51
|
Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W, Usher J, Warris A, Wilkinson H, Murray AK. Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918717. [PMID: 37746188 PMCID: PMC10512330 DOI: 10.3389/ffunb.2022.918717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Helen Wilkinson
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| |
Collapse
|
52
|
Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res 2022; 50:5739-5756. [PMID: 35639764 PMCID: PMC9177976 DOI: 10.1093/nar/gkac406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of drug-resistant bacteria represents one of the most significant medical problems of our time. Bacterial fitness loss associated with drug resistance can be counteracted by acquisition of secondary mutations, thereby enhancing the virulence of such bacteria. Antibiotic rifampicin (Rif) targets cellular RNA polymerase (RNAP). It is potent broad spectrum drug used for treatment of bacterial infections. We have investigated the compensatory mechanism of the secondary mutations alleviating Rif resistance (Rifr) on biochemical, structural and fitness indices. We find that substitutions in RNAP genes compensating for the growth defect caused by βQ513P and βT563P Rifr mutations significantly enhanced bacterial relative growth rate. By assaying RNAP purified from these strains, we show that compensatory mutations directly stimulated basal transcriptional machinery (2-9-fold) significantly improving promoter clearance step of the transcription pathway as well as elongation rate. Molecular modeling suggests that compensatory mutations affect transcript retention, substrate loading, and nucleotidyl transfer catalysis. Strikingly, one of the identified compensatory substitutions represents mutation conferring rifampicin resistance on its own. This finding reveals an evolutionary process that creates more virulent species by simultaneously improving the fitness and augmenting bacterial drug resistance.
Collapse
Affiliation(s)
- Natalia Kurepina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Maxim Chudaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Vadim Nikiforov
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Arkady Mustaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
53
|
Chen Y, Liu Q, Takiff HE, Gao Q. Comprehensive genomic analysis of Mycobacterium tuberculosis reveals limited impact of high-fitness genotypes on MDR-TB transmission. J Infect 2022; 85:49-56. [PMID: 35588941 DOI: 10.1016/j.jinf.2022.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Environmental and host-related factors that contribute to the transmission of multidrug-resistant tuberculosis (MDR-TB) have become an increasing concern, but the impact of bacterial genetic factors associated with bacterial fitness on MDR-TB transmission is poorly understood. Here, we present a global view of the correlation between common fitness-related genotypes and MDR-TB transmission by analyzing a representative number of MDR-TB isolates. METHODS We assembled a global whole genome sequencing (WGS) dataset of MDR-TB strains collected through retrospective cohorts or population-based approaches using public databases and literature curation. WGS-based clusters were defined as groups of strains with genomic difference of ≤ 5 SNPs. RESULTS We curated high-quality WGS data of 4696 MDR-TB isolates from 17 countries with a mean clustering rate of 48% (range 0-100%). Correlational analysis showed that increased risk of MDR-TB strain clustering was not associated with compensatory mutations (OR 1.07, 95% CI 0.72-1.59), low-fitness cost drug-resistant mutations (katG S315T: OR 1.42, 95% CI 0.82-2.47; rpoB S450L: OR 1.26, 95% CI 0.87-1.83) or Lineage 2 (OR 1.50, 95% CI 0.95-2.39). CONCLUSIONS The factors most commonly thought to increase bacterial fitness were not significantly associated with increased MDR-TB transmission, and thus do not appear to be major contributors to the current epidemic of MDR-TB.
Collapse
Affiliation(s)
- Yiwang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Howard E Takiff
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China; Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China.
| |
Collapse
|
54
|
Tuyiringire N, Taremwa Mugisha I, Tusubira D, Munyampundu JP, Mambo Muvunyi C, Vander Heyden Y. In vitro antimycobacterial activity of medicinal plants Lantana camara, Cryptolepis sanguinolenta, and Zanthoxylum leprieurii. J Clin Tuberc Other Mycobact Dis 2022; 27:100307. [PMID: 35284659 PMCID: PMC8904236 DOI: 10.1016/j.jctube.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Imperative need exists to search for new anti-TB drugs that are safer, and more effective against drug-resistant strains. Medicinal plants have been the source of active ingredients for drug development. However, the slow growth and biosafety level requirements of M. tuberculosis culture are considerable challenges. M. smegmatis can be used as a surrogate for M. tuberculosis. In the current study, preliminary phytochemical screening and antimycobacterial activity evaluation of crude methanolic extracts of medicinal plants against M. smegmatis, and two M. tuberculosis strains, were conducted. Materials and Methods Crude methanolic extracts, obtained from the leaves of L. camara, roots of C. sanguinolenta, and stem barks of Z. leprieurii, were tested for antimycobacterial activity against M. smegmatis (mc2155), pan-sensitive (H37Rv), and rifampicin-resistant (TMC-331) M. tuberculosis, using visual Resazurin Microtiter Assay (REMA) on 96 well plates. Preliminary qualitative phytochemical screening tests were performed using standard chemical methods. Results The three methanolic extracts inhibited mycobacterial growth in vitro. They were more active against rifampicin-resistant strain with MICs of 176, 97, and 45 µg/mL for L. camara, C. sanguinolenta, and Z. leprieurii extracts, respectively. The lowest activity was observed against M. smegmatis with MICs of 574, 325, and 520 µg/mL, respectively. Against H37Rv, activity was intermediate to those of TMC-331 and mc2155. However, L. camara extract showed the same activity against H37Rv and M. smegmatis. Preliminary phytochemical analysis revealed alkaloids, flavonoids, phenolic compounds, saponins, tannins, and terpenoids. Conclusions Leaves of L. camara, roots of C. sanguinolenta, and stem barks of Z. leprieurii exhibit antimycobacterial activity against M. smegmatis, pan-sensitive, and rifampicin-resistant M. tuberculosis. This offers the possibilities for novel therapeutic opportunities against TB including multidrug-resistant TB. Further investigations on safety and mechanisms of action are required. These studies could be done using M. smegmatis as a surrogate for the highly pathogenic M. tuberculosis.
Collapse
Affiliation(s)
- Naasson Tuyiringire
- Pharm-BioTechnology and Traditional Medicine Centre (PHARMBIOTRAC), Department of Pharmacy, Mbarara University of Science & Technology, P. O. Box 1410, Mbarara, Uganda
- School of Nursing and Midwifery, College of Medicine and Health Sciences, University of Rwanda, KG11 Ave, 47St/P.O. Box 3286, Kigali, Rwanda
- Corresponding author.
| | - Ivan Taremwa Mugisha
- Institute of Applied Health Sciences, Clarke International University, P.O. Box 7782, Kampala, Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
| | - Jean-Pierre Munyampundu
- School of Science, College of Science and Technology, University of Rwanda, KN 67 Street Nyarugenge, P.O. Box 3900, Kigali, Rwanda
| | - Claude Mambo Muvunyi
- College of Medicine and Health Sciences, University of Rwanda, KG11 Ave, 47St/P.O. Box 3286, Kigali, Rwanda
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
55
|
Ngabonziza JCS, Rigouts L, Torrea G, Decroo T, Kamanzi E, Lempens P, Rucogoza A, Habimana YM, Laenen L, Niyigena BE, Uwizeye C, Ushizimpumu B, Mulders W, Ivan E, Tzfadia O, Muvunyi CM, Migambi P, Andre E, Mazarati JB, Affolabi D, Umubyeyi AN, Nsanzimana S, Portaels F, Gasana M, de Jong BC, Meehan CJ. Multidrug-resistant tuberculosis control in Rwanda overcomes a successful clone that causes most disease over a quarter century. J Clin Tuberc Other Mycobact Dis 2022; 27:100299. [PMID: 35146133 PMCID: PMC8802117 DOI: 10.1016/j.jctube.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SUMMARY BACKGROUND Multidrug-resistant (MDR) tuberculosis (TB) poses an important challenge in TB management and control. Rifampicin resistance (RR) is a solid surrogate marker of MDR-TB. We investigated the RR-TB clustering rates, bacterial population dynamics to infer transmission dynamics, and the impact of changes to patient management on these dynamics over 27 years in Rwanda. METHODS We analysed whole genome sequences of a longitudinal collection of nationwide RR-TB isolates. The collection covered three important periods: before programmatic management of MDR-TB (PMDT; 1991-2005), the early PMDT phase (2006-2013), in which rifampicin drug-susceptibility testing (DST) was offered to retreatment patients only, and the consolidated phase (2014-2018), in which all bacteriologically confirmed TB patients had rifampicin DST done mostly via Xpert MTB/RIF assay. We constructed clusters based on a 5 SNP cut-off and resistance conferring SNPs. We used Bayesian modelling for dating and population size estimations, TransPhylo to estimate the number of secondary cases infected by each patient, and multivariable logistic regression to assess predictors of being infected by the dominant clone. RESULTS Of 308 baseline RR-TB isolates considered for transmission analysis, the clustering analysis grouped 259 (84.1%) isolates into 13 clusters. Within these clusters, a single dominant clone was discovered containing 213 isolates (82.2% of clustered and 69.1% of all RR-TB), which we named the "Rwanda Rifampicin-Resistant clone" (R3clone). R3clone isolates belonged to Ugandan sub-lineage 4.6.1.2 and its rifampicin and isoniazid resistance were conferred by the Ser450Leu mutation in rpoB and Ser315Thr in katG genes, respectively. All R3clone isolates had Pro481Thr, a putative compensatory mutation in the rpoC gene that likely restored its fitness. The R3clone was estimated to first arise in 1987 and its population size increased exponentially through the 1990s', reaching maximum size (∼84%) in early 2000 s', with a declining trend since 2014. Indeed, the highest proportion of R3clone (129/157; 82·2%, 95%CI: 75·3-87·8%) occurred between 2000 and 13, declining to 64·4% (95%CI: 55·1-73·0%) from 2014 onward. We showed that patients with R3clone detected after an unsuccessful category 2 treatment were more likely to generate secondary cases than patients with R3clone detected after an unsuccessful category 1 treatment regimen. CONCLUSIONS RR-TB in Rwanda is largely transmitted. Xpert MTB/RIF assay as first diagnostic test avoids unnecessary rounds of rifampicin-based TB treatment, thus preventing ongoing transmission of the dominant R3clone. As PMDT was intensified and all TB patients accessed rifampicin-resistance testing, the nationwide R3clone burden declined. To our knowledge, our findings provide the first evidence supporting the impact of universal DST on the transmission of RR-TB.
Collapse
Affiliation(s)
- Jean Claude S. Ngabonziza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gabriela Torrea
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tom Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | - Eliane Kamanzi
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Pauline Lempens
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aniceth Rucogoza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Yves M. Habimana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Lies Laenen
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Belamo E. Niyigena
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Cécile Uwizeye
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bertin Ushizimpumu
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Wim Mulders
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emil Ivan
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Oren Tzfadia
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claude Mambo Muvunyi
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Emmanuel Andre
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Leuven, Belgium
| | | | | | | | | | - Françoise Portaels
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michel Gasana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Bouke C. de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Biosciences, University of Bradford, UK
| |
Collapse
|
56
|
Herren CM, Baym M. Decreased thermal niche breadth as a trade-off of antibiotic resistance. THE ISME JOURNAL 2022; 16:1843-1852. [PMID: 35422477 PMCID: PMC9213455 DOI: 10.1038/s41396-022-01235-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 01/24/2023]
Abstract
Evolutionary theory predicts that adaptations, including antibiotic resistance, should come with associated fitness costs; yet, many resistance mutations seemingly contradict this prediction by inducing no growth rate deficit. However, most growth assays comparing sensitive and resistant strains have been performed under a narrow range of environmental conditions, which do not reflect the variety of contexts that a pathogenic bacterium might encounter when causing infection. We hypothesized that reduced niche breadth, defined as diminished growth across a diversity of environments, can be a cost of antibiotic resistance. Specifically, we test whether chloramphenicol-resistant Escherichia coli incur disproportionate growth deficits in novel thermal conditions. Here we show that chloramphenicol-resistant bacteria have greater fitness costs at novel temperatures than their antibiotic-sensitive ancestors. In several cases, we observed no resistance cost in growth rate at the historic temperature but saw diminished growth at warmer and colder temperatures. These results were consistent across various genetic mechanisms of resistance. Thus, we propose that decreased thermal niche breadth is an under-documented fitness cost of antibiotic resistance. Furthermore, these results demonstrate that the cost of antibiotic resistance shifts rapidly as the environment changes; these context-dependent resistance costs should select for the rapid gain and loss of resistance as an evolutionary strategy.
Collapse
Affiliation(s)
- Cristina M Herren
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.,Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA. .,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.
| |
Collapse
|
57
|
Yokobori N, López B, Ritacco V. The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis (Edinb) 2022; 134:102200. [PMID: 35339874 DOI: 10.1016/j.tube.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Multidrug-resistant tuberculosis is one of the major obstacles that face the tuberculosis eradication efforts. Drug-resistant Mycobacterium tuberculosis clones were initially disregarded as a public health threat, because they were assumed to have paid a high fitness cost in exchange of resistance acquisition. However, some genotypes manage to overcome the impact of drug-resistance conferring mutations, retain transmissibility and cause large outbreaks. In Argentina, the HIV-AIDS epidemics fuelled the expansion of the so-called M strain in the early 1990s, which is responsible for the largest recorded multidrug-resistant tuberculosis cluster of Latin America. The aim of this work is to review the knowledge gathered after nearly three decades of multidisciplinary research on epidemiological, microbiological and immunological aspects of this highly successful strain. Collectively, our results indicate that the successful transmission of the M strain could be ascribed to its unaltered virulence, low Th1/Th17 response, a low fitness cost imposed by the resistance conferring mutations and a high resistance to host-related stress. In the early 2000s, the incident cases due to the M strain steadily declined and stabilized in the latest years. Improvements in the management, diagnosis and treatment of multidrug-resistant tuberculosis along with societal factors such as the low domestic and international mobility of the patients affected by this strain probably contributed to the outbreak containment. This stresses the importance of sustaining the public health interventions to avoid the resurgence of this conspicuous multidrug-resistant strain.
Collapse
Affiliation(s)
- Noemí Yokobori
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Beatriz López
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina.
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
58
|
Al-Obaid I, Asadzadeh M, Ahmad S, Alobaid K, Alfouzan W, Bafna R, Emara M, Joseph L. Fatal Breakthrough Candidemia in an Immunocompromised Patient in Kuwait Due to Candida auris Exhibiting Reduced Susceptibility to Echinocandins and Carrying a Novel Mutation in Hotspot-1 of FKS1. J Fungi (Basel) 2022; 8:jof8030267. [PMID: 35330269 PMCID: PMC8953900 DOI: 10.3390/jof8030267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Candida auris is an emerging yeast pathogen that has recently caused major outbreaks in healthcare facilities worldwide. Clinical C. auris isolates are usually resistant to fluconazole and readily develop resistance to echinocandins and amphotericin B (AMB) during treatment. We describe here an interesting case of C. auris infection in an immunocompromised patient who had previously received AMB and caspofungin treatment. Subsequently, C. auris was isolated from tracheal (tracheostomy) secretions and twice from urine and all three isolates were susceptible to AMB and micafungin. The patient received a combination therapy with AMB and caspofungin. Although the C. auris was cleared from the urine, the patient subsequently developed breakthrough candidemia and the bloodstream isolate exhibited a reduced susceptibility to micafungin and also showed the presence of a novel (S639T) mutation in hotspot-1 of FKS1. Interestingly, C. auris from the tracheal (tracheostomy) secretions recovered one and four days later exhibited a reduced susceptibility to micafungin and S639Y and S639T mutations in hotspot-1 of FKS1, respectively. Although the treatment was changed to voriconazole, the patient expired. Our case highlights a novel FKS1 mutation and the problems clinicians are facing to treat invasive C. auris infections due to inherent or developing resistance to multiple antifungal drugs and limited antifungal armamentarium.
Collapse
Affiliation(s)
- Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
- Correspondence: ; Tel.: +00965-2463-6503
| | - Khaled Alobaid
- Department of Microbiology, Mubarak Al-Kabeer Hospital, Jabriya 46300, Kuwait;
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Ritu Bafna
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Maha Emara
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| |
Collapse
|
59
|
Morsky B, Vural DC. Suppressing evolution of antibiotic resistance through environmental switching. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Physiological Responses of Ribosomal Protein S12 K43 Mutants of Corynebacterium glutamicum. Curr Microbiol 2022; 79:94. [PMID: 35142919 DOI: 10.1007/s00284-022-02795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
Bacterial resistance to streptomycin is often acquired as a consequence of mutations in rpsL, the gene encoding ribosomal protein S12. Corynebacterium glutamicum is a non-pathogenic Gram-positive soil bacterium that has been widely used in industry. In a previous study, we screened several streptomycin-resistant rpsL K43 mutants of C. glutamicum, and surprisingly found that two of them also confer chloramphenicol and/or kanamycin resistance. In order to understand whether or not a single mutation of rpsLK43 could confer resistance to multiple antibiotics, in this study we attempted to construct saturation mutagenesis of rpsL K43 by rational genetic manipulation. Despite many efforts had been made, only nine mutants were successfully constructed. They were indeed resistant to streptomycin, but not to other antibiotics. This suggested that other mutations should be acquired, contributing to multiple antibiotics in the screened strains. The growth and enhanced green fluorescent protein (eGFP) expression of these nine mutants were then investigated. The results showed that they grew differently in CGXII minimal medium, but not in BHI medium. When cultured in the absence of streptomycin, the expression of eGFP was positively proportional to the growth, approximately, while in the presence of streptomycin, the expression of eGFP was proportional to the ability of streptomycin resistance.
Collapse
|
61
|
Malik B, Hasan Farooqui H, Bhattacharyya S. Disparity in socio-economic status explains the pattern of self-medication of antibiotics in India: understanding from game-theoretic perspective. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211872. [PMID: 35154800 PMCID: PMC8826305 DOI: 10.1098/rsos.211872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
The emergence of antimicrobial resistance has raised great concern for public health in many lower-income countries including India. Socio-economic determinants like poverty, health expenditure and awareness accelerate this emergence by influencing individuals' attitudes and healthcare practices such as self-medication. This self-medication practice is highly prevalent in many countries, where antibiotics are available without prescriptions. Thus, complex dynamics of drug- resistance driven by economy, human behaviour, and disease epidemiology poses a serious threat to the community, which has been less emphasized in prior studies. Here, we formulate a game-theoretic model of human choices in self-medication integrating economic growth and disease transmission processes. We show that this adaptive behaviour emerges spontaneously in the population through a self-reinforcing process and continual feedback from the economy, resulting in the emergence of resistance as externalities of human choice under resource constraints situations. We identify that the disparity between social-optimum and individual interest in self-medication is primarily driven by the effectiveness of treatment, health awareness and public health interventions. Frequent multiple-peaks of resistant strains are also observed when individuals imitate others more readily and self-medication is more likely. Our model exemplifies that timely public health intervention for financial risk protection, and antibiotic stewardship policies can improve the epidemiological situation and prevent economic collapse.
Collapse
Affiliation(s)
- Bhawna Malik
- Disease Modelling Lab, Mathematics, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Habib Hasan Farooqui
- Indian Institute of Public Health, Public Health Foundation of India, Delhi, India
- College of Medicine, Qatar University, Doha, Qatar
| | - Samit Bhattacharyya
- Disease Modelling Lab, Mathematics, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
62
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
63
|
Rodríguez-Beltrán É, López GD, Anzola JM, Rodríguez-Castillo JG, Carazzone C, Murcia MI. Heterogeneous fitness landscape cues, pknG low expression, and phthiocerol dimycocerosate low production of Mycobacterium tuberculosis ATCC25618 rpoB S450L in enriched broth. Tuberculosis (Edinb) 2021; 132:102156. [PMID: 34891037 DOI: 10.1016/j.tube.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation. This study measured virulence/resistance genes, phthiocerol dimycocerosate (PDIM) levels and their relationship with rpoB S450L ATCC25618 RR-TB strain fitness. After obtaining 10 different RR-TB GenoType MTBDRplus 2.0-genotyped isolates (with nontyped, S441, H445 and S450 positions), only one S450L isolate (R9, rpoB-S450L ATCC 25618, RR 1 μg/mL) was observed, with H445Y being the most common. A competitive fitness in vitro assay with wild-type (wt) ATCC 25618: R9 1:1 in 50 mL Middlebrook 7H9/OADC was performed, and generation time (G) in vitro and relative fitness were obtained. mRNA and PDIM were extracted on log and stationary phases. Fitness decreased in rpoB S450L and H445Y strains, with heterogeneous fitness cues in three biological replicas of rpoB-S450L: one high and two low fitness replicas. S450L strain had significant pknG increase. Compared with S450L, wt-rpoB showed increased polyketide synthase ppsA expression and high PDIM peak measured by HPLC-MS in log phase compared to S450L. This contrasts with previously increased PDIM in other RR-TB isolates.
Collapse
Affiliation(s)
- Édgar Rodríguez-Beltrán
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Juan Manuel Anzola
- Corpogen, CR 4 20-41, Bogotá, D.C, 110311, Colombia; Universidad Central, CR 5 21-38, Bogotá, D.C, 110311, Colombia
| | - Juan Germán Rodríguez-Castillo
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Martha I Murcia
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia.
| |
Collapse
|
64
|
Cox H, Salaam-Dreyer Z, Goig GA, Nicol MP, Menardo F, Dippenaar A, Mohr-Holland E, Daniels J, Cudahy PGT, Borrell S, Reinhard M, Doetsch A, Beisel C, Reuter A, Furin J, Gagneux S, Warren RM. Potential contribution of HIV during first-line tuberculosis treatment to subsequent rifampicin-monoresistant tuberculosis and acquired tuberculosis drug resistance in South Africa: a retrospective molecular epidemiology study. LANCET MICROBE 2021; 2:e584-e593. [PMID: 34766068 PMCID: PMC8563432 DOI: 10.1016/s2666-5247(21)00144-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background South Africa has a high burden of rifampicin-resistant tuberculosis (including multidrug-resistant [MDR] tuberculosis), with increasing rifampicin-monoresistant (RMR) tuberculosis over time. Resistance acquisition during first-line tuberculosis treatment could be a key contributor to this burden, and HIV might increase the risk of acquiring rifampicin resistance. We assessed whether HIV during previous treatment was associated with RMR tuberculosis and resistance acquisition among a retrospective cohort of patients with MDR or rifampicin-resistant tuberculosis. Methods In this retrospective cohort study, we included all patients routinely diagnosed with MDR or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa, between Jan 1, 2008, and Dec 31, 2017. Patient-level data were obtained from a prospective database, complemented by data on previous tuberculosis treatment and HIV from a provincial health data exchange. Stored MDR or rifampicin-resistant tuberculosis isolates from patients underwent whole-genome sequencing (WGS). WGS data were used to infer resistance acquisition versus transmission, by identifying genomically unique isolates (single nucleotide polymorphism threshold of five). Logistic regression analyses were used to assess factors associated with RMR tuberculosis and genomic uniqueness. Findings The cohort included 2041 patients diagnosed with MDR or rifampicin-resistant tuberculosis between Jan 1, 2008, and Dec 31, 2017; of those, 463 (22·7%) with RMR tuberculosis and 1354 (66·3%) with previous tuberculosis treatment. In previously treated patients, HIV positivity during previous tuberculosis treatment versus HIV negativity (adjusted odds ratio [OR] 2·07, 95% CI 1·35–3·18), and three or more previous tuberculosis treatment episodes versus one (1·96, 1·21–3·17) were associated with RMR tuberculosis. WGS data showing MDR or rifampicin-resistant tuberculosis were available for 1169 patients; 360 (30·8%) isolates were identified as unique. In previously treated patients, RMR tuberculosis versus MDR tuberculosis (adjusted OR 4·96, 3·40–7·23), HIV positivity during previous tuberculosis treatment (1·71, 1·03–2·84), and diagnosis in 2013–17 (1·42, 1·02–1·99) versus 2008–12, were associated with uniqueness. In previously treated patients with RMR tuberculosis, HIV positivity during previous treatment (adjusted OR 5·13, 1·61–16·32) was associated with uniqueness as was female sex (2·50 [1·18–5·26]). Interpretation These data suggest that HIV contributes to rifampicin-resistance acquisition during first-line tuberculosis treatment and that this might be driving increasing RMR tuberculosis over time. Large-scale prospective cohort studies are required to further quantify this risk. Funding Swiss National Science Foundation, South African National Research Foundation, and Wellcome Trust.
Collapse
Affiliation(s)
- Helen Cox
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| | - Zubeida Salaam-Dreyer
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Galo A Goig
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mark P Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anzaan Dippenaar
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Johnny Daniels
- Médecins Sans Frontières, Khayelitsha, Cape Town, South Africa
| | - Patrick G T Cudahy
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anna Doetsch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Anja Reuter
- Médecins Sans Frontières, Khayelitsha, Cape Town, South Africa
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
65
|
Rifampicin-Monoresistant Tuberculosis Is Not the Same as Multidrug-Resistant Tuberculosis: a Descriptive Study from Khayelitsha, South Africa. Antimicrob Agents Chemother 2021; 65:e0036421. [PMID: 34460307 PMCID: PMC8522772 DOI: 10.1128/aac.00364-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rifampin monoresistance (RMR; rifampin resistance and isoniazid susceptibility) accounts for 38% of all rifampin-resistant tuberculosis (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) in a setting with high TB, RR-TB, and HIV burdens. Patient-level clinical data and stored RR Mycobacterium tuberculosis isolates from 2008 to 2017 with available whole-genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare RR-conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semiquantitative rifampin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted odds ratio [aOR], 1.4; 95% confidence interval [CI], 1.1 to 1.9) and diagnosis between 2013 and 2017 versus between 2008 and 2012 (aOR, 1.3; 95% CI, 1.1 to 1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR and MDR isolates were observed. Mutations associated with high-level RR were more commonly found among MDR isolates (811/889 [90.2%] versus 162/230 [70.4%] among RMR isolates; P < 0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR isolates versus 10/889 (1.1%) in MDR isolates (P < 0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 μg/ml (range, 0.125 to 1 μg/ml). The majority (215/230 [93.5%]) of RMR isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.
Collapse
|
66
|
Artificial sweeteners stimulate horizontal transfer of extracellular antibiotic resistance genes through natural transformation. ISME JOURNAL 2021; 16:543-554. [PMID: 34465899 PMCID: PMC8776823 DOI: 10.1038/s41396-021-01095-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Antimicrobial resistance has emerged as a global threat to human health. Natural transformation is an important pathway for horizontal gene transfer, which facilitates the dissemination of antibiotic resistance genes (ARGs) among bacteria. Although it is suspected that artificial sweeteners could exert antimicrobial effects, little is known whether artificial sweeteners would also affect horizontal transfer of ARGs via transformation. Here we demonstrate that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) promote transfer of ARGs via natural transformation in Acinetobacter baylyi ADP1, a model organism for studying competence and transformation. Such phenomenon was also found in a Gram-positive human pathogen Bacillus subtilis and mice faecal microbiome. We reveal that exposure to these sweeteners increases cell envelope permeability and results in an upregulation of genes encoding DNA uptake and translocation (Com) machinery. In addition, we find that artificial sweeteners induce an increase in plasmid persistence in transformants. We propose a mathematical model established to predict the long-term effects on transformation dynamics under exposure to these sweeteners. Collectively, our findings offer insights into natural transformation promoted by artificial sweeteners and highlight the need to evaluate these environmental contaminants for their antibiotic-like side effects.
Collapse
|
67
|
Zhao QY, Zhu JH, Cai RM, Zheng XR, Zhang LJ, Chang MX, Lu YW, Fang LX, Sun J, Jiang HX. IS 26 Is Responsible for the Evolution and Transmission of blaNDM-Harboring Plasmids in Escherichia coli of Poultry Origin in China. mSystems 2021; 6:e0064621. [PMID: 34254816 PMCID: PMC8407110 DOI: 10.1128/msystems.00646-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/19/2021] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are some of the most important pathogens responsible for nosocomial infections, which can be challenging to treat. The blaNDM carbapenemase genes, which are expressed by New Delhi metallo-β-lactamase (NDM)-producing Escherichia coli isolates, have been found in humans, environmental samples, and multiple other sources worldwide. Importantly, these genes have also been found in farm animals, which are considered an NDM reservoir and an important source of human infections. However, the dynamic evolution of blaNDM genetic contexts and blaNDM-harboring plasmids has not been directly observed, making it difficult to assess the extent of horizontal dissemination of the blaNDM gene. In this study, we detected NDM-1 (n = 1), NDM-5 (n = 24), and NDM-9 (n = 8) variants expressed by E. coli strains isolated from poultry in China from 2016 to 2017. By analyzing the immediate genetic environment of the blaNDM genes, we found that IS26 was associated with multiple types of blaNDM multidrug resistance regions, and we identified various IS26-derived circular intermediates. Importantly, in E. coli strain GD33, we propose that IncHI2 and IncI1 plasmids can fuse when IS26 is present. Our analysis of the IS26 elements flanking blaNDM allowed us to propose an important role for IS26 elements in the evolution of multidrug-resistant regions (MRRs) and in the dissemination of blaNDM. To the best of our knowledge, this is the first description of the dynamic evolution of blaNDM genetic contexts and blaNDM-harboring plasmids. These findings could help proactively limit the transmission of these NDM-producing isolates from food animals to humans. IMPORTANCE Carbapenem resistance in members of the order Enterobacterales is a growing public health problem that is associated with high mortality in developing and industrialized countries. Moreover, in the field of veterinary medicine, the occurrence of New Delhi metallo-β-lactamase-producing Escherichia coli isolates in animals, especially food-producing animals, has become a growing concern in recent years. The wide dissemination of blaNDM is closely related to mobile genetic elements (MGEs) and plasmids. Although previous analyses have explored the association of many different MGEs with mobilization of blaNDM, little is known about the evolution of various genetic contexts of blaNDM in E. coli. Here, we report the important role of IS26 in forming multiple types of blaNDM multidrug resistance cassettes and the dynamic recombination of plasmids bearing blaNDM. These results suggest that significant attention should be paid to monitoring the transmission and further evolution of blaNDM-harboring plasmids among E. coli strains of food animal origin.
Collapse
Affiliation(s)
- Qiu-Yun Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jia-Hang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Run-Mao Cai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xing-Run Zheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li-Juan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Man-Xia Chang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue-Wei Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong-Xia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
68
|
Bronson RA, Gupta C, Manson AL, Nguyen JA, Bahadirli-Talbott A, Parrish NM, Earl AM, Cohen KA. Global phylogenomic analyses of Mycobacterium abscessus provide context for non cystic fibrosis infections and the evolution of antibiotic resistance. Nat Commun 2021; 12:5145. [PMID: 34446725 PMCID: PMC8390669 DOI: 10.1038/s41467-021-25484-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium abscessus (MAB) is an emerging pathogen that leads to chronic lung infections. To date, the global population structure of non-cystic fibrosis (CF) MAB and evolutionary patterns of drug resistance emergence have not been investigated. Here we construct a global dataset of 1,279 MAB whole genomes from CF or non-CF patients. We utilize whole genome analysis to assess relatedness, phylogeography, and drug resistance evolution. MAB isolates from CF and non-CF hosts are interspersed throughout the phylogeny, such that the majority of dominant circulating clones include isolates from both populations, indicating that global spread of MAB clones is not sequestered to CF contexts. We identify a large clade of M. abscessus harboring the erm(41) T28C mutation, predicted to confer macrolide susceptibility in this otherwise macrolide-resistant species. Identification of multiple evolutionary events within this clade, consistent with regain of wild type, intrinsic macrolide resistance, underscores the critical importance of macrolides in MAB. Mycobacterium abscessus is an emerging infection that usually affects patients with structural lung diseases such as cystic fibrosis (CF). Here, the authors use phylogenetic analyses to demonstrate close relationships between isolates from CF and non-CF patients and identify antibiotic resistance markers.
Collapse
Affiliation(s)
- Ryan A Bronson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Chhavi Gupta
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Jan A Nguyen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Asli Bahadirli-Talbott
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Nicole M Parrish
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US.
| |
Collapse
|
69
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
70
|
Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrob Agents Chemother 2021; 65:e0050421. [PMID: 34228548 PMCID: PMC8370218 DOI: 10.1128/aac.00504-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a threat to global health and the economy. Rifampicin-resistant Mycobacterium tuberculosis accounts for a third of the global AMR burden. Gaining the upper hand on AMR requires a deeper understanding of the physiology of resistance. AMR often results in a fitness cost in the absence of drug. Identifying the molecular mechanisms underpinning this cost could help strengthen future treatment regimens. Here, we used a collection of M. tuberculosis strains that provide an evolutionary and phylogenetic snapshot of rifampicin resistance and subjected them to genome-wide transcriptomic and proteomic profiling to identify key perturbations of normal physiology. We found that the clinically most common rifampicin resistance-conferring mutation, RpoB Ser450Leu, imparts considerable gene expression changes, many of which are mitigated by the compensatory mutation in RpoC Leu516Pro. However, our data also provide evidence for pervasive epistasis—the same resistance mutation imposed a different fitness cost and functionally distinct changes to gene expression in genetically unrelated clinical strains. Finally, we report a likely posttranscriptional modulation of gene expression that is shared in most of the tested strains carrying RpoB Ser450Leu, resulting in an increased abundance of proteins involved in central carbon metabolism. These changes contribute to a more general trend in which the disruption of the composition of the proteome correlates with the fitness cost of the RpoB Ser450Leu mutation in different strains.
Collapse
|
71
|
Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Emerg Microbes Infect 2021; 10:743-752. [PMID: 33775224 PMCID: PMC8057087 DOI: 10.1080/22221751.2021.1908096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has been observed to develop resistance to the frontline anti-tuberculosis drug rifampicin, primarily through mutations in the rifampicin resistance-determining region (RRDR) of rpoB. While these mutations have been determined to confer a fitness cost, compensatory mutations in rpoA and rpoC that may enhance the fitness of resistant strains have been demonstrated. Recent genomic studies identified several rpoB non-RRDR mutations that co-occurred with RRDR mutations in clinical isolates without rpoA/rpoC mutations and may confer fitness compensation. In this study, we identified 33 evolutionarily convergent rpoB non-RRDR mutations through phylogenomic analysis of public genomic data for clinical M. tuberculosis isolates. We found that none of these mutations, except V170F and I491F, can cause rifampin resistance in Mycolicibacterium smegmatis. The compensatory effects of five representative mutations across rpoB were evaluated by an in vitro competition assay, through which we observed that each of these mutations can significantly improve the relative fitness of the initial S450L mutant (0.97–1.08 vs 0.87). Furthermore, we observed that the decreased RNAP transcription efficiency introduced by S450L was significantly alleviated by each of the five mutations. Structural analysis indicated that the fitness compensation observed for the non-RRDR mutations might be achieved by modification of the RpoB active centre or by changes in interactions between RNAP subunits. Our results provide experimental evidence supporting that compensatory effects are exerted by several rpoB non-RRDR mutations, which could be utilized as additional molecular markers for predicting the fitness of clinical rifampin-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Zonghai Chen
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Wei Liao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
72
|
Gygli SM, Loiseau C, Jugheli L, Adamia N, Trauner A, Reinhard M, Ross A, Borrell S, Aspindzelashvili R, Maghradze N, Reither K, Beisel C, Tukvadze N, Avaliani Z, Gagneux S. Prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis. Nat Med 2021; 27:1171-1177. [PMID: 34031604 PMCID: PMC9400913 DOI: 10.1038/s41591-021-01358-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) accounts for one third of the annual deaths due to antimicrobial resistance1. Drug resistance-conferring mutations frequently cause fitness costs in bacteria2-5. Experimental work indicates that these drug resistance-related fitness costs might be mitigated by compensatory mutations6-10. However, the clinical relevance of compensatory evolution remains poorly understood. Here we show that, in the country of Georgia, during a 6-year nationwide study, 63% of MDR-TB was due to patient-to-patient transmission. Compensatory mutations and patient incarceration were independently associated with transmission. Furthermore, compensatory mutations were overrepresented among isolates from incarcerated individuals that also frequently spilled over into the non-incarcerated population. As a result, up to 31% of MDR-TB in Georgia was directly or indirectly linked to prisons. We conclude that prisons fuel the epidemic of MDR-TB in Georgia by acting as ecological drivers of fitness-compensated strains with high transmission potential.
Collapse
Affiliation(s)
- Sebastian M. Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,These authors contributed equally: Sebastian M. Gygli, Chloé Loiseau
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,These authors contributed equally: Sebastian M. Gygli, Chloé Loiseau
| | - Levan Jugheli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Natia Adamia
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Nino Maghradze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nestani Tukvadze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Correspondence and requests for materials should be addressed to S.G.
| |
Collapse
|
73
|
Sonnenkalb L, Strohe G, Dreyer V, Andres S, Hillemann D, Maurer FP, Niemann S, Merker M. Microevolution of Mycobacterium tuberculosis Subpopulations and Heteroresistance in a Patient Receiving 27 Years of Tuberculosis Treatment in Germany. Antimicrob Agents Chemother 2021; 65:e0252020. [PMID: 33903103 PMCID: PMC8218629 DOI: 10.1128/aac.02520-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Preexisting and newly emerging resistant pathogen subpopulations (heteroresistance) are potential risk factors for treatment failure of multi/extensively drug resistant (MDR/XDR) tuberculosis (TB). Intrapatient evolutionary dynamics of Mycobacterium tuberculosis complex (Mtbc) strains and their implications on treatment outcomes are still not completely understood. To elucidate how Mtbc strains escape therapy, we analyzed 13 serial isolates from a German patient by whole-genome sequencing. Sequencing data were compared with phenotypic drug susceptibility profiles and the patient's collective 27-year treatment history to further elucidate factors fostering intrapatient resistance evolution. The patient endured five distinct TB episodes, ending in resistance to 16 drugs and a nearly untreatable XDR-TB infection. The first isolate obtained, during the patient's 5th TB episode, presented fixed resistance mutations to 7 anti-TB drugs, including isoniazid, rifampin, streptomycin, pyrazinamide, prothionamide, para-aminosalicylic acid, and cycloserine-terizidone. Over the next 13 years, a dynamic evolution with coexisting, heterogeneous subpopulations was observed in 6 out of 13 sequential bacterial isolates. The emergence of drug-resistant subpopulations coincided with frequent changes in treatment regimens, which often included two or fewer active compounds. This evolutionary arms race between competing subpopulations ultimately resulted in the fixation of a single XDR variant. Our data demonstrate the complex intrapatient microevolution of Mtbc subpopulations during failing MDR/XDR-TB treatment. Designing effective treatment regimens based on rapid detection of (hetero) resistance is key to avoid resistance development and treatment failure.
Collapse
Affiliation(s)
- Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Borstel, Germany
| | - Gerald Strohe
- Landratsamt Karlsruhe, Gesundheitsamt, Karlsruhe, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Borstel, Germany
| | - Sönke Andres
- National and Supranational Reference Centre for Mycobacteria, Research Centre Borstel, Borstel, Germany
| | - Doris Hillemann
- National and Supranational Reference Centre for Mycobacteria, Research Centre Borstel, Borstel, Germany
| | - Florian P. Maurer
- National and Supranational Reference Centre for Mycobacteria, Research Centre Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Borstel, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Borstel, Germany
| |
Collapse
|
74
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? Tuberculosis (Edinb) 2021; 129:102092. [PMID: 34102584 DOI: 10.1016/j.tube.2021.102092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Multi-Drug-Resistant strains of Mycobacterium tuberculosis (MDR-TB) are a serious obstacle to global TB eradication. While most MDR-TB strains are infrequently transmitted, a few cause large transmission clusters that contribute substantially to local MDR-TB burdens. Here we examine whether the known mutations in these strains can explain their success. Drug resistance mutations differ in fitness costs and strains can also acquire compensatory mutations (CM) to restore fitness, but some highly transmitted MDR strains have no CM. The acquisition of resistance mutations that maintain high transmissibility seems to occur by chance and are more likely in strains that are intrinsically highly transmitted and cause many cases. Modern Beijing lineage strains have caused several large outbreaks, but MDR outbreaks are also caused by ancient Beijing and lineage 4 strains, suggesting the lineage is less important than the characteristics of the individual strain. The development of fluoroquinolone resistance appears to represent another level of selection, in which strains must surmount unknown fitness costs of gyrA mutations. The genetic determinants of high transmission are poorly defined but may involve genes encoding proteins involved in molybdenum acquisition and the Esx systems. In addition, strains eliciting lower cytokine responses and producing more caseating granulomas may have advantages for transmission. Successful MDR/XDR strains generally evolve from highly transmitted drug sensitive parent strains due to selection pressures from deficiencies in local TB control programs. Until TB incidence is considerably reduced, there will likely be highly transmitted strains that develop resistance to any new antibiotic.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; Laboratorio de Genética Molecular, CMBC, IVIC, Km. 11 Carr. Panamericana, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
75
|
Quantifying transmission fitness costs of multi-drug resistant tuberculosis. Epidemics 2021; 36:100471. [PMID: 34256273 DOI: 10.1016/j.epidem.2021.100471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/14/2020] [Accepted: 05/17/2021] [Indexed: 11/22/2022] Open
Abstract
As multi-drug resistant tuberculosis (MDR-TB) continues to spread, investigating the transmission potential of different drug-resistant strains becomes an ever more pressing topic in public health. While phylogenetic and transmission tree inferences provide valuable insight into possible transmission chains, phylodynamic inference combines evolutionary and epidemiological analyses to estimate the parameters of the underlying epidemiological processes, allowing us to describe the overall dynamics of disease spread in the population. In this study, we introduce an approach to Mycobacterium tuberculosis (M. tuberculosis) phylodynamic analysis employing an existing computationally efficient model to quantify the transmission fitness costs of drug resistance with respect to drug-sensitive strains. To determine the accuracy and precision of our approach, we first perform a simulation study, mimicking the simultaneous spread of drug-sensitive and drug-resistant tuberculosis (TB) strains. We analyse the simulated transmission trees using the phylodynamic multi-type birth-death model (MTBD, (Kühnert et al., 2016)) within the BEAST2 framework and show that this model can estimate the parameters of the epidemic well, despite the simplifying assumptions that MTBD makes compared to the complex TB transmission dynamics used for simulation. We then apply the MTBD model to an M. tuberculosis lineage 4 dataset that primarily consists of MDR sequences. Some of the MDR strains additionally exhibit resistance to pyrazinamide - an important first-line anti-tuberculosis drug. Our results support the previously proposed hypothesis that pyrazinamide resistance confers a transmission fitness cost to the bacterium, which we quantify for the given dataset. Importantly, our sensitivity analyses show that the estimates are robust to different prior distributions on the resistance acquisition rate, but are affected by the size of the dataset - i.e. we estimate a higher fitness cost when using fewer sequences for analysis. Overall, we propose that MTBD can be used to quantify the transmission fitness cost for a wide range of pathogens where the strains can be appropriately divided into two or more categories with distinct properties.
Collapse
|
76
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 129:102091. [PMID: 34090078 DOI: 10.1016/j.tube.2021.102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
For tuberculosis to be eradicated, the transmission of Multi-Drug-Resistant and eXtensively Drug Resistant strains of Mycobacterium tuberculosis (MDR and XDR-TB) must be considerably reduced. Drug resistant strains were initially thought to have reduced fitness, and the majority of resistant strains may actually have compromised fitness because they are found in only one or a few patients. In contrast, some MDR/XDR-TB strains are highly transmitted and cause large outbreaks. Most antibiotics target essential bacterial functions and the mutations that confer resistance to anti-TB drugs can incur fitness costs manifested as slower growth and reduced viability. The fitness costs vary with different resistance mutations and the bacilli can also accumulate secondary mutations that compensate for the compromised functions and partially or fully restore lost fitness. The compensatory mutations (CM) are different for each antibiotic, as they mitigate the deleterious effects of the specific functions compromised by the resistance mutations. CM are generally more common in strains with resistance mutations incurring the greatest fitness costs, but for RIF resistance, CM are most frequent in strains with the mutation carrying the least fitness cost, Ser450Leu. Here, we review what is known about fitness costs, CM and mechanisms of resistance to the drugs that define a strain as MDR or XDR-TB. The relative fitness costs of the resistance mutations and the mitigating effects of CM largely explain why certain mutations are frequently found in highly transmitted clusters while others are less frequently, rarely or never found in clinical isolates. The CM illustrate how drug resistance affects bacteria and how bacteria evolve to overcome the effects of the antibiotics, and thus a paradigm for how mycobacteria can evolve in response to stress.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
77
|
Van Deun A, Decroo T, Aung KJM, Hossain MA, Gumusboga M, De Rijk WB, Tahseen S, de Jong BC, Rigouts L. Mycobacterium tuberculosis borderline rpoB mutations: emerging from the unknown. Eur Respir J 2021; 58:13993003.00783-2021. [PMID: 33926970 DOI: 10.1183/13993003.00783-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 11/05/2022]
Affiliation(s)
| | - Tom Decroo
- Institute of Tropical Medicine, Unit of HIV and TB, Dept of Clinical Sciences, Antwerp, Belgium .,Research Foundation Flanders, Brussels, Belgium
| | | | | | - Mourad Gumusboga
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| | - Willem Bram De Rijk
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| | - Sabira Tahseen
- National Tuberculosis Control Program and Pakistan National Tuberculosis Reference laboratory, Islamabad, Pakistan
| | - Bouke Catherine de Jong
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| | - Leen Rigouts
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
78
|
The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021; 12:mBio.00123-21. [PMID: 33785614 PMCID: PMC8092207 DOI: 10.1128/mbio.00123-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.
Collapse
|
79
|
Chen L, Huang J, Huang X, He Y, Sun J, Dai X, Wang X, Shafiq M, Wang L. Horizontal Transfer of Different erm(B)-Carrying Mobile Elements Among Streptococcus suis Strains With Different Serotypes. Front Microbiol 2021; 12:628740. [PMID: 33841355 PMCID: PMC8032901 DOI: 10.3389/fmicb.2021.628740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Macrolide-resistant Streptococcus suis is highly prevalent worldwide. The acquisition of the erm(B) gene mediated by mobile genetic elements (MGEs) in particular integrative and conjugative elements (ICEs) is recognized as the main reason for the rapid spread of macrolide-resistant streptococcal strains. However, knowledge about different erm(B)-carrying elements responsible for the widespread of macrolide resistance and their transferability in S. suis remains poorly understood. In the present study, two erm(B)- and tet(O)-harboring putative ICEs, designated as ICESsuYSB17_rplL and ICESsuYSJ15_rplL, and a novel erm(B)- and aadE-spw-like-carrying genomic island (GI), named GISsuJHJ17_rpsI, were identified to be excised from the chromosome and transferred among S. suis strains with different serotypes. ICESsuYSB17_rplL and ICESsuYSJ15_rplL were integrated downstream the rplL gene, a conserve locus of the ICESa2603 family. GISsuJHJ17_rpsI, with no genes belonging to the conjugation module, was integrated into the site of rpsI. All transconjugants did not exhibit obvious fitness cost by growth curve and competition assays when compared with the recipient. The results demonstrate that different erm(B)-carrying elements were presented and highlight the role of these elements in the dissemination of macrolide resistance in S. suis.
Collapse
Affiliation(s)
- Li Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Yuping He
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Junjie Sun
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
80
|
Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A, Diels M, Laurent Y, Contreras S, Feuerriegel S, Niemann S, André E, Kaswa MK, Tagliani E, Cabibbe A, Mathys V, Cirillo D, de Jong BC, Rigouts L, Supply P. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J 2021; 57:13993003.02338-2020. [PMID: 32943401 PMCID: PMC8174722 DOI: 10.1183/13993003.02338-2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture. Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA tests, the limit of detection was 100–1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1–99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3–12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare “Mycobacterium canettii” strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free. Deeplex Myc-TB may enable fast, tailored tuberculosis treatment. The novel Deeplex Myc-TB molecular assay shows a high degree of accuracy for extensive prediction of susceptibility and resistance to 13 anti-tuberculous drugs, directly achievable without culture, which may enable fast, tailored tuberculosis treatmenthttps://bit.ly/3bAvcAt
Collapse
Affiliation(s)
- Agathe Jouet
- GenoScreen, Lille, France.,These authors contributed equally to this work
| | - Cyril Gaudin
- GenoScreen, Lille, France.,These authors contributed equally to this work
| | | | | | | | | | - Maren Diels
- BCCM/ITM, Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Emmanuel André
- Laboratory of Clinical Bacteriology and Mycology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Michel K Kaswa
- National Tuberculosis Program, Kinshasa, Democratic Republic of the Congo
| | - Elisa Tagliani
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Cabibbe
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanessa Mathys
- Unit Bacterial Diseases Service, Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Daniela Cirillo
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bouke C de Jong
- Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Dept of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Philip Supply
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL (Center for Infection and Immunity of Lille), Lille, France
| |
Collapse
|
81
|
Wen X, Cao J, Mi J, Huang J, Liang J, Wang Y, Ma B, Zou Y, Liao X, Liang JB, Wu Y. Metabonomics reveals an alleviation of fitness cost in resistant E. coli competing against susceptible E. coli at sub-MIC doxycycline. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124215. [PMID: 33109407 DOI: 10.1016/j.jhazmat.2020.124215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of antibiotics may induce bacterial resistance mutations and further lead to fitness costs by reducing growth of resistant bacteria. However, antibiotic concentrations faced by bacteria are usually low in common environments, which leads to questions about how resistant bacteria with fitness costs regulate metabolism to coexist or compete with susceptible bacteria during sublethal challenge. Our study revealed that a low proportion (< 15%) of resistant bacteria coexisted with susceptible bacteria due to the fitness cost without doxycycline. However, the cost for the resistant strain decreased at a doxycycline concentration of 1 mg/L and even disappeared when the doxycycline concentration was 2 mg/L. Metabonomics analysis revealed that bypass carbon metabolism and biosynthesis of secondary metabolites were the primary metabolic pathways enriching various upregulated metabolites in resistant bacteria without doxycycline. Moreover, the alleviation of fitness cost for resistant bacteria competed with susceptible bacteria at 1 mg/L doxycycline was correlated with the downregulation of the biomarkers pyruvate and pilocarpine. Our study offered new insight into the metabolic mechanisms by which the fitness cost of resistant mutants was reduced at doxycycline concentrations as low as 1 mg/L and identified various potential metabolites to limit the spread of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junchao Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Jielan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiadi Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Juan Boo Liang
- Laboratory of Animal Production, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
82
|
In vitro antimycobacterial studies of flavonols from Bauhinia vahlii Wight and Arn. 3 Biotech 2021; 11:128. [PMID: 33614388 PMCID: PMC7885310 DOI: 10.1007/s13205-021-02672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/28/2021] [Indexed: 11/05/2022] Open
Abstract
Mycobacterial infections and fast-growing strains are increasing globally with 8 million new cases and 1.8 million fatalities per annum worldwide. The acid-fast bacterium, Mycobacterium tuberculosis (M.t), can spread diseases like tuberculosis (Tb) and weaken the immune system. In Ayurveda, the Bauhinia genus is most valued for the treatment of tuberculosis lymphadenitis. The objective of the present study is to identify anti-tubercular compounds from the under-investigated medicinal plant B. vahlii Wight and Arn. using bioassay guided isolation. The antimycobacterial activity was evaluated against non-virulent strains: Mycobacterium tuberculosis H37Ra (ATCC 25177) and Mycobacterium bovis BCG (ATCC 35743). Also, antibacterial and cytotoxicity activities were tested to identify the specificity of the isolated metabolites. Bioassay-guided isolation yielded three known flavonols, namely quercetin (1), ombuin (2), and kaempferol (3), from the methanolic extract of bark of B. vahlii. The results of antimycobacterial activity tests revealed that 2 showed much better mycobactericidal activity than 1 and 3 under ex vivo condition with minimum inhibitory concentration (MIC) values ranged from 0.05 ± 0.01 to 0.26 ± 0.01 nM, and half-maximal inhibitory concentration (IC50) values ranged from 2.85 ± 0.14 to 7.21 ± 1.09 nM against dormant and active forms, respectively. Also, compound 2 showed higher resistance with MIC values > 100 μg/mL against both Gram-positive and Gram-negative bacteria and the least cytotoxicity up to 100 μg/mL concentration against the tested series of cancer cell lines. The results revealed the Ayurvedic use of extracts of the Bauhinia genus for treating tuberculosis, and the key bioactive compounds were found to be flavonols (1–3). The present work provides the first evidence for the presence of antimycobacterial compounds in B. vahlii.
Collapse
|
83
|
Click ES, Kurbatova EV, Alexander H, Dalton TL, Chen MP, Posey JE, Ershova J, Cegielski JP. Isoniazid and Rifampin-Resistance Mutations Associated With Resistance to Second-Line Drugs and With Sputum Culture Conversion. J Infect Dis 2021; 221:2072-2082. [PMID: 32002554 DOI: 10.1093/infdis/jiaa042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mutations in the genes inhA, katG, and rpoB confer resistance to anti-tuberculosis (TB) drugs isoniazid and rifampin. We questioned whether specific mutations in these genes were associated with different clinical and microbiological characteristics. METHODS In a multicountry prospective cohort study of multidrug-resistant TB, we identified inhA, katG, and rpoB mutations in sputum isolates using the Hain MTBDRplus line probe assay. For specific mutations, we performed bivariate analysis to determine relative risk of baseline or acquired resistance to other TB drugs. We compared time to sputum culture conversion (TSCC) using Kaplan-Meier curves and stratified Cox regression. RESULTS In total, 447 participants enrolled from January 2005 to December 2008 from 7 countries were included. Relative to rpoB S531L, isolates with rpoB D516V had less cross-resistance to rifabutin, increased baseline resistance to other drugs, and increased acquired fluoroquinolone resistance. Relative to mutation of katG only, mutation of inhA promoter and katG was associated with baseline extensively drug resistant (XDR) TB, increased acquired fluoroquinolone resistance, and slower TSCC (125.5 vs 89.0 days). CONCLUSIONS Specific mutations in inhA and katG are associated with differences in resistance to other drugs and TSCC. Molecular testing may make it possible to tailor treatment and assess additional drug resistance risk according to specific mutation profile.
Collapse
Affiliation(s)
- Eleanor S Click
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ekaterina V Kurbatova
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heather Alexander
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracy L Dalton
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael P Chen
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James E Posey
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julia Ershova
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Peter Cegielski
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
84
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
85
|
Minias A, Żukowska L, Lechowicz E, Gąsior F, Knast A, Podlewska S, Zygała D, Dziadek J. Early Drug Development and Evaluation of Putative Antitubercular Compounds in the -Omics Era. Front Microbiol 2021; 11:618168. [PMID: 33603720 PMCID: PMC7884339 DOI: 10.3389/fmicb.2020.618168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. According to the WHO, the disease is one of the top 10 causes of death of people worldwide. Mycobacterium tuberculosis is an intracellular pathogen with an unusually thick, waxy cell wall and a complex life cycle. These factors, combined with M. tuberculosis ability to enter prolonged periods of latency, make the bacterium very difficult to eradicate. The standard treatment of TB requires 6-20months, depending on the drug susceptibility of the infecting strain. The need to take cocktails of antibiotics to treat tuberculosis effectively and the emergence of drug-resistant strains prompts the need to search for new antitubercular compounds. This review provides a perspective on how modern -omic technologies facilitate the drug discovery process for tuberculosis treatment. We discuss how methods of DNA and RNA sequencing, proteomics, and genetic manipulation of organisms increase our understanding of mechanisms of action of antibiotics and allow the evaluation of drugs. We explore the utility of mathematical modeling and modern computational analysis for the drug discovery process. Finally, we summarize how -omic technologies contribute to our understanding of the emergence of drug resistance.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Lidia Żukowska
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Ewelina Lechowicz
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Filip Gąsior
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Agnieszka Knast
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Krakow, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Daria Zygała
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
86
|
Laniado-Laborín R. Clinical Interpretation of Drug Susceptibility Tests in Tuberculosis. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1573398x16999201007164411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Prompt and accurate diagnosis of drug resistance is essential for optimal treatment of
drug-resistant tuberculosis. However, only 20% of the more than half a million patients eligible for
the treatment of MDR-TB/RR-TB receive an appropriate drug regimen. Drug-resistant TB regimens
must include a sufficient number of effective medications, a significant challenge for clinicians
worldwide, as most are forced to make therapeutic decisions without any, or very little information
on drug susceptibility testing. Although phenotypic DST is still commonly regarded as the
gold standard for determining M. tuberculosis susceptibility to antituberculosis drugs, it has several
limitations, mainly its prolonged turnaround time. Molecular methods based on M. tuberculosis genomic
DNA sequencing have been developed during the past two decades, to identify the most
common mutations involved in drug resistance. The Xpert
®
MTB/RIF is a real-time polymerase
chain reaction that offers results in less than two hours and has an overall sensitivity for rifampin resistance
of 96% and 98% specificity. Line probe assays (LPAs) are commercial DNA strip-based
tests for detecting the most frequent mutations responsible for resistance to rifampin, isoniazid, fluoroquinolones,
and second-line injectable drugs.
:
Discrepancies between phenotypic and genotyping methods are a problem that the clinician will
face in everyday practice. However, any resistance result (with any type of test) in a person with
risk factors for harboring resistant microorganisms should be considered appropriate while the results
of complementary tests are available.
Collapse
Affiliation(s)
- Rafael Laniado-Laborín
- Clinica y Laboratorio de Tuberculosis, Hospital General Tijuana, ISESALUD, Mexicali, Mexico
| |
Collapse
|
87
|
Srilohasin P, Prammananan T, Faksri K, Phelan JE, Suriyaphol P, Kamolwat P, Smithtikarn S, Disratthakit A, Regmi SM, Leechawengwongs M, Twee-Hee Ong R, Teo YY, Tongsima S, Clark TG, Chaiprasert A. Genomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto -Beijing genotype. Emerg Microbes Infect 2020; 9:2632-2641. [PMID: 33205698 PMCID: PMC7738298 DOI: 10.1080/22221751.2020.1852891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/15/2020] [Indexed: 01/21/2023]
Abstract
Tuberculosis disease (TB), caused by Mycobacterium tuberculosis, is a major public health issue in Thailand. The high prevalence of modern Beijing (Lineage 2.2.1) strains has been associated with multi- and extensively drug-resistant infections (MDR-, XDR-TB), complicating disease control. The impact of rarer proto-Beijing (L2.1) strains is less clear. In our study of thirty-seven L2.1 clinical isolates spanning thirteen years, we found a high prevalence of XDR-TB cases (32.4%). With ≤ 12 pairwise SNP distances, 43.2% of L2.1 patients belong to MDR-TB or XDR-TB transmission clusters suggesting a high level of clonal expansion across four Thai provinces. All XDR-TB (100%) were likely due to transmission rather than inadequate treatment. We found a 47 mutation signature and a partial deletion of the fadD14 gene in the circulating XDR-TB cluster, which can be used for surveillance of this rare and resilient M. tuberculosis strain-type that is causing increasing health burden. We also detected three novel deletion positions, a deletion of 1285 bp within desA3 (Rv3230c), large deletions in the plcB, plcA, and ppe38 gene which may play a role in the virulence, pathogenesis or evolution of the L2.1 strain-type.
Collapse
Affiliation(s)
- Prapaporn Srilohasin
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| | - Therdsak Prammananan
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Jody E. Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phalin Kamolwat
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Saijai Smithtikarn
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Areeya Disratthakit
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Sanjib Mani Regmi
- Department of Microbiology, Gandaki Medical College Teaching Hospital, Pokhara, Nepal
| | - Manoon Leechawengwongs
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
- Vichaiyut Hospital, Bangkok, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| |
Collapse
|
88
|
Rossetti ML, Almeida da Silva PE, Salvato RS, Reis AJ, Schiefelbein SH, von Groll A, Barcellos RB, Maschmann R, Esteves LS, Spies F, Trespach RR, Dalla Costa ER, Neubauer de Amorim HL. A highly rifampicin resistant Mycobacterium tuberculosis strain emerging in Southern Brazil. Tuberculosis (Edinb) 2020; 125:102015. [PMID: 33137698 DOI: 10.1016/j.tube.2020.102015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
Here we described phenotypical, molecular and epidemiological features of a highly rifampicin-resistant Mycobacterium tuberculosis strain emerging in Southern Brazil, that carries an uncommon insertion of 12 nucleotides at the codon 435 in the rpoB gene. Employing a whole-genome sequencing-based study on drug-resistant Mycobacterium tuberculosis strains, we identified this emergent strain in 16 (9.19%) from 174 rifampicin-resistant clinical strains, all of them belonging to LAM RD115 sublineage. Nine of these 16 strains were available to minimum inhibitory concentration determination and for all of them was found a high rifampicin-resistance level (≥to 32 mg/L). This high resistance level could be explained by structural changes into the RIF binding site of RNA polymerase caused by the insertions, and consequent low-affinity interaction with rifampicin complex confirmed through protein modeling and molecular docking simulations. Epidemiological investigation showed that most of the individuals (56.25%) infected by the studied strains were prison inmate individuals or that spent some time in prison. The phylogenomic approach revealed that strains carrying on insertion belonged to same genomic cluster, evidencing a communal transmission chain involving inmate individuals and community. We stress the importance of tuberculosis genomic surveillance and introduction of measures to interrupt Mycobacterium tuberculosis transmission chain in this region.
Collapse
Affiliation(s)
- Maria Lucia Rossetti
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Eduardo Almeida da Silva
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Ana Júlia Reis
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Sun Hee Schiefelbein
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea von Groll
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Regina Bones Barcellos
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brazil
| | - Raquel Maschmann
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Souza Esteves
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brazil
| | - Fernanda Spies
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rubia Raubach Trespach
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Elis Regina Dalla Costa
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
89
|
Hjort K, Jurén P, Toro JC, Hoffner S, Andersson DI, Sandegren L. Dynamics of Extensive Drug Resistance Evolution of Mycobacterium tuberculosis in a Single Patient During 9 Years of Disease and Treatment. J Infect Dis 2020; 225:1011-1020. [PMID: 33045067 PMCID: PMC8921999 DOI: 10.1093/infdis/jiaa625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/08/2020] [Indexed: 11/15/2022] Open
Abstract
Abstract
Mycobacterium tuberculosis is one of the hardest to treat bacterial pathogens with a high capacity to develop antibiotic resistance by mutations. Here we have performed whole-genome sequencing of consecutive M. tuberculosis isolates obtained during 9 years from a patient with pulmonary tuberculosis. The infecting strain was isoniazid resistant and during treatment it stepwise accumulated resistance mutations to 8 additional antibiotics. Heteroresistance was common and subpopulations with up to 3 different resistance mutations to the same drug coexisted. Sweeps of different resistant clones dominated the population at different time points, always coupled to resistance mutations coinciding with changes in the treatment regimens. Resistance mutations were predominant and no hitch-hiking, compensatory, or virulence-increasing mutations were detected, showing that the dominant selection pressure was antibiotic treatment. The results highlight the dynamic nature of M. tuberculosis infection, population structure, and resistance evolution and the importance of rapid antibiotic susceptibility tests to battle this pathogen.
Collapse
Affiliation(s)
- Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Sven Hoffner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
90
|
HIV Coinfection Is Associated with Low-Fitness rpoB Variants in Rifampicin-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2020; 64:AAC.00782-20. [PMID: 32718966 PMCID: PMC7508592 DOI: 10.1128/aac.00782-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
We analyzed 312 drug-resistant genomes of Mycobacterium tuberculosis isolates collected from HIV-coinfected and HIV-negative TB patients from nine countries with a high tuberculosis burden. We found that rifampicin-resistant M. tuberculosis strains isolated from HIV-coinfected patients carried disproportionally more resistance-conferring mutations in rpoB that are associated with a low fitness in the absence of the drug, suggesting these low-fitness rpoB variants can thrive in the context of reduced host immunity.
Collapse
|
91
|
Strong Environment-Genotype Interactions Determine the Fitness Costs of Antibiotic Resistance In Vitro and in an Insect Model of Infection. Antimicrob Agents Chemother 2020; 64:AAC.01033-20. [PMID: 32661001 DOI: 10.1128/aac.01033-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
The acquisition of antibiotic resistance commonly imposes fitness costs, a reduction in the fitness of bacteria in the absence of drugs. These costs have been quantified primarily using in vitro experiments and a small number of in vivo studies in mice, and it is commonly assumed that these diverse methods are consistent. Here, we used an insect model of infection to compare the fitness costs of antibiotic resistance in vivo to those in vitro Experiments explored diverse mechanisms of resistance in a Gram-positive pathogen, Bacillus thuringiensis, and a Gram-negative intestinal symbiont, Enterobacter cloacae Rifampin resistance in B. thuringiensis showed fitness costs that were typically elevated in vivo, although these were modulated by genotype-environment interactions. In contrast, resistance to cefotaxime via derepression of AmpC β-lactamase in E. cloacae resulted in no detectable costs in vivo or in vitro, while spontaneous resistance to nalidixic acid, and carriage of the IncP plasmid RP4, imposed costs that increased in vivo Overall, fitness costs in vitro were a poor predictor of fitness costs in vivo because of strong genotype-environment interactions throughout this study. Insect infections provide a cheap and accessible means of assessing the fitness consequences of resistance mutations, data that are important for understanding the evolution and spread of resistance. This study emphasizes that the fitness costs imposed by particular mutations or different modes of resistance are extremely variable and that only a subset of these mutations is likely to be prevalent outside the laboratory.
Collapse
|
92
|
Bulabula ANH, Nelson JA, Musafiri EM, Machekano R, Sam-Agudu NA, Diacon AH, Shah M, Creswell J, Theron G, Warren RM, Jacobson KR, Chirambiza JP, Kalumuna D, Bisimwa BC, Katoto PDMC, Kaswa MK, Birembano FM, Kitete L, Grobusch MP, Kashongwe ZM, Nachega JB. Prevalence, Predictors, and Successful Treatment Outcomes of Xpert MTB/RIF-identified Rifampicin-resistant Tuberculosis in Post-conflict Eastern Democratic Republic of the Congo, 2012-2017: A Retrospective Province-Wide Cohort Study. Clin Infect Dis 2020; 69:1278-1287. [PMID: 30759187 PMCID: PMC6763636 DOI: 10.1093/cid/ciy1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) jeopardizes global TB control. The prevalence and predictors of Rifampicin-resistant (RR) TB, a proxy for MDR-TB, and the treatment outcomes with standard and shortened regimens have not been assessed in post-conflict regions, such as the South Kivu province in the eastern Democratic Republic of the Congo (DRC). We aimed to fill this knowledge gap and to inform the DRC National TB Program. Methods of adults and children evaluated for pulmonary TB by sputum smear microscopy and Xpert MTB/RIF (Xpert) from February 2012 to June 2017. Multivariable logistic regression, Kaplan–Meier estimates, and multivariable Cox regression were used to assess independent predictors of RR-TB and treatment failure/death. Results Of 1535 patients Xpert-positive for TB, 11% had RR-TB. Independent predictors of RR-TB were a positive sputum smear (adjusted odds ratio [aOR] 2.42, 95% confidence interval [CI] 1.63–3.59), retreatment of TB (aOR 4.92, 95% CI 2.31–10.45), and one or more prior TB episodes (aOR 1.77 per episode, 95% CI 1.01–3.10). Over 45% of RR-TB patients had no prior TB history or treatment. The median time from Xpert diagnosis to RR-TB treatment initiation was 12 days (interquartile range 3–60.2). Cures were achieved in 30/36 (83%) and 84/114 (74%) of patients on 9- vs 20/24-month MDR-TB regimens, respectively (P = .06). Predictors of treatment failure/death were the absence of directly observed therapy (DOT; adjusted hazard ratio [aHR] 2.77, 95% CI 1.2–6.66) and any serious adverse drug event (aHR 4.28, 95% CI 1.88–9.71). Conclusions Favorable RR-TB cure rates are achievable in this post-conflict setting with a high RR-TB prevalence. An expanded Xpert scale-up; the prompt initiation of shorter, safer, highly effective MDR-TB regimens; and treatment adherence support are critically needed to optimize outcomes.
Collapse
Affiliation(s)
- André N H Bulabula
- Department of Global Health, Division of Health Systems and Public Health, Unit for Infection Prevention and Control, Faculty of Medicine and Health Sciences, Stellenbosch University.,Infection Control Africa Network, Cape Town, South Africa
| | - Jenna A Nelson
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| | - Eric M Musafiri
- National Tuberculosis Program, Provincial Leprosy and Tuberculosis Coordination, South Kivu Branch, Bukavu, Democratic Republic of the Congo
| | - Rhoderick Machekano
- Department of Global Health, Center for Evidence-Based Health Care, Biostatistics Unit, Faculty of Medicine and Health Sciences, Cape Town, South Africa
| | - Nadia A Sam-Agudu
- International Research Center of Excellence and Pediatric and Adolescent Human Immunodeficiency Virus Unit, Institute of Human Virology Nigeria, Abuja.,Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland School of Medicine, Baltimore
| | - Andreas H Diacon
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maunank Shah
- Center for Tuberculosis Research & Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jacob Creswell
- Stop TB Partnership, TB REACH Initiative, Geneva, Switzerland
| | - Grant Theron
- South African Department of Science and Technology and the National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- South African Department of Science and Technology and the National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karen R Jacobson
- Department of Medicine, Division of Infectious Diseases, Boston University School of Medicine, Massachusetts
| | - Jean-Paul Chirambiza
- National Tuberculosis Program, Provincial Leprosy and Tuberculosis Coordination, South Kivu Branch, Bukavu, Democratic Republic of the Congo
| | - Dieudonné Kalumuna
- National Tuberculosis Program, Provincial Leprosy and Tuberculosis Coordination, South Kivu Branch, Bukavu, Democratic Republic of the Congo
| | - Bertin C Bisimwa
- Biomedical Laboratory Professor A. Z. Lurhuma, Mycobacterium Unit, Université Catholique de Bukavu, Democratic Republic of the Congo
| | - Patrick D M C Katoto
- Centre for Environment and Health, Department of Public Health and Primary Care, Laboratory of Pulmonology, The Katholieke Universiteit Leuven, Belgium.,Department of Internal Medicine, Faculty of Medicine, Catholic University of Bukavu
| | - Michel K Kaswa
- National Tuberculosis Program, Provincial Leprosy and Tuberculosis Coordination, South Kivu Branch, Bukavu, Democratic Republic of the Congo
| | - Freddy M Birembano
- National Tuberculosis Program, Provincial Leprosy and Tuberculosis Coordination, South Kivu Branch, Bukavu, Democratic Republic of the Congo
| | - Liliane Kitete
- The Union Against Tuberculosis and Lung Diseases, Challenge Tuberculosis Initiative, Bukavu, Democratic Republic of the Congo
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, The Academic Medical Center, The Netherlands
| | - Zacharie M Kashongwe
- Department of Medicine, University Hospital of Kinshasa, Democratic Republic of the Congo
| | - Jean B Nachega
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania.,Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Departments of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,International Centre for Advanced Research and Training, Panzi, Bukavu, Democratic Republic of the Congo
| |
Collapse
|
93
|
Wodarz D, Komarova NL. Mutant Evolution in Spatially Structured and Fragmented Expanding Populations. Genetics 2020; 216:191-203. [PMID: 32661138 PMCID: PMC7463292 DOI: 10.1534/genetics.120.303422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022] Open
Abstract
Mutant evolution in spatially structured systems is important for a range of biological systems, but aspects of it still require further elucidation. Adding to previous work, we provide a simple derivation of growth laws that characterize the number of mutants of different relative fitness in expanding populations in spatial models of different dimensionalities. These laws are universal and independent of "microscopic" modeling details. We further study the accumulation of mutants and find that, with advantageous and neutral mutants, more of them are present in spatially structured, compared to well-mixed colonies of the same size. The behavior of disadvantageous mutants is subtle: if they are disadvantageous through a reduction in division rates, the result is the same, and it is the opposite if the disadvantage is due to a death rate increase. Finally, we show that in all cases, the same results are observed in fragmented, nonspatial patch models. This suggests that the patterns observed are the consequence of population fragmentation, and not spatial restrictions per se We provide an intuitive explanation for the complex dependence of disadvantageous mutant evolution on spatial restriction, which relies on desynchronized dynamics in different locations/patches, and plays out differently depending on whether the disadvantage is due to a lower division rate or a higher death rate. Implications for specific biological systems, such as the evolution of drug-resistant cell mutants in cancer or bacterial biofilms, are discussed.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, California 92697
- Department of Mathematics, University of California Irvine, California 92697
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, California 92697
| |
Collapse
|
94
|
Merker M, Tueffers L, Vallier M, Groth EE, Sonnenkalb L, Unterweger D, Baines JF, Niemann S, Schulenburg H. Evolutionary Approaches to Combat Antibiotic Resistance: Opportunities and Challenges for Precision Medicine. Front Immunol 2020; 11:1938. [PMID: 32983122 PMCID: PMC7481325 DOI: 10.3389/fimmu.2020.01938] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The rise of antimicrobial resistance (AMR) in bacterial pathogens is acknowledged by the WHO as a major global health crisis. It is estimated that in 2050 annually up to 10 million people will die from infections with drug resistant pathogens if no efficient countermeasures are implemented. Evolution of pathogens lies at the core of this crisis, which enables rapid adaptation to the selective pressures imposed by antimicrobial usage in both medical treatment and agriculture, consequently promoting the spread of resistance genes or alleles in bacterial populations. Approaches developed in the field of Evolutionary Medicine attempt to exploit evolutionary insight into these adaptive processes, with the aim to improve diagnostics and the sustainability of antimicrobial therapy. Here, we review the concept of evolutionary trade-offs in the development of AMR as well as new therapeutic approaches and their impact on host-microbiome-pathogen interactions. We further discuss the possible translation of evolution-informed treatments into clinical practice, considering both the rapid cure of the individual patients and the prevention of AMR.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Hamburg, Germany.,Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany
| | - Leif Tueffers
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany
| | - Marie Vallier
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Espen E Groth
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany.,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Daniel Unterweger
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John F Baines
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Hamburg, Germany.,Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany
| | - Hinrich Schulenburg
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
95
|
Radial Expansion Facilitates the Maintenance of Double Antibiotic Resistances. Antimicrob Agents Chemother 2020; 64:AAC.00668-20. [PMID: 32540973 DOI: 10.1128/aac.00668-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Most microbes live in spatially confined subpopulations. Under spatial structure conditions, the efficacy of natural selection is often reduced (relative to homogeneous conditions) due to the increased importance of genetic drift and local competition. Additionally, under spatial structure conditions, the fittest genotype may not always be the one with better access to the heterogeneous distribution of nutrients. The effect of radial expansion may be particularly relevant for the elimination of antibiotic resistance mutations, as their dynamics within bacterial populations are strongly dependent on their growth rate. Here, we use Escherichia coli to systematically compare the allele frequency of streptomycin, rifampin, and fluoroquinolone single and double resistance mutants after 24 h of coexistence with a susceptible strain under radial expansion (local competition) and homogeneous (global competition) conditions. We show that there is a significant effect of structure on the maintenance of double resistances which is not observed for single resistances. Radial expansion also facilitates the persistence of double resistances when competing against their single counterparts. Importantly, we found that spatial structure reduces the rate of compensation of the double mutant RpsLK43T RpoBH526Y and that a strongly compensatory mutation in homogeneous conditions becomes deleterious under spatial structure conditions. Overall, our results unravel the importance of spatial structure for facilitating the maintenance and accumulation of multiple resistances over time and for determining the identity of compensatory mutations.
Collapse
|
96
|
Czubat B, Minias A, Brzostek A, Żaczek A, Struś K, Zakrzewska-Czerwińska J, Dziadek J. Functional Disassociation Between the Protein Domains of MSMEG_4305 of Mycolicibacterium smegmatis ( Mycobacterium smegmatis) in vivo. Front Microbiol 2020; 11:2008. [PMID: 32973726 PMCID: PMC7466739 DOI: 10.3389/fmicb.2020.02008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/29/2020] [Indexed: 12/02/2022] Open
Abstract
MSMEG_4305 is a two-domain protein of Mycolicibacterium smegmatis (Mycobacterium smegmatis) (Mycolicibacterium smegmatis). The N-terminal domain of MSMEG_4305 encodes an RNase H type I. The C-terminal domain is a presumed CobC, predicted to be involved in the aerobic synthesis of vitamin B12. Both domains reach their maximum at distinct pH, approximately 8.5 and 4.5, respectively. The presence of the CobC domain influenced RNase activity in vitro in homolog Rv2228c. Here, we analyzed the role of MSMEG_4305 in vitamin B12 synthesis and the functional association between both domains in vivo in M. smegmatis. We used knock-out mutant of M. smegmatis, deficient in MSMEG_4305. Whole-cell lysates of the mutants strain contained a lower concentration of vitamin B12, as it determined with immunoenzimatic assay. We observed growth deficits, related to vitamin B12 production, on media containing sulfamethazine and propionate. Removal of the CobC domain of MSMEG_4305 in ΔrnhA background hardly affected the growth rate of M. smegmatis in vivo. The strain carrying truncation showed no fitness deficit in the competitive assay and it did not show increased level of RNA/DNA hybrids in its genome. We show that homologs of MSMEG_4305 are present only in the Actinomycetales phylogenetic branch (according to the old classification system). The domains of MSMEG_4305 homologs accumulate mutations at a different rate, while the linker region is highly variable. We conclude that MSMEG_4305 is a multidomain protein that most probably was fixed in the phylogenetic tree of life due to genetic drift.
Collapse
Affiliation(s)
- Bożena Czubat
- Department of Experimental and Clinical Pharmacology, University of Rzeszów, Rzeszów, Poland.,Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, łLódź, Poland
| | - Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, łLódź, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, łLódź, Poland
| | - Anna Żaczek
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Katarzyna Struś
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszów, Rzeszów, Poland
| | | | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, łLódź, Poland
| |
Collapse
|
97
|
Trauer JM, Dodd PJ, Gomes MGM, Gomez GB, Houben RMGJ, McBryde ES, Melsew YA, Menzies NA, Arinaminpathy N, Shrestha S, Dowdy DW. The Importance of Heterogeneity to the Epidemiology of Tuberculosis. Clin Infect Dis 2020; 69:159-166. [PMID: 30383204 PMCID: PMC6579955 DOI: 10.1093/cid/ciy938] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Although less well-recognized than for other infectious diseases, heterogeneity is a defining feature of tuberculosis (TB) epidemiology. To advance toward TB elimination, this heterogeneity must be better understood and addressed. Drivers of heterogeneity in TB epidemiology act at the level of the infectious host, organism, susceptible host, environment, and distal determinants. These effects may be amplified by social mixing patterns, while the variable latent period between infection and disease may mask heterogeneity in transmission. Reliance on notified cases may lead to misidentification of the most affected groups, as case detection is often poorest where prevalence is highest. Assuming that average rates apply across diverse groups and ignoring the effects of cohort selection may result in misunderstanding of the epidemic and the anticipated effects of control measures. Given this substantial heterogeneity, interventions targeting high-risk groups based on location, social determinants, or comorbidities could improve efficiency, but raise ethical and equity considerations.
Collapse
Affiliation(s)
- James M Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peter J Dodd
- Health Economic and Decision Science, University of Sheffield, United Kingdom
| | - M Gabriela M Gomes
- Liverpool School of Tropical Medicine, United Kingdom.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Portugal
| | - Gabriela B Gomez
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Rein M G J Houben
- Tuberculosis Centre, London School of Hygiene and Tropical Medicine, United Kingdom.,Infectious Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland
| | - Yayehirad A Melsew
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicolas A Menzies
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Nimalan Arinaminpathy
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
| | - Sourya Shrestha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David W Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
98
|
Melnikov SV, Stevens DL, Fu X, Kwok HS, Zhang JT, Shen Y, Sabina J, Lee K, Lee H, Söll D. Exploiting evolutionary trade-offs for posttreatment management of drug-resistant populations. Proc Natl Acad Sci U S A 2020; 117:17924-17931. [PMID: 32661175 PMCID: PMC7395499 DOI: 10.1073/pnas.2003132117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance frequently evolves through fitness trade-offs in which the genetic alterations that confer resistance to a drug can also cause growth defects in resistant cells. Here, through experimental evolution in a microfluidics-based turbidostat, we demonstrate that antibiotic-resistant cells can be efficiently inhibited by amplifying the fitness costs associated with drug-resistance evolution. Using tavaborole-resistant Escherichia coli as a model, we show that genetic mutations in leucyl-tRNA synthetase (that underlie tavaborole resistance) make resistant cells intolerant to norvaline, a chemical analog of leucine that is mistakenly used by tavaborole-resistant cells for protein synthesis. We then show that tavaborole-sensitive cells quickly outcompete tavaborole-resistant cells in the presence of norvaline due to the amplified cost of the molecular defect of tavaborole resistance. This finding illustrates that understanding molecular mechanisms of drug resistance allows us to effectively amplify even small evolutionary vulnerabilities of resistant cells to potentially enhance or enable adaptive therapies by accelerating posttreatment competition between resistant and susceptible cells.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| | - David L Stevens
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Xian Fu
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Hui Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jin-Tao Zhang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | | | | | | | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
99
|
Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo) 2020; 74:24-41. [PMID: 32647212 DOI: 10.1038/s41429-020-0344-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.
Collapse
|
100
|
Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut. Nat Ecol Evol 2020; 4:1268-1278. [PMID: 32632259 DOI: 10.1038/s41559-020-1235-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
In the absence of antibiotics, it is essential that antibiotic resistance has a fitness cost for microorganisms if suspending antibiotics treatment is to be a useful strategy for reducing antibiotic resistance. However, the cost of antibiotic resistance within the complex ecosystem of the mammalian gut is not well understood. Here, using mice, we show that the same antibiotic resistance mutation can reduce fitness in one host, while being neutral or even increasing fitness in other hosts. Such antagonistic pleiotropy is shaped by the microbiota because resistance in germ-free mice is consistently costly across all hosts, and the host-specific effect on antibiotic resistance is reduced in hosts with similar microbiotas. Using an eco-evolutionary model of competition for resources, we identify a general mechanism that underlies between-host variation and predicts that the dynamics of compensatory evolution of resistant bacteria should be host specific, a prediction that was supported by experimental evolution in vivo. The microbiome of each human is close to unique, and our results suggest that the short-term cost of resistances and their long-term within-host evolution are also highly personalized, a finding that may contribute to the observed variable outcome of withdrawing antibiotics to reduce resistance levels.
Collapse
|