51
|
Shi D, Zhao S, Zuo MQ, Zhang J, Hou W, Dong MQ, Cao Q, Lou H. The acetyltransferase Eco1 elicits cohesin dimerization during S phase. J Biol Chem 2020; 295:7554-7565. [PMID: 32312753 PMCID: PMC7261783 DOI: 10.1074/jbc.ra120.013102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Cohesin is a DNA-associated protein complex that forms a tripartite ring controlling sister chromatid cohesion, chromosome segregation and organization, DNA replication, and gene expression. Sister chromatid cohesion is established by the protein acetyltransferase Eco1, which acetylates two conserved lysine residues on the cohesin subunit Smc3 and thereby ensures correct chromatid separation in yeast (Saccharomyces cerevisiae) and other eukaryotes. However, the consequence of Eco1-catalyzed cohesin acetylation is unknown, and the exact nature of the cohesive state of chromatids remains controversial. Here, we show that self-interactions of the cohesin subunits Scc1/Rad21 and Scc3 occur in a DNA replication-coupled manner in both yeast and human cells. Using cross-linking MS-based and in vivo disulfide cross-linking analyses of purified cohesin, we show that a subpopulation of cohesin may exist as dimers. Importantly, upon temperature-sensitive and auxin-induced degron-mediated Eco1 depletion, the cohesin-cohesin interactions became significantly compromised, whereas deleting either the deacetylase Hos1 or the Eco1 antagonist Wpl1/Rad61 increased cohesin dimer levels by ∼20%. These results indicate that cohesin dimerizes in the S phase and monomerizes in mitosis, processes that are controlled by Eco1, Wpl1, and Hos1 in the sister chromatid cohesion-dissolution cycle. These findings suggest that cohesin dimerization is controlled by the cohesion cycle and support the notion that a double-ring cohesin model operates in sister chromatid cohesion.
Collapse
Affiliation(s)
- Di Shi
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Shuaijun Zhao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Mei-Qing Zuo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Wenya Hou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
52
|
Adamus M, Lelkes E, Potesil D, Ganji SR, Kolesar P, Zabrady K, Zdrahal Z, Palecek JJ. Molecular Insights into the Architecture of the Human SMC5/6 Complex. J Mol Biol 2020; 432:3820-3837. [PMID: 32389690 DOI: 10.1016/j.jmb.2020.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
A family of Structural Maintenance of Chromosome (SMC) complexes is essential for key cellular processes ensuring proper cohesion, condensation and replication. They share a common SMC-kleisin architecture allowing them to embrace DNA. In SMC5/6, the NSE1 and NSE3 KITE and NSE4 kleisin subunits form a stable subcomplex that binds DNA and regulates essential processes. In addition, NSE5 and NSE6 subunits associate with the core SMC5/6 complex and recruit it to DNA repair sites. The architecture of the SMC5/6 complex is crucial for its proper functioning, and mutations within the human SMC5/6 subunits result in severe syndromes. Therefore, we aimed to analyze interactions within the human SMC5/6 complex and determine its detailed architecture. Firstly, we analyzed different parts of SMC5/6 by crosslinking and MS/MS analysis. Our data suggested domain arrangements of hNSE1-hNSE3 and orientation of hNSE4 within the hNSE1-hNSE3-hNSE4 subcomplex. The crosslinking and electron microscopic analysis of the SMC5/6 core complex showed its rod-like architecture with juxtaposed hSMC5-hSMC6 arms. Additionally, we observed fully or partially opened hSMC5-hSMC6 shapes with the hNSE1-hNSE3-hNSE4 trimer localized in the SMC head domains. To complete mapping of the human SMC5/6 complex architecture, we analyzed positions of hNSE5-hNSE6 at the hSMC5-hSMC6 arms. We showed that hNSE6 binding to hNSE5 and the coiled-coil arm of hSMC6 is mediated by a conserved FAM178 domain, which we therefore renamed CANIN (Coiled-coil SMC6 And NSE5 INteracting) domain. Interestingly, hNSE6 bound both hSMC5 and hSMC6 arms, suggesting that hNSE6 may lock the arms and regulate the dynamics of the human SMC5/6 complex.
Collapse
Affiliation(s)
- M Adamus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - E Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - D Potesil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S R Ganji
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - P Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - K Zabrady
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Z Zdrahal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - J J Palecek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
53
|
Benedict B, van Schie JJM, Oostra AB, Balk JA, Wolthuis RMF, Riele HT, de Lange J. WAPL-Dependent Repair of Damaged DNA Replication Forks Underlies Oncogene-Induced Loss of Sister Chromatid Cohesion. Dev Cell 2020; 52:683-698.e7. [PMID: 32084359 DOI: 10.1016/j.devcel.2020.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/19/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Premature loss of sister chromatid cohesion at metaphase is a diagnostic marker for different cohesinopathies. Here, we report that metaphase spreads of many cancer cell lines also show premature loss of sister chromatid cohesion. Cohesion loss occurs independently of mutations in cohesion factors including SA2, a cohesin subunit frequently inactivated in cancer. In untransformed cells, induction of DNA replication stress by activation of oncogenes or inhibition of DNA replication is sufficient to trigger sister chromatid cohesion loss. Importantly, cell growth under conditions of replication stress requires the cohesin remover WAPL. WAPL promotes rapid RAD51-dependent repair and restart of broken replication forks. We propose that active removal of cohesin allows cancer cells to overcome DNA replication stress. This leads to oncogene-induced cohesion loss from newly synthesized sister chromatids that may contribute to genomic instability and likely represents a targetable cancer cell vulnerability.
Collapse
Affiliation(s)
- Bente Benedict
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, the Netherlands
| | - Janne J M van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M F Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, the Netherlands.
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
54
|
Muir KW, Li Y, Weis F, Panne D. The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening. Nat Struct Mol Biol 2020; 27:233-239. [PMID: 32066964 PMCID: PMC7100847 DOI: 10.1038/s41594-020-0379-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/13/2020] [Indexed: 01/26/2023]
Abstract
Genome regulation requires control of chromosome organization by SMC-kleisin complexes. The cohesin complex contains the Smc1 and Smc3 subunits that associate with the kleisin Scc1 to form a ring-shaped complex that can topologically engage chromatin to regulate chromatin structure. Release from chromatin involves opening of the ring at the Smc3-Scc1 interface in a reaction that is controlled by acetylation and engagement of the Smc ATPase head domains. To understand the underlying molecular mechanisms, we have determined the 3.2-Å resolution cryo-electron microscopy structure of the ATPγS-bound, heterotrimeric cohesin ATPase head module and the 2.1-Å resolution crystal structure of a nucleotide-free Smc1-Scc1 subcomplex from Saccharomyces cerevisiae and Chaetomium thermophilium. We found that ATP-binding and Smc1-Smc3 heterodimerization promote conformational changes within the ATPase that are transmitted to the Smc coiled-coil domains. Remodeling of the coiled-coil domain of Smc3 abrogates the binding surface for Scc1, thus leading to ring opening at the Smc3-Scc1 interface.
Collapse
Affiliation(s)
- Kyle W Muir
- European Molecular Biology Laboratory, Grenoble, France.
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Yan Li
- European Molecular Biology Laboratory, Grenoble, France
| | - Felix Weis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Daniel Panne
- European Molecular Biology Laboratory, Grenoble, France.
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
55
|
Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH. Structural Basis of an Asymmetric Condensin ATPase Cycle. Mol Cell 2020; 74:1175-1188.e9. [PMID: 31226277 PMCID: PMC6591010 DOI: 10.1016/j.molcel.2019.03.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 01/20/2023]
Abstract
The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.
Collapse
Affiliation(s)
- Markus Hassler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Indra A Shaltiel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fabian Merkel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for Joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Lena Thärichen
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Henry J Bailey
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jakub Macošek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sol Bravo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jutta Metz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
56
|
Morales C, Ruiz-Torres M, Rodríguez-Acebes S, Lafarga V, Rodríguez-Corsino M, Megías D, Cisneros DA, Peters JM, Méndez J, Losada A. PDS5 proteins are required for proper cohesin dynamics and participate in replication fork protection. J Biol Chem 2020; 295:146-157. [PMID: 31757807 PMCID: PMC6952610 DOI: 10.1074/jbc.ra119.011099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cohesin is a chromatin-bound complex that mediates sister chromatid cohesion and facilitates long-range interactions through DNA looping. How the transcription and replication machineries deal with the presence of cohesin on chromatin remains unclear. The dynamic association of cohesin with chromatin depends on WAPL cohesin release factor (WAPL) and on PDS5 cohesin-associated factor (PDS5), which exists in two versions in vertebrate cells, PDS5A and PDS5B. Using genetic deletion in mouse embryo fibroblasts and a combination of CRISPR-mediated gene editing and RNAi-mediated gene silencing in human cells, here we analyzed the consequences of PDS5 depletion for DNA replication. We found that either PDS5A or PDS5B is sufficient for proper cohesin dynamics and that their simultaneous removal increases cohesin's residence time on chromatin and slows down DNA replication. A similar phenotype was observed in WAPL-depleted cells. Cohesin down-regulation restored normal replication fork rates in PDS5-deficient cells, suggesting that chromatin-bound cohesin hinders the advance of the replisome. We further show that PDS5 proteins are required to recruit WRN helicase-interacting protein 1 (WRNIP1), RAD51 recombinase (RAD51), and BRCA2 DNA repair associated (BRCA2) to stalled forks and that in their absence, nascent DNA strands at unprotected forks are degraded by MRE11 homolog double-strand break repair nuclease (MRE11). These findings indicate that PDS5 proteins participate in replication fork protection and also provide insights into how cohesin and its regulators contribute to the response to replication stress, a common feature of cancer cells.
Collapse
Affiliation(s)
- Carmen Morales
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sara Rodríguez-Acebes
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Vanesa Lafarga
- Genome Instability Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - David A Cisneros
- Research Institute for Molecular Pathology (IMP), Campus Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute for Molecular Pathology (IMP), Campus Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Juan Méndez
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
57
|
Birot A, Tormos-Pérez M, Vaur S, Feytout A, Jaegy J, Alonso Gil D, Vazquez S, Ekwall K, Javerzat JP. The CDK Pef1 and protein phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes. eLife 2020; 9:e50556. [PMID: 31895039 PMCID: PMC6954021 DOI: 10.7554/elife.50556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cohesin has essential roles in chromosome structure, segregation and repair. Cohesin binding to chromosomes is catalyzed by the cohesin loader, Mis4 in fission yeast. How cells fine tune cohesin deposition is largely unknown. Here, we provide evidence that Mis4 activity is regulated by phosphorylation of its cohesin substrate. A genetic screen for negative regulators of Mis4 yielded a CDK called Pef1, whose closest human homologue is CDK5. Inhibition of Pef1 kinase activity rescued cohesin loader deficiencies. In an otherwise wild-type background, Pef1 ablation stimulated cohesin binding to its regular sites along chromosomes while ablating Protein Phosphatase 4 had the opposite effect. Pef1 and PP4 control the phosphorylation state of the cohesin kleisin Rad21. The CDK phosphorylates Rad21 on Threonine 262. Pef1 ablation, non-phosphorylatable Rad21-T262 or mutations within a Rad21 binding domain of Mis4 alleviated the effect of PP4 deficiency. Such a CDK/PP4-based regulation of cohesin loader activity could provide an efficient mechanism for translating cellular cues into a fast and accurate cohesin response.
Collapse
Affiliation(s)
- Adrien Birot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Marta Tormos-Pérez
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Sabine Vaur
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Amélie Feytout
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Julien Jaegy
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Dácil Alonso Gil
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Stéphanie Vazquez
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Jean-Paul Javerzat
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| |
Collapse
|
58
|
Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM. DNA loop extrusion by human cohesin. Science 2019; 366:1338-1345. [PMID: 31753851 DOI: 10.1126/science.aaz3418] [Citation(s) in RCA: 525] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/06/2019] [Indexed: 01/03/2023]
Abstract
Eukaryotic genomes are folded into loops and topologically associating domains, which contribute to chromatin structure, gene regulation, and gene recombination. These structures depend on cohesin, a ring-shaped DNA-entrapping adenosine triphosphatase (ATPase) complex that has been proposed to form loops by extrusion. Such an activity has been observed for condensin, which forms loops in mitosis, but not for cohesin. Using biochemical reconstitution, we found that single human cohesin complexes form DNA loops symmetrically at rates up to 2.1 kilo-base pairs per second. Loop formation and maintenance depend on cohesin's ATPase activity and on NIPBL-MAU2, but not on topological entrapment of DNA by cohesin. During loop formation, cohesin and NIPBL-MAU2 reside at the base of loops, which indicates that they generate loops by extrusion. Our results show that cohesin and NIPBL-MAU2 form an active holoenzyme that interacts with DNA either pseudo-topologically or non-topologically to extrude genomic interphase DNA into loops.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Benedikt Bauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniela Goetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
59
|
Abstract
Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- Laboratory of Molecular Biology, Medical Research Council, Cambridge University, Cambridge CB2 0QH, United Kingdom
| | - James Rhodes
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom;
| | - Kim Nasmyth
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom;
| |
Collapse
|
60
|
Rajasekar KV, Baker R, Fisher GLM, Bolla JR, Mäkelä J, Tang M, Zawadzka K, Koczy O, Wagner F, Robinson CV, Arciszewska LK, Sherratt DJ. Dynamic architecture of the Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF. Nucleic Acids Res 2019; 47:9696-9707. [PMID: 31400115 PMCID: PMC6765140 DOI: 10.1093/nar/gkz696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitous Structural Maintenance of Chromosomes (SMC) complexes use a proteinaceous ring-shaped architecture to organize and individualize chromosomes, thereby facilitating chromosome segregation. They utilize cycles of adenosine triphosphate (ATP) binding and hydrolysis to transport themselves rapidly with respect to DNA, a process requiring protein conformational changes and multiple DNA contact sites. By analysing changes in the architecture and stoichiometry of the Escherichia coli SMC complex, MukBEF, as a function of nucleotide binding to MukB and subsequent ATP hydrolysis, we demonstrate directly the formation of dimer of MukBEF dimer complexes, dependent on dimeric MukF kleisin. Using truncated and full length MukB, in combination with MukEF, we show that engagement of the MukB ATPase heads on nucleotide binding directs the formation of dimers of heads-engaged dimer complexes. Complex formation requires functional interactions between the C- and N-terminal domains of MukF with the MukB head and neck, respectively, and MukE, which organizes the complexes by stabilizing binding of MukB heads to MukF. In the absence of head engagement, a MukF dimer bound by MukE forms complexes containing only a dimer of MukB. Finally, we demonstrate that cells expressing MukBEF complexes in which MukF is monomeric are Muk−, with the complexes failing to associate with chromosomes.
Collapse
Affiliation(s)
- Karthik V Rajasekar
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gemma L M Fisher
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jani R Bolla
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jarno Mäkelä
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Minzhe Tang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Katarzyna Zawadzka
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Oliwia Koczy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Florence Wagner
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Lidia K Arciszewska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
61
|
Abstract
Protein complexes built of structural maintenance of chromosomes (SMC) and kleisin subunits, including cohesin, condensin and the Smc5/6 complex, are master organizers of genome architecture in all kingdoms of life. How these large ring-shaped molecular machines use the energy of ATP hydrolysis to change the topology of chromatin fibers has remained a central unresolved question of chromosome biology. A currently emerging concept suggests that the common principle that underlies the essential functions of SMC protein complexes in the control of gene expression, chromosome segregation or DNA damage repair is their ability to expand DNA into large loop structures. Here, we review the current knowledge about the biochemical and structural properties of SMC protein complexes that might enable them to extrude DNA loops and compare their action to other motor proteins and nucleic acid translocases. We evaluate the currently predominant models of active loop extrusion and propose a detailed version of a 'scrunching' model, which reconciles much of the available mechanistic data and provides an elegant explanation for how SMC protein complexes fulfill an array of seemingly diverse tasks during the organization of genomes.
Collapse
|
62
|
Nishiyama T. Compartments in the Ring. Mol Cell 2019; 75:201-203. [PMID: 31348876 DOI: 10.1016/j.molcel.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sister chromatid cohesion has been thought to be mediated by DNA entrapment within the large cohesin ring. Vazquez Nunez et al. and Chapard et al. now show that the ring is divided up into two sub-compartments, with implications for how these chromosomal organizers entrap DNA.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
63
|
Armean IM, Lilley KS, Trotter MWB, Pilkington NCV, Holden SB. Co-complex protein membership evaluation using Maximum Entropy on GO ontology and InterPro annotation. Bioinformatics 2019; 34:1884-1892. [PMID: 29390084 PMCID: PMC5972588 DOI: 10.1093/bioinformatics/btx803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Motivation Protein–protein interactions (PPI) play a crucial role in our understanding of protein function and biological processes. The standardization and recording of experimental findings is increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful projects. Several PPI evaluation algorithms have been based on the application of probabilistic frameworks or machine learning algorithms to GO properties. Here, we introduce a new training set design and machine learning based approach that combines dependent heterogeneous protein annotations from the entire ontology to evaluate putative co-complex protein interactions determined by empirical studies. Results PPI annotations are built combinatorically using corresponding GO terms and InterPro annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A series of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a composite counterpart algorithm, are trained on a series of training sets. These achieve a high performance area under the ROC curve of ≤0.97, outperforming go2ppi—a previously established prediction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations. Availability and implementation https://github.com/ima23/maxent-ppi Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Irina M Armean
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1GA, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1GA, UK
| | - Matthew W B Trotter
- Celegene Institute for Translational Research Europe (CITRE), Sevilla 41092, Spain
| | - Nicholas C V Pilkington
- Department of Computer Science, Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK
| | - Sean B Holden
- Department of Computer Science, Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK
| |
Collapse
|
64
|
Holzmann J, Politi AZ, Nagasaka K, Hantsche-Grininger M, Walther N, Koch B, Fuchs J, Dürnberger G, Tang W, Ladurner R, Stocsits RR, Busslinger GA, Novák B, Mechtler K, Davidson IF, Ellenberg J, Peters JM. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 2019; 8:e46269. [PMID: 31204999 PMCID: PMC6606026 DOI: 10.7554/elife.46269] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.
Collapse
Affiliation(s)
- Johann Holzmann
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Antonio Z Politi
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | | | - Nike Walther
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Birgit Koch
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Johannes Fuchs
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Georg A Busslinger
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Béla Novák
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Iain Finley Davidson
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Medical University of ViennaViennaAustria
| |
Collapse
|
65
|
Guacci V, Chatterjee F, Robison B, Koshland DE. Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA. eLife 2019; 8:e46347. [PMID: 31162048 PMCID: PMC6579514 DOI: 10.7554/elife.46347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.
Collapse
Affiliation(s)
- Vincent Guacci
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Chatterjee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brett Robison
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Douglas E Koshland
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
66
|
Lazniewski M, Dawson WK, Rusek AM, Plewczynski D. One protein to rule them all: The role of CCCTC-binding factor in shaping human genome in health and disease. Semin Cell Dev Biol 2019; 90:114-127. [PMID: 30096365 PMCID: PMC6642822 DOI: 10.1016/j.semcdb.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of μm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes. This knowledge has allowed us to revise our understanding regarding the mechanisms governing the process of DNA organization. Mounting experimental evidence suggests that the key element in the formation of loops is the binding of the CCCTC-binding factor (CTCF) to DNA; a protein that can be referred to as the chief organizer of the genome. However, CTCF does not work alone but in cooperation with other proteins, such as cohesin or Yin Yang 1 (YY1). In this short review, we briefly describe our current understanding of the structure of eukaryotic genomes, how they are established and how the formation of DNA loops can influence gene expression. We discuss the recent discoveries describing the 3D structure of the CTCF-DNA complex and the role of CTCF in establishing genome structure. Finally, we briefly explain how various genetic disorders might arise as a consequence of mutations in the CTCF target sequence or alteration of genomic imprinting.
Collapse
Affiliation(s)
- Michal Lazniewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wayne K Dawson
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan
| | - Anna Maria Rusek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Clinical Molecular Biology Department, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Centre for Innovative Research, Medical University of Bialystok, Bialystok, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
67
|
Nishiyama T. Cohesion and cohesin-dependent chromatin organization. Curr Opin Cell Biol 2019; 58:8-14. [PMID: 30544080 DOI: 10.1016/j.ceb.2018.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Cohesin, one of structural maintenance of chromosomes (SMC) complexes, forms a ring-shaped protein complex, and mediates sister chromatid cohesion for accurate chromosome segregation and precise genome inheritance. The cohesin ring entraps one or two DNA molecules to achieve cohesion, which is further regulated by cohesin-binding proteins and modification enzymes in a cell cycle-dependent manner. Recent significant advancements in Hi-C technologies have revealed numerous cohesin-dependent higher-order chromatin structures. Simultaneously, single-molecule imaging has also unveiled the detailed dynamics of cohesin on DNA and/or chromatin. Thus, those studies are providing novel visions for the authentic chromatin structure regulated by cohesin.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| |
Collapse
|
68
|
Xu X, Yanagida M. Suppressor screening reveals common kleisin-hinge interaction in condensin and cohesin, but different modes of regulation. Proc Natl Acad Sci U S A 2019; 116:10889-10898. [PMID: 31072933 PMCID: PMC6561158 DOI: 10.1073/pnas.1902699116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cohesin and condensin play fundamental roles in sister chromatid cohesion and chromosome segregation, respectively. Both consist of heterodimeric structural maintenance of chromosomes (SMC) subunits, which possess a head (containing ATPase) and a hinge, intervened by long coiled coils. Non-SMC subunits (Cnd1, Cnd2, and Cnd3 for condensin; Rad21, Psc3, and Mis4 for cohesin) bind to the SMC heads. Here, we report a large number of spontaneous extragenic suppressors for fission yeast condensin and cohesin mutants, and their sites were determined by whole-genome sequencing. Mutants of condensin's non-SMC subunits were rescued by impairing the SUMOylation pathway. Indeed, SUMOylation of Cnd2, Cnd3, and Cut3 occurs in midmitosis, and Cnd3 K870 SUMOylation functionally opposes Cnd subunits. In contrast, cohesin mutants rad21 and psc3 were rescued by loss of the RNA elimination pathway (Erh1, Mmi1, and Red1), and loader mutant mis4 was rescued by loss of Hrp1-mediated chromatin remodeling. In addition, distinct regulations were discovered for condensin and cohesin hinge mutants. Mutations in the N-terminal helix bundle [containing a helix-turn-helix (HTH) motif] of kleisin subunits (Cnd2 and Rad21) rescue virtually identical hinge interface mutations in cohesin and condensin, respectively. These mutations may regulate kleisin's interaction with the coiled coil at the SMC head, thereby revealing a common, but previously unknown, suppression mechanism between the hinge and the kleisin N domain, which is required for successful chromosome segregation. We propose that in both condensin and cohesin, the head (or kleisin) and hinge may interact and collaboratively regulate the resulting coiled coils to hold and release chromosomal DNAs.
Collapse
Affiliation(s)
- Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| |
Collapse
|
69
|
Isolation of Fission Yeast Condensin Temperature-Sensitive Mutants with Single Amino Acid Substitutions Targeted to Hinge Domain. G3-GENES GENOMES GENETICS 2019; 9:1777-1783. [PMID: 30914423 PMCID: PMC6505169 DOI: 10.1534/g3.119.400156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Essential genes cannot be deleted from the genome; therefore, temperature-sensitive (ts) mutants and cold-sensitive (cs) mutants are very useful to discover functions of essential genes in model organisms such as Schizosaccharomyces pombe and Saccharomyces cerevisiae. To isolate ts/cs mutants for essential genes of interest, error-prone mutagenesis (or random mutagenesis) coupled with in vitro selection has been widely used. However, this method often introduces multiple silent mutations, in addition to the mutation responsible for ts/cs, with the result that one cannot discern which mutation is responsible for the ts/cs phenotype. In addition, the location of the responsible mutation introduced is random, whereas it is preferable to isolate ts/cs mutants with single amino acid substitutions, located in a targeted motif or domain of the protein of interest. To solve these problems, we have developed a method to isolate ts/cs mutants with single amino acid substitutions in targeted regions using site-directed mutagenesis. This method takes advantage of the empirical fact that single amino acid substitutions (L/S -> P or G/A -> E/D) often cause ts or cs. Application of the method to condensin and cohesin hinge domains was successful: ∼20% of the selected single amino acid substitutions turned out to be ts or cs. This method is versatile in fission yeast and is expected to be broadly applicable to isolate ts/cs mutants with single amino acid substitutions in targeted regions of essential genes. 11 condensin hinge ts mutants were isolated using the method and their responsible mutations are broadly distributed in hinge domain. Characterization of these mutants will be very helpful to understand the function of hinge domain.
Collapse
|
70
|
Moronta-Gines M, van Staveren TRH, Wendt KS. One ring to bind them - Cohesin's interaction with chromatin fibers. Essays Biochem 2019; 63:167-176. [PMID: 31015387 DOI: 10.1042/ebc20180064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2023]
Abstract
In the nuclei of eukaryotic cells, the genetic information is organized at several levels. First, the DNA is wound around the histone proteins, to form a structure termed as chromatin fiber. This fiber is then arranged into chromatin loops that can cluster together and form higher order structures. This packaging of chromatin provides on one side compaction but also functional compartmentalization. The cohesin complex is a multifunctional ring-shaped multiprotein complex that organizes the chromatin fiber to establish functional domains important for transcriptional regulation, help with DNA damage repair, and ascertain stable inheritance of the genome during cell division. Our current model for cohesin function suggests that cohesin tethers chromatin strands by topologically entrapping them within its ring. To achieve this, cohesin's association with chromatin needs to be very precisely regulated in timing and position on the chromatin strand. Here we will review the current insight in when and where cohesin associates with chromatin and which factors regulate this. Further, we will discuss the latest insights into where and how the cohesin ring opens to embrace chromatin and also the current knowledge about the 'exit gates' when cohesin is released from chromatin.
Collapse
Affiliation(s)
| | | | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
71
|
Bürmann F, Lee BG, Than T, Sinn L, O'Reilly FJ, Yatskevich S, Rappsilber J, Hu B, Nasmyth K, Löwe J. A folded conformation of MukBEF and cohesin. Nat Struct Mol Biol 2019; 26:227-236. [PMID: 30833788 PMCID: PMC6433275 DOI: 10.1038/s41594-019-0196-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Structural maintenance of chromosomes (SMC)-kleisin complexes organize chromosomal DNAs in all domains of life, with key roles in chromosome segregation, DNA repair and regulation of gene expression. They function through the entrapment and active translocation of DNA, but the underlying conformational changes are largely unclear. Using structural biology, mass spectrometry and cross-linking, we investigated the architecture of two evolutionarily distant SMC-kleisin complexes: MukBEF from Escherichia coli, and cohesin from Saccharomyces cerevisiae. We show that both contain a dynamic coiled-coil discontinuity, the elbow, near the middle of their arms that permits a folded conformation. Bending at the elbow brings into proximity the hinge dimerization domain and the head-kleisin module, situated at opposite ends of the arms. Our findings favour SMC activity models that include a large conformational change in the arms, such as a relative movement between DNA contact sites during DNA loading and translocation.
Collapse
Affiliation(s)
| | | | - Thane Than
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Ludwig Sinn
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Francis J O'Reilly
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Stanislau Yatskevich
- Department of Biochemistry, University of Oxford, Oxford, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Bin Hu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
72
|
Abstract
Condensins and cohesins are highly conserved complexes that tether together DNA loci within a single DNA molecule to produce DNA loops. Condensin and cohesin structures, however, are different, and the DNA loops produced by each underlie distinct cell processes. Condensin rods compact chromosomes during mitosis, with condensin I and II complexes producing spatially defined and nested looping in metazoan cells. Structurally adaptive cohesin rings produce loops, which organize the genome during interphase. Cohesin-mediated loops, termed topologically associating domains or TADs, antagonize the formation of epigenetically defined but untethered DNA volumes, termed compartments. While condensin complexes formed through cis-interactions must maintain chromatin compaction throughout mitosis, cohesins remain highly dynamic during interphase to allow for transcription-mediated responses to external cues and the execution of developmental programs. Here, I review differences in condensin and cohesin structures, and highlight recent advances regarding the intramolecular or cis-based tetherings through which condensins compact DNA during mitosis and cohesins organize the genome during interphase.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, 111 Research Drive, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
73
|
Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Evolution of Structural Biology through the Lens of Mass Spectrometry. Anal Chem 2019; 91:142-155. [PMID: 30457831 PMCID: PMC6472977 DOI: 10.1021/acs.analchem.8b05014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Danté T. Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Emily E. Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jessica A. Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
74
|
Cortone G, Zheng G, Pensieri P, Chiappetta V, Tatè R, Malacaria E, Pichierri P, Yu H, Pisani FM. Interaction of the Warsaw breakage syndrome DNA helicase DDX11 with the replication fork-protection factor Timeless promotes sister chromatid cohesion. PLoS Genet 2018; 14:e1007622. [PMID: 30303954 PMCID: PMC6179184 DOI: 10.1371/journal.pgen.1007622] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Establishment of sister chromatid cohesion is coupled to DNA replication, but the underlying molecular mechanisms are incompletely understood. DDX11 (also named ChlR1) is a super-family 2 Fe-S cluster-containing DNA helicase implicated in Warsaw breakage syndrome (WABS). Herein, we examined the role of DDX11 in cohesion establishment in human cells. We demonstrated that DDX11 interacts with Timeless, a component of the replication fork-protection complex, through a conserved peptide motif. The DDX11-Timeless interaction is critical for sister chromatid cohesion in interphase and mitosis. Immunofluorescence studies further revealed that cohesin association with chromatin requires DDX11. Finally, we demonstrated that DDX11 localises at nascent DNA by SIRF analysis. Moreover, we found that DDX11 promotes cohesin binding to the DNA replication forks in concert with Timeless and that recombinant purified cohesin interacts with DDX11 in vitro. Collectively, our results establish a critical role for the DDX11-Timeless interaction in coordinating DNA replication with sister chromatid cohesion, and have important implications for understanding the molecular basis of WABS.
Collapse
Affiliation(s)
- Giuseppe Cortone
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Ge Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Pasquale Pensieri
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Viviana Chiappetta
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Rosarita Tatè
- Istituto di Genetica e Biofisica "Adriano Buzzati Traverso", Consiglio Nazionale Ricerche, Naples, Italy
| | - Eva Malacaria
- Istituto Superiore di Sanità, Dipartimento Ambiente e Salute, Rome, Italy
| | - Pietro Pichierri
- Istituto Superiore di Sanità, Dipartimento Ambiente e Salute, Rome, Italy
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (HY); (FMP)
| | - Francesca M. Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
- * E-mail: (HY); (FMP)
| |
Collapse
|
75
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
76
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
77
|
Morales C, Losada A. Establishing and dissolving cohesion during the vertebrate cell cycle. Curr Opin Cell Biol 2018; 52:51-57. [PMID: 29433064 DOI: 10.1016/j.ceb.2018.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/28/2023]
Abstract
Replicated chromatids are held together from the time they emerge from the replication fork until their separation in anaphase. This process, known as cohesion, promotes faithful DNA repair by homologous recombination in interphase and ensures accurate chromosome segregation in mitosis. Identification of cohesin thirty years ago solved a long-standing question about the nature of the linkage keeping together the sister chromatids. Cohesin is an evolutionarily conserved complex composed of a heterodimer of the Structural Maintenance of Chromosomes (SMC) family of ATPases, Smc1 and Smc3, the kleisin subunit Rad21 and a Huntingtin/EF3/PP2A/Tor1 (HEAT) repeat domain-containing subunit named SA/STAG. In addition to mediating cohesion, cohesin plays a major role in genome organization. Cohesin functions rely on the ability of the complex to entrap DNA topologically and in a dynamic manner. Establishment of cohesion during S phase requires coordination with the DNA replication machinery and restricts the dynamic behaviour of at least a fraction of cohesin. Dissolution of cohesion in subsequent mitosis is regulated by multiple mechanisms that ensure that daughter cells receive the correct number of intact chromosomes. We here review recent progress on our understanding of how these processes are regulated in somatic vertebrate cells.
Collapse
Affiliation(s)
- Carmen Morales
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
78
|
Eagen KP. Principles of Chromosome Architecture Revealed by Hi-C. Trends Biochem Sci 2018; 43:469-478. [PMID: 29685368 PMCID: PMC6028237 DOI: 10.1016/j.tibs.2018.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Chromosomes are folded and compacted in interphase nuclei, but the molecular basis of this folding is poorly understood. Chromosome conformation capture methods, such as Hi-C, combine chemical crosslinking of chromatin with fragmentation, DNA ligation, and high-throughput DNA sequencing to detect neighboring loci genome-wide. Hi-C has revealed the segregation of chromatin into active and inactive compartments and the folding of DNA into self-associating domains and loops. Depletion of CTCF, cohesin, or cohesin-associated proteins was recently shown to affect the majority of domains and loops in a manner that is consistent with a model of DNA folding through extrusion of chromatin loops. Compartmentation was not dependent on CTCF or cohesin. Hi-C contact maps represent the superimposition of CTCF/cohesin-dependent and -independent folding states.
Collapse
Affiliation(s)
- Kyle P Eagen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
79
|
Xu X, Kanai R, Nakazawa N, Wang L, Toyoshima C, Yanagida M. Suppressor mutation analysis combined with 3D modeling explains cohesin's capacity to hold and release DNA. Proc Natl Acad Sci U S A 2018; 115:E4833-E4842. [PMID: 29735656 PMCID: PMC6003501 DOI: 10.1073/pnas.1803564115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cohesin is a fundamental protein complex that holds sister chromatids together. Separase protease cleaves a cohesin subunit Rad21/SCC1, causing the release of cohesin from DNA to allow chromosome segregation. To understand the functional organization of cohesin, we employed next-generation whole-genome sequencing and identified numerous extragenic suppressors that overcome either inactive separase/Cut1 or defective cohesin in the fission yeast Schizosaccharomyces pombe Unexpectedly, Cut1 is dispensable if suppressor mutations cause disorders of interfaces among essential cohesin subunits Psm1/SMC1, Psm3/SMC3, Rad21/SCC1, and Mis4/SCC2, the crystal structures of which suggest physical and functional impairment at the interfaces of Psm1/3 hinge, Psm1 head-Rad21, or Psm3 coiled coil-Rad21. Molecular-dynamics analysis indicates that the intermolecular β-sheets in the cohesin hinge of cut1 suppressor mutants remain intact, but a large mobility change occurs at the coiled coil bound to the hinge. In contrast, suppressors of rad21-K1 occur in either the head ATPase domains or the Psm3 coiled coil that interacts with Rad21. Suppressors of mis4-G1326E reside in the head of Psm3/1 or the intragenic domain of Mis4. These may restore the binding of cohesin to DNA. Evidence is provided that the head and hinge of SMC subunits are proximal, and that they coordinate to form arched coils that can hold or release DNA by altering the angles made by the arched coiled coils. By combining molecular modeling with suppressor sequence analysis, we propose a cohesin structure designated the "hold-and-release" model, which may be considered as an alternative to the prevailing "ring" model.
Collapse
Affiliation(s)
- Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Ryuta Kanai
- Institute of Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Norihiko Nakazawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Li Wang
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Chikashi Toyoshima
- Institute of Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan;
| |
Collapse
|
80
|
Litwin I, Wysocki R. New insights into cohesin loading. Curr Genet 2018; 64:53-61. [PMID: 28631016 DOI: 10.1007/s00294-017-0723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Cohesin is a conserved, ring-shaped protein complex that encircles sister chromatids and ensures correct chromosome segregation during mitosis and meiosis. It also plays a crucial role in the regulation of gene expression, DNA condensation, and DNA repair through both non-homologous end joining and homologous recombination. Cohesins are spatiotemporally regulated by the Scc2-Scc4 complex which facilitates cohesin loading onto chromatin at specific chromosomal sites. Over the last few years, much attention has been paid to cohesin and cohesin loader as it became clear that even minor disruptions of these complexes may lead to developmental disorders and cancers. Here we summarize recent developments in the structure of Scc2-Scc4 complex, cohesin loading process, and mediators that determine the Scc2-Scc4 binding patterns to chromatin.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland
| |
Collapse
|
81
|
Robison B, Guacci V, Koshland D. A role for the Smc3 hinge domain in the maintenance of sister chromatid cohesion. Mol Biol Cell 2018; 29:339-355. [PMID: 29187575 PMCID: PMC5996953 DOI: 10.1091/mbc.e17-08-0511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/11/2022] Open
Abstract
Cohesin is a conserved protein complex required for sister chromatid cohesion, chromosome condensation, DNA damage repair, and regulation of transcription. Although cohesin functions to tether DNA duplexes, the contribution of its individual domains to this activity remains poorly understood. We interrogated the Smc3p subunit of cohesin by random insertion mutagenesis. Analysis of a mutant in the Smc3p hinge revealed an unexpected role for this domain in cohesion maintenance and condensation. Further investigation revealed that the Smc3p hinge functions at a step following cohesin's stable binding to chromosomes and independently of Smc3p's regulation by the Eco1p acetyltransferase. Hinge mutant phenotypes resemble loss of Pds5p, which binds opposite the hinge near Smc3p's head domain. We propose that a specific conformation of the Smc3p hinge and Pds5p cooperate to promote cohesion maintenance and condensation.
Collapse
Affiliation(s)
- Brett Robison
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
82
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
83
|
Zawadzka K, Zawadzki P, Baker R, Rajasekar KV, Wagner F, Sherratt DJ, Arciszewska LK. MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. eLife 2018; 7:31522. [PMID: 29323635 PMCID: PMC5812716 DOI: 10.7554/elife.31522] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
The Escherichia coli SMC complex, MukBEF, acts in chromosome segregation. MukBEF shares the distinctive architecture of other SMC complexes, with one prominent difference; unlike other kleisins, MukF forms dimers through its N-terminal domain. We show that a 4-helix bundle adjacent to the MukF dimerisation domain interacts functionally with the MukB coiled-coiled ‘neck’ adjacent to the ATPase head. We propose that this interaction leads to an asymmetric tripartite complex, as in other SMC complexes. Since MukF dimerisation is preserved during this interaction, MukF directs the formation of dimer of dimer MukBEF complexes, observed previously in vivo. The MukF N- and C-terminal domains stimulate MukB ATPase independently and additively. We demonstrate that impairment of the MukF interaction with MukB in vivo leads to ATP hydrolysis-dependent release of MukBEF complexes from chromosomes. Most DNA in a cell is arranged in structures called chromosomes. From bacteria to humans, chromosomes have to be compacted and highly organized to allow the cells to maintain and use their genetic information. In all organisms, large ring-shaped protein complexes play a crucial role in managing chromosomes. They transport and organize DNA thanks to reactions whose precise mechanism remains unknown. In bacteria, MukB and a type of kleisin called MukF are two examples of molecules involved in chromosome management. Two MukBs join at one end to form a hinge; at the other end, each MukB protein has a neck and a head. The two heads are linked by the kleisin to form a large protein ring, which can open to capture DNA. The MukB heads can trigger a biochemical reaction that creates the energy essential to trap and release DNA during DNA transport. Here, Zawadzka et al. study how the different components of the MukB-kleisin complex interact with each other to undergo the biochemical reactions that lead to DNA transport. The experiments show that the kleisin joins two MukB heads by attaching the base of one to the neck of the other, asymmetrically closing the ring. The separate interactions of different regions of the kleisin to the head and neck of MukB independently activate the two MukB heads, thereby controlling essential steps in the reactions with DNA. Two MukB-kleisin ring complexes are joined to each other because of a tight interaction between the two kleisin molecules. This leads Zawadzka et al. to suggest that DNA is sequentially grabbed and released from these two rings during DNA transport, similar to how a climbing rope is attached and released through carabiners. Cells cannot survive or be healthy without their chromosomes being accurately managed. It is still unclear how molecules such as MukBs and kleinsins drive this process. A better picture of their structure and interactions is an essential first step to understand these mechanisms.
Collapse
Affiliation(s)
- Katarzyna Zawadzka
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Pawel Zawadzki
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Florence Wagner
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
84
|
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 2017; 36:3573-3599. [PMID: 29217591 PMCID: PMC5730888 DOI: 10.15252/embj.201798004] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome-wide function in mediating long-range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.
Collapse
Affiliation(s)
- Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Csilla Várnai
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - David A Cisneros
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan Schoenfelder
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Gregor Jessberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nike Walther
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Koch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
85
|
Eeftens J, Dekker C. Catching DNA with hoops—biophysical approaches to clarify the mechanism of SMC proteins. Nat Struct Mol Biol 2017; 24:1012-1020. [DOI: 10.1038/nsmb.3507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022]
|
86
|
Schmidt C, Urlaub H. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 2017; 46:157-168. [DOI: 10.1016/j.sbi.2017.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
|
87
|
Brackley CA, Johnson J, Michieletto D, Morozov AN, Nicodemi M, Cook PR, Marenduzzo D. Nonequilibrium Chromosome Looping via Molecular Slip Links. PHYSICAL REVIEW LETTERS 2017; 119:138101. [PMID: 29341686 DOI: 10.1103/physrevlett.119.138101] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 06/07/2023]
Abstract
We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.
Collapse
Affiliation(s)
- C A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - J Johnson
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - D Michieletto
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - A N Morozov
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - M Nicodemi
- Dipartimento di Fisica, Universita' di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - P R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
88
|
Yi F, Wang Z, Liu J, Zhang Y, Wang Z, Xu H, Li X, Bai N, Cao L, Song X. Structural Maintenance of Chromosomes protein 1: Role in Genome Stability and Tumorigenesis. Int J Biol Sci 2017; 13:1092-1099. [PMID: 28924389 PMCID: PMC5599913 DOI: 10.7150/ijbs.21206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
SMC1 (Structural Maintenance of Chromosomes protein 1), well known as one of the SMC superfamily members, has been explored to function in many activities including chromosome dynamics, cell cycle checkpoint, DNA damage repair and genome stability. Upon being properly assembled as part of cohesin, SMC1 can be phosphorylated by ATM and mediate downstream DNA damage repair after ionizing irradiation. Abnormal gene expression or mutation of SMC1 can cause defect in the DNA damage repair pathway, which has been strongly associated with tumorigenesis. Here we focus to discuss SMC1's role in genome stability maintenance and tumorigenesis. Deciphering the underlying molecular mechanism can provide insight into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhijun Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
89
|
Matityahu A, Onn I. A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins. Curr Genet 2017; 64:109-116. [PMID: 28835994 DOI: 10.1007/s00294-017-0735-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The higher-order organization of chromosomes ensures their stability and functionality. However, the molecular mechanism by which higher order structure is established is poorly understood. Dissecting the activity of the relevant proteins provides information essential for achieving a comprehensive understanding of chromosome structure. Proteins of the structural maintenance of chromosome (SMC) family of ATPases are the core of evolutionary conserved complexes. SMC complexes are involved in regulating genome dynamics and in maintaining genome stability. The structure of all SMC proteins resembles an elongated rod that contains a central coiled-coil domain, a common protein structural motif in which two α-helices twist together. In recent years, the imperative role of the coiled-coil domain to SMC protein activity and regulation has become evident. Here, we discuss recent advances in the function of the SMC coiled coils. We describe the structure of the coiled-coil domain of SMC proteins, modifications and interactions that are mediated by it. Furthermore, we assess the role of the coiled-coil domain in conformational switches of SMC proteins, and in determining the architecture of the SMC dimer. Finally, we review the interplay between mutations in the coiled-coil domain and human disorders. We suggest that distinctive properties of coiled coils of different SMC proteins contribute to their distinct functions. The discussion clarifies the mechanisms underlying the activity of SMC proteins, and advocates future studies to elucidate the function of the SMC coiled coil domain.
Collapse
Affiliation(s)
- Avi Matityahu
- Faculty of Medicine in the Galilee, Bar-Ilan University, 8 Henrietta Szold St., P.O. Box 1589, 1311502, Safed, Israel
| | - Itay Onn
- Faculty of Medicine in the Galilee, Bar-Ilan University, 8 Henrietta Szold St., P.O. Box 1589, 1311502, Safed, Israel.
| |
Collapse
|
90
|
Diebold-Durand ML, Lee H, Ruiz Avila LB, Noh H, Shin HC, Im H, Bock FP, Bürmann F, Durand A, Basfeld A, Ham S, Basquin J, Oh BH, Gruber S. Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization. Mol Cell 2017; 67:334-347.e5. [PMID: 28689660 PMCID: PMC5526789 DOI: 10.1016/j.molcel.2017.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/03/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023]
Abstract
Multi-subunit SMC complexes control chromosome superstructure and promote chromosome disjunction, conceivably by actively translocating along DNA double helices. SMC subunits comprise an ABC ATPase "head" and a "hinge" dimerization domain connected by a 49 nm coiled-coil "arm." The heads undergo ATP-dependent engagement and disengagement to drive SMC action on the chromosome. Here, we elucidate the architecture of prokaryotic Smc dimers by high-throughput cysteine cross-linking and crystallography. Co-alignment of the Smc arms tightly closes the interarm space and misaligns the Smc head domains at the end of the rod by close apposition of their ABC signature motifs. Sandwiching of ATP molecules between Smc heads requires them to substantially tilt and translate relative to each other, thereby opening up the Smc arms. We show that this mechanochemical gating reaction regulates chromosome targeting and propose a mechanism for DNA translocation based on the merging of DNA loops upon closure of Smc arms.
Collapse
Affiliation(s)
- Marie-Laure Diebold-Durand
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Hansol Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Laura B Ruiz Avila
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Haemin Noh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Haeri Im
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul 04310, Korea
| | - Florian P Bock
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Frank Bürmann
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexandre Durand
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Alrun Basfeld
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul 04310, Korea
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
| | - Stephan Gruber
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland.
| |
Collapse
|
91
|
Köhler S, Wojcik M, Xu K, Dernburg AF. Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue. Proc Natl Acad Sci U S A 2017; 114:E4734-E4743. [PMID: 28559338 PMCID: PMC5474826 DOI: 10.1073/pnas.1702312114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
When cells enter meiosis, their chromosomes reorganize as linear arrays of chromatin loops anchored to a central axis. Meiotic chromosome axes form a platform for the assembly of the synaptonemal complex (SC) and play central roles in other meiotic processes, including homologous pairing, recombination, and chromosome segregation. However, little is known about the 3D organization of components within the axes, which include cohesin complexes and additional meiosis-specific proteins. Here, we investigate the molecular organization of meiotic chromosome axes in Caenorhabditis elegans through STORM (stochastic optical reconstruction microscopy) and PALM (photo-activated localization microscopy) superresolution imaging of intact germ-line tissue. By tagging one axis protein (HIM-3) with a photoconvertible fluorescent protein, we established a spatial reference for other components, which were localized using antibodies against epitope tags inserted by CRISPR/Cas9 genome editing. Using 3D averaging, we determined the position of all known components within synapsed chromosome axes to high spatial precision in three dimensions. We find that meiosis-specific HORMA domain proteins span a gap between cohesin complexes and the central region of the SC, consistent with their essential roles in SC assembly. Our data further suggest that the two different meiotic cohesin complexes are distinctly arranged within the axes: Although cohesin complexes containing the kleisin REC-8 protrude above and below the plane defined by the SC, complexes containing COH-3 or -4 kleisins form a central core, which may physically separate sister chromatids. This organization may help to explain the role of the chromosome axes in promoting interhomolog repair of meiotic double-strand breaks by inhibiting intersister repair.
Collapse
Affiliation(s)
- Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Michal Wojcik
- Department of Chemistry, University of California, Berkeley, CA 94720-3220
- California Institute for Quantitative Biosciences, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA 94720-3220;
- California Institute for Quantitative Biosciences, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
- California Institute for Quantitative Biosciences, Berkeley, CA 94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
92
|
Marcos-Alcalde Í, Mendieta-Moreno JI, Puisac B, Gil-Rodríguez MC, Hernández-Marcos M, Soler-Polo D, Ramos FJ, Ortega J, Pié J, Mendieta J, Gómez-Puertas P. Two-step ATP-driven opening of cohesin head. Sci Rep 2017; 7:3266. [PMID: 28607419 PMCID: PMC5468275 DOI: 10.1038/s41598-017-03118-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the "head" structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.
Collapse
Affiliation(s)
| | - Jesús I Mendieta-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Beatriz Puisac
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - María Concepción Gil-Rodríguez
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - María Hernández-Marcos
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - Diego Soler-Polo
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Feliciano J Ramos
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - José Ortega
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Pié
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Biotecnología, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | |
Collapse
|
93
|
Gruber S. Shaping chromosomes by DNA capture and release: gating the SMC rings. Curr Opin Cell Biol 2017; 46:87-93. [PMID: 28460277 DOI: 10.1016/j.ceb.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022]
Abstract
SMC proteins organize chromosomes to coordinate essential nuclear processes such as gene expression and DNA recombination as well as to segregate chromosomes during cell division. SMC mediated DNA bridging keeps sister chromatids aligned for much of the cell cycle, while the active extrusion of DNA loops by SMC presumably compacts chromosomes. Chromosome superstructure is thus given by the number of DNA linkages and the size of chromosomal DNA loops, which in turn depend on the dynamics of SMC loading and unloading. The latter is regulated by the intrinsic SMC ATPase activity, multiple external factors and post-translational modification. Here, I highlight recent advances in our understanding of DNA capture and release by SMC-with a focus on cohesin.
Collapse
Affiliation(s)
- Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland.
| |
Collapse
|
94
|
Birot A, Eguienta K, Vazquez S, Claverol S, Bonneu M, Ekwall K, Javerzat JP, Vaur S. A second Wpl1 anti-cohesion pathway requires dephosphorylation of fission yeast kleisin Rad21 by PP4. EMBO J 2017; 36:1364-1378. [PMID: 28438891 PMCID: PMC5430217 DOI: 10.15252/embj.201696050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023] Open
Abstract
Cohesin mediates sister chromatid cohesion which is essential for chromosome segregation and repair. Sister chromatid cohesion requires an acetyl-transferase (Eso1 in fission yeast) counteracting Wpl1, promoting cohesin release from DNA We report here that Wpl1 anti-cohesion function includes an additional mechanism. A genetic screen uncovered that Protein Phosphatase 4 (PP4) mutants allowed cell survival in the complete absence of Eso1. PP4 co-immunoprecipitated Wpl1 and cohesin and Wpl1 triggered Rad21 de-phosphorylation in a PP4-dependent manner. Relevant residues were identified and mapped within the central domain of Rad21. Phospho-mimicking alleles dampened Wpl1 anti-cohesion activity, while alanine mutants were neutral indicating that Rad21 phosphorylation would shelter cohesin from Wpl1 unless erased by PP4. Experiments in post-replicative cells lacking Eso1 revealed two cohesin populations. Type 1 was released from DNA by Wpl1 in a PP4-independent manner. Type 2 cohesin, however, remained DNA-bound and lost its cohesiveness in a manner depending on Wpl1- and PP4-mediated Rad21 de-phosphorylation. These results reveal that Wpl1 antagonizes sister chromatid cohesion by a novel pathway regulated by the phosphorylation status of the cohesin kleisin subunit.
Collapse
Affiliation(s)
- Adrien Birot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France
| | - Karen Eguienta
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France
| | - Stéphanie Vazquez
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Centre Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Marc Bonneu
- Centre Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jean-Paul Javerzat
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France
| | - Sabine Vaur
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France
| |
Collapse
|
95
|
Yamada T, Tahara E, Kanke M, Kuwata K, Nishiyama T. Drosophila Dalmatian combines sororin and shugoshin roles in establishment and protection of cohesion. EMBO J 2017; 36:1513-1527. [PMID: 28483815 DOI: 10.15252/embj.201695607] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Sister chromatid cohesion is crucial to ensure chromosome bi-orientation and equal chromosome segregation. Cohesin removal via mitotic kinases and Wapl has to be prevented in pericentromeric regions in order to protect cohesion until metaphase, but the mechanisms of mitotic cohesion protection remain elusive in Drosophila Here, we show that dalmatian (Dmt), an ortholog of the vertebrate cohesin-associated protein sororin, is required for protection of mitotic cohesion in flies. Dmt is essential for cohesion establishment during interphase and is enriched on pericentromeric heterochromatin. Dmt is recruited through direct association with heterochromatin protein-1 (HP1), and this interaction is required for cohesion. During mitosis, Dmt interdependently recruits protein phosphatase 2A (PP2A) to pericentromeric regions, and PP2A binding is required for Dmt to protect cohesion. Intriguingly, Dmt is sufficient to protect cohesion upon heterologous expression in human cells. Our findings of a hybrid system, in which Dmt exerts both sororin-like establishment functions and shugoshin-like heterochromatin-based protection roles, provide clues to the evolutionary modulation of eukaryotic cohesion regulation systems.
Collapse
Affiliation(s)
- Takashi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Eri Tahara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Mai Kanke
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| |
Collapse
|
96
|
Chavda AP, Ang K, Ivanov D. The torments of the cohesin ring. Nucleus 2017; 8:261-267. [PMID: 28453390 PMCID: PMC5499920 DOI: 10.1080/19491034.2017.1295200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022] Open
Abstract
Cohesin is a ring-shaped protein complex which comprises the Smc1, Smc3 and Scc1 subunits. It topologically embraces chromosomal DNA to connect sister chromatids and stabilize chromatin loops. It is required for proper chromosomal segregation, DNA repair and transcriptional regulation. We have recently reported that cohesin rings can adopt a "collapsed" rod-like conformation which is driven by the interaction between the Smc1 and Smc3 coiled coil arms and is regulated by post-translational modifications. The "collapsed" conformation plays a role in cohesin ring assembly and its loading on the DNA. Here we speculate about the mechanism of cohesin's conformational transitions in relation to its loading on the DNA and draw parallels with other Smc-like complexes.
Collapse
Affiliation(s)
| | - Keven Ang
- Bioinformatics Institute, A*STAR, Singapore
| | - Dmitri Ivanov
- Bioinformatics Institute, A*STAR, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
- Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany
- Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
97
|
Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 2017; 6:e25776. [PMID: 28467304 PMCID: PMC5446243 DOI: 10.7554/elife.25776] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022] Open
Abstract
Folding of mammalian genomes into spatial domains is critical for gene regulation. The insulator protein CTCF and cohesin control domain location by folding domains into loop structures, which are widely thought to be stable. Combining genomic and biochemical approaches we show that CTCF and cohesin co-occupy the same sites and physically interact as a biochemically stable complex. However, using single-molecule imaging we find that CTCF binds chromatin much more dynamically than cohesin (~1-2 min vs. ~22 min residence time). Moreover, after unbinding, CTCF quickly rebinds another cognate site unlike cohesin for which the search process is long (~1 min vs. ~33 min). Thus, CTCF and cohesin form a rapidly exchanging 'dynamic complex' rather than a typical stable complex. Since CTCF and cohesin are required for loop domain formation, our results suggest that chromatin loops are dynamic and frequently break and reform throughout the cell cycle.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Iryna Pustova
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
98
|
Ouyang Z, Yu H. Releasing the cohesin ring: A rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl. Bioessays 2017; 39. [PMID: 28220956 DOI: 10.1002/bies.201600207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The ring-shaped ATPase machine, cohesin, regulates sister chromatid cohesion, transcription, and DNA repair by topologically entrapping DNA. Here, we propose a rigid scaffold model to explain how the cohesin regulators Pds5 and Wapl release cohesin from chromosomes. Recent studies have established the Smc3-Scc1 interface as the DNA exit gate of cohesin, revealed a requirement for ATP hydrolysis in ring opening, suggested regulation of the cohesin ATPase activity by DNA and Smc3 acetylation, and provided insights into how Pds5 and Wapl open this exit gate. We hypothesize that Pds5, Wapl, and SA1/2 form a rigid scaffold that docks on Scc1 and anchors the N-terminal domain of Scc1 (Scc1N) to the Smc1 ATPase head. Relative movements between the Smc1-3 ATPase heads driven by ATP and Wapl disrupt the Smc3-Scc1 interface. Pds5 binds the dissociated Scc1N and prolongs this open state of cohesin, releasing DNA. We review the evidence supporting this model and suggest experiments that can further test its key principles.
Collapse
Affiliation(s)
- Zhuqing Ouyang
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
99
|
Barrington C, Finn R, Hadjur S. Cohesin biology meets the loop extrusion model. Chromosome Res 2017; 25:51-60. [PMID: 28210885 PMCID: PMC5346154 DOI: 10.1007/s10577-017-9550-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/05/2022]
Abstract
Extensive research has revealed that cohesin acts as a topological device, trapping chromosomal DNA within a large tripartite ring. In so doing, cohesin contributes to the formation of compact and organized genomes. How exactly the cohesin subunits interact, how it opens, closes, and translocates on chromatin, and how it actually tethers DNA strands together are still being elucidated. A comprehensive understanding of these questions will shed light on how cohesin performs its many functions, including its recently proposed role as a chromatid loop extruder. Here, we discuss this possibility in light of our understanding of the molecular properties of cohesin complexes.
Collapse
Affiliation(s)
- Christopher Barrington
- Research Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Ronald Finn
- Research Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
100
|
Huang CJ, Yuan YF, Wu D, Khan FA, Jiao XF, Huo LJ. The cohesion stabilizer sororin favors DNA repair and chromosome segregation during mouse oocyte meiosis. In Vitro Cell Dev Biol Anim 2017; 53:258-264. [PMID: 27826797 DOI: 10.1007/s11626-016-0107-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Maintenance and timely termination of cohesion on chromosomes ensures accurate chromosome segregation to guard against aneuploidy in mammalian oocytes and subsequent chromosomally abnormal pregnancies. Sororin, a cohesion stabilizer whose relevance in antagonizing the anti-cohesive property of Wings-apart like protein (Wapl), has been characterized in mitosis; however, the role of Sororin remains unclear during mammalian oocyte meiosis. Here, we show that Sororin is required for DNA damage repair and cohesion maintenance on chromosomes, and consequently, for mouse oocyte meiotic program. Sororin is constantly expressed throughout meiosis and accumulates on chromatins at germinal vesicle (GV) stage/G2 phase. It localizes onto centromeres from germinal vesicle breakdown (GVBD) to metaphase II stage. Inactivation of Sororin compromises the GVBD and first polar body extrusion (PBE). Furthermore, Sororin inactivation induces DNA damage indicated by positive γH2AX foci in GV oocytes and precocious chromatin segregation in MII oocytes. Finally, our data indicate that PlK1 and MPF dissociate Sororin from chromosome arms without affecting its centromeric localization. Our results define Sororin as a determinant during mouse oocyte meiotic maturation by favoring DNA damage repair and chromosome separation, and thereby, maintaining the genome stability and generating haploid gametes.
Collapse
Affiliation(s)
- Chun-Jie Huang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Yi-Feng Yuan
- Department of Gynecology and Obstetrics, Peking University Third University, Beijing, China
| | - Di Wu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Faheem Ahmed Khan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Fei Jiao
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|