51
|
Liu X, Sun M, Pu F, Ren J, Qu X. Transforming Intratumor Bacteria into Immunopotentiators to Reverse Cold Tumors for Enhanced Immuno-chemodynamic Therapy of Triple-Negative Breast Cancer. J Am Chem Soc 2023; 145:26296-26307. [PMID: 37987621 DOI: 10.1021/jacs.3c09472] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Immunotherapy of triple-negative breast cancer (TNBC) has an unsatisfactory therapeutic outcome due to an immunologically "cold" microenvironment. Fusobacterium nucleatum (F. nucleatum) was found to be colonized in triple-negative breast tumors and was responsible for the immunosuppressive tumor microenvironment and tumor metastasis. Herein, we constructed a bacteria-derived outer membrane vesicle (OMV)-coated nanoplatform that precisely targeted tumor tissues for dual killing of F. nucleatum and cancer cells, thus transforming intratumor bacteria into immunopotentiators in immunotherapy of TNBC. The as-prepared nanoparticles efficiently induced immunogenic cell death through a Fenton-like reaction, resulting in enhanced immunogenicity. Meanwhile, intratumoral F. nucleatum was killed by metronidazole, resulting in the release of pathogen-associated molecular patterns (PAMPs). PAMPs cooperated with OMVs further facilitated the maturation of dendritic cells and subsequent T-cell infiltration. As a result, the "kill two birds with one stone" strategy warmed up the cold tumor environment, maximized the antitumor immune response, and achieved efficient therapy of TNBC as well as metastasis prevention. Overall, this strategy based on a microecology distinction in tumor and normal tissue as well as microbiome-induced reversal of cold tumors provides new insight into the precise and efficient immune therapy of TNBC.
Collapse
Affiliation(s)
- Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| |
Collapse
|
52
|
Varma VP, Kadivella M, Kavela S, Faisal SM. Leptospira Lipid A Is a Potent Adjuvant That Induces Sterilizing Immunity against Leptospirosis. Vaccines (Basel) 2023; 11:1824. [PMID: 38140228 PMCID: PMC10748165 DOI: 10.3390/vaccines11121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Leptospirosis is a globally significant zoonotic disease. The current inactivated vaccine offers protection against specific serovars but does not provide complete immunity. Various surface antigens, such as Leptospira immunoglobulin-like proteins (LigA and LigB), have been identified as potential subunit vaccine candidates. However, these antigens require potent adjuvants for effectiveness. Bacterial lipopolysaccharides (LPSs), including lipid A, are a well-known immunostimulant, and clinical adjuvants often contain monophosphoryl lipid A (MPLA). Being less endotoxic, we investigated the adjuvant properties of lipid A isolated from L. interrogans serovar Pomona (PLA) in activating innate immunity and enhancing antigen-specific adaptive immune responses. PLA activated macrophages to a similar degree as MPLA, albeit at a higher dose, suggesting that it is less potent in stimulation than MPLA. Mice immunized with a variable portion of LigA (LAV) combined with alum and PLA (LAV-alum-PLA) exhibited significantly higher levels of LAV-specific humoral and cellular immune responses compared to alum alone but similar to those induced by alum-MPLA. The adjuvant activity of PLA resembles that of MPLA and is primarily achieved through the increased recruitment, activation, and uptake of antigens by innate immune cells. Furthermore, like MPLA, PLA formulation establishes a long-lasting memory response. Notably, PLA demonstrated superior potency than MPLA formulation and provided sterilizing immunity against the leptospirosis in a hamster model. Overall, our study sheds light on the adjuvant properties of Leptospira lipid A and offers promising avenues for developing LPS-based vaccines against this devastating zoonotic disease.
Collapse
Affiliation(s)
- Vivek P. Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohammad Kadivella
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
53
|
Li YA, Sun Y, Zhang Y, Wang X, Dieye Y, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector outperforms alum as an adjuvant, increasing a cross-protective immune response against Glaesserella parasuis. Vet Microbiol 2023; 287:109915. [PMID: 38000209 DOI: 10.1016/j.vetmic.2023.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
The adjuvant and/or vector significantly affect a vaccine's efficacy. Although traditional adjuvants such as alum have contributed to vaccine development, deficiencies in the induction of cellular and mucosal immunity have limited their further promotion. Salmonella vectors have unique advantages for establishing cellular and mucosal immunity due to mucosal pathways of invasion and intracellular parasitism. In addition, Salmonella vectors can activate multiple innate immune pathways, thereby promoting adaptive immune responses. In this work, the attenuated Salmonella enterica serovar Choleraesuis (S. Choleraesuis) vector rSC0016 was used to deliver the conserved protective antigen HPS_06257 of Glaesserella parasuis (G. parasuis), generating a novel recombinant strain rSC0016(pS-HPS_06257). The rSC0016(pS-HPS_06257) can express and deliver the HPS_06257 protein to the lymphatic system of the host. In comparison to HPS_06257 adjuvanted with alum, rSC0016(pS-HPS_06257) significantly increased TLR4 and TLR5 activation in mice as well as the levels of proinflammatory cytokines. In addition, rSC0016 promoted a greater degree of maturation in bone marrow-derived dendritic cells (BMDCs) than alum. The specific humoral, mucosal, and cellular immune responses against HPS_06257 in mice immunized with rSC0016(pS-HPS_06257) were significantly higher than those of HPS_06257 adjuvanted with alum. HPS_06257 delivered by the S. Choleraesuis vector induces a Th1-biased Th1/Th2 mixed immune response, while HPS adjuvanted with alum can only induce a Th2-biased immune response. HPS_06257 adjuvanted with alum only causes opsonophagocytic activity (OPA) responses against a homologous strain (G. parasuis serotype 5, GPS5), whereas rSC0016(pS-HPS_06257) could generate cross-OPA responses against a homologous strain and a heterologous strain (G. parasuis serotype 12, GPS12). Ultimately, HPS_06257 adjuvanted with alum protected mice against lethal doses of GPS5 challenge by 60 % but failed to protect mice against lethal doses of GPS12. In contrast, mice immunized with rSC0016(pS-HPS_06257) had 100 % or 80 % survival when challenged with lethal doses of GPS5 or GPS12, respectively. Altogether, the S. Choleraesuis vector rSC0016 could potentially generate an improved innate immune response and an improved adaptive immunological response compared to the traditional alum adjuvant, offering a novel concept for the development of a universal G. parasuis vaccine.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
54
|
Zhang G, Fu Y, Li Y, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge. Biomolecules 2023; 13:1726. [PMID: 38136597 PMCID: PMC10741478 DOI: 10.3390/biom13121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Edema disease (ED) is a severe and lethal infectious ailment in swine, stemming from Shiga-toxin-producing Escherichia coli (STEC). An efficient, user-friendly, and safe vaccine against ED is urgently required to improve animal welfare and decrease antibiotic consumption. Recombinant attenuated Salmonella vaccines (RASV) administered orally induce both humoral and mucosal immune responses to the immunizing antigen. Their potential for inducing protective immunity against ED is significant through the delivery of STEC antigens. rSC0016 represents an enhanced recombinant attenuated vaccine vector designed for Salmonella enterica serotype Choleraesuis. It combines sopB mutations with a regulated delay system to strike a well-balanced equilibrium between host safety and immunogenicity. We generated recombinant vaccine strains, namely rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA), and assessed their safety and immunogenicity in vivo. The findings demonstrated that the mouse models immunized with rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA) generated substantial IgG antibody responses to FedF and rStx2eA, while also provoking robust mucosal and cellular immune responses against both FedF and rStx2eA. The protective impact of rSC0016 (pS-FedF) against Shiga-toxin-producing Escherichia coli surpassed that of rSC0016 (pS-rStx2eA), with percentages of 83.3%. These findings underscore that FedF has greater suitability for vaccine delivery via recombinant attenuated Salmonella vaccines (RASVs). Overall, this study provides a promising candidate vaccine for infection with STEC.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu’an Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA;
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou 225009, China
| |
Collapse
|
55
|
Tang Y, Kim JY, Ip CKM, Bahmani A, Chen Q, Rosenberger MG, Esser-Kahn AP, Ferguson AL. Data-driven discovery of innate immunomodulators via machine learning-guided high throughput screening. Chem Sci 2023; 14:12747-12766. [PMID: 38020385 PMCID: PMC10646978 DOI: 10.1039/d3sc03613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The innate immune response is vital for the success of prophylactic vaccines and immunotherapies. Control of signaling in innate immune pathways can improve prophylactic vaccines by inhibiting unfavorable systemic inflammation and immunotherapies by enhancing immune stimulation. In this work, we developed a machine learning-enabled active learning pipeline to guide in vitro experimental screening and discovery of small molecule immunomodulators that improve immune responses by altering the signaling activity of innate immune responses stimulated by traditional pattern recognition receptor agonists. Molecules were tested by in vitro high throughput screening (HTS) where we measured modulation of the nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB) and the interferon regulatory factors (IRF) pathways. These data were used to train data-driven predictive models linking molecular structure to modulation of the NF-κB and IRF responses using deep representational learning, Gaussian process regression, and Bayesian optimization. By interleaving successive rounds of model training and in vitro HTS, we performed an active learning-guided traversal of a 139 998 molecule library. After sampling only ∼2% of the library, we discovered viable molecules with unprecedented immunomodulatory capacity, including those capable of suppressing NF-κB activity by up to 15-fold, elevating NF-κB activity by up to 5-fold, and elevating IRF activity by up to 6-fold. We extracted chemical design rules identifying particular chemical fragments as principal drivers of specific immunomodulation behaviors. We validated the immunomodulatory effect of a subset of our top candidates by measuring cytokine release profiles. Of these, one molecule induced a 3-fold enhancement in IFN-β production when delivered with a cyclic di-nucleotide stimulator of interferon genes (STING) agonist. In sum, our machine learning-enabled screening approach presents an efficient immunomodulator discovery pipeline that has furnished a library of novel small molecules with a strong capacity to enhance or suppress innate immune signaling pathways to shape and improve prophylactic vaccination and immunotherapies.
Collapse
Affiliation(s)
- Yifeng Tang
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Jeremiah Y Kim
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Carman K M Ip
- Cellular Screening Center, University of Chicago Chicago IL 60637 USA
| | - Azadeh Bahmani
- Cellular Screening Center, University of Chicago Chicago IL 60637 USA
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Matthew G Rosenberger
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| |
Collapse
|
56
|
Romerio A, Peri F. Cleaner synthesis of preclinically validated vaccine adjuvants. Front Chem 2023; 11:1252996. [PMID: 38025058 PMCID: PMC10651716 DOI: 10.3389/fchem.2023.1252996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
We developed synthetic glycophospholipids based on a glucosamine core (FP compounds) with potent and selective activity in stimulating Toll-Like Receptor 4 (TLR4) as agonists. These compounds have activity and toxicity profiles similar to the clinically approved adjuvant monophosphoryl lipid A (MPLA), included in several vaccine formulations, and are now in the preclinical phase of development as vaccine adjuvants in collaboration with Croda International PLC. FP compound synthesis is shorter and less expensive than MPLA preparation but presents challenges due to the use of toxic solvents and hazardous intermediates. In this paper we describe the optimization of FP compound synthesis. The use of regio- and chemoselective reactions allowed us to reduce the number of synthesis steps and improve process scalability, overall yield, safety, and Process Mass Intensity (PMI), thus paving the way to the industrial scale-up of the process.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | |
Collapse
|
57
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
58
|
Barbey C, Su J, Billmeier M, Stefan N, Bester R, Carnell G, Temperton N, Heeney J, Protzer U, Breunig M, Wagner R, Peterhoff D. Immunogenicity of a silica nanoparticle-based SARS-CoV-2 vaccine in mice. Eur J Pharm Biopharm 2023; 192:41-55. [PMID: 37774890 DOI: 10.1016/j.ejpb.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Safe and effective vaccines have been regarded early on as critical in combating the COVID-19 pandemic. Among the deployed vaccine platforms, subunit vaccines have a particularly good safety profile but may suffer from a lower immunogenicity compared to mRNA based or viral vector vaccines. In fact, this phenomenon has also been observed for SARS-CoV-2 subunit vaccines comprising the receptor-binding domain (RBD) of the spike (S) protein. Therefore, RBD-based vaccines have to rely on additional measures to enhance the immune response. It is well accepted that displaying antigens on nanoparticles can improve the quantity and quality of vaccine-mediated both humoral and cell-mediated immune responses. Based on this, we hypothesized that SARS-CoV-2 RBD as immunogen would benefit from being presented to the immune system via silica nanoparticles (SiNPs). Herein we describe the preparation, in vitro characterization, antigenicity and in vivo immunogenicity of SiNPs decorated with properly oriented RBD in mice. We found our RBD-SiNP conjugates show narrow, homogeneous particle distribution with optimal size of about 100 nm for efficient transport to and into the lymph node. The colloidal stability and binding of the antigen was stable for at least 4 months at storage- and in vivo-temperatures. The antigenicity of the RBD was maintained upon binding to the SiNP surface, and the receptor-binding motif was readily accessible due to the spatial orientation of the RBD. The particles were efficiently taken up in vitro by antigen-presenting cells. In a mouse immunization study using an mRNA vaccine and spike protein as benchmarks, we found that the SiNP formulation was able to elicit a stronger RBD-specific humoral response compared to the soluble protein. For the adjuvanted RBD-SiNP we found strong S-specific multifunctional CD4+ T cell responses, a balanced T helper response, improved auto- and heterologous virus neutralization capacity, and increased serum avidity, suggesting increased affinity maturation. In summary, our results provide further evidence for the possibility of optimizing the cellular and humoral immune response through antigen presentation on SiNP.
Collapse
Affiliation(s)
- Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nadine Stefan
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - George Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, United Kingdom
| | - Jonathan Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
59
|
Romerio A, Franco AR, Shadrick M, Shaik MM, Artusa V, Italia A, Lami F, Demchenko AV, Peri F. Overcoming Challenges in Chemical Glycosylation to Achieve Innovative Vaccine Adjuvants Possessing Enhanced TLR4 Activity. ACS OMEGA 2023; 8:36412-36417. [PMID: 37810727 PMCID: PMC10552098 DOI: 10.1021/acsomega.3c05363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023]
Abstract
Lipopolysaccharide (LPS) mimicry leading to toll-like receptor 4 (TLR4) active compounds has been so far based mainly on reproducing the lipid A portion of LPS. Our work led to a series of structurally simplified synthetic TLR4 agonists in preclinical development as vaccine adjuvants called FPs. FPs bind MD2/TLR4 similarly to lipid A, inserting the lipid chains in the MD2 lipophilic cavity. A strategy to improve FPs' target affinity is introducing a monosaccharide unit in C6, mimicking the first sugar of the LPS core. We therefore designed a panel of FP derivatives bearing different monosaccharides in C6. We report here the synthesis and optimization of FPs' C6 glycosylation, which presented unique challenges and limitations. The biological activity of glycosylated FP compounds was preliminarily assessed in vitro in HEK-Blue cells. The new molecules showed a higher potency in stimulating TLR4 activation when compared to the parent molecule while maintaining TLR4 selectivity.
Collapse
Affiliation(s)
- Alessio Romerio
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Ana Rita Franco
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Melanie Shadrick
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Mohammed Monsoor Shaik
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Valentina Artusa
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Alice Italia
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Federico Lami
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Alexei V. Demchenko
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Francesco Peri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| |
Collapse
|
60
|
Díaz-Dinamarca DA, Salazar ML, Escobar DF, Castillo BN, Valdebenito B, Díaz P, Manubens A, Salazar F, Troncoso MF, Lavandero S, Díaz J, Becker MI, Vásquez AE. Surface immunogenic protein from Streptococcus agalactiae and Fissurella latimarginata hemocyanin are TLR4 ligands and activate MyD88- and TRIF dependent signaling pathways. Front Immunol 2023; 14:1186188. [PMID: 37790926 PMCID: PMC10544979 DOI: 10.3389/fimmu.2023.1186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-β adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michelle L. Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Daniel F. Escobar
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Byron N. Castillo
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Bastián Valdebenito
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Pablo Díaz
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | | | - Fabián Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janepsy Díaz
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - María Inés Becker
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
| | - Abel E. Vásquez
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad del Alba, Santiago, Chile
| |
Collapse
|
61
|
Chibaya L, Lusi CF, DeMarco KD, Kane GI, Brassil ML, Parikh CN, Murphy KC, Li J, Naylor TE, Cerrutti J, Peura J, Pitarresi JR, Zhu LJ, Fitzgerald KA, Atukorale PU, Ruscetti M. Nanoparticle delivery of innate immune agonists combines with senescence-inducing agents to mediate T cell control of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558307. [PMID: 37790484 PMCID: PMC10542133 DOI: 10.1101/2023.09.18.558307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Pancreatic ductal adenocarcinoma has quickly risen to become the 3rd leading cause of cancer-related death. This is in part due to its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here we investigated an innovative immunotherapy approach combining local delivery of STING and TLR4 innate immune agonists via lipid-based nanoparticles (NPs) co-encapsulation with senescence-inducing RAS-targeted therapies that can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype. Treatment of transplanted and autochthonous PDAC mouse models with these regimens led to enhanced uptake of NPs by multiple cell types in the PDAC TME, induction of type I interferon and other pro-inflammatory signaling, increased antigen presentation by tumor cells and antigen presenting cells, and subsequent activation of both innate and adaptive immune responses. This two-pronged approach produced potent T cell-driven and Type I interferon-dependent tumor regressions and long-term survival in preclinical PDAC models. STING and TLR4-mediated Type I interferon signaling were also associated with enhanced NK and CD8+ T cell immunity in human PDAC. Thus, combining localized immune agonist delivery with systemic tumor-targeted therapy can synergize to orchestrate a coordinated innate and adaptive immune assault to overcome immune suppression and activate durable anti-tumor T cell responses against PDAC.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina F. Lusi
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA USA
| | - Kelly D. DeMarco
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Griffin I. Kane
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA USA
| | - Meghan L. Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA USA
| | - Chaitanya N. Parikh
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine C. Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Junhui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tiana E. Naylor
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA USA
| | - Julia Cerrutti
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA USA
| | - Jessica Peura
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jason R. Pitarresi
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Prabhani U. Atukorale
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA USA
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA. USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA. USA
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
62
|
Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, Mackiewicz A. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review. Cells 2023; 12:2159. [PMID: 37681891 PMCID: PMC10486481 DOI: 10.3390/cells12172159] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In recent years, there has been a surge of interest in tumor microenvironment-associated cancer vaccine therapies. These innovative treatments aim to activate and enhance the body's natural immune response against cancer cells by utilizing specific antigens present in the tumor microenvironment. The goal is to achieve a complete clinical response, where all measurable cancer cells are either eliminated or greatly reduced in size. With their potential to revolutionize cancer treatment, these therapies represent a promising avenue for researchers and clinicians alike. Despite over 100 years of research, the success of therapeutic cancer vaccines has been variable, particularly in advanced cancer patients, with various limitations, including the heterogeneity of the tumor microenvironment, the presence of immunosuppressive cells, and the potential for tumor escape mechanisms. Additionally, the effectiveness of these therapies may be limited by the variability of the patient's immune system response and the difficulty in identifying appropriate antigens for each patient. Despite these challenges, tumor microenvironment-targeted vaccine cancer therapies have shown promising results in preclinical and clinical studies and have the potential to become a valuable addition to current cancer treatment and "curative" options. While chemotherapeutic and monoclonal antibody treatments remain popular, ongoing research is needed to optimize the design and delivery of these therapies and to identify biomarkers that can predict response and guide patient selection. This comprehensive review explores the mechanisms of cancer vaccines, various delivery methods, and the role of adjuvants in improving treatment outcomes. It also discusses the historical background of cancer vaccine research and examines the current state of major cancer vaccination immunotherapies. Furthermore, the limitations and effectiveness of each vaccine type are analyzed, providing insights into the future of cancer vaccine development.
Collapse
Affiliation(s)
- Mariusz Kaczmarek
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| | - Justyna Poznańska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Filip Fechner
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Natasza Michalska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Sara Paszkowska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Adrianna Napierała
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| |
Collapse
|
63
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
64
|
Hu G, Varisco DJ, Das S, Middaugh CR, Gardner F, Ernst RK, Picking WL, Picking WD. Physicochemical characterization of biological and synthetic forms of two lipid A-based TLR4 agonists. Heliyon 2023; 9:e18119. [PMID: 37483830 PMCID: PMC10362264 DOI: 10.1016/j.heliyon.2023.e18119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Toll-like receptor (TLR) agonists are recognized as potential immune-enhancing adjuvants and are included in several licensed vaccines. Monophosphoryl lipid A (MPL®, GlaxoSmithKline) is one such TLR4 agonist that has been approved for use in human vaccines, such as Cervarix and Shingrix. Due to the heterogeneous nature of biologically derived MPL and the need for safer and more potent adjuvants, our groups have developed the novel TLR4 agonist candidates, BECC438 and BECC470 using the Bacterial Enzymatic Combinatorial Chemistry (BECC) platform. BECC438 and BECC470 have been included in studies to test their adjuvant potential and found to be effective in vaccines against both viral and bacterial disease agents. Here, we report detailed biophysical characterization of BECC438 and BECC470 purified from a biological source (BECC438b and BECC470b, respectively) and synthesized chemically (BECC438s and BECC470s, respectively). Both BECC438s and BECC470s have identical acyl chain configurations, BECC438s is bis-phosphorylated and BECC470s is mono-phosphorylated with the removal of the 4' phosphate moiety. We determined the phase transition temperatures for the acyl chains of BECC438b and BECC470b and found them to be different from those exhibited by their synthetic counterparts. Furthermore, the phosphate groups of BECC438b and BECC470b are more highly hydrated than are those of BECC438s and BECC470s. In addition to exploring the BECC molecules' biophysical features in aqueous solution, we explored potential formulation of BECC438 and BECC470 with the aluminum-based adjuvant Alhydrogel and as part of an oil-in-water emulsion (Medimmune Emulsion or ME). All of the lipid A analogues could be fully absorbed to Alhydrogel or incorporated onto ME. Surprisingly, the BECC470s molecule, unlike the others, displayed a nearly baseline signal when monitored using a Limulus amebocyte lysate (LAL) endotoxin detection system. Despite this, it was shown to behave as an agonist for human and mouse TLR4 when tested using multiple cell-based systems. This work paves the way for further formulation optimization of two chemically defined TLR4 agonists that are showing great promise as vaccine adjuvants.
Collapse
Affiliation(s)
- Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - C. Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Francesca Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
65
|
Wang B, Dong Y, Cen Y, Chen S, Wen X, Liu K, Wu S, Yu L, Yu Y, Zhu Z, Ma J, Song B, Cui Y. PEI-PLGA nanoparticles significantly enhanced the immunogenicity of IsdB 137-361 proteins from Staphylococcus aureus. Immun Inflamm Dis 2023; 11:e928. [PMID: 37506158 PMCID: PMC10336661 DOI: 10.1002/iid3.928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Staphylococcus aureus seriously threatens human and animal health. IsdB137-361 of the iron surface determinant B protein (IsdB) from S. aureus exhibits the strong immunogenicity, but its immunoprotective effect is still to be further promoted. Because PEI-PLGA nanoparticles are generated by PEI conjugate with PLGA to develop great potential as a novel immune adjuvant, the immunogenicity of IsdB137-361 is likely be strengthened by PEI-PLGA. METHODS Here, PEI-PLGA nanoparticles containing IsdB137-361 proteins were prepared by optimizing the entrapment efficiency. Mice were immunized with IsdB137-361 -PEI-PLGA nanoparticles to assess their anti-S. aureus effects. The level of IFN-γ, IL-4, IL-17, and IL-10 cytokines from spleen lymphocytes in mice and generation of the antibodies against IsdB137-361 in serum was assessed by ELISA, the protective immune response was appraised by S. aureus challenge. RESULTS IsdB137-361 proteins loaded by PEI-PLGA were able to stimulate effectively the proliferation of spleen lymphocytes and increase the secretion of IFN-γ, IL-4, IL-17, and IL-10 cytokine from spleen lymphocytes, and significantly enhance generation of the antibodies against IsdB137-361 in serum, reduce the level of bacterial load in liver, spleen and kidney, and greatly improve the survival rate of mice after challenge. CONCLUSION These data showed that PEI-PLGA nanoparticles can significantly enhance the immunogenicity of IsdB137-361 proteins, and provide an important reference for the development of novel immune adjuvant.
Collapse
Affiliation(s)
- Beiyan Wang
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yazun Dong
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yuwei Cen
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Shujie Chen
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Xue Wen
- Water Environmental Protection Research Institute of Daqing Oilfield Water CompanyDaqingChina
| | - Kaiyue Liu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Shuangshuang Wu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Liquan Yu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yongzhong Yu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Zhanbo Zhu
- College of Animal Science and Veterinary MedicineHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Jinzhu Ma
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Baifen Song
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary MedicineChina Agricul‐tural UniversityBeijingChina
| | - Yudong Cui
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| |
Collapse
|
66
|
Castelletto V, Seitsonen J, Hamley IW. Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289534 DOI: 10.1021/acs.langmuir.3c00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
67
|
Seya T, Shingai M, Kawakita T, Matsumoto M. Two Modes of Th1 Polarization Induced by Dendritic-Cell-Priming Adjuvant in Vaccination. Cells 2023; 12:1504. [PMID: 37296625 PMCID: PMC10252737 DOI: 10.3390/cells12111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| | - Masashi Shingai
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Division of Biologics Development, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kawakita
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| |
Collapse
|
68
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
69
|
Kalpana K, Yap S, Tsuji M, Kawamura A. Molecular Mechanism behind the Safe Immunostimulatory Effect of Withania somnifera. Biomolecules 2023; 13:biom13050828. [PMID: 37238698 DOI: 10.3390/biom13050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Withania somnifera (L.) Dunal (family Solanaceae) is a medicinal plant known for, among many pharmacological properties, an immune boosting effect. Our recent study revealed that its key immunostimulatory factor is lipopolysaccharide of plant-associated bacteria. This is peculiar, because, although LPS can elicit protective immunity, it is an extremely potent pro-inflammatory toxin (endotoxin). However, W. somnifera is not associated with such toxicity. In fact, despite the presence of LPS, it does not trigger massive inflammatory responses in macrophages. To gain insights into the safe immunostimulatory effect of W. somnifera, we conducted a mechanistic study on its major phytochemical constituent, withaferin A, which is known for anti-inflammatory activity. Endotoxin-triggered immunological responses in the presence and absence of withaferin A were characterized by both in vitro macrophage-based assay and in vivo cytokine profiling in mice. Collectively, our results demonstrate that withaferin A selectively attenuates the pro-inflammatory signaling triggered by endotoxin without impairing other immunological pathways. This finding provides a new conceptual framework to understand the safe immune-boosting effect of W. somnifera and possibly other medicinal plants. Furthermore, the finding opens a new opportunity to facilitate the development of safe immunotherapeutic agents, such as vaccine adjuvants.
Collapse
Affiliation(s)
- Kriti Kalpana
- Biochemistry Ph.D. Program, The Graduate Center of CUNY, New York, NY 10016, USA
- Department of Chemistry, Hunter College of CUNY, New York, NY 10065, USA
| | - Shen Yap
- Department of Chemistry, Hunter College of CUNY, New York, NY 10065, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Akira Kawamura
- Biochemistry Ph.D. Program, The Graduate Center of CUNY, New York, NY 10016, USA
- Department of Chemistry, Hunter College of CUNY, New York, NY 10065, USA
- Chemistry Ph.D. Program, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
70
|
Chettab K, Fitzsimmons C, Novikov A, Denis M, Phelip C, Mathé D, Choffour PA, Beaumel S, Fourmaux E, Norca P, Kryza D, Evesque A, Jordheim LP, Perrial E, Matera EL, Caroff M, Kerzerho J, Dumontet C. A systemically administered detoxified TLR4 agonist displays potent antitumor activity and an acceptable tolerance profile in preclinical models. Front Immunol 2023; 14:1066402. [PMID: 37223101 PMCID: PMC10200957 DOI: 10.3389/fimmu.2023.1066402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.
Collapse
Affiliation(s)
- Kamel Chettab
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Chantel Fitzsimmons
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Université Paris-Saclay, Orsay, France
| | - Morgane Denis
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Antinéo, Lyon, France
| | | | | | | | - Sabine Beaumel
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Eric Fourmaux
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Patrick Norca
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | | | | | - Lars Petter Jordheim
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Emeline Perrial
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Eva-Laure Matera
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Martine Caroff
- HEPHAISTOS-Pharma, Université Paris-Saclay, Orsay, France
| | | | - Charles Dumontet
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
71
|
Huerta-Saquero A, Chapartegui-González I, Bowser S, Khakhum N, Stockton JL, Torres AG. P22-Based Nanovaccines against Enterohemorrhagic Escherichia coli. Microbiol Spectr 2023:e0473422. [PMID: 36943089 PMCID: PMC10100862 DOI: 10.1128/spectrum.04734-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important causative agent of diarrhea in humans that causes outbreaks worldwide. Efforts have been made to mitigate the morbidity and mortality caused by these microorganisms; however, the global incidence is still high, causing hundreds of deaths per year. Several vaccine candidates have been evaluated that demonstrate some stability and therapeutic potential but have limited overarching effect. Virus-like particles have been used successfully as nanocontainers for the targeted delivery of drugs, proteins, or nucleic acids. In this study, phage P22 nanocontainers were used as a carrier for the highly antigenic T3SS structural protein EscC that is conserved between EHEC and other enteropathogenic bacteria. We were able to stably incorporate the EscC protein into P22 nanocontainers. The EscC-P22 particles were used to intranasally inoculate mice, which generated specific antibodies against EscC. These antibodies increased the phagocytic activity of murine macrophages infected with EHEC in vitro and reduced bacterial adherence to Caco-2 epithelial cells in vitro, illustrating their functionality. The EscC-P22-based particles are a potential nanovaccine candidate for immunization against EHEC O157:H7 infections. IMPORTANCE This study describes the initial attempt to use P22 viral-like particles as nanocontainers expressing enterohemorrhagic Escherichia coli (EHEC) proteins that are immunogenic and could be used as effective vaccines against EHEC infections.
Collapse
Affiliation(s)
- Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob L Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
72
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
73
|
Sun X, Hosomi K, Shimoyama A, Yoshii K, Lan H, Wang Y, Yamaura H, Nagatake T, Ishii KJ, Akira S, Kiyono H, Fukase K, Kunisawa J. TLR4 agonist activity of Alcaligenes lipid a utilizes MyD88 and TRIF signaling pathways for efficient antigen presentation and T cell differentiation by dendritic cells. Int Immunopharmacol 2023; 117:109852. [PMID: 36806039 DOI: 10.1016/j.intimp.2023.109852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
Alcaligenes faecalis was previously identified as an intestinal lymphoid tissue-resident commensal bacteria, and our subsequent studies showed that lipopolysaccharide and its core active element (i.e., lipid A) have a potent adjuvant activity to promote preferentially antigen-specific Th17 response and antibody production. Here, we compared A. faecalis lipid A (ALA) with monophosphoryl lipid A, a licensed lipid A-based adjuvant, to elucidate the immunological mechanism underlying the adjuvant properties of ALA. Compared with monophosphoryl lipid A, ALA induced higher levels of MHC class II molecules and costimulatory CD40, CD80, and CD86 on dendritic cells (DCs), which in turn resulted in strong T cell activation. Moreover, ALA more effectively promoted the production of IL-6 and IL-23 from DCs than did monophosphoryl lipid A, thus leading to preferential induction of Th17 and Th1 cells. As underlying mechanisms, we found that the ALA-TLR4 axis stimulated both MyD88- and TRIF-mediated signaling pathways, whereas monophosphoryl lipid A was biased toward TRIF signaling. These findings revealed the effects of ALA on DCs and T cells and its induction pattern on signaling pathways.
Collapse
Affiliation(s)
- Xiao Sun
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Atsushi Shimoyama
- Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yunru Wang
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Haruki Yamaura
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Ken J Ishii
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Kiyono
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), San Diego, CA, United States; Chiba University (CU)-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), UCSD, San Diego, CA, United States; Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan; Graduate School of Dentistry, Osaka University, Suita, Japan.
| |
Collapse
|
74
|
Biri-Kovács B, Bánóczi Z, Tummalapally A, Szabó I. Peptide Vaccines in Melanoma: Chemical Approaches towards Improved Immunotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020452. [PMID: 36839774 PMCID: PMC9963291 DOI: 10.3390/pharmaceutics15020452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer of the skin is by far the most common of all cancers. Although the incidence of melanoma is relatively low among skin cancers, it can account for a high number of skin cancer deaths. Since the start of deeper insight into the mechanisms of melanoma tumorigenesis and their strong interaction with the immune system, the development of new therapeutical strategies has been continuously rising. The high number of melanoma cell mutations provides a diverse set of antigens that the immune system can recognize and use to distinguish tumor cells from normal cells. Peptide-based synthetic anti-tumor vaccines are based on tumor antigens that elicit an immune response due to antigen-presenting cells (APCs). Although targeting APCs with peptide antigens is the most important assumption for vaccine development, peptide antigens alone are poorly immunogenic. The immunogenicity of peptide antigens can be improved not only by synthetic modifications but also by the assistance of adjuvants and/or delivery systems. The current review summarizes the different chemical approaches for the development of effective peptide-based vaccines for the immunotherapeutic treatment of advanced melanoma.
Collapse
Affiliation(s)
- Beáta Biri-Kovács
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-13722500
| |
Collapse
|
75
|
Han S, Chen X, Li Z. Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers (Basel) 2023; 15:757. [PMID: 36765715 PMCID: PMC9913549 DOI: 10.3390/cancers15030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity. TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progenitor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors (LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes. Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment. Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3 and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-pathway-related genes from their cells-of-origin; the innate immune program may also represent their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy via augmenting TLR signaling).
Collapse
Affiliation(s)
- Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
76
|
Su S, Chen L, Yang M, Liang D, Ke B, Liu Z, Ke C, Liao G, Liu L, Luo X. Design, synthesis and immunological evaluation of monophosphoryl lipid A derivatives as adjuvants for a RBD-hFc based SARS-CoV-2 vaccine. RSC Med Chem 2023; 14:47-55. [PMID: 36760743 PMCID: PMC9890559 DOI: 10.1039/d2md00298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a reliable target for the development of vaccine adjuvants. To identify novel TLR4 ligands with improved immunological properties for use as adjuvants for a RBD-hFc based SARS-CoV-2 vaccine, herein, natural E. coli monophosphoryl lipid A (MPLA) and nine of its derivatives were designed and synthesized. Immunological evaluation showed that compounds 1, 3, 5 and 7 exhibited comparative or better adjuvant activity than clinically used Al adjuvants, and are expected to be a promising platform for the development of new adjuvants used for a RBD-hFc based SARS-CoV-2 vaccine. Preliminary structure-activity relationship analysis of the MPLA derivatives showed that the replacement of the functional groups at the C-1, C-4' or C-6' position of E. coli MPLA has an effect on its biological activity. In addition, we found that the combination of MPLA and Al was feasible for immunotherapy and could further enhance immune responses, providing a new direction toward the immunological enhancement of RBD-hFc based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Shiwei Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Liqing Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Menglan Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Dan Liang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
- Guangdong Hengda Biomedical Technology Co., Ltd. Guangzhou China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
- Guangdong Hengda Biomedical Technology Co., Ltd. Guangzhou China
- Guangzhou Laboratory Guangzhou China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
77
|
Spurrier MA, Jennings-Gee JE, Haas KM. Type I IFN Receptor Signaling on B Cells Promotes Antibody Responses to Polysaccharide Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:148-157. [PMID: 36458995 PMCID: PMC9812919 DOI: 10.4049/jimmunol.2200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 01/03/2023]
Abstract
We previously reported monophosphoryl lipid A (MPL) and synthetic cord factor trehalose-6,6'-dicorynomycolate (TDCM) significantly increase Ab responses to T cell-independent type 2 Ags (TI-2 Ags) in a manner dependent on B cell-intrinsic TLR4 expression, as well as MyD88 and TRIF proteins. Given the capacity of MPL to drive type I IFN production, we aimed to investigate the extent to which type I IFN receptor (IFNAR) signaling was required for TI-2 responses and adjuvant effects. Using Ifnar1-/- mice and IFNAR1 Ab blockade, we found that IFNAR signaling is required for optimal early B cell activation, expansion, and Ab responses to nonadjuvanted TI-2 Ags, including the pneumococcal vaccine. Further study demonstrated that B cell-intrinsic type I IFN signaling on B cells was essential for normal TI-2 Ab responses. In particular, TI-2 Ag-specific B-1b cell activation and expansion were significantly impaired in Ifnar1-/- mice; moreover, IFNAR1 Ab blockade similarly reduced activation, expansion, and differentiation of IFNAR1-sufficient B-1b cells in Ifnar1-/- recipient mice, indicating that B-1b cell-expressed IFNAR supports TI-2 Ab responses. Consistent with these findings, type I IFN significantly increased the survival of TI-2 Ag-activated B-1b cells ex vivo and promoted plasmablast differentiation. Nonetheless, MPL/TDCM adjuvant effects, which were largely carried out through innate B cells (B-1b and splenic CD23- B cells), were independent of type I IFN signaling. In summary, our study highlights an important role for B-1b cell-expressed IFNAR in promoting responses to nonadjuvanted TI-2 Ags, but it nonetheless demonstrates that adjuvants which support innate B cell responses may bypass this requirement.
Collapse
Affiliation(s)
- M Ariel Spurrier
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jamie E Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
78
|
Guan XL, Loh JYX, Lizwan M, Chan SCM, Kwan JMC, Lim TP, Koh TH, Hsu LY, Lee BTK. LipidA-IDER to Explore the Global Lipid A Repertoire of Drug-Resistant Gram-Negative Bacteria. Anal Chem 2023; 95:602-611. [PMID: 36599414 PMCID: PMC9850412 DOI: 10.1021/acs.analchem.1c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With the global emergence of drug-resistant bacteria causing difficult-to-treat infections, there is an urgent need for a tool to facilitate studies on key virulence and antimicrobial resistant factors. Mass spectrometry (MS) has contributed substantially to the elucidation of the structure-function relationships of lipid A, the endotoxic component of lipopolysaccharide which also serves as an important protective barrier against antimicrobials. Here, we present LipidA-IDER, an automated structure annotation tool for system-level scale identification of lipid A from high-resolution tandem mass spectrometry (MS2) data. LipidA-IDER was validated against previously reported structures of lipid A in the reference bacteria, Escherichia coli and Pseudomonas aeruginosa. Using MS2 data of variable quality, we demonstrated LipidA-IDER annotated lipid A with a performance of 71.2% specificity and 70.9% sensitivity, offering greater accuracy than existing lipidomics software. The organism-independent workflow was further applied to a panel of six bacterial species: E. coli and Gram-negative members of ESKAPE pathogens. A comprehensive atlas comprising 188 distinct lipid A species, including remodeling intermediates, was generated and can be integrated with software including MS-DIAL and Metabokit for identification and semiquantitation. Systematic comparison of a pair of polymyxin-sensitive and polymyxin-resistant Acinetobacter baumannii isolated from a human patient unraveled multiple key lipid A structural features of polymyxin resistance within a single analysis. Probing the lipid A landscape of bacteria using LipidA-IDER thus holds immense potential for advancing our understanding of the vast diversity and structural complexity of a key lipid virulence and antimicrobial-resistant factor. LipidA-IDER is freely available at https://github.com/Systems-Biology-Of-Lipid-Metabolism-Lab/LipidA-IDER.
Collapse
Affiliation(s)
- Xue Li Guan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore,. Tel: +65 6592 3957
| | - Johnathan Yi-Xiong Loh
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Marco Lizwan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Sharon Cui Mun Chan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Jeric Mun Chung Kwan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Tze Peng Lim
- Department
of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore
| | - Tse Hsien Koh
- Department
of Microbiology, Singapore General Hospital, Singapore 169608, Singapore
| | - Li-Yang Hsu
- Saw Swee
Hock School of Public Health, National University
of Singapore, Singapore 117549, Singapore
| | - Bernett Teck Kwong Lee
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore,Centre
for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore,Singapore
Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| |
Collapse
|
79
|
Abstract
Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, and its active principle, lipid A, have immunostimulatory properties and thus potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, it is necessary to structurally modify LPS and lipid A to minimize toxicity while maintaining adjuvant effects for use as vaccine adjuvants. Various studies have focused on the chemical synthetic method of lipid As and their structure-activity relationship, which are reviewed in this chapter.
Collapse
|
80
|
Abstract
Self-adjuvanting vaccines, covalent conjugates between antigens and adjuvants, are chemically well-defined compared with conventional vaccines formulated through mixing antigens with adjuvants. Innate immune receptor ligands effectively induce acquired immunity through the activation of innate immunity, thereby enhancing host immune responses. Thus, innate immune receptor ligands are often used as adjuvants in self-adjuvanting vaccines. In a self-adjuvanting vaccine, the covalent linkage of antigen and adjuvant enables their simultaneous uptake into immune cells where the adjuvant consequently induces antigen-specific immune responses. Importantly, self-adjuvanting vaccines do not require immobilization to carrier proteins or co-administration of additional adjuvants and thus avoid inducing undesired immune responses. Because of these excellent properties, self-adjuvanting vaccines are expected to be candidates for next-generation vaccines. Here, we take an overview of vaccine adjuvants, mainly focusing on those utilized in self-adjuvanting vaccines and then we review recent reports on self-adjuvanting conjugate vaccines.
Collapse
|
81
|
Heine H, Zamyatina A. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals (Basel) 2022; 16:23. [PMID: 36678520 PMCID: PMC9864529 DOI: 10.3390/ph16010023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
The Toll-like receptor 4 (TLR4) signaling pathway plays a central role in the prompt defense against infectious challenge and provides immediate response to Gram-negative bacterial infection. The TLR4/MD-2 complex can sense and respond to various pathogen-associated molecular patterns (PAMPs) with bacterial lipopolysaccharide (LPS) being the most potent and the most frequently occurring activator of the TLR4-mediated inflammation. TLR4 is believed to be both a friend and foe since improperly regulated TLR4 signaling can result in the overactivation of immune responses leading to sepsis, acute lung injury, or pathologic chronic inflammation involved in cancer and autoimmune disease. TLR4 is also considered a legitimate target for vaccine adjuvant development since its activation can boost the adaptive immune responses. The dual action of the TLR4 complex justifies the efforts in the development of both TLR4 antagonists as antisepsis drug candidates or remedies for chronic inflammatory diseases and TLR4 agonists as vaccine adjuvants or immunotherapeutics. In this review, we provide a brief overview of the biochemical evidences for possible pharmacologic applications of TLR4 ligands as therapeutics and report our systematic studies on the design, synthesis, and immunobiological evaluation of carbohydrate-based TLR4 antagonists with nanomolar affinity for MD-2 as well as disaccharide-based TLR4 agonists with picomolar affinity for the TLR4/MD-2 complex.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, 23845 Borstel, Germany
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
82
|
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement. Cells 2022; 11:cells11244006. [PMID: 36552770 PMCID: PMC9777512 DOI: 10.3390/cells11244006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Collapse
|
83
|
Wang N, Zuo Y, Wu S, Huang C, Zhang L, Zhu D. Spatio-temporal delivery of both intra- and extracellular toll-like receptor agonists for enhancing antigen-specific immune responses. Acta Pharm Sin B 2022; 12:4486-4500. [PMID: 36561992 PMCID: PMC9764069 DOI: 10.1016/j.apsb.2022.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
For cancer immunotherapy, triggering toll-like receptors (TLRs) in dendritic cells (DCs) can potentiate antigen-based immune responses. Nevertheless, to generate robust and long-lived immune responses, a well-designed nanovaccine should consider different locations of TLRs on DCs and co-deliver both antigens and TLR agonist combinations to synergistically induce optimal antitumor immunity. Herein, we fabricated lipid-polymer hybrid nanoparticles (LPNPs) to spatio-temporally deliver model antigen ovalbumin (OVA) on the surface of the lipid layer, TLR4 agonist monophosphoryl lipid A (MPLA) within the lipid layer, and TLR7 agonist imiquimod (IMQ) in the polymer core to synergistically activate DCs by both extra- and intra-cellular TLRs for enhancing adaptive immune responses. LPNPs-based nanovaccines exhibited a narrow size distribution at the mean diameter of 133.23 nm and zeta potential of -2.36 mV, showed a high OVA loading (around 70.83 μg/mg) and IMQ encapsulation efficiency (88.04%). Our data revealed that LPNPs-based nanovaccines showed great biocompatibility to immune cells and an excellent ability to enhance antigen internalization, thereby promoting DCs maturation and cytokines production. Compared to Free OVA, OVA-LPNPs promoted antigen uptake, lysosome escape, depot effect and migration to secondary lymphatic organs. In vivo immunization showed that IMQ-MPLA-OVA-LPNPs with dual agonists induced more powerful cellular and humoral immune responses. Moreover, prophylactic vaccination by IMQ-MPLA-OVA-LPNPs effectively suppressed tumor growth and increased survival efficacy. Hence, the nanovaccines we fabricated can effectively co-deliver antigens and different TLR agonists and realize coordinated stimulation of DCs in a spatio-temporal manner for enhanced immune responses, which provides a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Nannan Wang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yueyue Zuo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
84
|
Comparison of human acellular amniotic membranes with acellular amniotic membranes pretreated with MPLA for repair of fascia in rats. Cell Tissue Bank 2022; 24:495-501. [DOI: 10.1007/s10561-022-10049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
|
85
|
Owen AM, Luan L, Burelbach KR, McBride MA, Stothers CL, Boykin OA, Sivanesam K, Schaedel JF, Patil TK, Wang J, Hernandez A, Patil NK, Sherwood ER, Bohannon JK. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol 2022; 13:1044662. [PMID: 36439136 PMCID: PMC9692127 DOI: 10.3389/fimmu.2022.1044662] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2023] Open
Abstract
Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.
Collapse
Affiliation(s)
- Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Margaret A. McBride
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Olivia A. Boykin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kalkena Sivanesam
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Washington State University Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Jessica F. Schaedel
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| |
Collapse
|
86
|
Yin Y, Gu Y, Zai X, Li R, Zhu X, Yu R, Zhang J, Wang S, Zhang Y, Lin J, Xu J, Chen W. A novel built-in adjuvant metallothionein-3 aids protein antigens to induce rapid, robust, and durable immune responses. Front Immunol 2022; 13:1024437. [PMID: 36426348 PMCID: PMC9680554 DOI: 10.3389/fimmu.2022.1024437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 03/19/2024] Open
Abstract
Adjuvants are crucial components of vaccines that can enhance and modulate antigen-specific immune responses. Herein, we reported for the first time that human metallothionein-3 (MT3), a low molecular weight cysteine-rich metal-binding protein, was a novel promising adjuvant candidate that could help protein antigens to induce rapid, effective, and durable antigen-specific immune responses. In the present study, MT3 was fused to outer membrane protein 19 (Omp19) of Brucella abortus (MT3-Omp19, MO) and C fragment heavy chain (Hc) of tetanus neurotoxin (MT3-Hc, MH), respectively. The results showed that MT3 as a built-in adjuvant increased the Omp19- or Hc-specific antibody responses by 100-1000 folds in seven days after primary immunization. Compared to other commercially available adjuvants, MT3 could stimulate earlier (4 days after primary injection) and stronger (10-100 folds) antibody response with lower antigen dose, and its adjuvanticity relied on fusion to antigen. Although the mechanism was not clear yet, the fusion protein MO was observed to directly activate DCs, promote germinal center formation and improve the speed of Ig class switching. Interestingly, our subsequent study found that other members of the mammalian MT family (human MT1 or murine MT3 for examples) also had potential adjuvant effects, but their effects were lower than human MT3. Overall, this study explored a new function of human MT3 as a novel built-in adjuvant, which may have important clinical application potential in vaccine development against global pandemics.
Collapse
Affiliation(s)
- Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanfei Gu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xinjie Zhu
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
| | - Rui Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shuyi Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yue Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
87
|
Duhen R, Beymer M, Jensen SM, Abbina S, Abraham S, Jain N, Thomas A, Geall AJ, Hu HM, Fox BA, Weinberg AD. OX40 agonist stimulation increases and sustains humoral and cell-mediated responses to SARS-CoV-2 protein and saRNA vaccines. Front Immunol 2022; 13:896310. [PMID: 36238275 PMCID: PMC9551348 DOI: 10.3389/fimmu.2022.896310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
To prevent SARS-CoV-2 infections and generate long-lasting immunity, vaccines need to generate strong viral-specific B and T cell responses. Previous results from our lab and others have shown that immunizations in the presence of an OX40 agonist antibody lead to higher antibody titers and increased numbers of long-lived antigen-specific CD4 and CD8 T cells. Using a similar strategy, we explored the effect of OX40 co-stimulation in a prime and boost vaccination scheme using an adjuvanted SARS-CoV-2 spike protein vaccine in C57BL/6 mice. Our results show that OX40 engagement during vaccination significantly increases long-lived antibody responses to the spike protein. In addition, after immunization spike protein-specific proliferation was greatly increased for both CD4 and CD8 T cells, with enhanced, spike-specific secretion of IFN-γ and IL-2. Booster (3rd injection) immunizations combined with an OX40 agonist (7 months post-prime) further increased vaccine-specific antibody and T cell responses. Initial experiments assessing a self-amplifying mRNA (saRNA) vaccine encoding the spike protein antigen show a robust antigen-specific CD8 T cell response. The saRNA spike-specific CD8 T cells express high levels of GrzmB, IFN-γ and TNF-α which was not observed with protein immunization and this response was further increased by the OX40 agonist. Similar to protein immunizations the OX40 agonist also increased vaccine-specific CD4 T cell responses. In summary, this study compares and contrasts the effects and benefits of both protein and saRNA vaccination and the extent to which an OX40 agonist enhances and sustains the immune response against the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Rebekka Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
- *Correspondence: Rebekka Duhen,
| | - Michael Beymer
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Shawn M. Jensen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | | | | | - Nikita Jain
- Precision NanoSystems Inc, Vancouver, BC, Canada
| | | | | | - Hong-Ming Hu
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Bernard A. Fox
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Andrew D. Weinberg
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| |
Collapse
|
88
|
George PJ, Marches R, Nehar-Belaid D, Banchereau J, Lustigman S. The Th1/Tfh-like biased responses elicited by the rASP-1 innate adjuvant are dependent on TRIF and Type I IFN receptor pathways. Front Immunol 2022; 13:961094. [PMID: 36119026 PMCID: PMC9478378 DOI: 10.3389/fimmu.2022.961094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Ov-ASP-1 (rASP-1), a parasite-derived protein secreted by the helminth Onchocerca volvulus, is an adjuvant which enhances the potency of the influenza trivalent vaccine (IIV3), even when used with 40-fold less IIV3. This study is aimed to provide a deeper insight into the molecular networks that underline the adjuvanticity of rASP-1. Here we show that rASP-1 stimulates mouse CD11c+ bone marrow-derived dendritic (BMDCs) to secrete elevated levels of IL-12p40, TNF-α, IP-10 and IFN-β in a TRIF-dependent but MyD88-independent manner. rASP-1-activated BMDCs promoted the differentiation of naïve CD4+ T cells into Th1 cells (IFN-γ+) that was TRIF- and type I interferon receptor (IFNAR)-dependent, and into Tfh-like cells (IL21+) and Tfh1 (IFN-γ+ IL21+) that were TRIF-, MyD88- and IFNAR-dependent. rASP-1-activated BMDCs promoted the differentiation of naïve CD4+ T cells into Th17 (IL-17+) cells only when the MyD88 pathway was inhibited. Importantly, rASP-1-activated human blood cDCs expressed upregulated genes that are associated with DC maturation, type I IFN and type II IFN signaling, as well as TLR4-TRIF dependent signaling. These activated cDCs promoted the differentiation of naïve human CD4+ T cells into Th1, Tfh-like and Th17 cells. Our data thus confirms that the rASP-1 is a potent innate adjuvant that polarizes the adaptive T cell responses to Th1/Tfh1 in both mouse and human DCs. Notably, the rASP-1-adjuvanted IIV3 vaccine elicited protection of mice from a lethal H1N1 infection that is also dependent on the TLR4-TRIF axis and IFNAR signaling pathway, as well as on its ability to induce anti-IIV3 antibody production.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Sara Lustigman
- Laboratory Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
89
|
Celik M, Fuehrlein B. A Review of Immunotherapeutic Approaches for Substance Use Disorders: Current Status and Future Prospects. Immunotargets Ther 2022; 11:55-66. [PMID: 36199734 PMCID: PMC9528911 DOI: 10.2147/itt.s370435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Muhammet Celik
- Research Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brian Fuehrlein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Mental Health Service Line, VA Connecticut Healthcare System, West Haven, CT, USA
- Correspondence: Brian Fuehrlein, Mental Health Service Line, VA Connecticut Healthcare System, 950 Campbell Ave, West Haven, CT, 06516, Tel +1-203-932-5711 x4471, Fax +1-203-937-4904, Email
| |
Collapse
|
90
|
Liu X, Yao JJ, Chen Z, Lei W, Duan R, Yao Z. Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist. Front Immunol 2022; 13:906357. [PMID: 36119107 PMCID: PMC9471085 DOI: 10.3389/fimmu.2022.906357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of apoptosis protein (IAP) is a class of E3 ubiquitin ligases functioning to support cancer survival and growth. Many small-molecule IAP antagonists have been developed, aiming to degrade IAP proteins to kill cancer. We have evaluated the effect of lipopolysaccharide (LPS), a component of the bacterial outer membrane, on IAP antagonists in treating breast cancer in a mouse model to guide future clinical trials. We show that LPS promotes IAP antagonist-induced regression of triple-negative breast cancer (TNBC) from MDA-MB-231 cells in immunodeficient mice. IAP antagonists such as SM-164, AT-406, and BV6, do not kill MDA-MB-231 cells alone, but allow LPS to induce cancer cell apoptosis rapidly. The apoptosis caused by LPS plus SM-164 is blocked by toll-like receptor 4 (TLR4) or MyD88 inhibitor, which inhibits LPS-induced TNFα production by the cancer cells. Consistent with this, MDA-MB-231 cell apoptosis induced by LPS plus SM-164 is also blocked by the TNF inhibitor. LPS alone does not kill MDA-MB-231 cells because it markedly increases the protein level of cIAP1/2, which is directly associated with and stabilized by MyD88, an adaptor protein of TLR4. ER+ MCF7 breast cancer cells expressing low levels of cIAP1/2 undergo apoptosis in response to SM-164 combined with TNFα but not with LPS. Furthermore, TNFα but not LPS alone inhibits MCF7 cell growth in vitro. Consistent with these, LPS combined with SM-164, but not either of them alone, causes regression of ER+ breast cancer from MCF7 cells in immunodeficient mice. In summary, LPS sensitizes the therapeutic response of both triple-negative and ER+ breast cancer to IAP antagonist therapy by inducing rapid apoptosis of the cancer cells through TLR4- and MyD88-mediated production of TNFα. We conclude that antibiotics that can reduce microbiota-derived LPS should not be used together with an IAP antagonist for cancer therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Jimmy J. Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Zhongxuan Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Zhenqiang Yao,
| |
Collapse
|
91
|
Zimmermann J, Goretzki A, Meier C, Wolfheimer S, Lin YJ, Rainer H, Krause M, Wedel S, Spies G, Führer F, Vieths S, Scheurer S, Schülke S. Modulation of dendritic cell metabolism by an MPLA-adjuvanted allergen product for specific immunotherapy. Front Immunol 2022; 13:916491. [PMID: 36059475 PMCID: PMC9430023 DOI: 10.3389/fimmu.2022.916491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background Recently, bacterial components were shown to enhance immune responses by shifting immune cell metabolism towards glycolysis and lactic acid production, also known as the Warburg Effect. Currently, the effect of allergen products for immunotherapy (AIT) and commercial vaccines on immune cell metabolism is mostly unknown. Objective To investigate the effect of AIT products (adjuvanted with either MPLA or Alum) on myeloid dendritic cell (mDC) metabolism and activation. Methods Bone marrow-derived mDCs were stimulated with five allergoid-based AIT products (one adjuvanted with MPLA, four adjuvanted with Alum) and two MPLA-adjuvanted vaccines and analyzed for their metabolic activation, expression of cell surface markers, and cytokine secretion by ELISA. mDCs were pre-incubated with either immunological or metabolic inhibitors or cultured in glucose- or glutamine-free culture media and subsequently stimulated with the MPLA-containing AIT product (AIT product 1). mDCs were co-cultured with allergen-specific CD4+ T cells to investigate the contribution of metabolic pathways to the T cell priming capacity of mDCs stimulated with AIT product 1. Results Both the MPLA-containing AIT product 1 and commercial vaccines, but not the Alum-adjuvanted AIT products, activated Warburg metabolism and TNF-α secretion in mDCs. Further experiments focused on AIT product 1. Metabolic analysis showed that AIT product 1 increased glycolytic activity while also inducing the secretion of IL-1β, IL-10, IL-12, and TNF-α. Both rapamycin (mTOR-inhibitor) and SP600125 (SAP/JNK MAPK-inhibitor) dose-dependently suppressed the AIT product 1-induced Warburg Effect, glucose consumption, IL-10-, and TNF-α secretion. Moreover, both glucose- and glutamine deficiency suppressed secretion of all investigated cytokines (IL-1β, IL-10, and TNF-α). Glucose metabolism in mDCs was also critical for the (Th1-biased) T cell priming capacity of AIT product 1-stimulated mDCs, as inhibition of mTOR signaling abrogated their ability to induce Th1-responses. Conclusion The AIT product and commercial vaccines containing the adjuvant MPLA were shown to modulate the induction of immune responses by changing the metabolic state of mDCs. Better understanding the mechanisms underlying the interactions between cell metabolism and immune responses will allow us to further improve vaccine development and AIT.
Collapse
Affiliation(s)
- Jennifer Zimmermann
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexandra Goretzki
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Clara Meier
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sonja Wolfheimer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Yen-Ju Lin
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Hannah Rainer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Maren Krause
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Saskia Wedel
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Gerd Spies
- Z6 Occupational Safety, Paul-Ehrlich-Institut, Langen, Germany
| | - Frank Führer
- Division of Allergology, Batch Control and Allergen Analytics, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Vieths
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stephan Scheurer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- *Correspondence: Stefan Schülke,
| |
Collapse
|
92
|
Yousaf M, Ullah A, Sarosh N, Abbasi SW, Ismail S, Bibi S, Hasan MM, Albadrani GM, Talaat Nouh NA, Abdulhakim JA, Abdel-Daim MM, Bin Emran T. Design of Multi-Epitope Vaccine for Staphylococcus saprophyticus: Pan-Genome and Reverse Vaccinology Approach. Vaccines (Basel) 2022; 10:1192. [PMID: 36016080 PMCID: PMC9414393 DOI: 10.3390/vaccines10081192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus saprophyticus is a Gram-positive coccus responsible for the occurrence of cystitis in sexually active, young females. While effective antibiotics against this organism exist, resistant strains are on the rise. Therefore, prevention via vaccines appears to be a viable solution to address this problem. In comparison to traditional techniques of vaccine design, computationally aided vaccine development demonstrates marked specificity, efficiency, stability, and safety. In the present study, a novel, multi-epitope vaccine construct was developed against S. saprophyticus by targeting fully sequenced proteomes of its five different strains, which were examined using a pangenome and subtractive proteomic strategy to characterize prospective vaccination targets. The three immunogenic vaccine targets which were utilized to map the probable immune epitopes were verified by annotating the entire proteome. The predicted epitopes were further screened on the basis of antigenicity, allergenicity, water solubility, toxicity, virulence, and binding affinity towards the DRB*0101 allele, resulting in 11 potential epitopes, i.e., DLKKQKEKL, NKDLKKQKE, QDKLKDKSD, NVMDNKDLE, TSGTPDSQA, NANSDGSSS, GSDSSSSNN, DSSSSNNDS, DSSSSDRNN, SSSDRNNGD, and SSDDKSKDS. All these epitopes have the efficacy to cover 99.74% of populations globally. Finally, shortlisted epitopes were joined together with linkers and three different adjuvants to find the most stable and immunogenic vaccine construct. The top-ranked vaccine construct was further scrutinized on the basis of its physicochemical characterization and immunological profile. The non-allergenic and antigenic features of modeled vaccine constructs were initially validated and then subjected to docking with immune receptor major histocompatibility complex I and II (MHC-I and II), resulting in strong contact. In silico cloning validations yielded a codon adaptation index (CAI) value of 1 and an ideal percentage of GC contents (46.717%), indicating a putative expression of the vaccine in E. coli. Furthermore, immune simulation demonstrated that, after injecting the proposed MEVC, powerful antibodies were produced, resulting in the sharpest peaks of IgM + IgG formation (>11,500) within 5 to 15 days. Experimental testing against S. saprophyticus can evaluate the safety and efficacy of these prophylactic vaccination designs.
Collapse
Affiliation(s)
- Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan; (M.Y.); (N.S.)
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Nida Sarosh
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan; (M.Y.); (N.S.)
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nehal Ahmed Talaat Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura 35516, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu 46522, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
93
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
94
|
Chang TC, Manabe Y, Ito K, Yamamoto R, Kabayama K, Ohshima S, Kametani Y, Fujimoto Y, Lin CC, Fukase K. Precise immunological evaluation rationalizes the design of a self-adjuvanting vaccine composed of glycan antigen, TLR1/2 ligand, and T-helper cell epitope. RSC Adv 2022; 12:18985-18993. [PMID: 35873332 PMCID: PMC9241363 DOI: 10.1039/d2ra03286d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sialyl-Tn (STn), overexpressed on various tumors, has been investigated for its application in anti-cancer vaccine therapy. However, Theratope, an STn-based vaccine, failed in the phase III clinical trial due to poor immunogenicity and epitope suppression by the foreign carrier protein. We therefore developed a self-adjuvanting STn based-vaccine, a conjugate of clustered STn (triSTn) antigen, TLR1/2 ligand (Pam3CSK4), and T-helper (Th) cell epitope, and found that this three-component self-adjuvanting vaccine effectively resulted in the production of anti-triSTn IgG antibodies. We herein analyzed immune responses induced by this self-adjuvanting vaccine in detail. We newly synthesized two-component vaccines, i.e., Pam3CSK4- or Th epitope-conjugated triSTn, as references to evaluate the immune-stimulating functions of Pam3CSK4 and Th epitope. Immunological evaluation of the synthesized vaccine candidates revealed that Pam3CSK4 was essential for antibody production, indicating that the uptake of triSTn antigen by antigen-presenting cells (APCs) was promoted by the recognition of Pam3CSK4 by TLR1/2. The function of the Th epitope was also confirmed. Th cell activation was important for boosting antibody production and IgG subclass switching. Furthermore, flow cytometric analyses of immune cells, including T cells, B cells, dendritic cells, and other monocytes, were first employed in the evaluation of self-adjuvanting vaccines and revealed that the three-component vaccine was able to induce antigen-specific immune responses for efficient antibody production without excessive inflammatory responses. Importantly, the co-administration of Freund's adjuvants was suggested to cause excessive myeloid cell accumulation and decreased plasma cell differentiation. These results demonstrate that vaccines can be designed to achieve the desired immune responses via the bottom-up construction of each immune element.
Collapse
Affiliation(s)
- Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Ryuku Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Shino Ohshima
- Faculty of Medicine, School of Medicine, Tokai University 143 Shimokasuya Isehara-shi Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- Faculty of Medicine, School of Medicine, Tokai University 143 Shimokasuya Isehara-shi Kanagawa 259-1193 Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University 101 Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
95
|
Li YA, Sun Y, Fu Y, Zhang Y, Li Q, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering a dual-antigen expression cassette provides mouse cross-protection against Streptococcus suis serotypes 2, 7, 9, and 1/2. Vet Res 2022; 53:46. [PMID: 35733156 PMCID: PMC9215036 DOI: 10.1186/s13567-022-01062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
A universal vaccine protecting against multiple serotypes of Streptococcus suis is urgently needed to improve animal welfare and reduce the consumption of antibiotics. In this study, a dual antigen expression cassette consisting of SS2-SaoA and SS9-Eno was delivered by a recombinant Salmonella Choleraesuis vector to form the vaccine candidate rSC0016(pS-SE). SaoA and Eno were simultaneously synthesized in rSC0016(pS-SE) without affecting the colonization of the recombinant vector in the lymphatic system. In addition, the antiserum of mice immunized with rSC0016(pS-SE) produced a broader and potent opsonophagocytic response against multiple serotypes of S. suis. Finally, rSC0016(pS-SE) provided mice with a 100% protection against a lethal dose of parent S. suis serotype 2 and serotype 9, and provided 90% and 80% protection against heterologous S. suis serotype 7 or 1/2. These values were significantly higher than those obtained with rSC0016(pS-SaoA) or rSC0016(pS-Eno). Together, this study serves as a foundation for developing a universal vaccine against multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
96
|
Strobl S, Hofbauer K, Heine H, Zamyatina A. Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants. Chemistry 2022; 28:e202200547. [PMID: 35439332 PMCID: PMC9325513 DOI: 10.1002/chem.202200547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/11/2022]
Abstract
TLR4 is a key pattern recognition receptor that can sense pathogen- and danger- associated molecular patterns to activate the downstream signaling pathways which results in the upregulation of transcription factors and expression of interferons and cytokines to mediate protective pro-inflammatory responses involved in immune defense. Bacterial lipid A is the primary TLR4 ligand with very complex, species-specific, and barely predictable structure-activity relationships. Given that therapeutic targeting of TLR4 is an emerging tool for management of a variety of human diseases, the development of novel TLR4 activating biomolecules other than lipid A is of vast importance. We report on design, chemical synthesis and immunobiology of novel glycan-based lipid A-mimicking molecules that can activate human and murine TLR4-mediated signaling with picomolar affinity. Exploiting crystal structure - based design we have created novel disaccharide lipid A mimetics (DLAMs) where the inherently flexible β(1→6)-linked diglucosamine backbone of lipid A is exchanged with a conformationally restrained non-reducing βGlcN(1↔1')βGlcN scaffold. Excellent stereoselectivity in a challenging β,β-1,1' glycosylation was achieved by tuning the reactivities of donor and acceptor molecules using protective group manipulation strategy. Divergent streamlined synthesis of β,β-1,1'-linked diglucosamine-derived glycolipids entailing multiple long-chain (R)-3- acyloxyacyl residues and up two three phosphate groups was developed. Specific 3D-molecular shape and conformational rigidity of unnatural β,β-1,1'-linked diglucosamine combined with carefully optimized phosphorylation and acylation pattern ensured efficient induction of the TLR4-mediated signaling in a species-independent manner.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Karin Hofbauer
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Holger Heine
- Research Group Innate ImmunityResearch Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL)Parkallee 22Borstel23845Germany
| | - Alla Zamyatina
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| |
Collapse
|
97
|
Xie D, Niu Y, Mu R, Campos de Souza S, Yin X, Dong L, Wang C. A Toll-like Receptor-Activating, Self-Adjuvant Glycan Nanocarrier. Front Chem 2022; 10:864206. [PMID: 35592309 PMCID: PMC9110926 DOI: 10.3389/fchem.2022.864206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The global pandemic of COVID-19 highlights the importance of vaccination, which remains the most efficient measure against many diseases. Despite the progress in vaccine design, concerns with suboptimal antigen immunogenicity and delivery efficiency prevail. Self-adjuvant carriers–vehicles that can simultaneously deliver antigens and act as adjuvants–may improve efficacies in these aspects. Here, we developed a self-adjuvant carrier based on an acetyl glucomannan (acGM), which can activate toll-like receptor 2 (TLR2) and encapsulate the model antigen ovalbumin (OVA) via a double-emulsion process. In vitro tests showed that these OVA@acGM-8k nanoparticles (NPs) enhanced cellular uptake and activated TLR2 on the surface of dendritic cells (DCs), with increased expression of co-stimulatory molecules (e.g. CD80 and CD86) and pro-inflammatory cytokines (e.g. TNF-α and IL12p70). In vivo experiments in mice demonstrated that OVA@acGM-8k NPs accumulated in the lymph nodes and promoted DCs’ maturation. The immunization also boosted the humoral and cellular immune responses. Our findings suggest that this self-adjuvant polysaccharide carrier could be a promising approach for vaccine development.
Collapse
Affiliation(s)
- Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruoyu Mu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Xiaoyu Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Chunming Wang, ; Lei Dong,
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Chunming Wang, ; Lei Dong,
| |
Collapse
|
98
|
Lv WX, Chen H, Zhang X, Ho CC, Liu Y, Wu S, Wang H, Jin Z, Chi YR. Programmable selective acylation of saccharides mediated by carbene and boronic acid. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
99
|
|
100
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|