51
|
Rahmouni M, De Marco L, Spadoni JL, Tison M, Medina-Santos R, Labib T, Noirel J, Tamouza R, Limou S, Delaneau O, Fellay J, Bensussan A, Le Clerc S, McLaren PJ, Zagury JF. The HLA-B*57:01 allele corresponds to a very large MHC haploblock likely explaining its massive effect for HIV-1 elite control. Front Immunol 2023; 14:1305856. [PMID: 38146367 PMCID: PMC10749428 DOI: 10.3389/fimmu.2023.1305856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction We have reanalyzed the genomic data of the International Collaboration for the Genomics of HIV (ICGH), centering on HIV-1 Elite Controllers. Methods We performed a genome-wide Association Study comparing 543 HIV Elite Controllers with 3,272 uninfected controls of European descent. Using the latest database for imputation, we analyzed 35,552 Single Nucleotide Polymorphisms (SNPs) within the Major Histocompatibility Complex (MHC) region. Results Our analysis identified 2,626 SNPs significantly associated (p<5. 10-8) with elite control of HIV-1 infection, including well-established MHC signals such as the rs2395029-G allele which tags HLA-B*57:01. A thorough investigation of SNPs in linkage disequilibrium with rs2395029 revealed an extensive haploblock spanning 1.9 megabases in the MHC region tagging HLA-B*57:01, comprising 379 SNP alleles impacting 72 genes. This haploblock contains damaging variations in proteins like NOTCH4 and DXO and is also associated with a strong differential pattern of expression of multiple MHC genes such as HLA-B, MICB, and ZBTB12. The study was expanded to include two cohorts of seropositive African-American individuals, where a haploblock tagging the HLA-B*57:03 allele was similarly associated with control of viral load. The mRNA expression profile of this haploblock in African Americans closely mirrored that in the European cohort. Discussion These findings suggest that additional molecular mechanisms beyond the conventional antigen-presenting role of class I HLA molecules may contribute to the observed influence of HLA-B*57:01/B*57:03 alleles on HIV-1 elite control. Overall, this study has uncovered a large haploblock associated with HLA-B*57 alleles, providing novel insights into their massive effect on HIV-1 elite control.
Collapse
Affiliation(s)
- Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Lorenzo De Marco
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Maxime Tison
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Josselin Noirel
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
| | - Sophie Limou
- Nantes Université, Ecole Centrale Nantes, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), Nantes, France
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Paul J. McLaren
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| |
Collapse
|
52
|
Tohidi N, Manshadi SAD, Hajiabdolbaghi M. Association of TREX1 polymorphism with disease progression in human immunodeficiency virus type-1 (HIV-1) infected patients. Virus Genes 2023; 59:831-835. [PMID: 37728706 DOI: 10.1007/s11262-023-02032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The time interval between HIV-1 infection and AIDS development is not the same in all patients and depends largely on the genetic background of the individual. Polymorphisms in the TREX1 gene, the main enzyme in the clearance of cytosolic DNA, affect type 1 interferon-mediated inflammatory response in HIV-1 infection. We aimed to study the role of a single nucleotide polymorphism (rs3135941) of the TREX1 gene and the rate of disease progression in patients infected with HIV-1. A total of 190 HIV-1 infected patients were recruited. Patients' demographic and laboratory data including CD4 counts, viral load, and antiretroviral therapy (ART) were collected. The genotype of rs3135941 was determined by a PCR-SSP method. The rate of progression to AIDS was calculated with Kaplan-Meier survival analysis using Stata software. The patients were divided into rapid and slow progressors based on time interval of CD4 drop below 350/µl. Kaplan-Meier analysis revealed an accelerated disease progression in patients with TC and CC genotypes (HR = 1.49, 95% CI = 1.01-2.17). The mean values of the first 5-year CD4 counts were significantly different in patients who had CC and TC genotypes compared to the TT group (p = 0.036). The result of this study emphasizes the importance of TREX1 polymorphism in HIV-1 progression. These data warrant further investigation into the role of other polymorphisms of TREX1.
Collapse
Affiliation(s)
- Nastaran Tohidi
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Seyed Ali Dehghan Manshadi
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Mahboubeh Hajiabdolbaghi
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.
- Iranian Research Center of HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Hake A, Germann A, de Beer C, Thielen A, Däumer M, Preiser W, von Briesen H, Pfeifer N. Insights to HIV-1 coreceptor usage by estimating HLA adaptation with Bayesian generalized linear mixed models. PLoS Comput Biol 2023; 19:e1010355. [PMID: 38127856 PMCID: PMC10769057 DOI: 10.1371/journal.pcbi.1010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/05/2024] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The mechanisms triggering the human immunodeficiency virus type I (HIV-1) to switch the coreceptor usage from CCR5 to CXCR4 during the course of infection are not entirely understood. While low CD4+ T cell counts are associated with CXCR4 usage, a predominance of CXCR4 usage with still high CD4+ T cell counts remains puzzling. Here, we explore the hypothesis that viral adaptation to the human leukocyte antigen (HLA) complex, especially to the HLA class II alleles, contributes to the coreceptor switch. To this end, we sequence the viral gag and env protein with corresponding HLA class I and II alleles of a new cohort of 312 treatment-naive, subtype C, chronically-infected HIV-1 patients from South Africa. To estimate HLA adaptation, we develop a novel computational approach using Bayesian generalized linear mixed models (GLMMs). Our model allows to consider the entire HLA repertoire without restricting the model to pre-learned HLA-polymorphisms. In addition, we correct for phylogenetic relatedness of the viruses within the model itself to account for founder effects. Using our model, we observe that CXCR4-using variants are more adapted than CCR5-using variants (p-value = 1.34e-2). Additionally, adapted CCR5-using variants have a significantly lower predicted false positive rate (FPR) by the geno2pheno[coreceptor] tool compared to the non-adapted CCR5-using variants (p-value = 2.21e-2), where a low FPR is associated with CXCR4 usage. Consequently, estimating HLA adaptation can be an asset in predicting not only coreceptor usage, but also an approaching coreceptor switch in CCR5-using variants. We propose the usage of Bayesian GLMMs for modeling virus-host adaptation in general.
Collapse
Affiliation(s)
- Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anja Germann
- Main Department Medical Biotechnology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Corena de Beer
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | | | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | - Hagen von Briesen
- Main Department Medical Biotechnology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Nico Pfeifer
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
54
|
Boopathy AV, Sharma B, Nekkalapudi A, Wimmer R, Gamez-Guerrero M, Suthram S, Truong H, Lee J, Li J, Martin R, Blair W, Geleziunas R, Orlinger K, Ahmadi-Erber S, Lauterbach H, Makadzange T, Falkard B, Schmidt S. Immunogenic arenavirus vector SIV vaccine reduces setpoint viral load in SIV-challenged rhesus monkeys. NPJ Vaccines 2023; 8:175. [PMID: 37945621 PMCID: PMC10635999 DOI: 10.1038/s41541-023-00768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
HIV affects more than 38 million people worldwide. Although HIV can be effectively treated by lifelong combination antiretroviral therapy, only a handful of patients have been cured. Therapeutic vaccines that induce robust de novo immune responses targeting HIV proteins and latent reservoirs will likely be integral for functional HIV cure. Our study shows that immunization of naïve rhesus macaques with arenavirus-derived vaccine vectors encoding simian immunodeficiency virus (SIVSME543 Gag, Env, and Pol) immunogens is safe, immunogenic, and efficacious. Immunization induced robust SIV-specific CD8+ and CD4+ T-cell responses with expanded cellular breadth, polyfunctionality, and Env-binding antibodies with antibody-dependent cellular cytotoxicity. Vaccinated animals had significant reductions in median SIV viral load (1.45-log10 copies/mL) after SIVMAC251 challenge compared with placebo. Peak viral control correlated with the breadth of Gag-specific T cells and tier 1 neutralizing antibodies. These results support clinical investigation of arenavirus-based vectors as a central component of therapeutic vaccination for HIV cure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hoa Truong
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Johnny Lee
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Wade Blair
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | | | | | | | | | | - Brie Falkard
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | |
Collapse
|
55
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
56
|
Grant‐McAuley W, Piwowar‐Manning E, Clarke W, Breaud A, Zewdie KB, Moore A, Ayles HM, Kosloff B, Shanaube K, Bock P, Meehan S, Maarman G, Fidler S, Hayes R, Donnell D, Eshleman SH. Population-level analysis of natural control of HIV infection in Zambia and South Africa: HPTN 071 (PopART). J Int AIDS Soc 2023; 26:e26179. [PMID: 37886843 PMCID: PMC10603557 DOI: 10.1002/jia2.26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
INTRODUCTION HIV controllers have low viral loads (VL) without antiretroviral treatment (ART). We evaluated viraemic control in a community-randomized trial conducted in Zambia and South Africa that evaluated the impact of a combination prevention intervention on HIV incidence (HPTN 071 [PopART]; 2013-2018). METHODS VL and antiretroviral (ARV) drug testing were performed using plasma samples collected 2 years after enrolment for 4072 participants who were HIV positive at the start of the study intervention. ARV drug use was assessed using a qualitative laboratory assay that detects 22 ARV drugs in five drug classes. Participants were classified as non-controllers if they had a VL ≥2000 copies/ml with no ARV drugs detected at this visit. Additional VL and ARV drug testing was performed at a second annual study visit to confirm controller status. Participants were classified as controllers if they had VLs <2000 with no ARV drugs detected at both visits. Non-controllers who had ARV drugs detected at either visit were excluded from the analysis to minimize potential confounders associated with ARV drug access and uptake. RESULTS The final cohort included 126 viraemic controllers and 766 non-controllers who had no ARV drugs detected. The prevalence of controllers among the 4072 persons assessed was 3.1% (95% confidence interval [CI]: 2.6%, 3.6%). This should be considered a minimum estimate, since high rates of ARV drug use in the parent study limited the ability to identify controllers. Among the 892 participants in the final cohort, controller status was associated with biological sex (female > male, p = 0.027). There was no significant association between controller status and age, study country or herpes simplex virus type 2 (HSV-2) status at study enrolment. CONCLUSIONS To our knowledge, this report presents the first large-scale, population-level study evaluating the prevalence of viraemic control and associated factors in Africa. A key advantage of this study was that a biomedical assessment was used to assess ARV drug use (vs. self-reported data). This study identified a large cohort of HIV controllers and non-controllers not taking ARV drugs, providing a unique repository of longitudinal samples for additional research. This cohort may be useful for further studies investigating the mechanisms of virologic control.
Collapse
Affiliation(s)
- Wendy Grant‐McAuley
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - William Clarke
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Autumn Breaud
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | | - Helen Mary Ayles
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
- Clinical Research DepartmentLondon School of Hygiene and Tropical MedicineLondonUK
| | - Barry Kosloff
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
- Clinical Research DepartmentLondon School of Hygiene and Tropical MedicineLondonUK
| | - Kwame Shanaube
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
| | - Peter Bock
- Desmond Tutu TB CenterDepartment of Paediatrics and Child HealthStellenbosch UniversityWestern CapeSouth Africa
| | - Sue‐Ann Meehan
- Desmond Tutu TB CenterDepartment of Paediatrics and Child HealthStellenbosch UniversityWestern CapeSouth Africa
| | - Gerald Maarman
- Centre for Cardio‐Metabolic Research in AfricaDivision of Medical PhysiologyFaculty of Medicine and Health SciencesStellenbosch UniversityWestern CapeSouth Africa
| | - Sarah Fidler
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Richard Hayes
- Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Susan H. Eshleman
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
57
|
Copertino DC, Holmberg CS, Weiler J, Ward AR, Howard JN, Levinger C, Pang AP, Corley MJ, Dündar F, Zumbo P, Betel D, Gandhi RT, McMahon DK, Bosch RJ, Linden N, Macatangay BJ, Cyktor JC, Eron JJ, Mellors JW, Kovacs C, Benko E, Bosque A, Jones RB. The latency-reversing agent HODHBt synergizes with IL-15 to enhance cytotoxic function of HIV-specific T cells. JCI Insight 2023; 8:e169028. [PMID: 37581929 PMCID: PMC10561764 DOI: 10.1172/jci.insight.169028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.
Collapse
Affiliation(s)
- Dennis C. Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Alina P.S. Pang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael J. Corley
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core and
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Catenion GmbH, Berlin, Germany
| | | | - Doron Betel
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Applied Bioinformatics Core and
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
58
|
Tay GK, Alnaqbi H, Chehadeh S, Peramo B, Mustafa F, Rizvi TA, Mahboub BH, Uddin M, Alkaabi N, Alefishat E, Jelinek HF, Alsafar H. HLA class I associations with the severity of COVID-19 disease in the United Arab Emirates. PLoS One 2023; 18:e0285712. [PMID: 37708194 PMCID: PMC10501655 DOI: 10.1371/journal.pone.0285712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2023] [Indexed: 09/16/2023] Open
Abstract
SARS-CoV-2 appears to induce diverse innate and adaptive immune responses, resulting in different clinical manifestations of COVID-19. Due to their function in presenting viral peptides and initiating the adaptive immune response, certain Human Leucocyte Antigen (HLA) alleles may influence the susceptibility to severe SARS-CoV-2 infection. In this study, 92 COVID-19 patients from 15 different nationalities, with mild (n = 30), moderate (n = 35), and severe (n = 27) SARS-CoV-2 infection, living in the United Arab Emirates (UAE) were genotyped for the Class I HLA -A, -C, and -B alleles using next-generation sequencing (NGS) between the period of May 2020 to June 2020. Alleles and inferred haplotype frequencies in the hospitalized patient group (those with moderate to severe disease, n = 62) were compared to non-hospitalized patients (mild or asymptomatic, n = 30). An interesting trend was noted between the severity of COVID-19 and the HLA-C*04 (P = 0.0077) as well as HLA-B*35 (P = 0.0051) alleles. The class I haplotype HLA-C*04-B*35 was also significantly associated (P = 0.0049). The involvement of inflammation, HLA-C*04, and HLA-B*35 in COVID-19 severity highlights the potential roles of both the adaptive and innate immune responses against SARS-CoV-2. Both alleles have been linked to several respiratory diseases, including pulmonary arterial hypertension along with infections caused by the coronavirus and influenza. This study, therefore, supports the potential use of HLA testing in prioritizing public healthcare interventions for patients at risk of COVID-19 infection and disease progression, in addition to providing personalized immunotherapeutic targets.
Collapse
Affiliation(s)
- Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Psychiatry, UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sarah Chehadeh
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam H. Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pulmonary Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Maimunah Uddin
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Nawal Alkaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
59
|
Dubé M, Tastet O, Dufour C, Sannier G, Brassard N, Delgado GG, Pagliuzza A, Richard C, Nayrac M, Routy JP, Prat A, Estes JD, Fromentin R, Chomont N, Kaufmann DE. Spontaneous HIV expression during suppressive ART is associated with the magnitude and function of HIV-specific CD4 + and CD8 + T cells. Cell Host Microbe 2023; 31:1507-1522.e5. [PMID: 37708853 PMCID: PMC10542967 DOI: 10.1016/j.chom.2023.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.
Collapse
Affiliation(s)
- Mathieu Dubé
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.
| | - Olivier Tastet
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Caroline Dufour
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Gérémy Sannier
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nathalie Brassard
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Gloria-Gabrielle Delgado
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Amélie Pagliuzza
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Corentin Richard
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre (CUSM), Montreal, QC H4A 3J1, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Alexandre Prat
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Rémi Fromentin
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Daniel E Kaufmann
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
60
|
Grant-McAuley W, Morgenlander W, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Blankson J, Wilson E, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Ruczinski I, Kammers K, Laeyendecker O, Larman HB, Eshleman SH. Comprehensive profiling of pre-infection antibodies identifies HIV targets associated with viremic control and viral load. Front Immunol 2023; 14:1178520. [PMID: 37744365 PMCID: PMC10512082 DOI: 10.3389/fimmu.2023.1178520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethan Wilson
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | | | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
61
|
McLaren PJ. A new look at human leukocyte antigen variation in HIV; functional clustering to enhance power for discovery of host genetic associations. AIDS 2023; 37:1757-1758. [PMID: 37534725 DOI: 10.1097/qad.0000000000003636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Affiliation(s)
- Paul J McLaren
- Sexually Transmitted and Bloodborne Infections Division, National Microbiology Laboratories, Public Health Agency of Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
62
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
63
|
Bhattacharyya S, Crain CR, Goldberg B, Gaiha GD. Features of functional and dysfunctional CD8+ T cells to guide HIV vaccine development. Curr Opin HIV AIDS 2023; 18:257-263. [PMID: 37535040 PMCID: PMC10503300 DOI: 10.1097/coh.0000000000000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE OF REVIEW CD8+ T cell responses are a key component of the host immune response to human immunodeficiency virus (HIV) but vary significantly across individuals with distinct clinical outcomes. These differences help inform the qualitative features of HIV-specific CD8+ T cells that we should aim to induce by vaccination. RECENT FINDINGS We review previous and more recent findings on the features of dysfunctional and functional CD8+ T cell responses that develop in individuals with uncontrolled and controlled HIV infection, with particular emphasis on proliferation, cytotoxic effector function, epitope specificity, and responses in lymph nodes. We also discuss the implications of these findings for both prophylactic and therapeutic T cell vaccine development within the context of T cell vaccine trials. SUMMARY The induction of HIV specific CD8+ T cell responses is an important goal of ongoing vaccine efforts. Emerging data on the key features of CD8+ T cell responses that distinguish individuals who spontaneously control from those with progressive disease continues to provide key guidance.
Collapse
Affiliation(s)
- Shaown Bhattacharyya
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Charles R Crain
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Benjamin Goldberg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02115
| |
Collapse
|
64
|
Variation in African genomes linked to control of HIV. Nature 2023:10.1038/d41586-023-02277-2. [PMID: 37532845 DOI: 10.1038/d41586-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
65
|
McLaren PJ, Porreca I, Iaconis G, Mok HP, Mukhopadhyay S, Karakoc E, Cristinelli S, Pomilla C, Bartha I, Thorball CW, Tough RH, Angelino P, Kiar CS, Carstensen T, Fatumo S, Porter T, Jarvis I, Skarnes WC, Bassett A, DeGorter MK, Sathya Moorthy MP, Tuff JF, Kim EY, Walter M, Simons LM, Bashirova A, Buchbinder S, Carrington M, Cossarizza A, De Luca A, Goedert JJ, Goldstein DB, Haas DW, Herbeck JT, Johnson EO, Kaleebu P, Kilembe W, Kirk GD, Kootstra NA, Kral AH, Lambotte O, Luo M, Mallal S, Martinez-Picado J, Meyer L, Miro JM, Moodley P, Motala AA, Mullins JI, Nam K, Obel N, Pirie F, Plummer FA, Poli G, Price MA, Rauch A, Theodorou I, Trkola A, Walker BD, Winkler CA, Zagury JF, Montgomery SB, Ciuffi A, Hultquist JF, Wolinsky SM, Dougan G, Lever AML, Gurdasani D, Groom H, Sandhu MS, Fellay J. Africa-specific human genetic variation near CHD1L associates with HIV-1 load. Nature 2023; 620:1025-1030. [PMID: 37532928 PMCID: PMC10848312 DOI: 10.1038/s41586-023-06370-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
HIV-1 remains a global health crisis1, highlighting the need to identify new targets for therapies. Here, given the disproportionate HIV-1 burden and marked human genome diversity in Africa2, we assessed the genetic determinants of control of set-point viral load in 3,879 people of African ancestries living with HIV-1 participating in the international collaboration for the genomics of HIV3. We identify a previously undescribed association signal on chromosome 1 where the peak variant associates with an approximately 0.3 log10-transformed copies per ml lower set-point viral load per minor allele copy and is specific to populations of African descent. The top associated variant is intergenic and lies between a long intergenic non-coding RNA (LINC00624) and the coding gene CHD1L, which encodes a helicase that is involved in DNA repair4. Infection assays in iPS cell-derived macrophages and other immortalized cell lines showed increased HIV-1 replication in CHD1L-knockdown and CHD1L-knockout cells. We provide evidence from population genetic studies that Africa-specific genetic variation near CHD1L associates with HIV replication in vivo. Although experimental studies suggest that CHD1L is able to limit HIV infection in some cell types in vitro, further investigation is required to understand the mechanisms underlying our observations, including any potential indirect effects of CHD1L on HIV spread in vivo that our cell-based assays cannot recapitulate.
Collapse
Affiliation(s)
- Paul J McLaren
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | - Gennaro Iaconis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hoi Ping Mok
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - István Bartha
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian W Thorball
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Riley H Tough
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paolo Angelino
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cher S Kiar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Tommy Carstensen
- Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Isobel Jarvis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Marianne K DeGorter
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohana Prasad Sathya Moorthy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey F Tuff
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Eun-Young Kim
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miriam Walter
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Susan Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea De Luca
- University Division of Infectious Diseases, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - James J Goedert
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - David W Haas
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center and Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex H Kral
- Community Health Research Division, RTI International, Berkeley, CA, USA
| | - Olivier Lambotte
- Université Paris Saclay, Inserm UMR1184, CEA, Le Kremlin-Bicêtre, France
- APHP, Department of Clinical Immunology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Vaccine and Therapeutics Laboratory, Medical and Scientific Affairs, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Simon Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Javier Martinez-Picado
- University of Vic-Central University of Catalonia, Vic, Spain
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laurence Meyer
- INSERM U1018, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Hôpital de Bicêtre, Département d'Épidémiologie, Le Kremlin Bicêtre, France
| | - José M Miro
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Service, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pravi Moodley
- National Health Laboratory Service, South Africa and University of KwaZulu-Natal, Durban, South Africa
| | - Ayesha A Motala
- Department of Diabetes and Endocrinology, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kireem Nam
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guido Poli
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthew A Price
- International AIDS Vaccine Initiative, New York, NY, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ioannis Theodorou
- Laboratoire d'Immunologie, Hôpital Robert Debré Paris, Paris, France
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Frederick National Laboratory for Cancer Research and Cancer Innovative Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Deepti Gurdasani
- Queen Mary University of London, London, UK
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Harriet Groom
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Manjinder S Sandhu
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK.
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
- Omnigen Biodata, Cambridge, UK.
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
66
|
Real LM, Sáez ME, Corma-Gómez A, Gonzalez-Pérez A, Thorball C, Ruiz R, Jimenez-Leon MR, Gonzalez-Serna A, Gasca-Capote C, Bravo MJ, Royo JL, Perez-Gomez A, Camacho-Sojo MI, Gallego I, Vitalle J, Bachiller S, Gutierrez-Valencia A, Vidal F, Fellay J, Lichterfeld M, Ruiz-Mateos E. A metagenome-wide association study of HIV disease progression in HIV controllers. iScience 2023; 26:107214. [PMID: 37456859 PMCID: PMC10339206 DOI: 10.1016/j.isci.2023.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Some HIV controllers experience immunologic progression with CD4+ T cell decline. We aimed to identify genetic factors associated with CD4+ T cell lost in HIV controllers. A total of 561 HIV controllers were included, 442 and 119 from the International HIV controllers Study Cohort and the Swiss HIV Cohort Study, respectively. No SNP or gene was associated with the long-term non-progressor HIV spontaneous control phenotype in the individual GWAS or in the meta-analysis. However, SNPs previously associated with natural HIV control linked to HLA-B (rs2395029 [p = 0.005; OR = 1.70], rs59440261 [p = 0.003; OR = 1.78]), MICA (rs112243036 [p = 0.011; OR = 1.45]), and PSORS1C1 loci (rs3815087 [p = 0.017; OR = 1.39]) showed nominal association with this phenotype. Genetic factors associated with the long-term HIV controllers without risk of immunologic progression are those previously related to the overall HIV controller phenotype.
Collapse
Affiliation(s)
- Luis Miguel Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen de Valme, Instituto de Biomedicina de Sevilla, IBIS, Sevilla, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
| | - María E. Sáez
- Centro Andaluz de Estudios Bioinformáticos (CAEBI, SL), Sevilla, Spain
| | - Anais Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen de Valme, Instituto de Biomedicina de Sevilla, IBIS, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
| | | | - Christian Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Rocío Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla/Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - María Reyes Jimenez-Leon
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - Alejandro Gonzalez-Serna
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen de Valme, Instituto de Biomedicina de Sevilla, IBIS, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Gasca-Capote
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - María José Bravo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - José Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Alberto Perez-Gomez
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - María Inés Camacho-Sojo
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - Joana Vitalle
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - Sara Bachiller
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Alicia Gutierrez-Valencia
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | - Francisco Vidal
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Seville, Spain
| | | |
Collapse
|
67
|
Talwar JV, Laub D, Pagadala MS, Castro A, Lewis M, Luebeck GE, Gorman BR, Pan C, Dong FN, Markianos K, Teerlink CC, Lynch J, Hauger R, Pyarajan S, Tsao PS, Morris GP, Salem RM, Thompson WK, Curtius K, Zanetti M, Carter H. Autoimmune alleles at the major histocompatibility locus modify melanoma susceptibility. Am J Hum Genet 2023; 110:1138-1161. [PMID: 37339630 PMCID: PMC10357503 DOI: 10.1016/j.ajhg.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.
Collapse
Affiliation(s)
- James V Talwar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - David Laub
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Meghana S Pagadala
- Biomedical Science Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - McKenna Lewis
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Georg E Luebeck
- Public Health Sciences Division, Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA
| | - Frederick N Dong
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02115, USA
| | - Craig C Teerlink
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Julie Lynch
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard Hauger
- VA San Diego Healthcare System, La Jolla, CA, USA; Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Brigham Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Kit Curtius
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Laboratory of Immunology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
68
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
69
|
Moyano A, Ndlovu B, Mbele M, Naidoo K, Khan N, Mann JK, Ndung'u T. Differing natural killer cell, T cell and antibody profiles in antiretroviral-naive HIV-1 viraemic controllers with and without protective HLA alleles. PLoS One 2023; 18:e0286507. [PMID: 37267224 DOI: 10.1371/journal.pone.0286507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Previous work suggests that HIV controllers with protective human leukocyte antigen class I alleles (VC+) possess a high breadth of Gag-specific CD8+ T cell responses, while controllers without protective alleles (VC-) have a different unknown mechanism of control. We aimed to gain further insight into potential mechanisms of control in VC+ and VC-. We studied 15 VC+, 12 VC- and 4 healthy uninfected individuals (UI). CD8+ T cell responses were measured by ELISpot. Flow cytometry was performed to analyse surface markers for activation, maturation, and exhaustion on natural killer (NK) cell and T cells, as well as cytokine secretion from stimulated NK cells. We measured plasma neutralization activity against a panel of 18 Env-pseudotyped viruses using the TZM-bl neutralization assay. We found no significant differences in the magnitude and breadth of CD8+ T cell responses between VC+ and VC-. However, NK cells from VC- had higher levels of activation markers (HLA-DR and CD38) (p = 0.03), and lower cytokine expression (MIP-1β and TNF-α) (p = 0.05 and p = 0.04, respectively) than NK cells from VC+. T cells from VC- had higher levels of activation (CD38 and HLA-DR co-expression) (p = 0.05), as well as a trend towards higher expression of the terminal differentiation marker CD57 (p = 0.09) when compared to VC+. There was no difference in overall neutralization breadth between VC+ and VC- groups, although there was a trend for higher neutralization potency in the VC- group (p = 0.09). Altogether, these results suggest that VC- have a more activated NK cell profile with lower cytokine expression, and a more terminally differentiated and activated T cell profile than VC+. VC- also showed a trend of more potent neutralizing antibody responses that may enhance viral clearance. Further studies are required to understand how these NK, T cell and antibody profiles may contribute to differing mechanisms of control in VC+ and VC-.
Collapse
Affiliation(s)
- Ana Moyano
- Africa Health Research Institute, KwaZulu-Natal, South Africa, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Msizi Mbele
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, KwaZulu-Natal, South Africa, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
70
|
Bi X, Zhou L, Zhang JJ, Feng S, Hu M, Cooper DN, Lin J, Li J, Wu DD, Zhang G. Lineage-specific accelerated sequences underlying primate evolution. SCIENCE ADVANCES 2023; 9:eadc9507. [PMID: 37262186 PMCID: PMC10413682 DOI: 10.1126/sciadv.adc9507] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Understanding the mechanisms underlying phenotypic innovation is a key goal of comparative genomic studies. Here, we investigated the evolutionary landscape of lineage-specific accelerated regions (LinARs) across 49 primate species. Genomic comparison with dense taxa sampling of primate species significantly improved LinAR detection accuracy and revealed many novel human LinARs associated with brain development or disease. Our study also yielded detailed maps of LinARs in other primate lineages that may have influenced lineage-specific phenotypic innovation and adaptation. Functional experimentation identified gibbon LinARs, which could have participated in the developmental regulation of their unique limb structures, whereas some LinARs in the Colobinae were associated with metabolite detoxification which may have been adaptive in relation to their leaf-eating diet. Overall, our study broadens knowledge of the functional roles of LinARs in primate evolution.
Collapse
Affiliation(s)
- Xupeng Bi
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Long Zhou
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaohong Feng
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Mei Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Jiangwei Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jiali Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
71
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
72
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
73
|
Nyiro B, Amanya SB, Bayiyana A, Wasswa F, Nabulime E, Kayongo A, Nankya I, Mboowa G, Kateete DP, Sande OJ. Reduced CCR5 expression among Uganda HIV controllers. Retrovirology 2023; 20:8. [PMID: 37231494 PMCID: PMC10210444 DOI: 10.1186/s12977-023-00626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups. RESULTS The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death. CONCLUSION CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.
Collapse
Affiliation(s)
- Brian Nyiro
- New Jersey Medical School, Rutgers University, New Jersey, USA
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Sharon Bright Amanya
- Baylor College of Medicine, Houston, TX, USA
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Alice Bayiyana
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Francis Wasswa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Eva Nabulime
- Centre for AIDS Research Laboratory, Joint Clinical Research Centre, Wakiso, Uganda
| | - Alex Kayongo
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
- Makerere University Lung Institute, Kampala, Uganda
| | - Immaculate Nankya
- Centre for AIDS Research Laboratory, Joint Clinical Research Centre, Wakiso, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda.
| |
Collapse
|
74
|
Li X, Singh NK, Collins DR, Ng R, Zhang A, Lamothe-Molina PA, Shahinian P, Xu S, Tan K, Piechocka-Trocha A, Urbach JM, Weber JK, Gaiha GD, Takou Mbah OC, Huynh T, Cheever S, Chen J, Birnbaum M, Zhou R, Walker BD, Wang JH. Molecular basis of differential HLA class I-restricted T cell recognition of a highly networked HIV peptide. Nat Commun 2023; 14:2929. [PMID: 37217466 DOI: 10.1038/s41467-023-38573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cytotoxic-T-lymphocyte (CTL) mediated control of HIV-1 is enhanced by targeting highly networked epitopes in complex with human-leukocyte-antigen-class-I (HLA-I). However, the extent to which the presenting HLA allele contributes to this process is unknown. Here we examine the CTL response to QW9, a highly networked epitope presented by the disease-protective HLA-B57 and disease-neutral HLA-B53. Despite robust targeting of QW9 in persons expressing either allele, T cell receptor (TCR) cross-recognition of the naturally occurring variant QW9_S3T is consistently reduced when presented by HLA-B53 but not by HLA-B57. Crystal structures show substantial conformational changes from QW9-HLA to QW9_S3T-HLA by both alleles. The TCR-QW9-B53 ternary complex structure manifests how the QW9-B53 can elicit effective CTLs and suggests sterically hindered cross-recognition by QW9_S3T-B53. We observe populations of cross-reactive TCRs for B57, but not B53 and also find greater peptide-HLA stability for B57 in comparison to B53. These data demonstrate differential impacts of HLAs on TCR cross-recognition and antigen presentation of a naturally arising variant, with important implications for vaccine design.
Collapse
Affiliation(s)
- Xiaolong Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Nishant Kumar Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Robert Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Angela Zhang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Peter Shahinian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Shutong Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | | | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY, 10598, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Tien Huynh
- IBM Thomas J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY, 10598, USA
| | - Sophia Cheever
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - James Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Michael Birnbaum
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02142, USA
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY, 10598, USA
- Department of Chemistry, Columbia University, New York, NY, 10025, USA
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
- Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Jia-Huai Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
75
|
Richard J, Prévost J, Bourassa C, Brassard N, Boutin M, Benlarbi M, Goyette G, Medjahed H, Gendron-Lepage G, Gaudette F, Chen HC, Tolbert WD, Smith AB, Pazgier M, Dubé M, Clark A, Mothes W, Kaufmann DE, Finzi A. Temsavir blocks the immunomodulatory activities of HIV-1 soluble gp120. Cell Chem Biol 2023; 30:540-552.e6. [PMID: 36958337 PMCID: PMC10198848 DOI: 10.1016/j.chembiol.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
While HIV-1-mediated CD4 downregulation protects infected cells from antibody-dependent cellular cytotoxicity (ADCC), shed gp120 binds to CD4 on uninfected bystander CD4+ T cells, sensitizing them to ADCC mediated by HIV+ plasma. Soluble gp120-CD4 interaction on multiple immune cells also triggers a cytokine burst. The small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing envelope glycoprotein (Env)-CD4 interaction and alters the overall antigenicity of Env by affecting its processing and glycosylation. Here we show that temsavir also blocks the immunomodulatory activities of shed gp120. Temsavir prevents shed gp120 from interacting with uninfected bystander CD4+ cells, protecting them from ADCC responses and preventing a cytokine burst. Mechanistically, this depends on temsavir's capacity to prevent soluble gp120-CD4 interaction, to reduce gp120 shedding, and to alter gp120 antigenicity. This suggests that the clinical benefits provided by temsavir could extend beyond blocking viral entry.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | - Marianne Boutin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | | | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Andrew Clark
- ViiV Healthcare, Global Medical Affairs, Middlesex TW8 9GS, UK
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
76
|
Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023; 380:478-484. [PMID: 37141353 DOI: 10.1126/science.adg6427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK
- China Centre for Personalised Immunology, Renji Hospital, Shanghai, China
| | | | - George Kassiotis
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
77
|
Tao K, Rhee SY, Tzou PL, Osman ZA, Pond SLK, Holmes SP, Shafer RW. HIV-1 Group M Capsid Amino Acid Variability: Implications for Sequence Quality Control of Genotypic Resistance Testing. Viruses 2023; 15:992. [PMID: 37112972 PMCID: PMC10143361 DOI: 10.3390/v15040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND With the approval of the HIV-1 capsid inhibitor, lenacapavir, capsid sequencing will be required for managing lenacapavir-experienced individuals with detectable viremia. Successful sequence interpretation will require examining new capsid sequences in the context of previously published sequence data. METHODS We analyzed published HIV-1 group M capsid sequences from 21,012 capsid-inhibitor naïve individuals to characterize amino acid variability at each position and influence of subtype and cytotoxic T lymphocyte (CTL) selection pressure. We determined the distributions of usual mutations, defined as amino acid differences from the group M consensus, with a prevalence ≥ 0.1%. Co-evolving mutations were identified using a phylogenetically-informed Bayesian graphical model method. RESULTS 162 (70.1%) positions had no usual mutations (45.9%) or only conservative usual mutations with a positive BLOSUM62 score (24.2%). Variability correlated independently with subtype-specific amino acid occurrence (Spearman rho = 0.83; p < 1 × 10-9) and the number of times positions were reported to contain an HLA-associated polymorphism, an indicator of CTL pressure (rho = 0.43; p = 0.0002). CONCLUSIONS Knowing the distribution of usual capsid mutations is essential for sequence quality control. Comparing capsid sequences from lenacapavir-treated and lenacapavir-naïve individuals will enable the identification of additional mutations potentially associated with lenacapavir therapy.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zachary A. Osman
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
78
|
Blaauw MJ, Cristina dos Santos J, Vadaq N, Trypsteen W, van der Heijden W, Groenendijk A, Zhang Z, Li Y, de Mast Q, Netea MG, Joosten LA, Vandekerckhove L, van der Ven A, Matzaraki V. Targeted plasma proteomics identifies MICA and IL1R1 proteins associated with HIV-1 reservoir size. iScience 2023; 26:106486. [PMID: 37091231 PMCID: PMC10113782 DOI: 10.1016/j.isci.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023] Open
Abstract
HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.
Collapse
|
79
|
George AF, Roan NR. Advances in HIV Research Using Mass Cytometry. Curr HIV/AIDS Rep 2023; 20:76-85. [PMID: 36689119 PMCID: PMC9869313 DOI: 10.1007/s11904-023-00649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW This review describes how advances in CyTOF and high-dimensional analysis methods have furthered our understanding of HIV transmission, pathogenesis, persistence, and immunity. RECENT FINDINGS CyTOF has generated important insight on several aspects of HIV biology: (1) the differences between cells permissive to productive vs. latent HIV infection, and the HIV-induced remodeling of infected cells; (2) factors that contribute to the persistence of the long-term HIV reservoir, in both blood and tissues; and (3) the impact of HIV on the immune system, in the context of both uncontrolled and controlled infection. CyTOF and high-dimensional analysis tools have enabled in-depth assessment of specific host antigens remodeled by HIV, and have revealed insights into the features of HIV-infected cells enabling them to survive and persist, and of the immune cells that can respond to and potentially control HIV replication. CyTOF and other related high-dimensional phenotyping approaches remain powerful tools for translational research, and applied HIV to cohort studies can inform on mechanisms of HIV pathogenesis and persistence, and potentially identify biomarkers for viral eradication or control.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, 94143, USA
| | - Nadia R Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Urology, University of California at San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
80
|
Teque F, Wegehaupt A, Roufs E, Killian MS. CD8+ Lymphocytes from Healthy Blood Donors Secrete Antiviral Levels of Interferon-Alpha. Viruses 2023; 15:v15040894. [PMID: 37112874 PMCID: PMC10144965 DOI: 10.3390/v15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The adaptive immune response to viral infections features the antigen-driven expansion of CD8+ T cells. These cells are widely recognized for their cytolytic activity that is mediated through the secretion of cytokines such as perforin and granzymes. Less appreciated is their ability to secrete soluble factors that restrict virus replication without killing the infected cells. In this study we measured the ability of primary anti-CD3/28-stimulated CD8+ T cells from healthy blood donors to secrete interferon-alpha. Supernatants collected from CD8+ T cell cultures were screened for their ability to suppress HIV-1 replication in vitro and their interferon-alpha concentrations were measured by ELISA. Interferon-alpha concentrations in the CD8+ T cell culture supernatants ranged from undetectable to 28.6 pg/mL. The anti-HIV-1 activity of the cell culture supernatants was observed to be dependent on the presence of interferon-alpha. Appreciable increases in the expression levels of type 1 interferon transcripts were observed following T cell receptor stimulation, suggesting that the secretion of interferon-alpha by CD8+ T cells is an antigen-driven response. In 42-plex cytokine assays, the cultures containing interferon-alpha were also found to contain elevated levels of GM-CSF, IL-10, IL-13, and TNF-alpha. Together, these results demonstrate that the secretion of anti-viral levels of interferon-alpha is a common function of CD8+ T cells. Furthermore, this CD8+ T cell function likely plays broader roles in health and disease.
Collapse
|
81
|
Fritschi CJ, Anang S, Gong Z, Mohammadi M, Richard J, Bourassa C, Severino KT, Richter H, Yang D, Chen HC, Chiu TJ, Seaman MS, Madani N, Abrams C, Finzi A, Hendrickson WA, Sodroski JG, Smith AB. Indoline CD4-mimetic compounds mediate potent and broad HIV-1 inhibition and sensitization to antibody-dependent cellular cytotoxicity. Proc Natl Acad Sci U S A 2023; 120:e2222073120. [PMID: 36961924 PMCID: PMC10068826 DOI: 10.1073/pnas.2222073120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/22/2023] [Indexed: 03/26/2023] Open
Abstract
Binding to the host cell receptors, CD4 and CCR5/CXCR4, triggers large-scale conformational changes in the HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] that promote virus entry into the cell. CD4-mimetic compounds (CD4mcs) comprise small organic molecules that bind in the highly conserved CD4-binding site of gp120 and prematurely induce inactivating Env conformational changes, including shedding of gp120 from the Env trimer. By inducing more "open," antibody-susceptible Env conformations, CD4mcs also sensitize HIV-1 virions to neutralization by antibodies and infected cells to antibody-dependent cellular cytotoxicity (ADCC). Here, we report the design, synthesis, and evaluation of novel CD4mcs based on an indoline scaffold. Compared with our current lead indane scaffold CD4mc, BNM-III-170, several indoline CD4mcs exhibit increased potency and breadth against HIV-1 variants from different geographic clades. Viruses that were selected for resistance to the lead indane CD4mc, BNM-III-170, are susceptible to inhibition by the indoline CD4mcs. The indoline CD4mcs also potently sensitize HIV-1-infected cells to ADCC mediated by plasma from HIV-1-infected individuals. Crystal structures indicate that the indoline CD4mcs gain potency compared to the indane CD4mcs through more favorable π-π overlap from the indoline pose and by making favorable contacts with the vestibule of the CD4-binding pocket on gp120. The rational design of indoline CD4mcs thus holds promise for further improvements in antiviral activity, potentially contributing to efforts to treat and prevent HIV-1 infection.
Collapse
Affiliation(s)
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
| | | | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QCH2X 0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Universite de Montreal, Montreal, QCH3T 1J4, Canada
| | - Catherine Bourassa
- Departement de Microbiologie, Infectiologie et Immunologie, Universite de Montreal, Montreal, QCH3T 1J4, Canada
| | - Kenny T. Severino
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Derek Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA19104
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QCH2X 0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Universite de Montreal, Montreal, QCH3T 1J4, Canada
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY10032
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA02115
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
82
|
Etemad B, Sun X, Li Y, Melberg M, Moisi D, Gottlieb R, Ahmed H, Aga E, Bosch RJ, Acosta EP, Yuki Y, Martin MP, Carrington M, Gandhi RT, Jacobson JM, Volberding P, Connick E, Mitsuyasu R, Frank I, Saag M, Eron JJ, Skiest D, Margolis DM, Havlir D, Schooley RT, Lederman MM, Yu XG, Li JZ. HIV post-treatment controllers have distinct immunological and virological features. Proc Natl Acad Sci U S A 2023; 120:e2218960120. [PMID: 36877848 PMCID: PMC10089217 DOI: 10.1073/pnas.2218960120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.
Collapse
Affiliation(s)
- Behzad Etemad
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Xiaoming Sun
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
| | - Yijia Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Meghan Melberg
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Daniela Moisi
- School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Rachel Gottlieb
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Hayat Ahmed
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Evgenia Aga
- Harvard T. H. Chan School of Public Health, Boston, MA02115
| | | | - Edward P. Acosta
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Rajesh T. Gandhi
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Paul Volberding
- School of Medicine, University of California San Francisco, San Francisco, CA94143
| | | | - Ronald Mitsuyasu
- School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Ian Frank
- School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Saag
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel Skiest
- Department of Medicine, University of Massachusetts Chan Medical School - Baystate, Springfield, MA01199
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Diane Havlir
- School of Medicine, University of California San Francisco, San Francisco, CA94143
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, San Diego, CA92103
| | | | - Xu G. Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| |
Collapse
|
83
|
Lima ÉRG, Queiroz MAF, Lima SS, Machado LFA, Cayres-Vallinoto IMV, Vallinoto ACR, Figueiredo FADPL, Guerreiro JF, Guimarães Ishak MDO, Ishak R. CCR5∆32 and SDF1 3'A: Gene Variants, Expression and Influence on Biological Markers for the Clinical Progression to AIDS among HIV-1 Virus Controllers in a Mixed Population of the Amazon Region of Brazil. Int J Mol Sci 2023; 24:ijms24054958. [PMID: 36902388 PMCID: PMC10003039 DOI: 10.3390/ijms24054958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/08/2023] Open
Abstract
CCR5Δ32 and SDF1-3'A polymorphisms were investigated in a cohort of viremia controllers, without the use of therapy, along with their influence on CD4+ T lymphocytes (TLs), CD8+ TLs, and plasma viral load (VL). The samples were analyzed from 32 HIV-1-infected individuals classified as viremia controllers 1 and 2 and viremia non-controllers, from both sexes, mostly heterosexuals, paired with 300 individuals from a control group. CCR5∆32 polymorphism was identified by PCR amplification of a fragment of 189 bp for the wild-type allele and 157 bp for the allele with the ∆32 deletion. SDF1-3'A polymorphism was identified by PCR, followed by enzymatic digestion (restriction fragment length polymorphism) with the Msp I enzyme. The relative quantification of gene expression was performed by real-time PCR. The distribution of allele and genotype frequencies did not show significant differences between the groups. The gene expression of CCR5 and SDF1 was not different between the profiles of AIDS progression. There was no significant correlation between the progression markers (CD4+ TL/CD8+ TL and VL) and the CCR5∆32 polymorphism carrier status. The 3'A allele variant was associated with a marked loss of CD4+ TLs and a higher plasma VL. Neither CCR5∆32 nor SDF1-3'A was associated with viremia control or the controlling phenotype.
Collapse
Affiliation(s)
- Érica Ribeiro Gomes Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Maria Alice Freitas Queiroz
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Correspondence: ; Tel.: +55-91-98864-4259
| | - Sandra Souza Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | | | | | - João Farias Guerreiro
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Ricardo Ishak
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
84
|
Impaired protective role of HLA-B*57:01/58:01 in HIV-1 CRF01_AE infection: a cohort study in Vietnam. Int J Infect Dis 2023; 128:20-31. [PMID: 36549550 DOI: 10.1016/j.ijid.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Human Leukocyte Antigen HLA-B*57:01 and B*58:01 are considered anti-HIV-1 protective alleles. HLA-B*57:01/58:01-restricted HIV-1 Gag TW10 (TSTLQEQIGW, Gag residues 240-249) epitope-specific CD8+ T cell responses that frequently select for a Gag escape mutation, T242N, with viral fitness cost are crucial for HIV-1 control. Although this finding has been observed in cohorts where HIV-1 subtype B or C predominates, the protective impact of HLA-B*57:01/58:01 has not been reported in Southeast Asian countries where HIV-1 CRF01_AE is the major circulating strain. Here, the effect of HLA-B*57:01/58:01 on CRF01_AE infection was investigated. METHODS The correlation of HLA-B*57:01/58:01 with viral load and CD4 counts were analyzed in the CRF01_AE-infected Vietnamese cohort (N = 280). The impact of the T242N mutation on CRF01_AE replication capacity was assessed. RESULTS HLA-B*57:01/58:01-positive individuals mostly had HIV-1 with T242N (62/63) but showed neither a significant reduction in viral load nor increased CD4 counts relative to B*57:01/58:01-negative participants. In vitro and in vivo analyses revealed a significant reduction in viral fitness of CRF01_AE with T242N. In silico analysis indicated reduced presentation of epitopes in the context of CRF01_AE compared to subtype B or C in 10/16 HLA-B*57:01/58:01-restricted HIV-1 epitopes. CONCLUSION The protective impact of HLA-B*57:01/58:01 on CRF01_AE infection is impaired despite strong suppressive pressure by TW10-specific CD8+ T cells.
Collapse
|
85
|
Siegel DA, Thanh C, Wan E, Hoh R, Hobbs K, Pan T, Gibson EA, Kroetz DL, Martin J, Hecht F, Pilcher C, Martin M, Carrington M, Pillai S, Busch MP, Stone M, Levy CN, Huang ML, Roychoudhury P, Hladik F, Jerome KR, Kiem HP, Henrich TJ, Deeks SG, Lee SA. Host variation in type I interferon signaling genes (MX1), C-C chemokine receptor type 5 gene, and major histocompatibility complex class I alleles in treated HIV+ noncontrollers predict viral reservoir size. AIDS 2023; 37:477-488. [PMID: 36695358 PMCID: PMC9894159 DOI: 10.1097/qad.0000000000003428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Prior genomewide association studies have identified variation in major histocompatibility complex (MHC) class I alleles and C-C chemokine receptor type 5 gene (CCR5Δ32) as genetic predictors of viral control, especially in 'elite' controllers, individuals who remain virally suppressed in the absence of therapy. DESIGN Cross-sectional genomewide association study. METHODS We analyzed custom whole exome sequencing and direct human leukocyte antigen (HLA) typing from 202 antiretroviral therapy (ART)-suppressed HIV+ noncontrollers in relation to four measures of the peripheral CD4+ T-cell reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed models were adjusted for potential covariates including age, sex, nadir CD4+ T-cell count, pre-ART HIV RNA, timing of ART initiation, and duration of ART suppression. RESULTS Previously reported 'protective' host genetic mutations related to viral setpoint (e.g. among elite controllers) were found to predict smaller HIV reservoir size. The HLA 'protective' B∗57:01 was associated with significantly lower HIV usRNA (q = 3.3 × 10-3), and among the largest subgroup, European ancestry individuals, the CCR5Δ32 deletion was associated with smaller HIV tDNA (P = 4.3 × 10-3) and usRNA (P = 8.7 × 10-3). In addition, genomewide analysis identified several single nucleotide polymorphisms in MX1 (an interferon stimulated gene) that were significantly associated with HIV tDNA (q = 0.02), and the direction of these associations paralleled MX1 gene eQTL expression. CONCLUSIONS We observed a significant association between previously reported 'protective' MHC class I alleles and CCR5Δ32 with the HIV reservoir size in noncontrollers. We also found a novel association between MX1 and HIV total DNA (in addition to other interferon signaling relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future validation studies.
Collapse
Affiliation(s)
- David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | | | | | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Kristen Hobbs
- Department of Medicine, Division of Experimental Medicine
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine
| | | | | | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Mars Stone
- Vitalant Blood Bank, San Francisco, California
| | | | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| |
Collapse
|
86
|
Definition of a New HLA B*52-Restricted Rev CTL Epitope Targeted by an HIV-1-Infected Controller. Viruses 2023; 15:v15020567. [PMID: 36851781 PMCID: PMC9959870 DOI: 10.3390/v15020567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The analysis of T-cell responses in HIV-1-infected controllers may contribute to a better understanding of the protective components of the immune system. Here, we analyzed the HIV-1-specific T-cell response in a 59-year-old HIV-1-infected controller, infected for at least seven years, who presented with low viral loads ranging from <20 copies/mL to 200 copies/mL and normal CD4 counts of >800 cells/µL. In γ-IFN-ELISpot assays using freshly isolated PBMCs, he displayed a very strong polyclonal T-cell response to eight epitopes in Gag, Nef and Rev; with the dominant responses directed against the HLA-B*57-epitope AISPRTLNAW and against a so-far-unknown epitope within Rev. Further analyses using peptide-stimulated T-cell lines in γ-IFN-ELISpot assays delineated the peptide RQRQIRSI (Rev-RI8) as a newly defined HLA-B*52-restricted epitope located within a functionally important region of Rev. Peptide-stimulation assays in 15 HLA-B*52-positive HIV-1-infected subjects, including the controller, demonstrated recognition of the Rev-RI8 epitope in 6/15 subjects. CD4 counts before the start of antiviral therapy were significantly higher in subjects with recognition of the Rev-RI8 epitope. Targeting of the Rev-RI8 epitope in Rev by CTL could contribute to the positive association of HLA-B*52 with a more favorable course of HIV-1-infection.
Collapse
|
87
|
Zach M, Greslehner GP. Understanding immunity: an alternative framework beyond defense and strength. BIOLOGY & PHILOSOPHY 2023; 38:7. [PMID: 36819127 PMCID: PMC9929241 DOI: 10.1007/s10539-023-09893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/10/2023] [Indexed: 05/25/2023]
Abstract
In this paper we address the issue of how to think about immunity. Many immunological writings suggest a straightforward option: the view that the immune system is primarily a system of defense, which naturally invites the talk of strong immunity and strong immune response. Despite their undisputable positive role in immunology, such metaphors can also pose a risk of establishing a narrow perspective, omitting from consideration phenomena that do not neatly fit those powerful metaphors. Building on this analysis, we argue two things. First, we argue that the immune system is involved not only in defense. Second, by disentangling various possible meanings of 'strength' and 'weakness' in immunology, we also argue that such a construal of immunity generally contributes to the distortion of the overall picture of what the immune system is, what it does, and why it sometimes fails. Instead, we propose to understand the nature of the immune system in terms of contextuality, regulation, and trade-offs. We suggest that our approach provides lessons for a general understanding of the organizing principles of the immune system in health and disease. For all this to work, we discuss a wide range of immunological phenomena.
Collapse
Affiliation(s)
- Martin Zach
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 352/1, 110 00 Prague, Czech Republic
| | - Gregor P. Greslehner
- Department of Philosophy, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
| |
Collapse
|
88
|
Vieira V, Lim N, Singh A, Leitman E, Dsouza R, Adland E, Muenchhoff M, Roider J, Marin Lopez M, Carabelli J, Giandhari J, Groll A, Jooste P, Prado JG, Thobakgale C, Dong K, Kiepiela P, Prendergast AJ, Tudor-Williams G, Frater J, Walker BD, Ndung’u T, Ramsuran V, Leslie A, Kløverpris HN, Goulder P. Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype. JCI Insight 2023; 8:e156049. [PMID: 36602861 PMCID: PMC9977437 DOI: 10.1172/jci.insight.156049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1+CD8+ T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4+ T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8+ T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment.
Collapse
Affiliation(s)
- Vinicius Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alveera Singh
- Africa Health Research Institute, Durban, South Africa
| | - Ellen Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Reena Dsouza
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Maximilian Muenchhoff
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Julia Roider
- German Center for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Christina Thobakgale
- Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Photini Kiepiela
- South African Medical Research Council, Durban, South Africa
- Wits Health Consortium, Johannesburg, South Africa
| | - Andrew J. Prendergast
- Blizard Institute, Queen Mary University of London, London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Bruce D. Walker
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
89
|
Matsumoto K, Kuwata T, Tolbert WD, Richard J, Ding S, Prévost J, Takahama S, Judicate GP, Ueno T, Nakata H, Kobayakawa T, Tsuji K, Tamamura H, Smith AB, Pazgier M, Finzi A, Matsushita S. Characterization of a Novel CD4 Mimetic Compound YIR-821 against HIV-1 Clinical Isolates. J Virol 2023; 97:e0163822. [PMID: 36511698 PMCID: PMC9888228 DOI: 10.1128/jvi.01638-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes. YIR-821 displayed entry inhibitor activity against 53.5% (21/40) of the pseudoviruses tested and enhanced neutralization mediated by coreceptor binding site (CoRBS) antibodies in 50% (16/32) of these. Furthermore, when we assessed the antiviral effects using a panel of pseudoviruses and autologous plasma IgG, enhancement of antibody-mediated neutralization activity was observed for 48% (15/31) of subtype B strains and 51% (28/55) of non-B strains. The direct antiviral activity of YIR-821 as an entry inhibitor was observed in 53% of both subtype B (27/51) and non-B subtype (40/75) pseudoviruses. Enhancement of antibody-dependent cellular cytotoxicity was also observed with YIR-821 for all six selected clinical isolates, as well as for the transmitted/founder (T/F) CH58 virus-infected cells. The sequence diversity in the CD4 binding site as well as other regions, such as the gp120 inner domain layers or gp41, may be involved in the multiple mechanisms related to the sensitive/resistant phenotype of the virus to YIR-821. Our findings may facilitate the clinical application of YIR-821. IMPORTANCE Small CD4-mimetic compound (CD4mc) interacts with the Phe43 cavity and triggers conformational changes, enhancing antibody-mediated neutralization and antibody-dependent cellular cytotoxicity (ADCC). Here, we evaluated the effect of YIR-821, a novel CD4mc, against clinical isolates, including both subtype B and non-B subtype viruses. Our results confirm the desirable properties of YIR-821, which include entry inhibition, enhancement of IgG-neutralization, binding, and ADCC, in addition to low toxicity and long half-life in a rhesus macaque model, that might facilitate the clinical application of this novel CD4mc. Our observation of primary viruses that are resistant to YIR-821 suggests that further development of CD4mcs with different structural properties is required.
Collapse
Affiliation(s)
- Kaho Matsumoto
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - George P. Judicate
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hirotomo Nakata
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shuzo Matsushita
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
90
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
91
|
Relationship of HLA-B alleles on susceptibility to and protection from HIV infection in Turkish population. North Clin Istanb 2023; 10:67-73. [PMID: 36910436 PMCID: PMC9996654 DOI: 10.14744/nci.2021.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Many human leukocyte antigen (HLA)-B alleles are associated with an increased risk of Acquired Immune Deficiency Syndrome (AIDS) and Human Immunodeficiency Virus (HIV) progression; however, their distribution varies among different racial/ethnic groups. Abacavir used in the treatment of AIDS significantly increases the risk of hypersensitivity reactions in patients with HLA-B*57:01. The aim of this study was to determine the distribution of HIV-associated HLA-B subgroups (high and low resolution) and HLA-B*57:01 associated with Abacavir sensitivity in Turkiye. METHODS This retrospective case-control study consisted of 416 (F/M:111/305) HIV positive patients and 416 (F/M:111/305) healthy controls. HLA-B alleles were identified using Luminex based low-resolution method and further subgrouped by sequence-based high-resolution typing. RESULTS Our data showed that in patients with HIV-1 infection, HLA-B*15, *35, and *51 allele frequencies were higher, while the HLA-B*07, *14 and *55 allele frequencies were lower as compared to the controls. It was determined that HLA-B*15:01, *35:01, *35:08, and *51:01 alleles frequencies were higher in the patients with HIV-1 infection compared to the controls as HLA-B*07:02, *14:01, *44:01, and *55:01 allele frequencies were detected low. HLA-B*57:01 allele positivity, which is important in Abacavir hypersensitivity, was lower than controls, and this difference was not statistically significant. CONCLUSION Our results suggest that, HLA-B*07, *14, and *55 alleles and HLA-B*07:02, *14:01, *44:01, and *55:01 subgroups might have a protective effect, while HLA-B*15, *35, and *51 alleles and HLA-B*15:01, *35:01, *35:08, and *51:01 subgroups might play a role in susceptibility to HIV-1 infection.
Collapse
|
92
|
Karuppiah B, Chinniah R, Pandi S, Sevak V, Ravi PM, Thadakanathan D. Immunogenetic landscape of COVID-19 infections related neurological complications. COVID-19 IN ALZHEIMER'S DISEASE AND DEMENTIA 2023:133-146. [DOI: 10.1016/b978-0-443-15256-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
93
|
Abstract
Biological sex has wide-ranging impacts on HIV infection spanning differences in acquisition risk, the pathogenesis of untreated infection, impact of chronic treated disease and prospects for HIV eradication or functional cure. This chapter summarizes the scope of these differences and discusses several features of the immune response thought to contribute to the clinical outcomes.
Collapse
Affiliation(s)
- Marcus Altfeld
- Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
94
|
Yuan X, Lai Y. Bibliometric and visualized analysis of elite controllers based on CiteSpace: landscapes, hotspots, and frontiers. Front Cell Infect Microbiol 2023; 13:1147265. [PMID: 37124043 PMCID: PMC10130382 DOI: 10.3389/fcimb.2023.1147265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background A unique subset of people living with HIV, known as elite controllers, possess spontaneous and consistent control over viral replication and disease progression in the absence of antiviral intervention. In-depth research on elite controllers is conducive to designing better treatment strategies for HIV. However, comprehensive and illuminating bibliometric reports on elite controllers are rare. Methods Articles on elite controllers were retrieved from the Web of Science Core Collection. A visualized analysis of this domain was conducted by CiteSpace software. Taking count, betweenness centrality, and burst value as criteria, we interpreted the visualization results and predicted future new directions and emerging trends. Results By December 31, 2022, 843 articles related to elite controllers had been published. The largest contributors in terms of country, institution, and author were the United States (485), Univ Calif San Francisco (87), and Walker B.D. (65), respectively. Migueles S.A. (325) and Journal of Virology (770) were the most cocited author and journal, respectively. Additionally, by summarizing the results of our CiteSpace software analysis on references and keywords, we considered that the research hotspots and frontiers on elite controllers mainly focus on three aspects: deciphering the mechanisms of durable control, delineating the implications for the development of treatments for HIV infection, and highlighting the clinical risks faced by elite controllers and coping strategies. Conclusion This study performed a bibliometric and visual analysis of elite controllers, identified the main characteristics and emerging trends, and provided insightful references for further development of this rapidly evolving and complex field.
Collapse
Affiliation(s)
- Xingyue Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yu Lai,
| |
Collapse
|
95
|
Approaching the asymptote. Lancet HIV 2023; 10:e5-e7. [PMID: 36354048 DOI: 10.1016/s2352-3018(22)00310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
|
96
|
Immunological Control of HIV-1 Disease Progression by Rare Protective HLA Allele. J Virol 2022; 96:e0124822. [DOI: 10.1128/jvi.01248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-B57 is a relatively rare allele around world and the strongest protective HLA allele in Caucasians and African black individuals infected with HIV-1. Previous studies suggested that the advantage of this allele in HIV-1 disease progression is due to a strong functional ability of HLA-B57-restricted Gag-specific T cells and lower fitness of mutant viruses selected by the T cells.
Collapse
|
97
|
Ma X, Chan TA. Solving the puzzle of what makes immunotherapies work. Trends Cancer 2022; 8:890-900. [PMID: 35933298 PMCID: PMC10109520 DOI: 10.1016/j.trecan.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
The rapid adoption of immune checkpoint blockade (ICB) therapies has led to a need to understand the mechanistic drivers of efficacy and the identification of novel biomarkers that enrich for patients who benefit from ICB therapy. Here, we provide a perspective on emerging biomarker candidates, their underlying biological mechanisms, and how they may fit into the current landscape of ICB biomarkers. We discuss new frameworks to identify and evaluate biomarker candidates and review the opportunities and challenges of utilizing biomarker-derived models to facilitate the development of new immunotherapies.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; Case Western School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
98
|
New vector and vaccine platforms: mRNA, DNA, viral vectors. Curr Opin HIV AIDS 2022; 17:338-344. [DOI: 10.1097/coh.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99
|
Control of HIV-1 Replication by CD8 + T Cells Specific for Two Novel Pol Protective Epitopes in HIV-1 Subtype A/E Infection. J Virol 2022; 96:e0081122. [PMID: 36154612 PMCID: PMC9555181 DOI: 10.1128/jvi.00811-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many HIV-1-specific CD8+ T cell epitopes have been identified and used in various HIV-1 studies, most of these epitopes were derived from HIV-1 subtypes B and C. Only 17 well-defined epitopes, none of which were protective, have been identified for subtype A/E infection. The roles of HIV-1-specific T cells have been rarely analyzed for subtype A/E infection. In this study, we identified six novel HLA-B*15:02-restricted optimal HIV-1 subtype A/E epitopes and then analyzed the presentation of these epitopes by HIV-1 subtype A/E virus-infected cells and the T cell responses to these epitopes in treatment-naive HIV-1 subtype A/E-infected HLA-B*15:02+ Vietnamese individuals. Responders to the PolTY9 or PolLF10 epitope had a significantly lower plasma viral load (pVL) than nonresponders among HLA-B*15:02+ individuals, whereas no significant difference in pVL was found between responders to four other epitopes and nonresponders. The breadth of T cell responses to these two Pol epitopes correlated inversely with pVL. These findings suggest that HLA-B*15:02-restricted T cells specific for PolTY9 and PolLF10 contribute to the suppression of HIV-1 replication in HLA-B*15:02+ individuals. The HLA-B*15:02-associated mutation Pol266I reduced the recognition of PolTY9-specific T cells in vitro but did not affect HIV-1 replication by PolTY9-specific T cells in Pol266I mutant virus-infected individuals. These findings indicate that PolTY9-specific T cells suppress replication of the Pol266I mutant virus even though the T cells selected this mutant. This study demonstrates the effective role of T cells specific for these Pol epitopes to control circulating viruses in HIV-1 subtype A/E infection. IMPORTANCE It is expected that HIV-1-specific CD8+ T cells that effectively suppress HIV-1 replication will contribute to HIV-1 vaccine development and therapy to achieve an HIV cure. T cells specific for protective epitopes were identified in HIV-1 subtype B and C infections but not in subtype A/E infection, which is epidemic in Southeast Asia. In the present study, we identified six T cell epitopes derived from the subtype A/E virus and demonstrated that T cells specific for two Pol epitopes effectively suppressed HIV-1 replication in treatment-naive Vietnamese individuals infected with HIV-1 subtype A/E. One of these Pol protective epitopes was conserved among circulating viruses, and one escape mutation was accumulated in the other epitope. This mutation did not critically affect HIV-1 control by specific T cells in HIV-1 subtype A/E-infected individuals. This study identified two protective Pol epitopes and characterized them in cases of HIV-1 subtype A/E infection.
Collapse
|
100
|
Madrid-Elena N, Serrano-Villar S, Gutiérrez C, Sastre B, Morín M, Luna L, Martín L, Santoyo-López J, López-Huertas MR, Moreno E, García-Bermejo ML, Moreno-Pelayo MÁ, Moreno S. Selective miRNA inhibition in CD8 + cytotoxic T lymphocytes enhances HIV-1 specific cytotoxic responses. Front Immunol 2022; 13:998368. [PMID: 36225912 PMCID: PMC9549323 DOI: 10.3389/fimmu.2022.998368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
miRNAs dictate relevant virus-host interactions, offering new avenues for interventions to achieve an HIV remission. We aimed to enhance HIV-specific cytotoxic responses-a hallmark of natural HIV control- by miRNA modulation in T cells. We recruited 12 participants six elite controllers and six patients with chronic HIV infection on long-term antiretroviral therapy ("progressors"). Elite controllers exhibited stronger HIV-specific cytotoxic responses than the progressors, and their CD8+T cells showed a miRNA (hsa-miR-10a-5p) significantly downregulated. When we transfected ex vivo CD8+ T cells from progressors with a synthetic miR-10a-5p inhibitor, miR-10a-5p levels decreased in 4 out of 6 progressors, correlating with an increase in HIV-specific cytotoxic responses. The effects of miR-10a-5p inhibition on HIV-specific CTL responses were modest, short-lived, and occurred before day seven after modulation. IL-4 and TNF-α levels strongly correlated with HIV-specific cytotoxic capacity. Thus, inhibition of miR-10a-5p enhanced HIV-specific CD8+ T cell capacity in progressors. Our pilot study proves the concept that miRNA modulation is a feasible strategy to combat HIV persistence by enhancing specific cytotoxic immune responses, which will inform new approaches for achieving an antiretroviral therapy-free HIV remission.
Collapse
Affiliation(s)
- Nadia Madrid-Elena
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Beatriz Sastre
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Matías Morín
- Department of Genetics, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Laura Martín
- Biomarkers and Therapeutic Targets Group and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (Instituto de Investigación Sanitaria Ramón y Cajal), Spanish Renal Research Network (REDinREN), Madrid, Spain
| | | | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (Instituto de Investigación Sanitaria Ramón y Cajal), Spanish Renal Research Network (REDinREN), Madrid, Spain
| | - Miguel Ángel Moreno-Pelayo
- Department of Genetics, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
- Department of Medicine, Alcalá University, Alcalá de Henares, Spain
| |
Collapse
|