51
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
52
|
Nagano S, Sadeghi M, Balke J, Fleck M, Heckmann N, Psakis G, Alexiev U. Improved fluorescent phytochromes for in situ imaging. Sci Rep 2022; 12:5587. [PMID: 35379835 PMCID: PMC8980088 DOI: 10.1038/s41598-022-09169-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractModern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.
Collapse
|
53
|
Lyu T, Sohn SH, Jimenez R, Joo T. Temperature-Dependent Fluorescence of mPlum Fluorescent Protein from 295 to 20 K. J Phys Chem B 2022; 126:2337-2344. [PMID: 35296137 DOI: 10.1021/acs.jpcb.1c10516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of bright fluorescent proteins (FPs) emitting beyond 600 nm continues to be of interest both from a fundamental perspective in understanding protein-chromophore interactions and from a practical perspective as these FPs would be valuable for cellular imaging. We previously reported ultrafast spectral observations of the excited-state dynamics in mPlum resulting from interconversion between direct hydrogen bonding and water-mediated hydrogen bonding between the chromophore acylimine carbonyl and the Glu16 side chain. Here, we report temperature-dependent steady-state and time-resolved fluorescence measurements of mPlum and its E16H variant, which does not contain a side-chain permitting hydrogen bonding with the acylimine carbonyl. Lowering the temperature of the system freezes interconversion between the hydrogen-bonding states, thus revealing the spectral signatures of the two states. Analysis of the temperature-dependent spectra assuming Boltzmann populations of the two states yields a 205 cm-1 energy difference. This value agrees with the predictions from a quantum mechanics/molecular mechanics study of mPlum (198 cm-1). This study demonstrates the first use of cryogenic spectroscopy to quantify the energetics and timescales of FP chromophore structural states that were only previously obtained from computational methods and further confirms the importance of acylimine hydrogen-bonding dynamics to the fluorescence spectral shifts of red FPs.
Collapse
Affiliation(s)
- Taecheon Lyu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - So Hyeong Sohn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ralph Jimenez
- JILA, University of Colorado, and NIST, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
54
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
55
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
56
|
Yadav K, Ghosh S, Barak A, Schaefer W, Subramanian R. Phenylalanine stacking enhances the red fluorescence of biliverdin IXα on UV excitation in sandercyanin fluorescent protein. FEBS Lett 2022; 596:796-805. [PMID: 35020202 DOI: 10.1002/1873-3468.14281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 01/20/2023]
Abstract
Biliverdin IXα (BV) binds to several prokaryotic and eukaryotic proteins. How nature exploits the versatility of BV's properties is not fully understood. Unlike free BV, the Sandercyanin fluorescent protein bound to BV (SFP-BV) shows enhanced red fluorescence (675 nm) on excitation in the UV region (380 nm). Site-directed mutagenesis showed that the BV complex of two SFP variants, F55A and E79A, resulted in the loss of red fluorescence. Crystal structures of the complexes of these proteins with BV show the absence of stacking interactions of the F55 phenyl ring with BV. BV changes from ZZZssa conformation in the wild-type to ZZZsss conformation in the variants. In the nonfluorescent mutants, the lowest excited state is destabilized, resulting in nonradiative decay.
Collapse
Affiliation(s)
- Keerti Yadav
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Manipal Academy of Higher Education, Manipal University, Madhav Nagar, India
| | - Swagatha Ghosh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Arvind Barak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Wayne Schaefer
- Department of Biological Sciences, The University of Wisconsin-Milwaukee at Washington County, West Bend, WI, USA
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
57
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
58
|
Ghosh S, Mondal S, Yadav K, Aggarwal S, Schaefer WF, Narayana C, Subramanian R. Modulation of biliverdin dynamics and spectral properties by Sandercyanin. RSC Adv 2022; 12:20296-20304. [PMID: 35919616 PMCID: PMC9277520 DOI: 10.1039/d2ra02880h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Biliverdin IX-alpha (BV), a tetrapyrrole, is found ubiquitously in most living organisms. It functions as a metabolite, pigment, and signaling compound. While BV is known to bind to diverse protein families such as heme-metabolizing enzymes and phytochromes, not many BV-bound lipocalins (ubiquitous, small lipid-binding proteins) have been studied. The molecular basis of binding and conformational selectivity of BV in lipocalins remains unexplained. Sandercyanin (SFP)–BV complex is a blue lipocalin protein present in the mucus of the Canadian walleye (Stizostedion vitreum). In this study, we present the structures and binding modes of BV to SFP. Using a combination of designed site-directed mutations, X-ray crystallography, UV/VIS, and resonance Raman spectroscopy, we have identified multiple conformations of BV that are stabilized in the binding pocket of SFP. In complex with the protein, these conformers generate varied spectroscopic signatures both in their absorption and fluorescence spectra. We show that despite no covalent anchor, structural heterogeneity of the chromophore is primarily driven by the D-ring pyrrole of BV. Our work shows how conformational promiscuity of BV is correlated to the rearrangement of amino acids in the protein matrix leading to modulation of spectral properties. Biliverdin IX-alpha undergoes rotation around the D-ring pyrrole and displays a broad far-red absorbance on binding to monomeric Sandercyanin variant (orange) compared to the wild-type tetrameric protein (cyan).![]()
Collapse
Affiliation(s)
- Swagatha Ghosh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Sayan Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Keerti Yadav
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Manipal Academy of Higher Education, Manipal University, Madhav Nagar, 576104, India
| | - Shantanu Aggarwal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Wayne F. Schaefer
- Department of Biological Sciences, University of Wisconsin at Milwaukee, Washington County, West Bend, WI 53095, USA
| | - Chandrabhas Narayana
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
59
|
Zhang J, Li H, Lin B, Luo X, Yin P, Yi T, Xue B, Zhang XL, Zhu H, Nie Z. Development of Near-Infrared Nucleic Acid Mimics of Fluorescent Proteins for In Vivo Imaging of Viral RNA with Turn-On Fluorescence. J Am Chem Soc 2021; 143:19317-19329. [PMID: 34762804 DOI: 10.1021/jacs.1c04577] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GFP-like fluorescent proteins and their molecular mimics have revolutionized bioimaging research, but their emissions are largely limited in the visible to far-red region, hampering the in vivo applications in intact animals. Herein, we structurally modulate GFP-like chromophores using a donor-acceptor-acceptor (D-A-A') molecular configuration to discover a set of novel fluorogenic derivatives with infrared-shifted spectra. These chromophores can be fluorescently elicited by their specific interaction with G-quadruplex (G4), a unique noncanonical nucleic acid secondary structure, via inhibition of the chromophores' twisted-intramolecular charge transfer. This feature allows us to create, for the first time, FP mimics with tunable emission in the near-infrared (NIR) region (Emmax = 664-705 nm), namely, infrared G-quadruplex mimics of FPs (igMFP). Compared with their FP counterparts, igMFPs exhibit remarkably higher quantum yields, larger Stokes shift, and better photostability. In a proof-of-concept application using pathogen-related G4s as the target, we exploited igMFPs to directly visualize native hepatitis C virus (HCV) RNA genome in living cells via their in situ formation by the chromophore-bound viral G4 structure in the HCV core gene. Furthermore, igMFPs are capable of high contrast HCV RNA imaging in living mice bearing a HCV RNA-presenting mini-organ, providing the first application of FP mimics in whole-animal imaging.
Collapse
Affiliation(s)
- Jiaheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People's Republic of China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Peng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Ting Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People's Republic of China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
60
|
Bozhanova NG, Harp JM, Bender BJ, Gavrikov AS, Gorbachev DA, Baranov MS, Mercado CB, Zhang X, Lukyanov KA, Mishin AS, Meiler J. Computational redesign of a fluorogen activating protein with Rosetta. PLoS Comput Biol 2021; 17:e1009555. [PMID: 34748541 PMCID: PMC8601599 DOI: 10.1371/journal.pcbi.1009555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of fine-tuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed. Computational approaches have recently made significant progress in the protein engineering field evolving from a tool for helping experimentalists to prioritize or short-list mutations for testing to being capable of making fully reliable predictions. However, not all the fields of protein modeling are evolving at a similar pace. That is why evaluating the capabilities of computational tools on different tasks is important to provide other scientists with up-to-date information on the state of the field. Here we tested the performance of Rosetta (one of the leading macromolecule modeling tools) in improving small molecule-binding proteins. We successfully redesigned a fluorogen binding protein DiB1 –a protein that binds a non-fluorescent molecule and enforces its fluorescence in the obtained complex–for improved brightness and better performance in super-resolution imaging. Our results suggest that such tasks can be already achieved without laborious library screenings. However, the flexibility of the proteins might still be underestimated during standard modeling protocols and should be closely evaluated.
Collapse
Affiliation(s)
- Nina G. Bozhanova
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joel M. Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brian J. Bender
- Department of Pharmacology and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alexey S. Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Christina B. Mercado
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xuan Zhang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | | | - Alexander S. Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
61
|
Wu T, Pang Y, Ai HW. Circularly Permuted Far-Red Fluorescent Proteins. BIOSENSORS 2021; 11:438. [PMID: 34821654 PMCID: PMC8615523 DOI: 10.3390/bios11110438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The color palette of genetically encoded fluorescent protein indicators (GEFPIs) has expanded rapidly in recent years. GEFPIs with excitation and emission within the "optical window" above 600 nm are expected to be superior in many aspects, such as enhanced tissue penetration, reduced autofluorescence and scattering, and lower phototoxicity. Circular permutation of fluorescent proteins (FPs) is often the first step in the process of developing single-FP-based GEFPIs. This study explored the tolerance of two far-red FPs, mMaroon1 and mCarmine, towards circular permutation. Several initial constructs were built according to previously reported circularly permuted topologies for other FP analogs. Mutagenesis was then performed on these constructs and screened for fluorescent variants. As a result, five circularly permuted far-red FPs (cpFrFPs) with excitation and emission maxima longer than 600 nm were identified. Some displayed appreciable brightness and efficient chromophore maturation. These cpFrFPs variants could be intriguing starting points to further engineer far-red GEFPIs for in vivo tissue imaging.
Collapse
Affiliation(s)
- Tianchen Wu
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; (T.W.); (Y.P.)
| | - Yu Pang
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; (T.W.); (Y.P.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; (T.W.); (Y.P.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
- The UVA Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
62
|
Zagorec-Marks W, Dodson LG, Weis P, Schneider EK, Kappes MM, Weber JM. Intrinsic Structure and Electronic Spectrum of Deprotonated Biliverdin: Cryogenic Ion Spectroscopy and Ion Mobility. J Am Chem Soc 2021; 143:17778-17785. [PMID: 34637616 DOI: 10.1021/jacs.1c08701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the structural and spectroscopic properties of singly deprotonated biliverdin anions in vacuo, using a combination of cryogenic ion spectroscopy, ion mobility spectrometry, and density functional theory. The ion mobility results show that at least two conformers are populated, with the dominant conformer at 75-90% relative abundance. The vibrational NH stretching signatures are sensitive to the tetrapyrrole structure, and they indicate that the tetrapyrrole system is in a helical conformation, consistent with simulated ion mobility collision cross sections. The vibrational spectrum in the fingerprint region of this singly deprotonated species shows that the two propionate groups share the remaining acidic proton. The S1 band of the electronic spectrum in vacuo is broad, despite ion trap temperatures of 20 K during ion preparation, with a congested Franck-Condon envelope showing partially resolved vibrational features. The vertical transition exhibits a small solvatochromic red shift (-320 cm-1) in aqueous solution.
Collapse
Affiliation(s)
- Wyatt Zagorec-Marks
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Leah G Dodson
- JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Erik K Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
63
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
64
|
Tan ZZ, Li XD, Kong CD, Sha N, Hou YN, Zhao KH. Engineering Bacteria to Monitor the Bleeding of Animals Using Far-Red Fluorescence. ACS Sens 2021; 6:1770-1778. [PMID: 33978416 DOI: 10.1021/acssensors.0c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microorganisms living in animals can function as drug delivery systems or as detectors for some diseases. Here, we developed a biosensor constructed by the deletion of hemF and harboring ho1, chuA, and bdfp1.6 in Escherichia coli. HemF is an enzyme involved in heme synthesis in E. coli. ChuA and HO1 can transfer extracellular heme into cells and generate biliverdin (BV). BDFP1.6 can bind BV autocatalytically, and it emits a far-red fluorescence signal at 667 nm. Therefore, we named this biosensor as the far-red light for bleeding detector (FRLBD). Our results indicated that the FRLBD was highly efficient and specific for detecting heme or blood in vitro. Moreover, the FRLBD could be used to detect bleeding in the zebrafish induced by aspirin, and a convolutional neural network was an appropriate model to identify the fluorescence features in the images.
Collapse
Affiliation(s)
- Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiao-Dan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Chao-Di Kong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Na Sha
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
65
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
66
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
67
|
Redlich MJ, Prall B, Canto-Said E, Busarov Y, Shirinyan-Tuka L, Meah A, Lim H. High-pulse-energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fiber laser. Sci Rep 2021; 11:7950. [PMID: 33846422 PMCID: PMC8041775 DOI: 10.1038/s41598-021-86924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Here we demonstrate high-pulse-energy multiphoton microscopy (MPM) for intravital imaging of neurons and oligodendrocytes in the murine brain. Pulses with an order of magnitude higher energy (~ 10 nJ) were employed from a ytterbium doped fiber laser source at a 1-MHz repetition rate, as compared to the standard 80-MHz Ti:Sapphire laser. Intravital imaging was performed on mice expressing common fluorescent proteins, including green (GFP) and yellow fluorescent proteins (YFP), and TagRFPt. One fifth of the average power could be used for superior depths of MPM imaging, as compared to the Ti:Sapphire laser: A depth of ~ 860 µm was obtained by imaging the Thy1-YFP brain in vivo with 6.5 mW, and cortical myelin as deep as 400 µm ex vivo by intrinsic third-harmonic generation using 50 mW. The substantially higher pulse energy enables novel regimes of photophysics to be exploited for microscopic imaging. The limitation from higher order phototoxicity is also discussed.
Collapse
Affiliation(s)
- Michael J Redlich
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Brad Prall
- Clark-MXR, Inc., 7300 W. Huron River Drive, Dexter, MI, 48130, USA
| | | | - Yevgeniy Busarov
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA
| | | | - Arafat Meah
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA
| | - Hyungsik Lim
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA.
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
68
|
Tachibana SR, Tang L, Chen C, Zhu L, Takeda Y, Fushimi K, Seevers TK, Narikawa R, Sato M, Fang C. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119379. [PMID: 33401182 DOI: 10.1016/j.saa.2020.119379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.
Collapse
Affiliation(s)
- Sean R Tachibana
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Yuka Takeda
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Travis K Seevers
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo, 153-8902 Tokyo, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States.
| |
Collapse
|
69
|
Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:e2025094118. [PMID: 33727422 PMCID: PMC8000052 DOI: 10.1073/pnas.2025094118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Zhong Ren
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Cong Wang
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Heewhan Shin
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616;
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois, Chicago, IL 60607;
- Department of Ophthalmology and Vision Sciences, University of Illinois, Chicago, IL 60607
| |
Collapse
|
70
|
Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Stojković EA, Schmidt M. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure 2021; 29:743-754.e4. [PMID: 33756101 DOI: 10.1016/j.str.2021.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.
Collapse
Affiliation(s)
- Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Juan Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Luis Aldama
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Vukica Šrajer
- The University of Chicago, Center for Advanced Radiation Sources, 9700 South Cass Avenue, Bldg 434B, Argonne, IL 60439, USA
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA.
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
71
|
Abstract
Near-infrared (NIR) luminescent materials have emerged as a growing field of interest, particularly for imaging and optics applications in biology, chemistry, and physics. However, the development of materials for this and other use cases has been hindered by a range of issues that prevents their widespread use beyond benchtop research. This review explores emerging trends in some of the most promising NIR materials and their applications. In particular, we focus on how a more comprehensive understanding of intrinsic NIR material properties might allow researchers to better leverage these traits for innovative and robust applications in biological and physical sciences.
Collapse
Affiliation(s)
- Christopher T. Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
72
|
Huang W, Luo S, Yang D, Zhang S. Applications of smartphone-based near-infrared (NIR) imaging, measurement, and spectroscopy technologies to point-of-care (POC) diagnostics. J Zhejiang Univ Sci B 2021; 22:171-189. [PMID: 33719223 DOI: 10.1631/jzus.b2000388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of point-of-care (POC) diagnostics is important in public health. With the support of smartphones, POC diagnostic technologies can be greatly improved. This opportunity has arisen from not only the large number and fast spread of cell-phones across the world but also their improved imaging/diagnostic functions. As a tool, the smartphone is regarded as part of a compact, portable, and low-cost system for real-time POC, even in areas with few resources. By combining near-infrared (NIR) imaging, measurement, and spectroscopy techniques, pathogens can be detected with high sensitivity. The whole process is rapid, accurate, and low-cost, and will set the future trend for POC diagnostics. In this review, the development of smartphone-based NIR fluorescent imaging technology was described, and the quality and potential of POC applications were discussed.
Collapse
Affiliation(s)
- Wenjing Huang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | - Dong Yang
- Division of Biomedical Engineering, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA
| | - Sheng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China. .,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
73
|
Grigorenko BL, Polyakov IV, Nemukhin AV. Modeling photophysical properties of the bacteriophytochrome-based fluorescent protein IFP1.4. J Chem Phys 2021; 154:065101. [PMID: 33588533 DOI: 10.1063/5.0026475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An enhanced interest in the phytochrome-based fluorescent proteins is explained by their ability to absorb and emit light in the far-red and infra-red regions particularly suitable for bioimaging. The fluorescent protein IFP1.4 was engineered from the chromophore-binding domain of a bacteriophytochrome in attempts to increase the fluorescence quantum yield. We report the results of simulations of structures in the ground S0 and excited S1 electronic states of IFP1.4 using the methods of quantum chemistry and quantum mechanics/molecular mechanics. We construct different protonation states of the biliverdin (BV) chromophore in the red-absorbing form of the protein by moving protons from the BV pyrrole rings to a suitable acceptor within the system and show that these structures are close in energy but differ by absorption bands. For the first time, we report structures of the minimum energy conical intersection points S1/S0 on the energy surfaces of BV in the protein environment and describe their connection to the local minima in the excited S1 state. These simulations allow us to characterize the deactivation routes in IFP1.4.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| |
Collapse
|
74
|
A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa. mSystems 2021; 6:6/1/e00933-20. [PMID: 33531406 PMCID: PMC7857532 DOI: 10.1128/msystems.00933-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Heme is an essential metabolite for most life on earth. Bacterial pathogens almost universally require iron to infect a host, often acquiring this nutrient in the form of heme. The Gram-negative pathogen Pseudomonas aeruginosa is no exception, where heme acquisition and metabolism are known to be crucial for both chronic and acute infections. To unveil unknown genes and pathways that could play a role with heme metabolic flux in this pathogen, we devised an omic-based approach we dubbed “Met-Seq,” for metabolite-coupled transposon sequencing. Met-Seq couples a biosensor with fluorescence-activated cell sorting (FACS) and massively parallel sequencing, allowing for direct identification of genes associated with metabolic changes. In this work, we first construct and validate a heme biosensor for use with P. aeruginosa and exploit Met-Seq to identify 188 genes that potentially influence intracellular heme levels. Identified genes largely consisted of metabolic pathways not previously associated with heme, including many secreted virulence effectors, as well as 11 predicted small RNAs (sRNAs) and riboswitches whose functions are not currently understood. We verify that five Met-Seq hits affect intracellular heme levels; a predicted extracytoplasmic function (ECF) factor, a phospholipid acquisition system, heme biosynthesis regulator Dnr, and two predicted antibiotic monooxygenase (ABM) domains of unknown function (PA0709 and PA3390). Finally, we demonstrate that PA0709 and PA3390 are novel heme-binding proteins. Our data suggest that Met-Seq could be extrapolated to other biological systems and metabolites for which there is an available biosensor, and provides a new template for further exploration of iron/heme regulation and metabolism in P. aeruginosa and other pathogens. IMPORTANCE The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Met-Seq uses the powerful combination of fluorescent biosensors, fluorescence-activated cell sorting (FACS), and next-generation sequencing (NGS) to rapidly identify genes that influence the levels of specific intracellular metabolites. For proof of concept, we create and test a heme biosensor and then exploit Met-Seq to identify novel genes involved in the regulation of heme in the pathogen Pseudomonas aeruginosa. Met-Seq-generated data were largely comprised of genes which have not previously been reported to influence heme levels in this pathogen, two of which we verify as novel heme-binding proteins. As heme is a required metabolite for host infection in P. aeruginosa and most other pathogens, our studies provide a new list of targets for potential antimicrobial therapies and shed additional light on the balance between infection, heme uptake, and heme biosynthesis.
Collapse
|
75
|
Camarca A, Varriale A, Capo A, Pennacchio A, Calabrese A, Giannattasio C, Murillo Almuzara C, D’Auria S, Staiano M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. SENSORS (BASEL, SWITZERLAND) 2021; 21:906. [PMID: 33572812 PMCID: PMC7866296 DOI: 10.3390/s21030906] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this work is to provide an exhaustive overview of the emerging biosensor technologies for the detection of analytes of interest for food, environment, security, and health. Over the years, biosensors have acquired increasing importance in a wide range of applications due to synergistic studies of various scientific disciplines, determining their great commercial potential and revealing how nanotechnology and biotechnology can be strictly connected. In the present scenario, biosensors have increased their detection limit and sensitivity unthinkable until a few years ago. The most widely used biosensors are optical-based devices such as surface plasmon resonance (SPR)-based biosensors and fluorescence-based biosensors. Here, we will review them by highlighting how the progress in their design and development could impact our daily life.
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Antonio Varriale
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
- URT-ISA at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessandro Capo
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Angela Pennacchio
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Alessia Calabrese
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Cristina Giannattasio
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Carlos Murillo Almuzara
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Sabato D’Auria
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Maria Staiano
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| |
Collapse
|
76
|
Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JTM. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Commun Chem 2021; 4:3. [PMID: 34746444 PMCID: PMC8570541 DOI: 10.1038/s42004-020-00437-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- Present Address: School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Mikhail Baloban
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Swetta A. Jansen
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Daria M. Shcherbakova
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Vladislav V. Verkhusha
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
| | - John T. M. Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| |
Collapse
|
77
|
Abstract
Fluorescence microscopy is advantageous for investigating biological processes and mechanisms in living cells. One of the most important considerations when designing an experiment is the selection of an appropriate fluorescent probe. Equally important is deciding how the probe will be attached to the protein of interest. The advantages and disadvantages of different fluorescent probe types and their respective labeling methods are discussed to provide an overview on selecting appropriate fluorophores and labeling systems for fluorescence-based assays. Protocols are outlined when appropriate.
Collapse
|
78
|
Montecinos-Franjola F, Lin JY, Rodriguez EA. Fluorescent proteins for in vivo imaging, where's the biliverdin? Biochem Soc Trans 2020; 48:2657-2667. [PMID: 33196077 DOI: 10.1042/bst20200444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10-18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.
Collapse
Affiliation(s)
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC 20052, U.S.A
| |
Collapse
|
79
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
80
|
Chen M, Yan C, Ma Y, Zhang XE. A tandem near-infrared fluorescence complementation system with enhanced fluorescence for imaging protein-protein interactions in vivo. Biomaterials 2020; 268:120544. [PMID: 33253968 DOI: 10.1016/j.biomaterials.2020.120544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Bimolecular fluorescence complementation (BiFC) is an effective tool for visualizing protein-protein interactions (PPIs). However, a BiFC system with long wavelength and high fluorescence intensity is yet to be developed for in vivo imaging. In this study, we constructed a tandem near-infrared BiFC (tBiFC) system by splitting a near-infrared phytochrome, IFP2.0. This system allows the identification and visualization of PPIs in live cells and living mice. The photophysical properties of the complementary fluorescence of the tBiFC system were similar to those of its parent protein IFP2.0, but the intensity was twice that of a single-copy IFP2.0-based BiFC system. Compared with previously reported near infrared BiFC systems-iRFP-BiFC and IFP1.4-BiFC-the signal intensity of the tBiFC system increased by ~1.48- and ~400-fold for weak PPIs in living cells, and ~1.51- and ~8-fold for strong PPIs, respectively. When applied to imaging PPIs in live mice, the complementary fluorescence intensity of the tBiFC system was also significantly higher than that of the other near-infrared BiFC systems. The use of this bright phytochrome in a tandem arrangement constitutes a powerful tool for imaging PPIs in the near infrared region.
Collapse
Affiliation(s)
- Minghai Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chuang Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xian-En Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
81
|
Abstract
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Collapse
|
82
|
Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, Zhuo Y, Zhang Y, Wang Y, Qian C, Tan K, Feng J, Dong H, Lin D, Cui G, Li Y. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 2020; 17:1156-1166. [PMID: 33087905 PMCID: PMC7648260 DOI: 10.1038/s41592-020-00981-9] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
Dopamine (DA) plays a critical role in the brain, and the ability to directly measure dopaminergic activity is essential for understanding its physiological functions. We therefore developed red fluorescent G-protein-coupled receptor-activation-based DA (GRABDA) sensors and optimized versions of green fluorescent GRABDA sensors. In response to extracellular DA, both the red and green GRABDA sensors exhibit a large increase in fluorescence, with subcellular resolution, subsecond kinetics and nanomolar-to-submicromolar affinity. Moreover, the GRABDA sensors resolve evoked DA release in mouse brain slices, detect evoked compartmental DA release from a single neuron in live flies and report optogenetically elicited nigrostriatal DA release as well as mesoaccumbens dopaminergic activity during sexual behavior in freely behaving mice. Coexpressing red GRABDA with either green GRABDA or the calcium indicator GCaMP6s allows tracking of dopaminergic signaling and neuronal activity in distinct circuits in vivo.
Collapse
Affiliation(s)
- Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Bing Dai
- Neuroscience Institute, Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Cheng Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
83
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
84
|
Jenkins AJ, Gottlieb SM, Chang CW, Kim PW, Hayer RJ, Hanke SJ, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Reverse Photodynamics of the Canonical Red/Green Cyanobacteriochrome Family. Biochemistry 2020; 59:4015-4028. [PMID: 33021375 DOI: 10.1021/acs.biochem.0c00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15EPg → 15ZPr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15ZPr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.
Collapse
Affiliation(s)
- Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sean Marc Gottlieb
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W Kim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J Hayer
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J Hanke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
85
|
Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020; 45:889-905. [PMID: 32660810 PMCID: PMC7502535 DOI: 10.1016/j.tibs.2020.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cell signaling networks are intricately regulated in time and space to determine the responses and fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors enable the direct visualization of these spatiotemporal signaling dynamics within the native biological context, and have therefore become powerful molecular tools whose unique benefits are being used to address challenging biological questions. We first review the basis of biosensor design and remark on recent technologies that are accelerating biosensor development. We then discuss a few of the latest advances in the development and application of genetically encodable fluorescent and bioluminescent biosensors that have led to scientific or technological breakthroughs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
86
|
Aissa HB, Gautier A. Engineering Glowing Chemogenetic Hybrids for Spying on Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hela Ben Aissa
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
| | - Arnaud Gautier
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
- Institut Universitaire de France Paris France
| |
Collapse
|
87
|
Zhu M, Lu D, Lian Q, Wu S, Wang W, Lyon LA, Wang W, Bártolo P, Dickinson M, Saunders BR. Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging. NANOSCALE ADVANCES 2020; 2:4261-4271. [PMID: 36132786 PMCID: PMC9419105 DOI: 10.1039/d0na00581a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/12/2020] [Indexed: 05/08/2023]
Abstract
Near infra-red (NIR) fluorescence is a desirable property for probe particles because such deeply penetrating light enables remote reporting of the local environment in complex surroundings and imaging. Here, two NIR non-radiative energy transfer (NRET) fluorophores (Cy5 and Cy5.5) are coupled to preformed pH-responsive poly(ethylacrylate-methacrylic acid-divinylbenzene) microgel particles (PEA-MAA-5/5.5 MGs) to obtain new NIR fluorescent probes that are cytocompatible and swell strongly. NIR ratiometric photoluminescence (PL) intensity analysis enables reporting of pH-triggered PEA-MAA-5/5.5 MG particle swelling ratios over a very wide range (from 1-90). The dispersions have greatly improved colloidal stability compared to a reference temperature-responsive NIR MG based on poly(N-isopropylacrylamide) (PNP-5/5.5). We also show that the wavelength of maximum PL intensity (λ max) is a second PL parameter that enables remote reporting of swelling for both PEA-MAA-5/5.5 and PNP-5/5.5 MGs. After internalization the PEA-MAA-5/5.5 MGs are successfully imaged in stem cells using NIR light. They are also imaged after subcutaneous injection into model tissue using NIR light. The new NIR PEA-MAA-5/5.5 MGs have excellent potential for reporting their swelling states (and any changes) within physiological settings as well as very high ionic strength environments (e.g., waste water).
Collapse
Affiliation(s)
- Mingning Zhu
- Department of Materials, University of Manchester, MSS Tower Manchester M13 9PL UK
| | - Dongdong Lu
- Department of Materials, University of Manchester, MSS Tower Manchester M13 9PL UK
| | - Qing Lian
- Department of Materials, University of Manchester, MSS Tower Manchester M13 9PL UK
| | - Shanglin Wu
- Department of Materials, University of Manchester, MSS Tower Manchester M13 9PL UK
| | - Wenkai Wang
- Department of Materials, University of Manchester, MSS Tower Manchester M13 9PL UK
| | - L Andrew Lyon
- Schmid College of Science and Technology, Chapman University Orange CA 92866 USA
- Fowler School of Engineering, Chapman University Orange CA 92866 USA
| | - Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester Manchester M13 9PL UK
| | - Paulo Bártolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester Manchester M13 9PL UK
| | - Mark Dickinson
- Photon Science Institute, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Brian R Saunders
- Department of Materials, University of Manchester, MSS Tower Manchester M13 9PL UK
| |
Collapse
|
88
|
Chia HE, Zuo T, Koropatkin NM, Marsh EG, Biteen JS. Imaging living obligate anaerobic bacteria with bilin-binding fluorescent proteins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:1-6. [PMID: 33313576 PMCID: PMC7731933 DOI: 10.1016/j.crmicr.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescent tools such as green fluorescent protein (GFP) have been used extensively as reporters in biochemistry and microbiology, but GFP and other conventional fluorescent proteins are restricted to aerobic environments. This limitation precludes fluorescence studies of anaerobic ecologies including polymicrobial communities in the human gut microbiome and in soil microbiomes, which profoundly affect health, disease, and the environment. To address this limitation, we describe the first implementation of two bilin-binding fluorescent proteins (BBFPs), UnaG and IFP2.0, as oxygen-independent fluorescent labels for live-cell imaging in anaerobic bacteria. Expression of UnaG or IFP2.0 in the prevalent gut bacterium Bacteroides thetaiotaomicron (B. theta) results in detectable fluorescence upon the addition of the bilirubin or biliverdin ligand, even in anaerobic conditions. Furthermore, these BBFPs can be used in two-color imaging to differentiate cells expressing either UnaG or IFP2.0; UnaG and IFP2.0 can also be used to distinguish B. theta from other common gut bacterial species in mixed-culture live-cell imaging. BBFPs are promising fluorescent tools for live-cell imaging investigations of otherwise inaccessible anaerobic polymicrobial communities.
Collapse
Affiliation(s)
- Hannah E. Chia
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Julie S. Biteen
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
89
|
Chen H, Li D, Cai Y, Wu LF, Song T. Bacteriophytochrome from Magnetospirillum magneticum affects phototactic behavior in response to light. FEMS Microbiol Lett 2020; 367:5895327. [PMID: 32821904 DOI: 10.1093/femsle/fnaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/19/2020] [Indexed: 01/03/2023] Open
Abstract
Phytochromes are a class of photoreceptors found in plants and in some fungi, cyanobacteria, and photoautotrophic and heterotrophic bacteria. Although phytochromes have been structurally characterized in some bacteria, their biological and ecological roles in magnetotactic bacteria remain unexplored. Here, we describe the biochemical characterization of recombinant bacteriophytochrome (BphP) from magnetotactic bacteria Magnetospirillum magneticum AMB-1 (MmBphP). The recombinant MmBphP displays all the characteristic features, including the property of binding to biliverdin (BV), of a genuine phytochrome. Site-directed mutagenesis identified that cysteine-14 is important for chromophore covalent binding and photoreversibility. Arginine-240 and histidine-246 play key roles in binding to BV. The N-terminal photosensory core domain of MmBphP lacking the C-terminus found in other phytochromes is sufficient to exhibit the characteristic red/far-red-light-induced fast photoreversibility of phytochromes. Moreover, our results showed MmBphP is involved in the phototactic response, suggesting its conservative role as a stress protectant. This finding provided us a better understanding of the physiological function of this group of photoreceptors and photoresponse of magnetotactic bacteria.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS, F-13402 Marseille, France.,LCB, Aix Marseille University, CNRS, F-13402 Marseille, France
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
90
|
Fushimi K, Hoshino H, Shinozaki-Narikawa N, Kuwasaki Y, Miyake K, Nakajima T, Sato M, Kano F, Narikawa R. The Cruciality of Single Amino Acid Replacement for the Spectral Tuning of Biliverdin-Binding Cyanobacteriochromes. Int J Mol Sci 2020; 21:ijms21176278. [PMID: 32872628 PMCID: PMC7504144 DOI: 10.3390/ijms21176278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/27/2023] Open
Abstract
Cyanobacteriochromes (CBCRs), which are known as linear tetrapyrrole-binding photoreceptors, to date can only be detected from cyanobacteria. They can perceive light only in a small unit, which is categorized into various lineages in correlation with their spectral and structural characteristics. Recently, we have succeeded in identifying specific molecules, which can incorporate mammalian intrinsic biliverdin (BV), from the expanded red/green (XRG) CBCR lineage and in converting BV-rejective molecules into BV-acceptable ones with the elucidation of the structural basis. Among the BV-acceptable molecules, AM1_1870g3_BV4 shows a spectral red-shift in comparison with other molecules, while NpF2164g5_BV4 does not show photoconversion but stably shows a near-infrared (NIR) fluorescence. In this study, we found that AM1_1870g3_BV4 had a specific Tyr residue near the d-ring of the chromophore, while others had a highly conserved Leu residue. The replacement of this Tyr residue with Leu in AM1_1870g3_BV4 resulted in a blue-shift of absorption peak. In contrast, reverse replacement in NpF2164g5_BV4 resulted in a red-shift of absorption and fluorescence peaks, which applies to fluorescence bio-imaging in mammalian cells. Notably, the same Tyr/Leu-dependent color-tuning is also observed for the CBCRs belonging to the other lineage, which indicates common molecular mechanisms.
Collapse
Affiliation(s)
- Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
| | - Hiroki Hoshino
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; (N.S.-N.); (F.K.)
| | - Yuto Kuwasaki
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
| | - Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Moritoshi Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; (N.S.-N.); (F.K.)
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
- Correspondence: ; Tel.: +81-54-238-4783
| |
Collapse
|
91
|
Kobachi K, Kuno S, Sato S, Sumiyama K, Matsuda M, Terai K. Biliverdin Reductase-A Deficiency Brighten and Sensitize Biliverdin-binding Chromoproteins. Cell Struct Funct 2020; 45:131-141. [PMID: 32581154 PMCID: PMC10511041 DOI: 10.1247/csf.20010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/20/2020] [Indexed: 11/11/2022] Open
Abstract
Tissue absorbance, light scattering, and autofluorescence are significantly lower in the near-infrared (NIR) range than in the visible range. Because of these advantages, NIR fluorescent proteins (FPs) are in high demand for in vivo imaging. Nevertheless, application of NIR FPs such as iRFP is still limited due to their dimness in mammalian cells. In contrast to GFP and its variants, iRFP requires biliverdin (BV) as a chromophore. The dimness of iRFP is at least partly due to rapid reduction of BV by biliverdin reductase-A (BLVRA). Here, we established biliverdin reductase-a knockout (Blvra-/-) mice to increase the intracellular BV concentration and, thereby, to enhance iRFP fluorescence intensity. As anticipated, iRFP fluorescence intensity was significantly increased in all examined tissues of Blvra-/- mice. Similarly, the genetically encoded calcium indicator NIR-GECO1, which is engineered based on another NIR FP, mIFP, exhibited a marked increase in fluorescence intensity in mouse embryonic fibroblasts derived from Blvra-/- mice. We expanded this approach to an NIR light-sensing optogenetic tool, the BphP1-PpsR2 system, which also requires BV as a chromophore. Again, deletion of the Blvra gene markedly enhanced the light response in HeLa cells. These results indicate that the Blvra-/- mouse is a versatile tool for the in vivo application of NIR FPs and NIR light-sensing optogenetic tools.Key words: in vivo imaging, near-infrared fluorescent protein, biliverdin, biliverdin reductase, optogenetic tool.
Collapse
Affiliation(s)
- Kenju Kobachi
- Laboratory of Bioimaging and Cell Signaling, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
| | - Sota Kuno
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University
| | - Shinya Sato
- Laboratory of Bioimaging and Cell Signaling, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
92
|
Li C, Tebo AG, Thauvin M, Plamont M, Volovitch M, Morin X, Vriz S, Gautier A. A Far‐Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chenge Li
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
- Present address: Department of Obstetrics and Gynecology Ren Ji Hospital School of Medicine Shanghai Jiao Tong University China
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Ren Ji Hospital School of Medicine Shanghai Jiao Tong University China
| | - Alison G. Tebo
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
- Sorbonne Université École Normale Supérieure Université PSL CNRS, Laboratoire des biomolécules, LBM 75005 Paris France
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France CNRS INSERM Université PSL Paris France
- Sorbonne Université Paris France
| | - Marie‐Aude Plamont
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France CNRS INSERM Université PSL Paris France
- École Normale Supérieure Université PSL Department of biology Paris France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS) École Normale Supérieure CNRS INSERM Université PSL 75005 Paris France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France CNRS INSERM Université PSL Paris France
- Université de Paris Faculty of Science 75006 Paris France
| | - Arnaud Gautier
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
- Sorbonne Université École Normale Supérieure Université PSL CNRS, Laboratoire des biomolécules, LBM 75005 Paris France
- Institut Universitaire de France France
| |
Collapse
|
93
|
Li C, Tebo AG, Thauvin M, Plamont M, Volovitch M, Morin X, Vriz S, Gautier A. A Far‐Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging. Angew Chem Int Ed Engl 2020; 59:17917-17923. [DOI: 10.1002/anie.202006576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Chenge Li
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
- Present address: Department of Obstetrics and Gynecology Ren Ji Hospital School of Medicine Shanghai Jiao Tong University China
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Ren Ji Hospital School of Medicine Shanghai Jiao Tong University China
| | - Alison G. Tebo
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
- Sorbonne Université École Normale Supérieure Université PSL CNRS, Laboratoire des biomolécules, LBM 75005 Paris France
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France CNRS INSERM Université PSL Paris France
- Sorbonne Université Paris France
| | - Marie‐Aude Plamont
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France CNRS INSERM Université PSL Paris France
- École Normale Supérieure Université PSL Department of biology Paris France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS) École Normale Supérieure CNRS INSERM Université PSL 75005 Paris France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France CNRS INSERM Université PSL Paris France
- Université de Paris Faculty of Science 75006 Paris France
| | - Arnaud Gautier
- PASTEUR Department of Chemistry École Normale Supérieure Université PSL Sorbonne Université CNRS 75005 Paris France
- Sorbonne Université École Normale Supérieure Université PSL CNRS, Laboratoire des biomolécules, LBM 75005 Paris France
- Institut Universitaire de France France
| |
Collapse
|
94
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
95
|
Bozhanova NG, Gavrikov AS, Mishin AS, Meiler J. DiB-splits: nature-guided design of a novel fluorescent labeling split system. Sci Rep 2020; 10:11049. [PMID: 32632329 PMCID: PMC7338535 DOI: 10.1038/s41598-020-67095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
Fluorogen-activating proteins (FAPs) are innovative fluorescent probes combining advantages of genetically-encoded proteins such as green fluorescent protein and externally added fluorogens that allow for highly tunable and on demand fluorescent signaling. Previously, a panel of green- and red-emitting FAPs has been created from bacterial lipocalin Blc (named DiBs). Here we present a rational design as well as functional and structural characterization of the first self-assembling FAP split system, DiB-splits. This new system decreases the size of the FAP label to ~8-12 kDa while preserving DiBs' unique properties: strong increase in fluorescence intensity of the chromophore upon binding, binding affinities to the chromophore in nanomolar to low micromolar range, and high photostability of the protein-ligand complex. These properties allow for use of DiB-splits for wide-field, confocal, and super-resolution fluorescence microscopy. DiB-splits also represent an attractive starting point for further design of a protein-protein interaction detection system as well as novel FAP-based sensors.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany.
| |
Collapse
|
96
|
Gautier A, Tebo AG. Sensing cellular biochemistry with fluorescent chemical-genetic hybrids. Curr Opin Chem Biol 2020; 57:58-64. [PMID: 32580134 DOI: 10.1016/j.cbpa.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
Fluorescent biosensors are powerful tools for the detection of biochemical events inside cells with high spatiotemporal resolution. Biosensors based on fluorescent proteins often suffer from issues with photostability and brightness. On the other hand, hybrid, chemical-genetic systems present unique opportunities to combine the strengths of synthetic, organic chemistry with biological macromolecules to generate exquisitely tailored semisynthetic sensors.
Collapse
Affiliation(s)
- Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France; Institut Universitaire de France, France.
| | - Alison G Tebo
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| |
Collapse
|
97
|
An F, Chen N, Conlon WJ, Hachey JS, Xin J, Aras O, Rodriguez EA, Ting R. Small ultra-red fluorescent protein nanoparticles as exogenous probes for noninvasive tumor imaging in vivo. Int J Biol Macromol 2020; 153:100-106. [PMID: 32105698 PMCID: PMC7493049 DOI: 10.1016/j.ijbiomac.2020.02.253] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/19/2022]
Abstract
Nanoparticles are excellent imaging agents for cancer, but variability in chemical structure, racemic mixtures, and addition of heavy metals hinders FDA approval in the United States. We developed a small ultra-red fluorescent protein, named smURFP, to have optical properties similar to the small-molecule Cy5, a heptamethine subclass of cyanine dyes (Ex/Em = 642/670 nm). smURFP has a fluorescence quantum yield of 18% and expresses so well in E. coli, that gram quantities of fluorescent protein are purified from cultures in the laboratory. In this research, the fluorescent protein smURFP was combined with bovine serum albumin into fluorescent protein nanoparticles. These nanoparticles are fluorescent with a quantum yield of 17% and 12-14 nm in diameter. The far-red fluorescent protein nanoparticles noninvasively image tumors in living mice via the enhanced permeation and retention (EPR) mechanism. This manuscript describes the use of a new fluorescent protein nanoparticle for in vivo fluorescent imaging. This protein nanoparticle core should prove useful as a biomacromolecular scaffold, which could bear extended chemical modifications for studies, such as the in vivo imaging of fluorescent protein nanoparticles targeted to primary and metastatic cancer, theranostic treatment, and/or dual-modality imaging with positron emission tomography for entire human imaging.
Collapse
Affiliation(s)
- Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, PR China.; Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nandi Chen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.; Department of Gastrointestinal Surgery, The Second Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, China
| | - William J Conlon
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA
| | - Justin S Hachey
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA..
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA..
| |
Collapse
|
98
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
99
|
Das S, Zhao L, Crooke SN, Tran L, Bhattacharya S, Gaucher EA, Finn MG. Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules 2020; 21:2432-2439. [DOI: 10.1021/acs.biomac.0c00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Lily Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Eric A. Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| |
Collapse
|
100
|
Liu J, Cui Z. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjug Chem 2020; 31:1587-1595. [PMID: 32379972 DOI: 10.1021/acs.bioconjchem.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live cell imaging brings us into a new era of direct visualization of biological processes and molecular dynamics in real time. To visualize dynamic cellular processes and virus-host interactions, fluorescent labeling of proteins of interest is often necessary. Fluorescent proteins are widely used for protein imaging, but they have some intrinsic deficiencies such as big size, photobleaching, and spectrum restriction. Thus, a variety of labeling strategies have been established and continuously developed. To protect the natural biological function(s) of the protein of interest, especially in viral life cycle, in vivo labeling requires smaller-sized tags, more specificity, and lower cytotoxicity. Here, we briefly summarized the principles, development, and their applications mainly in the virology field of three strategies for fluorescent labeling of proteins of interest including self-labeling enzyme derivatives, stainable peptide tags, and non-canonical amino acid incorporation. These labeling techniques greatly expand the fluorescent labeling toolbox and provide new opportunities for imaging biological processes.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|