51
|
Abstract
Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal "somy" (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection.IMPORTANCELeishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene dosage impact gene expression has not been formally investigated. Here we show that the predominant mechanism determining transcript abundance differences (>85%) in Leishmania tropica is that of gene dosage at the level of individual genes or chromosomal somy.
Collapse
|
52
|
Machelart A, Van Vyve M, Potemberg G, Demars A, De Trez C, Tima HG, Vanwalleghem G, Romano M, Truyens C, Letesson JJ, Muraille E. Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNγ-Dependent Pathways. Front Immunol 2017; 8:903. [PMID: 28824630 PMCID: PMC5534484 DOI: 10.3389/fimmu.2017.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023] Open
Abstract
This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Margaux Van Vyve
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Carl De Trez
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hermann Giresse Tima
- Service Immunology, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Marta Romano
- Service Immunology, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium.,Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
53
|
Trypanosoma brucei growth control by TNF in mammalian host is independent of the soluble form of the cytokine. Sci Rep 2017; 7:6165. [PMID: 28733685 PMCID: PMC5522424 DOI: 10.1038/s41598-017-06496-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Infection of C57Bl/6 mice by pleomorphic African trypanosomes Trypanosoma brucei and T. congolense is characterized by parasitemia waves coupled with the production of systemic levels of TNF. This cytokine is known to control T. brucei growth, but also to contribute to tissue damage, shortening the survival time of infected mice. Using a dominant-negative version of TNF to discriminate between the effects of the membrane-form versus the soluble form of TNF, we show that the second form is involved in neither parasite control nor induction of liver injury. Therefore, soluble TNF is likely not a major contributor to disease outcome. We propose that membrane-bound TNF is responsible for both T. brucei control and host pathology.
Collapse
|
54
|
Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front Immunol 2017; 8:582. [PMID: 28596768 PMCID: PMC5442186 DOI: 10.3389/fimmu.2017.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Abstract
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Structural Biology Research Centre (SBRC), VIB, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| |
Collapse
|
55
|
Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006245. [PMID: 28257521 PMCID: PMC5352147 DOI: 10.1371/journal.ppat.1006245] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. Trypanosomes are the causative agent of major parasitic diseases such as African sleeping sickness, leishmaniosis and Chagas' disease that affect millions of people. These parasites cycle between an insect and a mammalian host. Communication between the parasites and the host must be essential for executing a productive infection and for cycling of the parasite between its hosts. Exosomes are 40-100nm vesicles of endocytic origin, and were shown to affect a variety of biological processes and human diseases. Exosomes were also shown to help pathogens evade the immune system. In this study, we demonstrate that exosomes are secreted from Trypanosoma brucei parasites when trans-splicing is inhibited. These exosomes contain, among many other constituents, a type of RNA known as spliced leader RNA (SL RNA), which is essential in these parasites for formation of all mature mRNA. These exosomes are able to enter neighboring trypanosomes, and only intact exosomes affect the social motility of these parasites. We propose that exosomes can potentially control parasite migration in the insect host by acting as a repellent that drives the fit parasites away from either damaged cells or an unfavorable environment. This mechanism could secure a productive infection.
Collapse
|
56
|
Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, De Rycker M, Torrie LS, Wyatt PG, Wyllie S, Gilbert IH. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15:217-231. [PMID: 28239154 PMCID: PMC5582623 DOI: 10.1038/nrmicro.2016.193] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WHO recognizes human African trypanosomiasis, Chagas disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the effect of these diseases in recent decades but alone will not eliminate them. In this Review, we discuss why new drugs against trypanosomatids are required, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. In addition, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives is essential for the management, and hopefully eventual elimination, of trypanosomatid diseases from the human population.
Collapse
Affiliation(s)
- Mark C Field
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G Wyatt
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
57
|
Savage AF, Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans. PLoS One 2016; 11:e0168877. [PMID: 28002435 PMCID: PMC5176191 DOI: 10.1371/journal.pone.0168877] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023] Open
Abstract
African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals, have a complex digenetic life cycle between a mammalian host and an insect vector, the blood-feeding tsetse fly. Although the importance of the insect vector to transmit the disease was first realized over a century ago, many aspects of trypanosome development in tsetse have not progressed beyond a morphological analysis, mainly due to considerable challenges to obtain sufficient material for molecular studies. Here, we used high-throughput RNA-Sequencing (RNA-Seq) to profile Trypanosoma brucei transcript levels in three distinct tissues of the tsetse fly, namely the midgut, proventriculus and salivary glands. Consistent with current knowledge and providing a proof of principle, transcripts coding for procyclin isoforms and several components of the cytochrome oxidase complex were highly up-regulated in the midgut transcriptome, whereas transcripts encoding metacyclic VSGs (mVSGs) and the surface coat protein brucei alanine rich protein or BARP were extremely up-regulated in the salivary gland transcriptome. Gene ontology analysis also supported the up-regulation of biological processes such as DNA metabolism and DNA replication in the proventriculus transcriptome and major changes in signal transduction and cyclic nucleotide metabolism in the salivary gland transcriptome. Our data highlight a small repertoire of expressed mVSGs and potential signaling pathways involving receptor-type adenylate cyclases and members of a surface carboxylate transporter family, called PADs (Proteins Associated with Differentiation), to cope with the changing environment, as well as RNA-binding proteins as a possible global regulators of gene expression.
Collapse
Affiliation(s)
- Amy F. Savage
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Nikolay G. Kolev
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Joseph B. Franklin
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (SA); (CT)
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (SA); (CT)
| |
Collapse
|
58
|
Cheung JLY, Wand NV, Ooi CP, Ridewood S, Wheeler RJ, Rudenko G. Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies. PLoS Pathog 2016; 12:e1006023. [PMID: 27893860 PMCID: PMC5125712 DOI: 10.1371/journal.ppat.1006023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection.
Collapse
Affiliation(s)
- Jackie L. Y. Cheung
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Nadina V. Wand
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Cher-Pheng Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Sophie Ridewood
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Richard J. Wheeler
- Department of Pathology, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
- * E-mail:
| |
Collapse
|
59
|
Hutchinson S, Glover L, Horn D. High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes. BMC Genomics 2016; 17:806. [PMID: 27756224 PMCID: PMC5070307 DOI: 10.1186/s12864-016-3154-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background African trypanosomes cause lethal diseases in humans and animals and escape host immune attack by switching the expression of Variant Surface Glycoprotein (VSG) genes. The expressed VSGs are located at the ends of telomeric, polycistronic transcription units known as VSG expression sites (VSG-ESs). Each cell has many VSG-ESs but only one is transcribed in bloodstream-form parasites and all of them are inactive upon transmission to the insect vector mid-gut; a subset of monocistronic metacyclic VSG-ESs are then activated in the insect salivary gland. Deep-sequence analyses have been informative but assigning sequences to individual VSG-ESs has been challenging because they each contain closely related expression-site associated genes, or ESAGs, thought to contribute to virulence. Results We utilised ART, an in silico short read simulator to demonstrate the feasibility of accurately aligning reads to VSG-ESs. Then, using high-resolution transcriptomes from isogenic bloodstream and insect-stage Lister 427 Trypanosoma brucei, we uncover increased abundance in the insect mid-gut stage of mRNAs from metacyclic VSG-ESs and of mRNAs from the unusual ESAG, ESAG10. Further, we show that the silencing associated with allelic exclusion involves repression focussed at the ends of the VSG-ESs. We also use the approach to report relative fitness costs following ESAG RNAi from a genome-scale screen. Conclusions By assigning sequences to individual VSG-ESs we provide new insights into VSG-ES transcription control, allelic exclusion and impacts on fitness. Thus, deeper insights into the expression and function of regulated multi-gene families are more accessible than previously anticipated. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Hutchinson
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lucy Glover
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.,Present address: Trypanosomes Molecular Biology, Institut Pasteur, 75015, Paris, France
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
60
|
Sanchez MA, Tran KD, Valli J, Hobbs S, Johnson E, Gluenz E, Landfear SM. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes. J Biol Chem 2016; 291:19760-73. [PMID: 27489106 DOI: 10.1074/jbc.m116.739235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability.
Collapse
Affiliation(s)
- Marco A Sanchez
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Khoa D Tran
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Jessica Valli
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sam Hobbs
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Errin Johnson
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Eva Gluenz
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Scott M Landfear
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
61
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
62
|
Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, Martin WJ, Nakayasu ES, Almeida IC, Hajduk SL, Harrington JM. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia. Cell 2016; 164:246-257. [PMID: 26771494 DOI: 10.1016/j.cell.2015.11.051] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 01/19/2023]
Abstract
Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia.
Collapse
Affiliation(s)
- Anthony J Szempruch
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Steven E Sykes
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lauren Dennison
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Allison C Becker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Anzio Gartrell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - William J Martin
- Animal Health Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Stephen L Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - John M Harrington
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
63
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
64
|
Martin JL, Yates PA, Boitz JM, Koop DR, Fulwiler AL, Cassera MB, Ullman B, Carter NS. A role for adenine nucleotides in the sensing mechanism to purine starvation in Leishmania donovani. Mol Microbiol 2016; 101:299-313. [PMID: 27062185 DOI: 10.1111/mmi.13390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
Abstract
Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment.
Collapse
Affiliation(s)
- Jessica L Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Phillip A Yates
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Dennis R Koop
- Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Audrey L Fulwiler
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Maria Belen Cassera
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, M/C 0308, Virginia, Tech, Blacksburg, VA, 24061, USA
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Nicola S Carter
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| |
Collapse
|
65
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
66
|
Hasanuzzaman AFM, Robledo D, Gómez-Tato A, Alvarez-Dios JA, Harrison PW, Cao A, Fernández-Boo S, Villalba A, Pardo BG, Martínez P. De novo transcriptome assembly of Perkinsus olseni trophozoite stimulated in vitro with Manila clam (Ruditapes philippinarum) plasma. J Invertebr Pathol 2016; 135:22-33. [DOI: 10.1016/j.jip.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
|
67
|
Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc Natl Acad Sci U S A 2015; 113:632-7. [PMID: 26721397 DOI: 10.1073/pnas.1518079113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages and have essential motility and sensory functions. The cilium's capacity to sense and transduce extracellular signals depends on dynamic trafficking of ciliary membrane proteins. This trafficking is often mediated by the Bardet-Biedl Syndrome complex (BBSome), a protein complex for which the precise subcellular distribution and mechanisms of action are unclear. In humans, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet-Biedl Syndrome. Cilia are also important in several parasites that cause tremendous human suffering worldwide, yet biology of the parasite BBSome remains largely unexplored. We examined BBSome functions in Trypanosoma brucei, a flagellated protozoan parasite that causes African sleeping sickness in humans. We report that T. brucei BBS proteins assemble into a BBSome that interacts with clathrin and is localized to membranes of the flagellar pocket and adjacent cytoplasmic vesicles. Using BBS gene knockouts and a mouse infection model, we show the T. brucei BBSome is dispensable for flagellar assembly, motility, bulk endocytosis, and cell viability but required for parasite virulence. Quantitative proteomics reveal alterations in the parasite surface proteome of BBSome mutants, suggesting that virulence defects are caused by failure to maintain fidelity of the host-parasite interface. Interestingly, among proteins altered are those with ubiquitination-dependent localization, and we find that the BBSome interacts with ubiquitin. Collectively, our data indicate that the BBSome facilitates endocytic sorting of select membrane proteins at the base of the cilium, illuminating BBSome roles at a critical host-pathogen interface and offering insights into BBSome molecular mechanisms.
Collapse
|
68
|
Saada EA, DeMarco SF, Shimogawa MM, Hill KL. "With a Little Help from My Friends"-Social Motility in Trypanosoma brucei. PLoS Pathog 2015; 11:e1005272. [PMID: 26679190 PMCID: PMC4683075 DOI: 10.1371/journal.ppat.1005272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Edwin A. Saada
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephanie F. DeMarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
69
|
Li K, Zhang H, Qiu J, Lin Y, Liang J, Xiao X, Fu L, Wang F, Cai J, Tan Y, Zhu W, Yin W, Lu B, Xing F, Tang L, Yan M, Mai J, Li Y, Chen W, Qiu P, Su X, Gao G, Tai PWL, Hu J, Yan G. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1. Mol Ther 2015; 24:156-65. [PMID: 26373347 DOI: 10.1038/mt.2015.172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/05/2015] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.
Collapse
Affiliation(s)
- Kai Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianguang Qiu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liwu Fu
- State Key Laboratory for Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory for Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jialuo Mai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
70
|
Tagoe DNA, Kalejaiye TD, de Koning HP. The ever unfolding story of cAMP signaling in trypanosomatids: vive la difference! Front Pharmacol 2015; 6:185. [PMID: 26441645 PMCID: PMC4561360 DOI: 10.3389/fphar.2015.00185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022] Open
Abstract
Kinetoplastids are unicellular, eukaryotic, flagellated protozoans containing the eponymous kinetoplast. Within this order, the family of trypanosomatids are responsible for some of the most serious human diseases, including Chagas disease (Trypanosoma cruzi), sleeping sickness (Trypanosoma brucei spp.), and leishmaniasis (Leishmania spp). Although cAMP is produced during the life cycle stages of these parasites, its signaling pathways are very different from those of mammals. The absence of G-protein-coupled receptors, the presence of structurally different adenylyl cyclases, the paucity of known cAMP effector proteins and the stringent need for regulation of cAMP in the small kinetoplastid cells all suggest a significantly different biochemical pathway and likely cell biology. However, each of the main kinetoplastid parasites express four class 1-type cyclic nucleotide-specific phosphodiesterases (PDEA-D), which have highly similar catalytic domains to that of human PDEs. To date, only TbrPDEB, expressed as two slightly different isoforms TbrPDEB1 and B2, has been found to be essential when ablated. Although the genomes contain reasonably well conserved genes for catalytic and regulatory domains of protein kinase A, these have been shown to have varied structural and functional roles in the different species. Recent discovery of a role of cAMP/AMP metabolism in a quorum-sensing signaling pathway in T. brucei, and the identification of downstream cAMP Response Proteins (CARPs) whose expression levels correlate with sensitivity to PDE inhibitors, suggests a complex signaling cascade. The interplay between the roles of these novel CARPs and the quorum-sensing signaling pathway on cell division and differentiation makes for intriguing cell biology and a new paradigm in cAMP signal transduction, as well as potential targets for trypanosomatid-specific cAMP pathway-based therapeutics.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow , Glasgow, UK ; Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK ; Department of Laboratory Technology, Division of Medical Laboratory Technology, University of Cape Coast , Cape Coast, Ghana
| | - Titilola D Kalejaiye
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| |
Collapse
|
71
|
Landfear SM, Tran KD, Sanchez MA. Flagellar membrane proteins in kinetoplastid parasites. IUBMB Life 2015; 67:668-76. [PMID: 26599841 DOI: 10.1002/iub.1411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/06/2022]
Abstract
All kinetoplastid parasites, including protozoa such as Leishmania species, Trypanosoma brucei, and Trypanosoma cruzi that cause devastating diseases in humans and animals, are flagellated throughout their life cycles. Although flagella were originally thought of primarily as motility organelles, flagellar functions in other critical processes, especially in sensing and signal transduction, have become more fully appreciated in the recent past. The flagellar membrane is a highly specialized subdomain of the surface membrane, and flagellar membrane proteins are likely to be critical components for all the biologically important roles of flagella. In this review, we summarize recent discoveries relevant to flagellar membrane proteins in these parasites, including the identification of such proteins, investigation of their biological functions, and mechanisms of selective trafficking to the flagellar membrane. Prospects for future investigations and current unsolved problems are highlighted.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Khoa D Tran
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Marco A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| |
Collapse
|
72
|
Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages. PLoS Pathog 2015; 11:e1004873. [PMID: 26020782 PMCID: PMC4447383 DOI: 10.1371/journal.ppat.1004873] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/10/2015] [Indexed: 12/18/2022] Open
Abstract
Monocytes consist of two well-defined subsets, the Ly6C+ and Ly6C– monocytes. Both CD11b+ myeloid cells populations have been proposed to infiltrate tissues during inflammation. While infiltration of Ly6C+ monocytes is an established pathogenic factor during hepatic inflammation, the role of Ly6C– monocytes remains elusive. Mice suffering experimental African trypanosome infection die from systemic inflammatory response syndrome (SIRS) that is initiated by phagocytosis of parasites by liver myeloid cells and culminates in apoptosis/necrosis of liver myeloid and parenchymal cells that reduces host survival. C57BL/6 mice are considered as trypanotolerant to Trypanosoma congolense infection. We have reported that in these animals, IL-10, produced among others by myeloid cells, limits the liver damage caused by pathogenic TNF-producing Ly6C+ monocytes, ensuring prolonged survival. Here, the heterogeneity and dynamics of liver myeloid cells in T. congolense-infected C57/BL6 mice was further dissected. Moreover, the contribution of Ly6C– monocytes to trypanotolerance was investigated. By using FACS analysis and adoptive transfer experiments, we found that the accumulation of Ly6C– monocytes and macrophages in the liver of infected mice coincided with a drop in the pool of Ly6C+ monocytes. Pathogenic TNF mainly originated from Ly6C+ monocytes while Ly6C– monocytes and macrophages were major and equipotent sources of IL-10 within myeloid cells. Moreover, Nr4a1 (Nur77) transcription factor-dependent Ly6C– monocytes exhibited IL-10-dependent and cell contact-dependent regulatory properties contributing to trypanotolerance by suppressing the production of TNF by Ly6C+ monocytes and by promoting the differentiation of the latter cells into macrophages. Thus, Ly6C– monocytes can dampen liver damage caused by an extensive Ly6C+ monocyte-associated inflammatory immune response in T. congolense trypanotolerant animals. In a more general context, Ly6C– or Ly6C+ monocyte targeting may represent a therapeutic approach in liver pathogenicity induced by chronic infection. The liver is not only a central organ for efficient metabolism of nutrients and for toxin clearance, but also for immune surveillance, including elimination of intravascular infections. However, excess of nutrients like fat or of toxins like alcohol and certain medications, as well as infections can trigger overactive immune responses which destroy the liver. Such chronic inflammations are major worldwide human health problem with often lethal consequences. Thus, understanding the particular function of various liver immune cells could provide original concepts to alleviate damages in this vital organ. Here, we dissected the heterogeneity, dynamics and function of the myeloid/monocytic cell compartment in the liver of mice infected with Trypanosoma congolense parasite. We established that infiltration of Ly6C+ monocyte subset initiated liver injury in infected mice. More importantly, we revealed that another myeloid cell subset for which the role in liver injury remained elusive, the Ly6C- monocyte subset, exerted hepatoprotective function in infected mice by secreting the anti-inflammatory cytokine IL-10 and by inducing, through cell-contact, the differentiation of pathogenic Ly6C+ monocytes into macrophages expressing genes coding for anti-inflammatory molecules. Thus, augmenting Ly6C- monocyte accumulation or functionality may represent a useful intervention strategy complementing anti-infective medication in conditions of liver injury due to chronic infections.
Collapse
|
73
|
Makin L, Gluenz E. cAMP signalling in trypanosomatids: role in pathogenesis and as a drug target. Trends Parasitol 2015; 31:373-9. [PMID: 26004537 PMCID: PMC4534343 DOI: 10.1016/j.pt.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
Trypanosoma brucei adenylate cyclases are implicated in modulation of host immune response and social motility. First effectors downstream of cAMP signalling were identified in Trypanosoma cruzi and T. brucei. Crystal structures reveal a unique pocket in trypanosomatid phosphodiesterases. Trypanosomatid phosphodiesterase inhibitors are promising drug candidates.
Despite recent research linking cAMP signalling to virulence in trypanosomatids and detailed studies of trypanosomatid adenylyl cyclases (ACs) and phosphodiesterases (PDEs) since their discoveries 40 years ago, downstream components of the pathway and their biological functions have remained remarkably elusive. However, in recent years, significant discoveries have been made: a role for parasite ACs has been proposed in cytokinesis, evasion of the host immune response, and social motility. cAMP phosphodiesterases PDEB1 and PDEB2 were found to be essential for survival and virulence of Trypanosoma brucei and, in Trypanosoma cruzi, PDEC2 was shown to be required for normal osmoregulation. As we discuss here, these breakthroughs have led to an ongoing surge in the development of PDE inhibitors as lead compounds for trypanocidal drugs.
Collapse
Affiliation(s)
- Laura Makin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
74
|
Shimogawa MM, Saada EA, Vashisht AA, Barshop WD, Wohlschlegel JA, Hill KL. Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei. Mol Cell Proteomics 2015; 14:1977-88. [PMID: 25963835 DOI: 10.1074/mcp.m114.045146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 02/05/2023] Open
Abstract
African trypanosomes are devastating human and animal pathogens transmitted by tsetse flies between mammalian hosts. The trypanosome surface forms a critical host interface that is essential for sensing and adapting to diverse host environments. However, trypanosome surface protein composition and diversity remain largely unknown. Here, we use surface labeling, affinity purification, and proteomic analyses to describe cell surface proteomes from insect-stage and mammalian bloodstream-stage Trypanosoma brucei. The cell surface proteomes contain most previously characterized surface proteins. We additionally identify a substantial number of novel proteins, whose functions are unknown, indicating the parasite surface proteome is larger and more diverse than generally appreciated. We also show stage-specific expression for individual paralogs within several protein families, suggesting that fine-tuned remodeling of the parasite surface allows adaptation to diverse host environments, while still fulfilling universally essential cellular needs. Our surface proteome analyses complement existing transcriptomic, proteomic, and in silico analyses by highlighting proteins that are surface-exposed and thereby provide a major step forward in defining the host-parasite interface.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- From the ‡Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095
| | - Edwin A Saada
- From the ‡Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095
| | - Ajay A Vashisht
- §Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095
| | - William D Barshop
- §Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095
| | - James A Wohlschlegel
- §Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095; ¶Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| | - Kent L Hill
- From the ‡Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095; ¶Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
75
|
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, Field MC. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Mol Cell Proteomics 2015; 14:1911-26. [PMID: 25931509 PMCID: PMC4587319 DOI: 10.1074/mcp.m114.047647] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/23/2022] Open
Abstract
Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis.
Collapse
Affiliation(s)
- Catarina Gadelha
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH; §Department of Pathology, University of Cambridge, Cambridge, UK, CB2 1QP;
| | - Wenzhu Zhang
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, 10021
| | - James W Chamberlain
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, 10021
| | - Bill Wickstead
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH
| | - Mark C Field
- ‖Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK, DD1 5EH
| |
Collapse
|
76
|
Abstract
UNLABELLED The protozoan parasite Trypanosoma brucei engages in surface-induced social behavior, termed social motility, characterized by single cells assembling into multicellular groups that coordinate their movements in response to extracellular signals. Social motility requires sensing and responding to extracellular signals, but the underlying mechanisms are unknown. Here we report that T. brucei social motility depends on cyclic AMP (cAMP) signaling systems in the parasite's flagellum (synonymous with cilium). Pharmacological inhibition of cAMP-specific phosphodiesterase (PDE) completely blocks social motility without impacting the viability or motility of individual cells. Using a fluorescence resonance energy transfer (FRET)-based sensor to monitor cAMP dynamics in live cells, we demonstrate that this block in social motility correlates with an increase in intracellular cAMP levels. RNA interference (RNAi) knockdown of the flagellar PDEB1 phenocopies pharmacological PDE inhibition, demonstrating that PDEB1 is required for social motility. Using parasites expressing distinct fluorescent proteins to monitor individuals in a genetically heterogeneous community, we found that the social motility defect of PDEB1 knockdowns is complemented by wild-type parasites in trans. Therefore, PDEB1 knockdown cells are competent for social motility but appear to lack a necessary factor that can be provided by wild-type cells. The combined data demonstrate that the role of cyclic nucleotides in regulating microbial social behavior extends to African trypanosomes and provide an example of transcomplementation in parasitic protozoa. IMPORTANCE In bacteria, studies of cell-cell communication and social behavior have profoundly influenced our understanding of microbial physiology, signaling, and pathogenesis. In contrast, mechanisms underlying social behavior in protozoan parasites are mostly unknown. Here we show that social behavior in the protozoan parasite Trypanosoma brucei is governed by cyclic-AMP signaling systems in the flagellum, with intriguing parallels to signaling systems that control bacterial social behavior. We also generated a T. brucei social behavior mutant and found that the mutant phenotype is complemented by wild-type cells grown in the same culture. Our findings open new avenues for dissecting social behavior and signaling in protozoan parasites and illustrate the capacity of these organisms to influence each other's behavior in mixed communities.
Collapse
|
77
|
Hamedi A, Botelho L, Britto C, Fragoso SP, Umaki ACS, Goldenberg S, Bottu G, Salmon D. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression. Mol Biochem Parasitol 2015; 200:9-18. [PMID: 25912925 DOI: 10.1016/j.molbiopara.2015.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
The Trypanosoma cruzi adenylyl cyclase (AC) multigene family encodes different isoforms (around 15) sharing a variable large N-terminal domain, which is extracellular and receptor-like, followed by a transmembrane helix and a conserved C-terminal catalytic domain. It was proposed that these key enzymes in the cAMP signalling pathway allow the parasite to sense its changing extracellular milieu in order to rapidly adapt to its new environment, which is generally achieved through a differentiation process. One of the critical differentiation events the parasitic protozoan T. cruzi undergoes during its life cycle, known as metacyclogenesis, occurs in the digestive tract of the insect and corresponds to the differentiation from noninfective epimastigotes to infective metacyclic trypomastigote forms. By in vitro monitoring the activity of AC during metacyclogenesis, we showed that both the activity of AC and the intracellular cAMP content follow a similar pattern of transient stimulation in a two-step process, with a first activation peak occurring during the first hours of nutritional stress and a second peak between 6 and 48 h, corresponding to the cellular adhesion. During this differentiation process, a general mechanism of upregulation of AC expression of both mRNA and protein is triggered and in particular for a major subclass of these enzymes that are present in various gene copies commonly associated to the THT gene clusters. Although the scattered genome distribution of these gene copies is rather unusual in trypanosomatids and seems to be a recent acquisition in the evolution of the T. cruzi clade, their encoded product redistributed on the flagellum of the parasite upon differentiation could be important to sense the extracellular milieu.
Collapse
Affiliation(s)
- Afsaneh Hamedi
- Fiocruz, Instituto Oswaldo Cruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Larisse Botelho
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | - Stenio Perdigão Fragoso
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil
| | | | - Samuel Goldenberg
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil
| | - Guy Bottu
- Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
78
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
79
|
Abstract
African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.
Collapse
|
80
|
Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes. EUKARYOTIC CELL 2014; 14:104-12. [PMID: 25416239 DOI: 10.1128/ec.00217-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed "social motility," based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies.
Collapse
|
81
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
82
|
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends? Gene 2014; 556:68-73. [PMID: 25261847 DOI: 10.1016/j.gene.2014.09.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/01/2023]
Abstract
Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.
Collapse
|
83
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|
84
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
85
|
Pays E, Vanhollebeke B, Uzureau P, Lecordier L, Pérez-Morga D. The molecular arms race between African trypanosomes and humans. Nat Rev Microbiol 2014; 12:575-84. [DOI: 10.1038/nrmicro3298] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
86
|
Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar membrane. EUKARYOTIC CELL 2014; 13:1064-76. [PMID: 24879126 DOI: 10.1128/ec.00019-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.
Collapse
|
87
|
Abstract
Studies on Variant Surface Glycoproteins (VSGs) and antigenic variation in the African trypanosome, Trypanosoma brucei, have yielded a remarkable range of novel and important insights. The features first identified in T. brucei extend from unique to conserved-among-trypanosomatids to conserved-among-eukaryotes. Consequently, much of what we now know about trypanosomatid biology and much of the technology available has its origin in studies related to VSGs. T. brucei is now probably the most advanced early branched eukaryote in terms of experimental tractability and can be approached as a pathogen, as a model for studies on fundamental processes, as a model for studies on eukaryotic evolution or often all of the above. In terms of antigenic variation itself, substantial progress has been made in understanding the expression and switching of the VSG coat, while outstanding questions continue to stimulate innovative new approaches. There are large numbers of VSG genes in the genome but only one is expressed at a time, always immediately adjacent to a telomere. DNA repair processes allow a new VSG to be copied into the single transcribed locus. A coordinated transcriptional switch can also allow a new VSG gene to be activated without any detectable change in the DNA sequence, thereby maintaining singular expression, also known as allelic exclusion. I review the story behind VSGs; the genes, their expression and switching, their central role in T. brucei virulence, the discoveries that emerged along the way and the persistent questions relating to allelic exclusion in particular.
Collapse
Affiliation(s)
- David Horn
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
88
|
Cordon-Obras C, Cano J, González-Pacanowska D, Benito A, Navarro M, Bart JM. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity. PLoS One 2013; 8:e85072. [PMID: 24376866 PMCID: PMC3871602 DOI: 10.1371/journal.pone.0085072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting previous epidemiological results.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jorge Cano
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Agustin Benito
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
- * E-mail:
| | - Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
89
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
90
|
Cai W, Du A, Feng K, Zhao X, Qian L, Ostrom RS, Xu C. Adenylyl cyclase 6 activation negatively regulates TLR4 signaling through lipid raft-mediated endocytosis. THE JOURNAL OF IMMUNOLOGY 2013; 191:6093-100. [PMID: 24218452 DOI: 10.4049/jimmunol.1301912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proper intracellular localization of TLRs is essential for their signaling and biological function. Endocytosis constitutes a key step in protein turnover, as well as maintenance of TLR localization in plasma membrane and intracellular compartments, and thus provides important regulating points to their signaling. In this study, we demonstrate that adenylyl cyclase (AC) activation attenuates TLR4 signaling in a murine macrophage cell line (RAW 264.7) and bone marrow-derived macrophages when stimulated with LPS. We further show that the AC6 isoform plays a key role in negative regulation of TLR4 signaling by promoting protein degradation. TLR4 is normally endocytosed through the clathrin-mediated pathway, but concomitant AC6 activation shifts it to lipid raft-mediated endocytosis, which accelerates degradation of TLR4 and suppresses downstream signaling. Our studies unveil a new mechanism of negative regulation of TLR4 signaling through AC6-mediated endocytosis, which might provide a novel therapeutic approach for limiting inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Wei Cai
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Gould MK, Bachmaier S, Ali JAM, Alsford S, Tagoe DNA, Munday JC, Schnaufer AC, Horn D, Boshart M, de Koning HP. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrob Agents Chemother 2013; 57:4882-93. [PMID: 23877697 PMCID: PMC3811416 DOI: 10.1128/aac.00508-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022] Open
Abstract
One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development.
Collapse
Affiliation(s)
- Matthew K. Gould
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Centre for Immunity, Infection & Evolution, Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sabine Bachmaier
- Biocenter, Section Genetics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Juma A. M. Ali
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sam Alsford
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Daniel N. A. Tagoe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Achim C. Schnaufer
- Centre for Immunity, Infection & Evolution, Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David Horn
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael Boshart
- Biocenter, Section Genetics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Harry P. de Koning
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
92
|
Globin-coupled heme containing oxygen sensor soluble adenylate cyclase in Leishmania prevents cell death during hypoxia. Proc Natl Acad Sci U S A 2013; 110:16790-5. [PMID: 24082109 DOI: 10.1073/pnas.1304145110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Globin and adenylate cyclase play individually numerous crucial roles in eukaryotic organisms. Comparison of the amino acid sequences of globins and adenylate cyclase from prokaryotic to eukaryotic organisms suggests that they share an early common ancestor, even though these proteins execute different functions in these two kingdoms. The latest studies of biological signaling molecules in both prokaryotic and eukaryotic organisms have discovered a new class of heme-containing proteins that act as sensors. The protein of the globin family is still unknown in the trypanosomatid parasites, Trypanosome and Leishmania. In addition, globin-coupled heme containing adenylate cyclase is undescribed in the literature. Here we report a globin-coupled heme containing adenylate cyclase (HemAC-Lm) in the unicellular eukaryotic organism Leishmania. The protein exhibits spectral properties similar to neuroglobin and cytoglobin. Localization studies and activity measurements demonstrate that the protein is present in cytosol and oxygen directly stimulates adenylate cyclase activity in vivo and in vitro. Gene knockdown and overexpression studies suggest that O2-dependent cAMP signaling via protein kinase A plays a fundamental role in cell survival through suppression of oxidative stress under hypoxia. In addition, the enzyme-dependent cAMP generation shows a stimulatory as well as inhibitory role in cell proliferation of Leishmania promastigotes during normoxia. Our work begins to clarify how O2-dependent cAMP generation by adenylate cyclase is likely to function in cellular adaptability under various O2 tensions.
Collapse
|
93
|
Galizzi M, Bustamante JM, Fang J, Miranda K, Soares Medeiros LC, Tarleton RL, Docampo R. Evidence for the role of vacuolar soluble pyrophosphatase and inorganic polyphosphate in Trypanosoma cruzi persistence. Mol Microbiol 2013; 90:699-715. [PMID: 24033456 DOI: 10.1111/mmi.12392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
Abstract
Trypanosoma cruzi infection leads to development of a chronic disease but the mechanisms that the parasite utilizes to establish a persistent infection despite activation of a potent immune response by the host are currently unknown. Unusual characteristics of T. cruzi are that it possesses cellular levels of pyrophosphate (PPi ) at least 10 times higher than those of ATP and molar levels of inorganic polyphosphate (polyP) within acidocalcisomes. We characterized an inorganic soluble EF-hand containing pyrophosphatase from T. cruzi (TcVSP) that, depending on the pH and cofactors, can hydrolyse either pyrophosphate (PPi ) or polyphosphate (polyP). The enzyme is localized to both acidocalcisomes and cytosol. Overexpression of TcVSP (TcVSP-OE) resulted in a significant decrease in cytosolic PPi , and short and long-chain polyP levels. Additionally, the TcVSP-OE parasites showed a significant growth defect in fibroblasts, less responsiveness to hyperosmotic stress, and reduced persistence in tissues of mice, suggesting that PPi and polyP are essential for the parasite to resist the stressful conditions in the host and to maintain a persistent infection.
Collapse
Affiliation(s)
- Melina Galizzi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Rotureau B, Van Den Abbeele J. Through the dark continent: African trypanosome development in the tsetse fly. Front Cell Infect Microbiol 2013; 3:53. [PMID: 24066283 PMCID: PMC3776139 DOI: 10.3389/fcimb.2013.00053] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/29/2013] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are unicellular flagellated parasites causing trypanosomiases in Africa, a group of severe diseases also known as sleeping sickness in human and nagana in cattle. These parasites are almost exclusively transmitted by the bite of the tsetse fly. In this review, we describe and compare the three developmental programs of the main trypanosome species impacting human and animal health, with focus on the most recent observations. From here, some reflections are made on research issues concerning trypanosome developmental biology in the tsetse fly that are to be addressed in the future.
Collapse
Affiliation(s)
- Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur and CNRS URA 2581, Paris, France.
| | | |
Collapse
|
95
|
Manta B, Pavan C, Sturlese M, Medeiros A, Crispo M, Berndt C, Krauth-Siegel RL, Bellanda M, Comini MA. Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity. Antioxid Redox Signal 2013; 19:665-82. [PMID: 23259530 PMCID: PMC3739951 DOI: 10.1089/ars.2012.4859] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Monothiol glutaredoxins (1-C-Grxs) are small proteins linked to the cellular iron and redox metabolism. Trypanosoma brucei brucei, model organism for human African trypanosomiasis, expresses three 1-C-Grxs. 1-C-Grx1 is a highly abundant mitochondrial protein capable to bind an iron-sulfur cluster (ISC) in vitro using glutathione (GSH) as cofactor. We here report on the functional and structural analysis of 1-C-Grx1 in relation to its ISC-binding properties. RESULTS An N-terminal extension unique to 1-C-Grx1 from trypanosomatids affects the oligomeric structure and the ISC-binding capacity of the protein. The active-site Cys104 is essential for ISC binding, and the parasite-specific glutathionylspermidine and trypanothione can replace GSH as the ligands of the ISC. Interestingly, trypanothione forms stable protein-free ISC species that in vitro are incorporated into the dithiol T. brucei 2-C-Grx1, but not 1-C-Grx1. Overexpression of the C104S mutant of 1-C-Grx1 impairs disease progression in a mouse model. The structure of the Grx-domain of 1-C-Grx1 was solved by nuclear magnetic resonance spectroscopy. Despite the fact that several residues--which in other 1-C-Grxs are involved in the noncovalent binding of GSH--are conserved, different physicochemical approaches did not reveal any specific interaction between 1-C-Grx1 and free thiol ligands. INNOVATION Parasite Grxs are able to coordinate an ISC formed with trypanothione, suggesting a new mechanism of ISC binding and a novel function for the parasite-specific dithiol. The first 3D structure and in vivo relevance of a 1-C-Grx from a pathogenic protozoan are reported. CONCLUSION T. brucei 1-C-Grx1 is indispensable for mammalian parasitism and utilizes a new mechanism for ISC binding.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Monk SL, Simmonds P, Matthews KR. A short bifunctional element operates to positively or negatively regulate ESAG9 expression in different developmental forms of Trypanosoma brucei. J Cell Sci 2013; 126:2294-304. [PMID: 23524999 DOI: 10.1242/jcs.126011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In their mammalian host trypanosomes generate 'stumpy' forms from proliferative 'slender' forms as an adaptation for transmission to their tsetse fly vector. This transition is characterised by the repression of many genes while quiescent stumpy forms accumulate during each wave of parasitaemia. However, a subset of genes are upregulated either as an adaptation for transmission or to sustain infection chronicity. Among this group are ESAG9 proteins, whose genes were originally identified as a component of some telomeric variant surface glycoprotein gene expression sites, although many members of this diverse family are also transcribed elsewhere in the genome. ESAG9 genes are among the most highly regulated genes in transmissible stumpy forms, encoding a group of secreted proteins of cryptic function. To understand their developmental silencing in slender forms and activation in stumpy forms, the post-transcriptional control signals for a well conserved ESAG9 gene have been mapped. This identified a precise RNA sequence element of 34 nucleotides that contributes to gene expression silencing in slender forms but also acts positively, activating gene expression in stumpy forms. We predict that this bifunctional RNA sequence element is targeted by competing negative and positive regulatory factors in distinct developmental forms of the parasite. Analysis of the 3'UTR regulatory regions flanking the highly diverse ESAG9 family reveals that the linear regulatory sequence is not highly conserved, suggesting that RNA structure is important for interactions with regulatory proteins.
Collapse
Affiliation(s)
- Stephanie L Monk
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | |
Collapse
|
97
|
Jackson AP, Allison HC, Barry JD, Field MC, Hertz-Fowler C, Berriman M. A cell-surface phylome for African trypanosomes. PLoS Negl Trop Dis 2013; 7:e2121. [PMID: 23556014 PMCID: PMC3605285 DOI: 10.1371/journal.pntd.0002121] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/04/2013] [Indexed: 11/29/2022] Open
Abstract
The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome. The African trypanosome (Trypanosoma brucei) is a single-celled, vector-borne parasite that causes Human African Trypanosomiasis (or ‘sleeping sickness’) throughout sub-Saharan Africa and, along with related species T. congolense and T. vivax, a similar disease in wild and domestic animals. Together, the African trypanosomes have significant effects on human and animal health and associated costs for socio-economic development in Africa. Genes expressed on the trypanosome cell surface are instrumental in causing disease and sustaining infection by resisting the host immune system. Here we compare repertoires of genes with predicted cell-surface expression in T. brucei, T. congolense and T. vivax and estimate the phylogeny of each predicted cell-surface gene family. This ‘cell-surface phylome’ (CSP) provides a detailed analysis of species-specific gene families and of gene gain and loss in shared families, aiding the identification of surface proteins that may mediate specific aspects of pathogenesis and disease progression. Overall, the CSP suggests that each trypanosome species has modified its surface proteome uniquely, indicating that T. brucei, T. congolense and T. vivax have subtly distinct mechanisms for interacting with both vertebrate and insect hosts.
Collapse
Affiliation(s)
- Andrew P Jackson
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, England, United Kingdom.
| | | | | | | | | | | |
Collapse
|
98
|
Pays É. Les trypanosomes africains ont le sens du sacrifice. Med Sci (Paris) 2012; 28:817-9. [DOI: 10.1051/medsci/20122810006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|