share their findings related to the epigenetic factors of disease.
Collapse
Affiliation(s)
- Ilham Alshiraihi
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark A Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Epidemiology Section, Colorado School of Public Health, Fort Collins, CO 80523, USA.
- Department of Ethnic Studies, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
83
|
Ma X, Zuo Z, Shao W, Jin Y, Meng Y. The expanding roles of Argonautes: RNA interference, splicing and beyond. Brief Funct Genomics 2019; 17:191-197. [PMID: 29240875 DOI: 10.1093/bfgp/elx045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Argonaute (AGO) protein family is highly conserved in eukaryotes and prokaryotes, reflecting its evolutionarily indispensible role in maintaining normal life cycle of the organisms. Small RNA-guided, AGO-dependent RNA interference (RNAi) is a well-studied pathway for gene expression regulation, which can be performed at transcriptional, posttranscriptional or translational level. In addition to RNAi, growing pieces of evidence point to a novel role of AGOs in pre-mRNA (messenger RNA precursor) splicing in animals. Many noncoding RNAs (ncRNAs) share common structural features with protein-coding genes, indicating that these ncRNAs might be subject to AGO-mediated splicing. Finally, we provide a comprehensive view that RNAi, transcription and RNA splicing are highly interactive processes, all of which involve several key factors such as AGOs. In this regard, the AGO proteins contribute to orchestrate an exquisite gene regulatory network in vivo. However, more research efforts are needed to reach a thorough understanding of the AGO activities.
Collapse
|
84
|
Wang K, Zhang M, Wang C, Ning X. [ARTICLE WITHDRAWN] Long Noncoding RNA LINC01296 Harbors miR-21a to Regulate Colon Carcinoma Proliferation and Invasion. Oncol Res 2019; 27:541-549. [PMID: 29673421 PMCID: PMC7848363 DOI: 10.3727/096504018x15234931503876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHERS IN NOVEMBER 2020.
Collapse
Affiliation(s)
- Kecheng Wang
- *Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| | - Meng Zhang
- †Department of Medical Ultrasonography, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| | - Cong Wang
- †Department of Medical Ultrasonography, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| | - Xiaofei Ning
- *Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| |
Collapse
|
85
|
Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 2019; 14:3111-3128. [PMID: 31118626 PMCID: PMC6504672 DOI: 10.2147/ijn.s200253] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.
Collapse
Affiliation(s)
| | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
86
|
Zhang Y, Zhang H. RNAa Induced by TATA Box-Targeting MicroRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639194 DOI: 10.1007/978-981-10-4310-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies reveal that some nuclear microRNAs (miRNA) and synthesized siRNAs target gene promoters to activate gene transcription (RNAa). Interestingly, our group identified a novel HIV-1-encoded miRNA, miR-H3, which targets specifically the core promoter TATA box of HIV-1 and activates viral gene expression. Depletion of miR-H3 significantly impaired the replication of HIV-1. miR-H3 mimics could activate viruses from CD4+ T cells isolated from patients receiving suppressive highly active antiretroviral therapy, which is very intriguing for reducing HIV-1 latent reservoir. Further study revealed that many cellular miRNAs also function like miR-H3. For instance, let-7i targets the TATA box of the interleukin-2 (IL-2) promoter and upregulates IL-2 expression in T-lymphocytes. In RNAa induced by TATA box-targeting miRNAs, Argonaute (AGO) proteins are needed, but there is no evidence for the involvement of promoter-associated transcripts or epigenetic modifications. We propose that the binding of small RNA-AGO complex to TATA box could facilitate the assembly of RNA Polymerase II transcription preinitiation complex. In addition, synthesized small RNAs targeting TATA box can also efficiently activate transcription of interested genes, such as insulin, IL-2, and c-Myc. The discovery of RNAa induced by TATA box-targeting miRNA provides an easy-to-use tool for activating gene expression.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
87
|
Abstract
The phenomenon of RNA activation (RNAa) was initially discovered by Li and colleagues about a decade ago. Subsequently, gene activation by exogenously expressed small activating RNA has been demonstrated in different cellular contexts by a number of laboratories. Conceivably, endogenously expressed microRNAs may also utilize RNA activation as a cellular mechanism for gene regulation, which may be dysregulated in disease states such as cancer. RNA activation can be applied to gain-of-function studies and holds great promise for disease intervention. This chapter will discuss examples of promoter-targeting microRNAs discovered in recent years and their pathophysiological relevance. I will also briefly touch upon other novel classes of microRNAs with positive gene regulatory roles, including TATA-box-activating microRNAs and enhancer-associated microRNAs.
Collapse
Affiliation(s)
- Vera Huang
- Molecular Stethoscope, Inc., 10835 Road to the Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
88
|
A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:71-79. [PMID: 31071581 DOI: 10.1016/j.jchromb.2019.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Recently, non-coding RNA (ncRNA) became the centerpiece of human genome research. Modern ncRNA-based research has revolutionized disease diagnosis and therapeutics. However, decoding structural/functional information of ncRNA requires large amount of pure RNA, and hence effective RNA preparation and purification protocols. This review focuses on purification schemes of synthetic oligonucleotides, particularly liquid chromatographic (LC) techniques as improved alternatives to urea-polyacrylamide gel electrophoresis (urea-PAGE) purification. Moreover, the review summarizes the shortcomings of urea-PAGE purification method and details the chromatographic purification such as affinity, ion-exchange (IE) or size-exclusion (SE) chromatography. Specifically, we discuss denaturing and native RNA purification schemes with newest developments. In short, the review evaluates nucleic acid purification schemes required for various structural analyses.
Collapse
|
89
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|
90
|
Xu J, Liu Y, Li Y, Wang H, Stewart S, Van der Jeught K, Agarwal P, Zhang Y, Liu S, Zhao G, Wan J, Lu X, He X. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. NATURE NANOTECHNOLOGY 2019; 14:388-397. [PMID: 30804480 PMCID: PMC6449187 DOI: 10.1038/s41565-019-0381-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/17/2019] [Indexed: 05/06/2023]
Abstract
TP53 is the most frequently mutated or deleted gene in triple negative breast cancer (TNBC). Both the loss of TP53 and the lack of targeted therapy are significantly correlated with poor clinical outcomes, making TNBC the only type of breast cancer that has no approved targeted therapies. Through in silico analysis, we identified POLR2A in the TP53-neighbouring region as a collateral vulnerability target in TNBC tumours, suggesting that its inhibition via small interfering RNA (siRNA) may be an amenable approach for TNBC targeted treatment. To enhance bioavailability and improve endo/lysosomal escape of siRNA, we designed pH-activated nanoparticles for augmented cytosolic delivery of POLR2A siRNA (siPol2). Suppression of POLR2A expression with the siPol2-laden nanoparticles leads to enhanced growth reduction of tumours characterized by hemizygous POLR2A loss. These results demonstrate the potential of the pH-responsive nanoparticle and the precise POLR2A targeted therapy in TNBC harbouring the common TP53 genomic alteration.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Comprehensive Cancer Centre, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yunhua Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hai Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Comprehensive Cancer Centre, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yuntian Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Electronics Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gang Zhao
- Department of Electronics Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Comprehensive Cancer Centre, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Centre, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
91
|
Yang Z, Sun Q, Guo J, Wang S, Song G, Liu W, Liu M, Tang H. GRSF1-mediated MIR-G-1 promotes malignant behavior and nuclear autophagy by directly upregulating TMED5 and LMNB1 in cervical cancer cells. Autophagy 2019; 15:668-685. [PMID: 30394198 PMCID: PMC6526811 DOI: 10.1080/15548627.2018.1539590] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has revealed that miRNAs could upregulate the expression levels of target genes. However, the molecular mechanism underlying upregulation of targets mediated by miRNAs remains unclear. In this study, we found a novel miRNA named MIR-G-1 by GRSF1-RNA immunoprecipitation (RIP)-deep sequencing, which could directly target and upregulate LMNB1 and TMED5 in a GRSF1-dependent manner in cervical cancer cells. In addition, upregulated MIR-G-1 in cervical cancer promoted a malignant phenotype in vitro and in vivo. TMED5 could interact with WNT7B and thus activated the canonical WNT-CTNNB1/β-catenin signaling pathway. MIR-G-1 mediated the activation of this pathway. Furthermore, MIR-G-1 promoted serum starvation-induced nuclear macroautophagy/autophagy, and accelerated taxol (TAX)-induced DNA-damage repair in cervical cancer cells. Collectively, these findings may provide a new insight into the upregulation mechanism and nuclear autophagy mediated by miRNAs and provide a potential biomarker for cervical cancer. Abbreviations: 3'UTR: 3' untranslated region; EMSA: electrophoretic mobility shift assay; EMT: epithelial-mesenchymal transition; GRSF1: G-rich RNA sequence binding factor 1; IF: immunofluorescence; IP: immunoprecipitation; IHC: immunohistochemistry; lnc: long noncoding; miRNA:microRNA; TAX: taxol; TMED5: transmembrane p24 trafficking protein 5.
Collapse
Affiliation(s)
- Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junfei Guo
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shixing Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ge Song
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiying Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
92
|
Xiao FH, Wang HT, Kong QP. Dynamic DNA Methylation During Aging: A "Prophet" of Age-Related Outcomes. Front Genet 2019; 10:107. [PMID: 30833961 PMCID: PMC6387955 DOI: 10.3389/fgene.2019.00107] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
The biological markers of aging used to predict physical health status in older people are of great interest. Telomere shortening, which occurs during the process of cell replication, was initially considered a promising biomarker for the prediction of age and age-related outcomes (e.g., diseases, longevity). However, the high instability in detection and low correlation with age-related outcomes limit the extension of telomere length to the field of prediction. Currently, a growing number of studies have shown that dynamic DNA methylation throughout human lifetime exhibits strong correlation with age and age-related outcomes. Indeed, many researchers have built age prediction models with high accuracy based on age-dependent methylation changes in certain CpG loci. For now, DNA methylation based on epigenetic clocks, namely epigenetic or DNA methylation age, serves as a new standard to track chronological age and predict biological age. Measures of age acceleration (Δage, DNA methylation age – chronological age) have been developed to assess the health status of a person. In addition, there is evidence that an accelerated epigenetic age exists in patients with certain age-related diseases (e.g., Alzheimer’s disease, cardiovascular disease). In this review, we provide an overview of the dynamic signatures of DNA methylation during aging and emphasize its practical utility in the prediction of various age-related outcomes.
Collapse
Affiliation(s)
- Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
93
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
94
|
Chen WH, Luo GF, Zhang XZ. Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802725. [PMID: 30260521 DOI: 10.1002/adma.201802725] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Indexed: 05/24/2023]
Abstract
Recently, diverse functional materials that take subcellular structures as therapeutic targets are playing increasingly important roles in cancer therapy. Here, particular emphasis is placed on four kinds of therapies, including chemotherapy, gene therapy, photodynamic therapy (PDT), and hyperthermal therapy, which are the most widely used approaches for killing cancer cells by the specific destruction of subcellular organelles. Moreover, some non-drug-loaded nanoformulations (i.e., metal nanoparticles and molecular self-assemblies) with a fatal effect on cells by influencing the subcellular functions without the use of any drug molecules are also included. According to the basic principles and unique performances of each treatment, appropriate strategies are developed to meet task-specific applications by integrating specific materials, ligands, as well as methods. In addition, the combination of two or more therapies based on multifunctional nanostructures, which either directly target specific subcellular organelles or release organelle-targeted therapeutics, is also introduced with the intent of superadditive therapeutic effects. Finally, the related challenges of critical re-evaluation of this emerging field are presented.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
95
|
Navarrete-Modesto V, Orozco-Suárez S, Feria-Romero IA, Rocha L. The molecular hallmarks of epigenetic effects mediated by antiepileptic drugs. Epilepsy Res 2019; 149:53-65. [DOI: 10.1016/j.eplepsyres.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
96
|
Huang W, Wang X, Wang C, Du L, Zhang J, Deng L, Cao H, Dong A. Structural exploration of hydrophobic core in polycationic micelles for improving siRNA delivery efficiency and cell viability. J Mater Chem B 2019; 7:965-973. [DOI: 10.1039/c8tb02706d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Improving siRNA delivery efficiency often encounters a dilemma with poor or decreased biocompatibility for polycationic micelles.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Changrong Wang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Lili Du
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Jianhua Zhang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Liandong Deng
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Anjie Dong
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
97
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
98
|
Baltusnikas J, Satkauskas S, Lundstrom K. Constructing RNA Viruses for Long-Term Transcriptional Gene Silencing. Trends Biotechnol 2019; 37:20-28. [DOI: 10.1016/j.tibtech.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
|
99
|
Nieminen T, Scott TA, Lin FM, Chen Z, Yla-Herttuala S, Morris KV. Long Non-Coding RNA Modulation of VEGF-A during Hypoxia. Noncoding RNA 2018; 4:ncrna4040034. [PMID: 30463374 PMCID: PMC6315885 DOI: 10.3390/ncrna4040034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
The role and function of long non-coding RNAs (lncRNAs) in modulating gene expression is becoming apparent. Vascular endothelial growth factor A (VEGF-A) is a key regulator of blood vessel formation and maintenance making it a promising therapeutic target for activation in ischemic diseases. In this study, we uncover a functional role for two antisense VEGF-A lncRNAs, RP1-261G23.7 and EST AV731492, in transcriptional regulation of VEGF-A during hypoxia. We find here that both lncRNAs are polyadenylated, concordantly upregulated with VEGF-A, localize to the VEGF-A promoter and upstream elements in a hypoxia dependent manner either as a single-stranded RNA or DNA bound RNA, and are associated with enhancer marks H3K27ac and H3K9ac. Collectively, these data suggest that VEGF-A antisense lncRNAs, RP1-261G23.7 and EST AV731492, function as VEGF-A promoter enhancer-like elements, possibly by acting as a local scaffolding for proteins and also small RNAs to tether.
Collapse
Affiliation(s)
- Tiina Nieminen
- The Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Tristan A Scott
- The Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Feng-Mao Lin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, FI-70211 Kuopio, Finland.
| | - Kevin V Morris
- The Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
100
|
Laham-Karam N, Laitinen P, Turunen TA, Ylä-Herttuala S. Activating the Chromatin by Noncoding RNAs. Antioxid Redox Signal 2018; 29:813-831. [PMID: 28699365 DOI: 10.1089/ars.2017.7248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The extent and breadth of transcription have recently been uncovered and this has revealed an extensive array of noncoding RNAs (ncRNAs). The biological role and significance of these ncRNAs have been realized and to date it appears that ncRNAs may have many important regulatory functions. ncRNAs are multifaceted and they induce a complexity of different types of transcriptional and posttranscriptional regulation, including gene activation. Recent Advances: Association of ncRNAs with gene activation is an important finding. Not only enhancer RNA (eRNA) but other types of ncRNAs, including small RNA (sRNA), long-noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-associated RNA (piRNA), have also been implicated in gene activation. Interestingly, they often coincide with histone modifications that favor an open chromatin. In addition, these ncRNAs can recruit key factors important for transcription, including RNA polymerase II. They may directly bind the genomic DNA or act as scaffolds; alternatively, they may loop the chromatin to enhance transcription. CRITICAL ISSUES Although the role of small activating (sa)RNAs has been considerably studied, the roles of miRNAs and piRNAs in gene activation still need to be substantiated and issues of specificity require further studies. FUTURE DIRECTIONS The ncRNA field is coming out of its infancy and we are gaining a global picture of the importance of ncRNAs. However, detailed mechanisms of action of the different ncRNAs are still to be determined. This may reveal novel ways of transcriptional regulation, which will facilitate our ability to utilize these regulatory pathways for research and therapeutic purposes. Antioxid. Redox Signal. 29, 813-831.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Pia Laitinen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Tiia A Turunen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland .,2 Heart Center, Kuopio University Hospital , Kuopio, Finland .,3 Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|