51
|
Design principles for robust vesiculation in clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2017; 114:E1118-E1127. [PMID: 28126722 DOI: 10.1073/pnas.1617705114] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advantage of some set of physical design principles to ensure robust vesiculation against opposing forces like membrane tension. Using a theoretical model for membrane mechanics and membrane protein interaction, we have systematically investigated the influence of membrane rigidity, curvature induced by the protein coat, area covered by the protein coat, membrane tension, and force from actin polymerization on bud formation. Under low tension, the membrane smoothly evolves from a flat to budded morphology as the coat area or spontaneous curvature increases, whereas the membrane remains essentially flat at high tensions. At intermediate, physiologically relevant, tensions, the membrane undergoes a "snap-through instability" in which small changes in the coat area, spontaneous curvature or membrane tension cause the membrane to "snap" from an open, U-shape to a closed bud. This instability can be smoothed out by increasing the bending rigidity of the coat, allowing for successful budding at higher membrane tensions. Additionally, applied force from actin polymerization can bypass the instability by inducing a smooth transition from an open to a closed bud. Finally, a combination of increased coat rigidity and force from actin polymerization enables robust vesiculation even at high membrane tensions.
Collapse
|
52
|
Abstract
The zebrafish skeleton shares many similarities with human and other vertebrate skeletons. Over the past years, work in zebrafish has provided an extensive understanding of the basic developmental mechanisms and cellular pathways directing skeletal development and homeostasis. This review will focus on the cell biology of cartilage and bone and how the basic cellular processes within chondrocytes and osteocytes function to assemble the structural frame of a vertebrate body. We will discuss fundamental functions of skeletal cells in production and secretion of extracellular matrix and cellular activities leading to differentiation of progenitors to mature cells that make up the skeleton. We highlight important examples where findings in zebrafish provided direction for the search for genes causing human skeletal defects and also how zebrafish research has proven important for validating candidate human disease genes. The work we cover here illustrates utility of zebrafish in unraveling molecular mechanisms of cellular functions necessary to form and maintain a healthy skeleton.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States
| | - Gokhan Unlu
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States
| | - Ela W Knapik
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
53
|
Tang H, Song M, He Y, Wang J, Wang S, Shen Y, Hou J, Bao X. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:53. [PMID: 28261326 PMCID: PMC5327580 DOI: 10.1186/s13068-017-0738-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/17/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. RESULTS In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera β-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the vesicle trafficking. CONCLUSIONS We have demonstrated, for the first time, engineering vesicle trafficking from the ER to the Golgi and from the Golgi to the plasma membrane can enhance the protein display efficiency. We also found that different heterologous proteins had specific limitations in vesicle trafficking pathway and that engineering the vesicle trafficking resulted in a protein-specific effect. These results provide a new strategy to improve the extracellular secretion and surface display of cellulases in S. cerevisiae.
Collapse
Affiliation(s)
- Hongting Tang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Meihui Song
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Yao He
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Jiajing Wang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Shenghuan Wang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Yu Shen
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Jin Hou
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Xiaoming Bao
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353 China
| |
Collapse
|
54
|
Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769-778. [PMID: 27903609 PMCID: PMC5166505 DOI: 10.1083/jcb.201610031] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
In this review, Gomez-Navarro and Miller summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elizabeth Miller
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
55
|
Wu S, Majeed SR, Evans TM, Camus MD, Wong NML, Schollmeier Y, Park M, Muppidi JR, Reboldi A, Parham P, Cyster JG, Brodsky FM. Clathrin light chains' role in selective endocytosis influences antibody isotype switching. Proc Natl Acad Sci U S A 2016; 113:9816-21. [PMID: 27540116 PMCID: PMC5024586 DOI: 10.1073/pnas.1611189113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin's role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cerebral Cortex/cytology
- Cerebral Cortex/immunology
- Clathrin Light Chains/genetics
- Clathrin Light Chains/immunology
- Endocytosis/immunology
- Gene Deletion
- Gene Expression Regulation
- Humans
- Immunoglobulin A/biosynthesis
- Immunoglobulin A/genetics
- Immunoglobulin Class Switching
- Liver/cytology
- Liver/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/cytology
- Myocardium/immunology
- Organ Specificity
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/immunology
- Receptors, Transforming Growth Factor beta/agonists
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Shuang Wu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Sophia R Majeed
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Timothy M Evans
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Marine D Camus
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143; Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Nicole M L Wong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Yvette Schollmeier
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Minjong Park
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Jagan R Muppidi
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Andrea Reboldi
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143;
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143; Division of Biosciences, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
56
|
Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: An integration of molecular mechanisms. J Cell Biol 2016; 214:375-87. [PMID: 27528656 PMCID: PMC4987295 DOI: 10.1083/jcb.201604003] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/03/2023] Open
Abstract
Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.
Collapse
Affiliation(s)
- Iris K Jarsch
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | - Frederic Daste
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| |
Collapse
|
57
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
58
|
Abstract
Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes.
Collapse
Affiliation(s)
- Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London & Birkbeck College, London WC1E 6BT, UK
| |
Collapse
|
59
|
Derganc J, Čopič A. Membrane bending by protein crowding is affected by protein lateral confinement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1152-9. [PMID: 26969088 DOI: 10.1016/j.bbamem.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 02/02/2023]
Abstract
Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches.
Collapse
Affiliation(s)
- Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alenka Čopič
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France.
| |
Collapse
|
60
|
Kinoshita T, Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res 2015; 57:6-24. [PMID: 26563290 DOI: 10.1194/jlr.r063313] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Glycosylphosphatidylinositols (GPIs) act as membrane anchors of many eukaryotic cell surface proteins. GPIs in various organisms have a common backbone consisting of ethanolamine phosphate (EtNP), three mannoses (Mans), one non-N-acetylated glucosamine, and inositol phospholipid, whose structure is EtNP-6Manα-2Manα-6Manα-4GlNα-6myoinositol-P-lipid. The lipid part is either phosphatidylinositol of diacyl or 1-alkyl-2-acyl form, or inositol phosphoceramide. GPIs are attached to proteins via an amide bond between the C-terminal carboxyl group and an amino group of EtNP. Fatty chains of inositol phospholipids are inserted into the outer leaflet of the plasma membrane. More than 150 different human proteins are GPI anchored, whose functions include enzymes, adhesion molecules, receptors, protease inhibitors, transcytotic transporters, and complement regulators. GPI modification imparts proteins with unique characteristics, such as association with membrane microdomains or rafts, transient homodimerization, release from the membrane by cleavage in the GPI moiety, and apical sorting in polarized cells. GPI anchoring is essential for mammalian embryogenesis, development, neurogenesis, fertilization, and immune system. Mutations in genes involved in remodeling of the GPI lipid moiety cause human diseases characterized by neurological abnormalities. Yeast Saccharomyces cerevisiae has >60 GPI-anchored proteins (GPI-APs). GPI is essential for growth of yeast. In this review, we discuss biosynthesis of GPI-APs in mammalian cells and yeast with emphasis on the lipid moiety.
Collapse
Affiliation(s)
- Taroh Kinoshita
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
61
|
Sec66-Dependent Regulation of Yeast Spindle-Pole Body Duplication Through Pom152. Genetics 2015; 201:1479-95. [PMID: 26510791 PMCID: PMC4676539 DOI: 10.1534/genetics.115.178012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
In closed mitotic systems such as Saccharomyces cerevisiae, the nuclear envelope (NE) does not break down during mitosis, so microtubule-organizing centers such as the spindle-pole body (SPB) must be inserted into the NE to facilitate bipolar spindle formation and chromosome segregation. The mechanism of SPB insertion has been linked to NE insertion of nuclear pore complexes (NPCs) through a series of genetic and physical interactions between NPCs and SPB components. To identify new genes involved in SPB duplication and NE insertion, we carried out genome-wide screens for suppressors of deletion alleles of SPB components, including Mps3 and Mps2. In addition to the nucleoporins POM152 and POM34, we found that elimination of SEC66/SEC71/KAR7 suppressed lethality of cells lacking MPS2 or MPS3. Sec66 is a nonessential subunit of the Sec63 complex that functions together with the Sec61 complex in import of proteins into the endoplasmic reticulum (ER). Cells lacking Sec66 have reduced levels of Pom152 protein but not Pom34 or Ndc1, a shared component of the NPC and SPB. The fact that Sec66 but not other subunits of the ER translocon bypass deletion mutants in SPB genes suggests a specific role for Sec66 in the control of Pom152 levels. Based on the observation that sec66∆ does not affect the distribution of Ndc1 on the NE or Ndc1 binding to the SPB, we propose that Sec66-mediated regulation of Pom152 plays an NPC-independent role in the control of SPB duplication.
Collapse
|
62
|
Muñiz M, Riezman H. Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface. J Lipid Res 2015; 57:352-60. [PMID: 26450970 DOI: 10.1194/jlr.r062760] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, many cell surface proteins are attached to the plasma membrane via a glycolipid glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins (GPI-APs) receive the GPI anchor as a conserved posttranslational modification in the lumen of the endoplasmic reticulum (ER). After anchor attachment, the GPI anchor is structurally remodeled to function as a transport signal that actively triggers the delivery of GPI-APs from the ER to the plasma membrane, via the Golgi apparatus. The structure and composition of the GPI anchor confer a special mode of interaction with membranes of GPI-APs within the lumen of secretory organelles that lead them to be differentially trafficked from other secretory membrane proteins. In this review, we examine the mechanisms by which GPI-APs are selectively transported through the secretory pathway, with special focus on the recent progress made in their actively regulated export from the ER and the trans-Golgi network.
Collapse
Affiliation(s)
- Manuel Muñiz
- Departamento de Biología Celular, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Howard Riezman
- National Centre of Competence in Research (NCCR) Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
63
|
Abstract
Quality control in the endoplasmic reticulum prevents packaging of immature and misfolded proteins into vesicles, but the actual mechanisms involved in this process have not been defined for most cargos. A recent study demonstrates that the engagement of mature cargo with its receptor triggers the recruitment of a vesicle cargo adaptor.
Collapse
Affiliation(s)
- J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
64
|
Doucet CM, Esmery N, de Saint-Jean M, Antonny B. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone. PLoS One 2015; 10:e0137965. [PMID: 26366573 PMCID: PMC4569407 DOI: 10.1371/journal.pone.0137965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.
Collapse
Affiliation(s)
- Christine M. Doucet
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
- * E-mail:
| | - Nina Esmery
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| | | | - Bruno Antonny
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| |
Collapse
|
65
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
66
|
Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT, Kladt N, Schauss A, Merrifield CJ, Stamou D, Höning S, Owen DJ. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell 2015; 33:163-75. [PMID: 25898166 PMCID: PMC4406947 DOI: 10.1016/j.devcel.2015.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/23/2015] [Accepted: 03/01/2015] [Indexed: 02/06/2023]
Abstract
The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake. CALM loss increases size and frequency of early endocytic clathrin-coated structures Depletion of CALM slows endocytic clathrin-coated pit maturation and endocytic rate CALM possesses an N-terminal, membrane-curvature-sensing/driving amphipathic helix Clathrin-coated pit maturation is regulated by CALM’s N-terminal amphipathic helix
Collapse
Affiliation(s)
- Sharon E Miller
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - Signe Mathiasen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nicholas A Bright
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Fabienne Pierre
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR3082 CNRS - Bat 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bernard T Kelly
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Nikolay Kladt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christien J Merrifield
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR3082 CNRS - Bat 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Dimitrios Stamou
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - David J Owen
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
67
|
Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. Intrinsically disordered proteins drive membrane curvature. Nat Commun 2015. [PMID: 26204806 PMCID: PMC4515776 DOI: 10.1038/ncomms8875] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. Proteins that bend membranes often contain curvature-promoting structural motifs such as wedges or crescent-shaped domains. Busch et al. report that intrinsically disordered domains can also drive membrane curvature and provide evidence that steric pressure driven by protein crowding mediates this effect.
Collapse
Affiliation(s)
- David J Busch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA
| | - Carl C Hayden
- 1] Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA [2] Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 1.224 Medical Research Building, Galveston, Texas 77555, USA
| | - Eileen M Lafer
- Department of Biochemistry and Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, UTHSCSA Biochemistry 415B, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Jeanne C Stachowiak
- 1] Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA [2] Institute for Cellular and Molecular Biology, The University of Texas at Austin, 107 W Dean, Keeton,Texas 78712, USA
| |
Collapse
|
68
|
Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 2015; 72:3709-20. [PMID: 26082182 PMCID: PMC4565863 DOI: 10.1007/s00018-015-1952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
69
|
D'Arcangelo JG, Crissman J, Pagant S, Čopič A, Latham CF, Snapp EL, Miller EA. Traffic of p24 Proteins and COPII Coat Composition Mutually Influence Membrane Scaffolding. Curr Biol 2015; 25:1296-305. [PMID: 25936552 DOI: 10.1016/j.cub.2015.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 01/22/2023]
Abstract
Eukaryotic protein secretion requires efficient and accurate delivery of diverse secretory and membrane proteins. This process initiates in the ER, where vesicles are sculpted by the essential COPII coat. The Sec13p subunit of the COPII coat contributes to membrane scaffolding, which enforces curvature on the nascent vesicle. A requirement for Sec13p can be bypassed when traffic of lumenally oriented membrane proteins is abrogated. Here we sought to further explore the impact of cargo proteins on vesicle formation. We show that efficient ER export of the p24 family of proteins is a major driver of the requirement for Sec13p. The scaffolding burden presented by the p24 complex is met in part by the cargo adaptor Lst1p, which binds to a subset of cargo, including the p24 proteins. We propose that the scaffolding function of Lst1p is required to generate vesicles that can accommodate difficult cargo proteins that include large oligomeric assemblies and asymmetrically distributed membrane proteins. Vesicles that contain such cargoes are also more dependent on scaffolding by Sec13p, and may serve as a model for large carrier formation in other systems.
Collapse
Affiliation(s)
| | - Jonathan Crissman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Silvere Pagant
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alenka Čopič
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Catherine F Latham
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Erik L Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
70
|
Fritzsche S, Abualrous ET, Borchert B, Momburg F, Springer S. Release from endoplasmic reticulum matrix proteins controls cell surface transport of MHC class I molecules. Traffic 2015; 16:591-603. [PMID: 25753898 DOI: 10.1111/tra.12279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/30/2015] [Indexed: 02/01/2023]
Abstract
The anterograde transport of secretory proteins from the endoplasmic reticulum (ER) to the plasma membrane is a multi-step process. Secretory proteins differ greatly in their transport rates to the cell surface, but the contribution of each individual step to this difference is poorly understood. Transport rates may be determined by protein folding, chaperone association in the ER, access to ER exit sites (ERES) and retrieval from the ER-Golgi intermediate compartment or the cis-Golgi to the ER. We have used a combination of folding and trafficking assays to identify the differential step in the cell surface transport of two natural allotypes of the murine major histocompatibility complex (MHC) class I peptide receptor, H-2D(b) and H-2K(b) . We find that a novel pre-ER exit process that acts on the folded lumenal part of MHC class I molecules and that drastically limits their access to ERES accounts for the transport difference of the two allotypes. Our observations support a model in which the cell surface transport of MHC class I molecules and other type I transmembrane proteins is governed by the affinity of all their folding and maturation states to the proteins of the ER matrix.
Collapse
Affiliation(s)
- Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Esam T Abualrous
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Britta Borchert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Frank Momburg
- Department of Translational Immunology, German Cancer Research Center/NCT, Heidelberg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
71
|
Dannhauser PN, Platen M, Böning H, Ungewickell H, Schaap IA, Ungewickell EJ. Effect of Clathrin Light Chains on the Stiffness of Clathrin Lattices and Membrane Budding. Traffic 2015; 16:519-33. [DOI: 10.1111/tra.12263] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Philip N. Dannhauser
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Mitja Platen
- IIIrd Institute of Physics; Georg August University; Göttingen Germany
| | - Heike Böning
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Huberta Ungewickell
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Iwan A.T. Schaap
- IIIrd Institute of Physics; Georg August University; Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Ernst J. Ungewickell
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| |
Collapse
|
72
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
73
|
Bychkova VE, Basova LV, Balobanov VA. How membrane surface affects protein structure. BIOCHEMISTRY (MOSCOW) 2015; 79:1483-514. [DOI: 10.1134/s0006297914130045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
74
|
Manzano-Lopez J, Perez-Linero AM, Aguilera-Romero A, Martin ME, Okano T, Silva DV, Seeberger PH, Riezman H, Funato K, Goder V, Wellinger RE, Muñiz M. COPII coat composition is actively regulated by luminal cargo maturation. Curr Biol 2014; 25:152-162. [PMID: 25557665 DOI: 10.1016/j.cub.2014.11.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Export from the ER is an essential process driven by the COPII coat, which forms vesicles at ER exit sites (ERESs) to transport mature secretory proteins to the Golgi. Although the basic mechanism of COPII assembly is known, how COPII machinery is regulated to meet varying cellular secretory demands is unclear. RESULTS Here, we report a specialized COPII system that is actively recruited by luminal cargo maturation. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are luminal secretory proteins anchored to the membrane by the glycolipid GPI. After protein attachment in the ER lumen, lipid and glycan parts of the GPI anchor are remodeled. In yeast, GPI-lipid remodeling concentrates GPI-APs into specific ERESs. We found that GPI-glycan remodeling induces subsequent recruitment of the specialized ER export machinery that enables vesicle formation from these specific ERESs. First, the transmembrane cargo receptor p24 complex binds GPI-APs as a lectin by recognizing the remodeled GPI-glycan. Binding of remodeled cargo induces the p24 complex to recruit the COPII subtype Lst1p, specifically required for GPI-AP ER export. CONCLUSIONS Our results show that COPII coat recruitment by cargo receptors is not constitutive but instead is actively regulated by binding of mature ligands. Therefore, we reveal a novel functional link between luminal cargo maturation and COPII vesicle budding, providing a mechanism to adjust specialized COPII vesicle production to the amount and quality of their luminal cargos that are ready for ER exit. This helps to understand how the ER export machinery adapts to different needs for luminal cargo secretion.
Collapse
Affiliation(s)
| | | | | | - Maria E Martin
- Department of Cell Biology, University of Seville, 41012 Seville, Spain
| | - Tatsuki Okano
- Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan
| | - Daniel Varon Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland
| | - Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan
| | - Veit Goder
- Department of Genetics, University of Seville, 41012 Seville, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Seville, Spain
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
75
|
Qu X, Chatty PR, Roeder AHK. Endomembrane trafficking protein SEC24A regulates cell size patterning in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1877-90. [PMID: 25315606 PMCID: PMC4256882 DOI: 10.1104/pp.114.246033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Size is a critical property of a cell, but how it is determined is still not well understood. The sepal epidermis of Arabidopsis (Arabidopsis thaliana) contains cells with a diversity of sizes ranging from giant cells to small cells. Giant cells have undergone endoreduplication, a specialized cell cycle in which cells replicate their DNA but fail to divide, becoming polyploid and enlarged. Through forward genetics, we have identified a new mutant with ectopic giant cells covering the sepal epidermis. Surprisingly, the mutated gene, SEC24A, encodes a coat protein complex II vesicle coat subunit involved in endoplasmic reticulum-to-Golgi trafficking in the early secretory pathway. We show that the ectopic giant cells of sec24a-2 are highly endoreduplicated and that their formation requires the activity of giant cell pathway genes LOSS OF GIANT CELLS FROM ORGANS, DEFECTIVE KERNEL1, and Arabidopsis CRINKLY4. In contrast to other trafficking mutants, cytokinesis appears to occur normally in sec24a-2. Our study reveals an unexpected yet specific role of SEC24A in endoreduplication and cell size patterning in the Arabidopsis sepal.
Collapse
Affiliation(s)
- Xian Qu
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Prerana Rao Chatty
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
76
|
Muñiz M, Zurzolo C. Sorting of GPI-anchored proteins from yeast to mammals--common pathways at different sites? J Cell Sci 2014; 127:2793-801. [PMID: 24906797 DOI: 10.1242/jcs.148056] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are luminal secretory cargos that are attached by a post-translational glycolipid modification, the GPI anchor, to the external leaflet of the plasma membrane. GPI-APs are conserved among eukaryotes and possess many diverse and vital functions for which the GPI membrane attachment appears to be essential. The presence of the GPI anchor and its subsequent modifications along the secretory pathway confer to the anchored proteins unique trafficking properties that make GPI-APs an exceptional system to study mechanisms of sorting. In this Commentary, we discuss the recent advances in the field of GPI-AP sorting focusing on the mechanisms operating at the level of the exit from the ER and from the trans-Golgi network (TGN), which take place, respectively, in yeast and in polarized mammalian cells. By considering the similarities and differences between these two sorting events, we present unifying principles that appear to work at different sorting stations and in different organisms.
Collapse
Affiliation(s)
- Manuel Muñiz
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes s/n 41012 Seville, Spain
| | - Chiara Zurzolo
- Institut Pasteur, Unité de Trafic Membranaire et Pathogénèse, 75724 Paris CEDEX 15, France
| |
Collapse
|
77
|
Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT. Mechanisms shaping cell membranes. Curr Opin Cell Biol 2014; 29:53-60. [PMID: 24747171 DOI: 10.1016/j.ceb.2014.03.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
Abstract
Membranes of intracellular organelles are characterized by large curvatures with radii of the order of 10-30nm. While, generally, membrane curvature can be a consequence of any asymmetry between the membrane monolayers, generation of large curvatures requires the action of mechanisms based on specialized proteins. Here we discuss the three most relevant classes of such mechanisms with emphasis on the physical requirements for proteins to be effective in generation of membrane curvature. We provide new quantitative estimates of membrane bending by shallow hydrophobic insertions and compare the efficiency of the insertion mechanism with those of the protein scaffolding and crowding mechanisms.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
| | - Felix Campelo
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Nicole Liska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Leonid V Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
78
|
Springer S, Malkus P, Borchert B, Wellbrock U, Duden R, Schekman R. Regulated Oligomerization Induces Uptake of a Membrane Protein into COPII Vesicles Independent of Its Cytosolic Tail. Traffic 2014; 15:531-45. [DOI: 10.1111/tra.12157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
| | - Per Malkus
- Department of Systems Biology; Harvard Medical School; Boston MA 02115 USA
| | - Britta Borchert
- Biochemistry and Cell Biology; Jacobs University Bremen; Bremen Germany
| | - Ursula Wellbrock
- Biochemistry and Cell Biology; Jacobs University Bremen; Bremen Germany
| | - Rainer Duden
- Centre for Structural and Cell Biology in Medicine, Institute of Biology; University of Lübeck; Lübeck Germany
| | - Randy Schekman
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology; University of California, Berkeley; Berkeley CA 94720 USA
| |
Collapse
|
79
|
|
80
|
Gardner JM, Jaspersen SL. Manipulating the yeast genome: deletion, mutation, and tagging by PCR. Methods Mol Biol 2014; 1205:45-78. [PMID: 25213239 DOI: 10.1007/978-1-4939-1363-3_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Saccharomyces cerevisiae is an ideal model eukaryotic system for the systematic analysis of gene function due to the ease and precision with which its genome can be manipulated. The ability of budding yeast to undergo efficient homologous recombination with short stretches of sequence homology has led to an explosion of PCR-based methods to delete and mutate yeast genes and to create fusions to epitope tags and fluorescent proteins. Here, we describe commonly used methods to generate gene deletions, to integrate mutated versions of a gene into the yeast genome, and to construct N- and C-terminal gene fusions. Using a high-efficiency yeast transformation protocol, DNA fragments with as little as 40 bp of homology can accurately target integration into a particular region of the yeast genome.
Collapse
Affiliation(s)
- Jennifer M Gardner
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | | |
Collapse
|
81
|
Unlu G, Levic DS, Melville DB, Knapik EW. Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. Int J Biochem Cell Biol 2013; 47:57-67. [PMID: 24333299 DOI: 10.1016/j.biocel.2013.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/19/2022]
Abstract
Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled. Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates.
Collapse
Affiliation(s)
- Gokhan Unlu
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel S Levic
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David B Melville
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ela W Knapik
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
82
|
Abstract
Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energy barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energy costs and drivers involved in membrane curvature, and draw a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems such as viral egress.
Collapse
|
83
|
Hirata R, Nihei CI, Nakano A. Isoform-selective oligomer formation of Saccharomyces cerevisiae p24 family proteins. J Biol Chem 2013; 288:37057-70. [PMID: 24217251 DOI: 10.1074/jbc.m113.518340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p24 family proteins are evolutionarily conserved transmembrane proteins involved in the early secretory pathway. Saccharomyces cerevisiae has 8 known p24 proteins that are classified into four subfamilies (p24α, -β, -γ, and -δ). Emp24 and Erv25 are the sole members of p24β and -δ, respectively, and deletion of either destabilizes the remaining p24 proteins, resulting in p24 null phenotype (p24Δ). We studied genetic and physical interactions of p24α (Erp1, -5, and -6) and γ (Erp2, -3, and -4). Deletion of the major p24α (Erp1) partially inhibited p24 activity as reported previously. A second mutation in either Erp5 or Erp6 aggravated the erp1Δ phenotype, and the triple mutation gave a full p24Δ phenotype. Similar genetic interactions were observed among the major p24γ (Erp2) and the other two γ members. All the p24α/γ isoforms interacted with both p24β and -δ. Interaction between p24β and -δ was isoform-selective, and five major α/γ pairs were detected. These results suggest that the yeast p24 proteins form functionally redundant αβγδ complexes. We also identified Rrt6 as a novel p24δ isoform. Rrt6 shows only limited sequence identity (∼15%) to known p24 proteins but was found to have structural properties characteristic of p24. Rrt6 was induced when cells were grown on glycerol and form an additional αβγδ complex with Erp3, Erp5, and Emp24. This complex was mainly localized to the Golgi, whereas the p24 complex containing Erv25, instead of Rrt6 but otherwise with the same isoform composition, was found mostly in the ER.
Collapse
Affiliation(s)
- Ryogo Hirata
- From the Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics and
| | | | | |
Collapse
|
84
|
Kajiwara K, Ikeda A, Aguilera-Romero A, Castillon GA, Kagiwada S, Hanada K, Riezman H, Muñiz M, Funato K. Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast. J Cell Sci 2013; 127:376-87. [PMID: 24213531 DOI: 10.1242/jcs.132001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipids synthesized at the endoplasmic reticulum (ER) are delivered to the Golgi by vesicular and non-vesicular pathways. ER-to-Golgi transport is crucial for maintaining the different membrane lipid composition and identities of organelles. Despite their importance, mechanisms regulating transport remain elusive. Here we report that in yeast coat protein complex II (COPII) vesicle-mediated transport of ceramide from the ER to the Golgi requires oxysterol-binding protein homologs, Osh proteins, which have been implicated in lipid homeostasis. Because Osh proteins are not required to transport proteins to the Golgi, these results indicate a specific requirement for the Osh proteins in the transport of ceramide. In addition, we provide evidence that Osh proteins play a negative role in COPII vesicle biogenesis. Together, our data suggest that ceramide transport and sphingolipid levels between the ER and Golgi are maintained by two distinct functions of Osh proteins, which negatively regulate COPII vesicle formation and positively control a later stage, presumably fusion of ceramide-enriched vesicles with Golgi compartments.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Membrane bending: the power of protein imbalance. Trends Biochem Sci 2013; 38:576-84. [DOI: 10.1016/j.tibs.2013.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 01/02/2023]
|
86
|
Miller EA. A sustained passion for intracellular trafficking. Mol Biol Cell 2013; 24:3270-2. [PMID: 24174458 PMCID: PMC3814137 DOI: 10.1091/mbc.e13-07-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
I am honored to be the first recipient of the Women in Cell Biology Sustained Excellence in Research Award. Since my graduate school days, I have enjoyed being part of a stimulating scientific community the American Society for Cell Biology embodies. Having found myself largely by accident in a career that I find deeply enjoyable and fulfilling, I hope here to convey a sense that one need not have a “grand plan” to have a successful life in science. Simply following one's interests and passions can sustain a career, even though it may involve some migration.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
87
|
Molino D, Galli T. Biogenesis and transport of membrane domains-potential implications in brain pathologies. Biochimie 2013; 96:75-84. [PMID: 24075975 DOI: 10.1016/j.biochi.2013.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
Lipids in biological membranes show astonishing chemical diversity, but they also show some key conserved structures in different organisms. In addition, some of their biophysical properties have been related to specific functions. In this review, we aim to discuss the role of sphingolipids- and cholesterol-rich micro- and nano-membrane domains (MD) and highlight their pivotal role in lipid-protein clustering processes, vesicle biogenesis and membrane fusion. We further review potential connections between human pathologies and defects in MD biosynthesis, recycling and homeostasis. Brain, which is second only to the adipose tissues in term of lipid abundance, is particularly affected by MD defects which are linked to neurodegenerative disorders. Finally we propose a potential connection between MD and several nutrient-related processes and envision how diet and autophagy could bring insights towards understanding the impact of global lipid homeostasis on human health and disease.
Collapse
Affiliation(s)
- Diana Molino
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; INSERM ERL U950, Membrane Traffic in Neuronal and Epithelial Morphogenesis, F-75013 Paris, France.
| | | |
Collapse
|
88
|
Venditti R, Wilson C, De Matteis MA. Exiting the ER: what we know and what we don't. Trends Cell Biol 2013; 24:9-18. [PMID: 24076263 DOI: 10.1016/j.tcb.2013.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
The vast majority of proteins that are transported to different cellular compartments and secreted from the cell require coat protein complex II (COPII) for export from the endoplasmic reticulum (ER). Many of the molecular mechanisms underlying COPII assembly are understood in great detail, but it is becoming increasingly evident that this basic machinery is insufficient to account for diverse aspects of protein export from the ER that are observed in vivo. Here we review recent data that have furthered our mechanistic understanding of COPII assembly and, in particular, how genetic diseases associated with the early secretory pathway have added fundamental insights into the regulation of ER-derived carrier formation. We also highlight some unresolved issues that future work should address to better understand the physiology of COPII-mediated transport.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | | |
Collapse
|
89
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
90
|
Miller EA, Schekman R. COPII - a flexible vesicle formation system. Curr Opin Cell Biol 2013; 25:420-7. [PMID: 23702145 PMCID: PMC3736695 DOI: 10.1016/j.ceb.2013.04.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Abstract
Long known as a coat system that generates small transport vesicles from the endoplasmic reticulum (ER), the COPII coat also drives ER export of cargo proteins that are too large to be contained within these canonical carriers. With crystal and cryo-EM structures giving an atomic level view of coat architecture, current advances in the field have focused on understanding how the coat adapts to the different geometries of the underlying cargo. Combined with a growing appreciation for the specific roles of individual COPII paralogs in diverse aspects of mammalian physiology, the field is poised to understand how coat assembly and post-translational modification permits structural rigidity but geometric flexibility to handle the diverse cargoes that exit the ER.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
91
|
Abstract
The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.
Collapse
|
92
|
Schley D, Whittaker RJ, Neuman BW. Arenavirus budding resulting from viral-protein-associated cell membrane curvature. J R Soc Interface 2013; 10:20130403. [PMID: 23864502 PMCID: PMC3730687 DOI: 10.1098/rsif.2013.0403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.
Collapse
Affiliation(s)
- David Schley
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK.
| | | | | |
Collapse
|
93
|
Rizzo R, Parashuraman S, Mirabelli P, Puri C, Lucocq J, Luini A. The dynamics of engineered resident proteins in the mammalian Golgi complex relies on cisternal maturation. ACTA ACUST UNITED AC 2013; 201:1027-36. [PMID: 23775191 PMCID: PMC3691466 DOI: 10.1083/jcb.201211147] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
After leaving the endoplasmic reticulum, secretory proteins traverse several membranous transport compartments before reaching their destinations. How they move through the Golgi complex, a major secretory station composed of stacks of membranous cisternae, is a central yet unsettled issue in membrane biology. Two classes of mechanisms have been proposed. One is based on cargo-laden carriers hopping across stable cisternae and the other on "maturing" cisternae that carry cargo forward while progressing through the stack. A key difference between the two concerns the behavior of Golgi-resident proteins. Under stable cisternae models, Golgi residents remain in the same cisterna, whereas, according to cisternal maturation, Golgi residents recycle from distal to proximal cisternae via retrograde carriers in synchrony with cisternal progression. Here, we have engineered Golgi-resident constructs that can be polymerized at will to prevent their recycling via Golgi carriers. Maturation models predict the progress of such polymerized residents through the stack along with cargo, but stable cisternae models do not. The results support the cisternal maturation mechanism.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Instituto di Biochimica delle Proteine, Consiglio Nazionale delle Richerche, 80131 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
94
|
Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:5/6/a013391. [PMID: 23732476 DOI: 10.1101/cshperspect.a013391] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels--SNARE proteins--to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.
Collapse
Affiliation(s)
- Anne Spang
- University of Basel, Biozentrum, Growth & Development, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
95
|
Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, Bai Y, Liu HH, Adams E, Baines A, Yu G, Sartor MA, Zhang B, Yi Z, Lin J, Young SG, Schekman R, Ginsburg D. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. eLife 2013; 2:e00444. [PMID: 23580231 PMCID: PMC3622177 DOI: 10.7554/elife.00444] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/19/2013] [Indexed: 12/14/2022] Open
Abstract
The secretory pathway of eukaryotic cells packages cargo proteins into COPII-coated vesicles for transport from the endoplasmic reticulum (ER) to the Golgi. We now report that complete genetic deficiency for the COPII component SEC24A is compatible with normal survival and development in the mouse, despite the fundamental role of SEC24 in COPII vesicle formation and cargo recruitment. However, these animals exhibit markedly reduced plasma cholesterol, with mutations in Apoe and Ldlr epistatic to Sec24a, suggesting a receptor-mediated lipoprotein clearance mechanism. Consistent with these data, hepatic LDLR levels are up-regulated in SEC24A-deficient cells as a consequence of specific dependence of PCSK9, a negative regulator of LDLR, on SEC24A for efficient exit from the ER. Our findings also identify partial overlap in cargo selectivity between SEC24A and SEC24B, suggesting a previously unappreciated heterogeneity in the recruitment of secretory proteins to the COPII vesicles that extends to soluble as well as trans-membrane cargoes. DOI:http://dx.doi.org/10.7554/eLife.00444.001.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - He Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Kanika Bajaj
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Pengcheng Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Zhuo-Xian Meng
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Danjun Ma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, United States
| | - Yongsheng Bai
- Department of Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Hui-Hui Liu
- Department of Molecular Medicine, Cleveland Clinic, Cleveland, United States
| | - Elizabeth Adams
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, United States
| | - Andrea Baines
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, United States
| | - Genggeng Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Maureen A Sartor
- Department of Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Bin Zhang
- Department of Molecular Medicine, Cleveland Clinic, Cleveland, United States
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, United States
| | - Jiandie Lin
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Stephen G Young
- Department of Medicine and Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - David Ginsburg
- Division of Molecular Medicine & Genetics, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
96
|
D'Arcangelo JG, Stahmer KR, Miller EA. Vesicle-mediated export from the ER: COPII coat function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2464-72. [PMID: 23419775 DOI: 10.1016/j.bbamcr.2013.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/26/2022]
Abstract
Vesicle trafficking from the endoplasmic reticulum (ER) is a vital cellular process in all eukaryotes responsible for moving secretory cargoes from the ER to the Golgi apparatus. To accomplish this feat, the cell employs a set of conserved cytoplasmic coat proteins - the coat protein II (COPII) complex - that recruit cargo into nascent buds and deform the ER membrane to drive vesicle formation. While our understanding of COPII coat mechanics has developed substantially since its discovery, we have only recently begun to appreciate the factors that regulate this complex and, in turn, ER-to-Golgi trafficking. Here, we describe these factors and their influences on COPII vesicle formation. Properties intrinsic to the GTP cycle of the coat, as well as coat structure, have critical implications for COPII vesicle trafficking. Extrinsic factors in the cytosol can modulate COPII activity through direct interaction with the coat or with scaffolding components, or by changing composition of the ER membrane. Further, lumenal and membrane-bound cargoes and cargo receptors can influence COPII-mediated trafficking in equally profound ways. Together, these factors work in concert to ensure proper cargo movement in this first step of the secretory pathway. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
97
|
|
98
|
Noble AJ, Zhang Q, O'Donnell J, Hariri H, Bhattacharya N, Marshall AG, Stagg SM. A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry. Nat Struct Mol Biol 2013; 20:167-73. [PMID: 23262493 PMCID: PMC3565055 DOI: 10.1038/nsmb.2467] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/09/2012] [Indexed: 12/23/2022]
Abstract
COPII vesicles transport proteins from the endoplasmic reticulum to the Golgi apparatus. Previous COPII-cage cryo-EM structures lacked the resolution necessary to determine the residues of Sec13 and Sec31 that mediate assembly and flexibility of the COPII cage. Here we present a 12-Å structure of the human COPII cage, where the tertiary structure of Sec13 and Sec31 is clearly identifiable. We employ this structure and a homology model of the Sec13-Sec31 complex to create a reliable pseudoatomic model of the COPII cage. We combined this model with hydrogen/deuterium-exchange MS analysis to characterize four distinct contact regions at the vertices of the COPII cage. Furthermore, we found that the two-fold symmetry of the Sec31 dimeric region in Sec13-Sec31 is broken upon cage formation and that the resulting hinge is essential to form the proper edge geometry in COPII cages.
Collapse
Affiliation(s)
- Alex J Noble
- Department of Physics, Florida State University, Tallahassee, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Kinoshita T, Maeda Y, Fujita M. Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2473-8. [PMID: 23380706 DOI: 10.1016/j.bbamcr.2013.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 12/17/2022]
Abstract
In this review on the transport of glycosylphosphatidylinositol-anchored proteins (GPI-APs), we focus on events that occur in the endoplasmic reticulum after the transfer of GPI to proteins. These events include structural remodeling of both the lipid and glycan moieties of GPI, recruitment of GPI-APs into ER exit sites, association with the cargo receptor, p24 protein complex, and packaging into COPII coated transport vesicles. Similarities with the transport of Wnt proteins are also discussed. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
100
|
Lord C, Ferro-Novick S, Miller EA. The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi. Cold Spring Harb Perspect Biol 2013; 5:5/2/a013367. [PMID: 23378591 DOI: 10.1101/cshperspect.a013367] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins binding directly to tethering and regulatory factors. Recent findings have yielded new insight into how COPII-mediated vesicle traffic is regulated. Here we discuss the molecular basis of COPII-mediated ER-Golgi traffic, focusing on the surprising complexity of how ER-derived vesicles form, package diverse cargoes, and correctly target these cargoes to their destination.
Collapse
Affiliation(s)
- Christopher Lord
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|