51
|
Stankiewicz P, Pursley AN, Cheung SW. Challenges in clinical interpretation of microduplications detected by array CGH analysis. Am J Med Genet A 2010; 152A:1089-100. [DOI: 10.1002/ajmg.a.33216] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Bohn M, Heermann DW. Topological interactions between ring polymers: Implications for chromatin loops. J Chem Phys 2010; 132:044904. [DOI: 10.1063/1.3302812] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
53
|
Jefferson A, Volpi EV. Fluorescence in situ hybridization (FISH) for genomic investigations in rat. Methods Mol Biol 2010; 659:409-26. [PMID: 20809331 DOI: 10.1007/978-1-60761-789-1_32] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter concentrates on the use of fluorescence in situ hybridization (FISH) for genomic investigations in the laboratory rat (Rattus norvegicus). The selection of protocols included in the chapter has been inspired by a comprehensive range of previously published molecular cytogenetic studies on this model organism, reporting examples of how FISH can be applied for diverse investigative purposes, varying from comparative gene mapping to studies of chromosome structure and genome evolution, to characterization of chromosomes aberrations as well as transgenic insertions. The protocols, which include techniques for the preparation of mitotic chromosomes and DNA fibers from short-term cell cultures, have been gathered through the years and repeatedly tested in our laboratory, and all together aim at providing sufficient experimental versatility to cover a broad range of cytogenetic and cytogenomic applications.
Collapse
Affiliation(s)
- Andrew Jefferson
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
54
|
Emanuel M, Radja NH, Henriksson A, Schiessel H. The physics behind the larger scale organization of DNA in eukaryotes. Phys Biol 2009; 6:025008. [DOI: 10.1088/1478-3975/6/2/025008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
55
|
Abstract
Genome function in higher eukaryotes involves major changes in the spatial organization of the chromatin fiber. Nevertheless, our understanding of chromatin folding is remarkably limited. Polymer models have been used to describe chromatin folding. However, none of the proposed models gives a satisfactory explanation of experimental data. In particularly, they ignore that each chromosome occupies a confined space, i.e., the chromosome territory. Here, we present a polymer model that is able to describe key properties of chromatin over length scales ranging from 0.5 to 75 Mb. This random loop (RL) model assumes a self-avoiding random walk folding of the polymer backbone and defines a probability P for 2 monomers to interact, creating loops of a broad size range. Model predictions are compared with systematic measurements of chromatin folding of the q-arms of chromosomes 1 and 11. The RL model can explain our observed data and suggests that on the tens-of-megabases length scale P is small, i.e., 10-30 loops per 100 Mb. This is sufficient to enforce folding inside the confined space of a chromosome territory. On the 0.5- to 3-Mb length scale chromatin compaction differs in different subchromosomal domains. This aspect of chromatin structure is incorporated in the RL model by introducing heterogeneity along the fiber contour length due to different local looping probabilities. The RL model creates a quantitative and predictive framework for the identification of nuclear components that are responsible for chromatin-chromatin interactions and determine the 3-dimensional organization of the chromatin fiber.
Collapse
|
56
|
Dekker J. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 2008; 283:34532-40. [PMID: 18930918 PMCID: PMC2596406 DOI: 10.1074/jbc.m806479200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/29/2008] [Indexed: 11/06/2022] Open
Abstract
The higher order arrangement of nucleosomes and the level of compaction of the chromatin fiber play important roles in the control of gene expression and other genomic activities. Analysis of chromatin in vitro has suggested that under near physiological conditions chromatin fibers can become highly compact and that the level of compaction can be modulated by histone modifications. However, less is known about the organization of chromatin fibers in living cells. Here, we combine chromosome conformation capture (3C) data with distance measurements and polymer modeling to determine the in vivo mass density of a transcriptionally active 95-kb GC-rich domain on chromosome III of the yeast Saccharomyces cerevisiae. In contrast to previous reports, we find that yeast does not form a compact fiber but that chromatin is extended with a mass per unit length that is consistent with a rather loose arrangement of nucleosomes. Analysis of 3C data from a neighboring AT-rich chromosomal domain indicates that chromatin in this domain is more compact, but that mass density is still well below that of a canonical 30 nm fiber. Our approach should be widely applicable to scale 3C data to real spatial dimensions, which will facilitate the quantification of the effects of chromatin modifications and transcription on chromatin fiber organization.
Collapse
Affiliation(s)
- Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-0103, USA.
| |
Collapse
|
57
|
Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol 2008; 4:e1000153. [PMID: 18725929 PMCID: PMC2515109 DOI: 10.1371/journal.pcbi.1000153] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 07/10/2008] [Indexed: 12/19/2022] Open
Abstract
During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.
Collapse
Affiliation(s)
- Angelo Rosa
- Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany.
| | | |
Collapse
|
58
|
Chapter 2 Polycomb Group Proteins and Long‐Range Gene Regulation. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:45-66. [DOI: 10.1016/s0065-2660(07)00002-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Christova R, Jones T, Wu PJ, Bolzer A, Costa-Pereira AP, Watling D, Kerr IM, Sheer D. P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNgamma. J Cell Sci 2007; 120:3262-70. [PMID: 17726060 DOI: 10.1242/jcs.012328] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcriptional activation of the major histocompatibility complex (MHC) by IFNgamma is a key step in cell-mediated immunity. At an early stage of IFNgamma induction, chromatin carrying the entire MHC locus loops out from the chromosome 6 territory. We show here that JAK/STAT signalling triggers this higher-order chromatin remodelling and the entire MHC locus becomes decondensed prior to transcriptional activation of the classical HLA class II genes. A single point mutation of STAT1 that prevents phosphorylation is sufficient to abolish chromatin remodelling, thus establishing a direct link between the JAK/STAT signalling pathway and human chromatin architecture. The onset of chromatin remodelling corresponds with the binding of activated STAT1 and the chromatin remodelling enzyme BRG1 at specific sites within the MHC, and is followed by RNA-polymerase recruitment and histone hyperacetylation. We propose that the higher-order chromatin remodelling of the MHC locus is an essential step to generate a transcriptionally permissive chromatin environment for subsequent activation of classical HLA genes.
Collapse
Affiliation(s)
- Rossitza Christova
- Human Cytogenetics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Langowski J, Heermann DW. Computational modeling of the chromatin fiber. Semin Cell Dev Biol 2007; 18:659-67. [PMID: 17936653 DOI: 10.1016/j.semcdb.2007.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 11/17/2022]
Abstract
The packing of the genomic DNA in the living cell is essential for its biological function. While individual aspects of the genome architecture, such as DNA and nucleosome structure or the arrangement of chromosome territories are well studied, much information is missing for a unified description of cellular DNA at all its structural levels. Computer modeling can contribute to such a description. We present here some typical approaches to models of the chromatin fiber, including different amounts of detail in the description of the local nucleosome structure. The main results from our simulations are that the physical properties of the chromatin fiber can be well described by a simplified model consisting of cylinder-like nucleosomes connected by flexible DNA segments, with a geometry determined by the bending and twisting angles between nucleosomes. Randomness in the local geometry - such as random absence of linker histone H1 - leads to a dramatic increase in the chromatin fiber flexibility. Furthermore, we show that chromatin is much more flexible to bending than to stretching, and that the structure of the chromatin fiber favors the formation of sharp bends.
Collapse
Affiliation(s)
- Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
61
|
Goetze S, Mateos-Langerak J, van Driel R. Three-dimensional genome organization in interphase and its relation to genome function. Semin Cell Dev Biol 2007; 18:707-14. [PMID: 17905616 DOI: 10.1016/j.semcdb.2007.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/22/2007] [Indexed: 01/10/2023]
Abstract
Higher order chromatin structure, i.e. the three-dimensional (3D) organization of the genome in the interphase nucleus, is an important component in the orchestration of gene expression in the mammalian genome. In this review we describe principles of higher order chromatin structure discussing three organizational parameters, i.e. chromatin folding, chromatin compaction and the nuclear position of the chromatin fibre. We argue that principles of 3D genome organization are probabilistic traits, reflected in a considerable cell-to-cell variation in 3D genome structure. It will be essential to understand how such higher order organizational aspects contribute to genome function to unveil global genome regulation.
Collapse
Affiliation(s)
- Sandra Goetze
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
62
|
Rashid-Kolvear F, Pintilie M, Done SJ. Telomere length on chromosome 17q shortens more than global telomere length in the development of breast cancer. Neoplasia 2007; 9:265-70. [PMID: 17460770 PMCID: PMC1854852 DOI: 10.1593/neo.07106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/16/2007] [Accepted: 02/22/2007] [Indexed: 01/21/2023] Open
Abstract
It is known that total telomere length is shorter in invasive breast cancer than in normal breast tissue but the status of individual telomere lengths has not been studied. Part of the difficulty is that usually telomere length in interphase cells is measured on all chromosomes together. In this study we compared normal breast epithelium, duct carcinoma in situ (DCIS), and invasive duct carcinoma (IDC) from 18 patients. Telomere length was specifically measured on chromosome 17q and was found to be shorter in DCIS and IDC than in normal breast epithelial cells, with more heterogeneity in telomere length in DCIS associated with IDC than in DCIS alone. More importantly, we found that the shortening of telomere on chromosome 17q is greater than the average shortening of all telomeres. This finding indicates that telomere shortening is not simply the result of the end replication problem; otherwise, all telomeres should be subjected to the same rate of telomere shortening. It seems there are mechanisms that preferentially erode some telomeres more than others or preferentially protect some chromosome ends. Our results suggest that the increased level of telomere shortening on 17q may be involved in chromosome instability and the progression of DCIS.
Collapse
MESH Headings
- Breast Neoplasms/etiology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/etiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/etiology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Chromosomal Instability/genetics
- Chromosomes, Human, Pair 17/genetics
- Female
- Humans
- Telomere/genetics
Collapse
Affiliation(s)
- Fariborz Rashid-Kolvear
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
63
|
Fan J, Tuncay K, Ortoleva PJ. Chromosome segregation in Escherichia coli division: a free energy-driven string model. Comput Biol Chem 2007; 31:257-64. [PMID: 17631415 DOI: 10.1016/j.compbiolchem.2007.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/06/2007] [Indexed: 01/14/2023]
Abstract
Although the mechanisms of eukaryotic chromosome segregation and cell division have been elucidated to a certain extent, those for bacteria remain largely unknown. Here we present a computational string model for simulating the dynamics of Escherichia coli chromosome segregation. A novel thermal-average force field accounting for stretching, bending, volume exclusion, friction and random fluctuation is introduced. A Langevin equation is used to simulate the chromosome structural changes. The mechanism of chromosome segregation is thereby postulated as a result of free energy-driven structural optimization with replication introduced chromosomal mass increase. Predictions of the model agree well with observations of fluorescence labeled chromosome loci movement in living cells. The results demonstrate the possibility of a mechanism of chromosome segregation that does not involve cytoskeletal guidance or advanced apparatus in an E. coli cell. The model also shows that DNA condensation of locally compacted domains is a requirement for successful chromosome segregation. Simulations also imply that the shape-determining protein MreB may play a role in the segregation via modification of the membrane pressure.
Collapse
Affiliation(s)
- J Fan
- Center for Cell and Virus Theory, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
64
|
Dekker J. GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p. Genome Biol 2007; 8:R116. [PMID: 17577398 PMCID: PMC2394764 DOI: 10.1186/gb-2007-8-6-r116] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/18/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Base-composition varies throughout the genome and is related to organization of chromosomes in distinct domains (isochores). Isochore domains differ in gene expression levels, replication timing, levels of meiotic recombination and chromatin structure. The molecular basis for these differences is poorly understood. RESULTS We have compared GC- and AT-rich isochores of yeast with respect to chromatin conformation, histone modification status and transcription. Using 3C analysis we show that, along chromosome III, GC-rich isochores have a chromatin structure that is characterized by lower chromatin interaction frequencies compared to AT-rich isochores, which may point to a more extended chromatin conformation. In addition, we find that throughout the genome, GC-rich and AT-rich genes display distinct levels of histone modifications. Interestingly, elimination of the histone deacetylase Rpd3p differentially affects conformation of GC- and AT-rich domains. Further, deletion of RPD3 activates expression of GC-rich genes more strongly than AT-rich genes. Analyses of effects of the histone deacetylase inhibitor trichostatin A, global patterns of Rpd3p binding and effects of deletion of RPD3 on histone H4 acetylation confirmed that conformation and activity of GC-rich chromatin are more sensitive to Rpd3p-mediated deacetylation than AT-rich chromatin. CONCLUSION We find that GC-rich and AT-rich chromatin domains display distinct chromatin conformations and are marked by distinct patterns of histone modifications. We identified the histone deacetylase Rpd3p as an attenuator of these base composition-dependent differences in chromatin status. We propose that GC-rich chromatin domains tend to occur in a more active conformation and that Rpd3p activity represses this propensity throughout the genome.
Collapse
Affiliation(s)
- Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Plantation Street, Worcester, MA 01605-4321, USA.
| |
Collapse
|
65
|
Pole JCM, Courtay-Cahen C, Garcia MJ, Blood KA, Cooke SL, Alsop AE, Tse DML, Caldas C, Edwards PAW. High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation. Oncogene 2006; 25:5693-706. [PMID: 16636668 DOI: 10.1038/sj.onc.1209570] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The short arm of chromosome 8, 8p, is often rearranged in carcinomas, typically showing distal loss by unbalanced translocation. We analysed 8p rearrangements in 48 breast, pancreatic and colon cancer cell lines by fluorescence in situ hybridization (FISH) and array comparative genomic hybridization, with a tiling path of 0.2 Mb resolution over 8p12 and 1 Mb resolution over chromosome 8. Selected breast lines (MDA-MB-134, MDA-MB-175, MDA-MB-361, T-47D and ZR-75-1) were analysed further. Most cell lines showed loss of 8p distal to a break that was between 31 Mb (5' to NRG1) and the centromere, but the translocations were accompanied by variable amplifications, deletions and inversions proximal to this break. The 8p12 translocation in T-47D was flanked by an inversion of 4 Mb, with a 100 kb deletion at the proximal end. The dicentric t(8;11) in ZR-75-1 carries multiple rearrangements including interstitial deletions, a triplicated translocation junction between NRG1 and a fragment of 11q (unconnected to CCND1), and two separate amplifications, of FGFR1 and CCND1 . We conclude that if there is a tumour suppressor gene on 8p it may be near 31 Mb, for example WRN; but the complexity of 8p rearrangements suggests that they target various genes proximal to 31 Mb including NRG1 and the amplicon centred around ZNF703/FLJ14299.
Collapse
Affiliation(s)
- J C M Pole
- Cancer Genomics Program, Department of Pathology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Aumann F, Lankas F, Caudron M, Langowski J. Monte Carlo simulation of chromatin stretching. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041927. [PMID: 16711856 DOI: 10.1103/physreve.73.041927] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Indexed: 05/09/2023]
Abstract
We present Monte Carlo (MC) simulations of the stretching of a single chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zigzag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that the stiffness of the chromatin fiber strongly depends on the linker DNA length. Furthermore, changing the twisting angle between nucleosomes from 90 degrees to 130 degrees increases the stiffness significantly. An increase in the opening angle from 22 degrees to 34 degrees leads to softer fibers for small linker lengths. We observe that fibers containing a linker histone at each nucleosome are stiffer compared to those without the linker histone. The simulated persistence lengths and elastic moduli agree with experimental data. Finally, we show that the chromatin fiber does not behave as an isotropic elastic rod, but its rigidity depends on the direction of deformation: Chromatin is much more resistant to stretching than to bending.
Collapse
Affiliation(s)
- Frank Aumann
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
67
|
Langowski J. Polymer chain models of DNA and chromatin. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 19:241-9. [PMID: 16547610 DOI: 10.1140/epje/i2005-10067-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/31/2006] [Indexed: 05/07/2023]
Abstract
Many properties of the genome in the cell nucleus can be understood by modeling DNA and chromatin as a flexible polymer chain. This article introduces into current models for such a coarse-grained description and reviews some recent results from our own group. Examples given are the unrolling of DNA from the histone core and the response of the 30 nm chromatin fiber to mechanical stretching.
Collapse
Affiliation(s)
- J Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
68
|
Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005; 6:782-92. [PMID: 16145555 DOI: 10.1038/nrg1692] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exciting advances in fluorescence in situ hybridization and array-based techniques are changing the nature of cytogenetics, in both basic research and molecular diagnostics. Cytogenetic analysis now extends beyond the simple description of the chromosomal status of a genome and allows the study of fundamental biological questions, such as the nature of inherited syndromes, the genomic changes that are involved in tumorigenesis and the three-dimensional organization of the human genome. The high resolution that is achieved by these techniques, particularly by microarray technologies such as array comparative genomic hybridization, is blurring the traditional distinction between cytogenetics and molecular biology.
Collapse
|
69
|
Mallo M. A Novel Possible Mechanism for the Genesis of Genomic Duplications and Its Experimental Test. J Mol Evol 2005; 61:390-7. [PMID: 16082566 DOI: 10.1007/s00239-004-0303-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Duplication of genomic regions is an important biological process associated with the appearance of gene families, the origin of alternative splicing, and the etiopathogenesis of genetic diseases. Different mechanisms for the genesis of duplications have been suggested, based mainly on structural analyses. However, experimental confirmation of those mechanisms is scarce, mostly because of a lack of information about the circumstances that triggered the rearrangements. Here, I characterize a duplication of about 300 kbp (kilobase pairs) that occurred in the course of a gene targeting experiment. Considering the structure of the locus and the triggering event, I suggest a likely mechanism for the genesis of this duplication which involves anomalous processing of contiguous Okazaki fragments during lagging strand replication. Most importantly, I provide experimental evidence to substantiate that the proposed mechanism can indeed lead to duplication of genomic segments. The model presented represents a novel mechanistic pathway that can explain a variety of rearrangements, including genomic tandem duplications and deletions.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciencia, Rua da Quinta Grande 6, 2780, Oeiras, Portugal.
| |
Collapse
|
70
|
Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 2005; 132:2215-23. [PMID: 15829525 DOI: 10.1242/dev.01813] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatial and temporal co-linear expression of Hox genes during development is an exquisite example of programmed gene expression. The precise mechanisms underpinning this are not known. Analysis of Hoxbchromatin structure and nuclear organisation, during the differentiation of murine ES cells, has lent support to the idea that there is a progressive`opening' of chromatin structure propagated through Hox clusters from 3′to 5′, which contributes to the sequential activation of gene expression. Here, we show that similar events occur in vivo in at least two stages of development. The first changes in chromatin structure and nuclear organisation were detected during gastrulation in the Hoxb1-expressing posterior primitive streak region: Hoxbchromatin was decondensed and the Hoxb1 locus looped out from its chromosome territory, in contrast to non-expressing Hoxb9, which remained within the chromosome territory. At E9.5, when differential Hox expression along the anteroposterior axis is being established, we found concomitant changes in the organisation of Hoxb. Hoxb organisation differed between regions of the neural tube that had never expressed Hoxb [rhombomeres (r) 1 and 2], strongly expressed Hoxb1 but not b9 (r4), had downregulated Hoxb1 (r5), expressed Hoxb9 but not Hoxb1 (spinal cord), and expressed both genes(tail bud). We conclude that Hoxb chromatin decondensation and nuclear re-organisation is regulated in different parts of the developing embryo, and at different developmental stages. The differential nuclear organisation of Hoxb along the anteroposterior axis of the developing neural tube is coherent with co-linear Hox gene expression. In early development nuclear re-organisation is coupled to Hoxb expression,but does not anticipate it.
Collapse
|
71
|
Monajembashi S, Rapp A, Schmitt E, Dittmar H, Greulich KO, Hausmann M. Spatial association of homologous pericentric regions in human lymphocyte nuclei during repair. Biophys J 2004; 88:2309-22. [PMID: 15626712 PMCID: PMC1305280 DOI: 10.1529/biophysj.104.048728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spatial positioning of pericentric chromosome regions in human lymphocyte cell nuclei was investigated during repair after H(2)O(2)/L-histidine treatment. Fifteen to three-hundred minutes after treatment, these regions of chromosomes 1, 15, and X were labeled by fluorescence in situ hybridization. The relative locus distances (LL-distances), the relative distances to the nuclear center (LC-distances), and the locus-nuclear center-locus angles (LCL-angles) were measured in approximately 5000 nuclei after two-dimensional microscopy. Experimental frequency histograms were compared to control data from untreated stimulated and quiescent (G(0)) nuclei and to a theoretical two-dimensional projection from random points. Based on the frequency distributions of the LL-distances and the LCL-angles, an increase of closely associated labeled regions was found shortly after repair activation. For longer repair times this effect decreased. After 300 min the frequency distribution of the LL-distances was found to be compatible with the random distance distribution again. The LL-distance frequency histograms for quiescent nuclei did not significantly differ from the theoretical random distribution, although this was the case for the stimulated control of chromosomes 15 and X. It may be inferred that, concerning the distances, homologous pericentric regions appear not to be randomly distributed during S-phase, and are subjected to dynamic processes during replication and repair.
Collapse
Affiliation(s)
- Shamci Monajembashi
- Department of Single Cell and Single Molecule Techniques, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745Jena, Germany.
| | | | | | | | | | | |
Collapse
|
72
|
Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc Natl Acad Sci U S A 2004; 101:16495-500. [PMID: 15545610 PMCID: PMC534505 DOI: 10.1073/pnas.0402766101] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Little is known about how chromatin folds in its native state. Using optimized in situ hybridization and live imaging techniques have determined compaction ratios and fiber flexibility for interphase chromatin in budding yeast. Unlike previous studies, ours examines nonrepetitive chromatin at intervals short enough to be meaningful for yeast chromosomes and functional domains in higher eukaryotes. We reconcile high-resolution fluorescence in situ hybridization data from intervals of 14-100 kb along single chromatids with measurements of whole chromosome arms (122-623 kb in length), monitored in intact cells through the targeted binding of bacterial repressors fused to GFP derivatives. The results are interpreted with a flexible polymer model and suggest that interphase chromatin exists in a compact higher-order conformation with a persistence length of 170-220 nm and a mass density of approximately 110-150 bp/nm. These values are equivalent to 7-10 nucleosomes per 11-nm turn within a 30-nm-like fiber structure. Comparison of long and short chromatid arm measurements demonstrates that chromatin fiber extension is also influenced by nuclear geometry. The observation of this surprisingly compact chromatin structure for transcriptionally competent chromatin in living yeast cells suggests that the passage of RNA polymerase II requires a very transient unfolding of higher-order chromatin structure.
Collapse
Affiliation(s)
- Kerstin Bystricky
- Department of Molecular Biology and National Center of Competence in Research Frontiers in Genetics, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
73
|
Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 2004; 118:555-66. [PMID: 15339661 DOI: 10.1016/j.cell.2004.08.011] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 07/08/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
We present an analysis of chromatin fiber structure across the human genome. Compact and open chromatin fiber structures were separated by sucrose sedimentation and their distributions analyzed by hybridization to metaphase chromosomes and genomic microarrays. We show that compact chromatin fibers originate from some sites of heterochromatin (C-bands), and G-bands (euchromatin). Open chromatin fibers correlate with regions of highest gene density, but not with gene expression since inactive genes can be in domains of open chromatin, and active genes in regions of low gene density can be embedded in compact chromatin fibers. Moreover, we show that chromatin fiber structure impacts on further levels of chromatin condensation. Regions of open chromatin fibers are cytologically decondensed and have a distinctive nuclear organization. We suggest that domains of open chromatin may create an environment that facilitates transcriptional activation and could provide an evolutionary constraint to maintain clusters of genes together along chromosomes.
Collapse
Affiliation(s)
- Nick Gilbert
- MRC Human Genetics Unit, Edinburgh, EH4 2XU, Scotland
| | | | | | | | | | | |
Collapse
|
74
|
Affiliation(s)
- L Scott Cram
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
75
|
Lowenstein MG, Goddard TD, Sedat JW. Long-range interphase chromosome organization in Drosophila: a study using color barcoded fluorescence in situ hybridization and structural clustering analysis. Mol Biol Cell 2004; 15:5678-92. [PMID: 15371546 PMCID: PMC532046 DOI: 10.1091/mbc.e04-04-0289] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have developed a color barcode labeling strategy for use with fluorescence in situ hybridization that enables the discrimination of multiple, identically labeled loci. Barcode labeling of chromosomes provides long-range path information and allows structural analysis at a scale and resolution beyond what was previously possible. Here, we demonstrate the use of a three-color, 13-probe barcode for the structural analysis of Drosophila chromosome 2L in blastoderm stage embryos. We observe the chromosome to be strongly polarized in the Rabl orientation and for some loci to assume defined positions relative to the nuclear envelope. Our analysis indicates packing approximately 15- to 28-fold above the 30-nm fiber, which varies along the chromosome in a pattern conserved across embryos. Using a clustering implementation based on rigid body alignment, our analysis suggests that structures within each embryo represent a single population and are effectively modeled as oriented random coils confined within nuclear boundaries. We also found an increased similarity between homologous chromosomes that have begun to pair. Chromosomes in embryos at equivalent developmental stages were found to share structural features and nuclear localization, although size-related differences that correlate with the cell cycle also were observed. The methodology and tools we describe provide a direct means for identifying developmental and cell type-specific features of higher order chromosome and nuclear organization.
Collapse
Affiliation(s)
- Michael G Lowenstein
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
76
|
Nicolay S, Argoul F, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Low frequency rhythms in human DNA sequences: a key to the organization of gene location and orientation? PHYSICAL REVIEW LETTERS 2004; 93:108101. [PMID: 15447453 DOI: 10.1103/physrevlett.93.108101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2003] [Indexed: 05/24/2023]
Abstract
We explore large-scale nucleotide compositional fluctuations of the human genome using multiresolution techniques. Analysis of the GC content and of the AT and GC skews reveals the existence of rhythms with two main periods of 110+/-20 kb and 400+/-50 kb that enlighten a remarkable cooperative gene organization. We show that the observed nonlinear oscillations are likely to display all the characteristic features of chaotic strange attractors which suggests a very attractive deterministic picture: gene orientation and location, in relation with the structure and dynamics of chromatin, might be governed by a low-dimensional nonlinear dynamical system.
Collapse
Affiliation(s)
- S Nicolay
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
77
|
Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004; 18:1119-30. [PMID: 15155579 PMCID: PMC415637 DOI: 10.1101/gad.292104] [Citation(s) in RCA: 495] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The colinearity of genes in Hox clusters suggests a role for chromosome structure in gene regulation. We reveal programmed changes in chromatin structure and nuclear organization upon induction of Hoxb expression by retinoic acid. There is an early increase in the histone modifications that are marks of active chromatin at both the early expressed gene Hoxb1, and also at Hoxb9 that is not expressed until much later. There is also a visible decondensation of the chromatin between Hoxb1 and Hoxb9 at this early stage. However, a further change in higher-order chromatin structure, looping out of genes from the chromosome territory, occurs in synchrony with the execution of the gene expression program. We suggest that higher-order chromatin structure regulates the expression of the HoxB cluster at several levels. Locus-wide changes in chromatin structure (histone modification and chromatin decondensation) may establish a transcriptionally poised state but are not sufficient for the temporal program of gene expression. The choreographed looping out of decondensed chromatin from chromosome territories may then allow for activation of high levels of transcription from the sequence of genes along the cluster.
Collapse
|
78
|
Bickmore WA, Mahy NL, Chambeyron S. Do higher-order chromatin structure and nuclear reorganization play a role in regulating Hox gene expression during development? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:251-7. [PMID: 16117656 DOI: 10.1101/sqb.2004.69.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- W A Bickmore
- MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | |
Collapse
|
79
|
Nikiforov YE. The molecular pathways induced by radiation and leading to thyroid carcinogenesis. Cancer Treat Res 2004; 122:191-206. [PMID: 16209046 DOI: 10.1007/1-4020-8107-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
80
|
Theory and computational modeling of the 30 nm chromatin fiber. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
81
|
Cheng Z, Buell CR, Wing RA, Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 2003; 10:379-87. [PMID: 12296520 DOI: 10.1023/a:1016849618707] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fluorescence in-situ hybridization (FISH) is a quick and affordable approach to map DNA sequences to specific chromosomal regions. Although FISH is one of the most important physical mapping techniques, research on the resolution of FISH on different cytological targets is scarce in plants. In this study, we report the resolution of FISH mapping on mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers in rice. A majority of the FISH signals derived from bacterial artificial chromosome (BAC) clones separated by approximately 1 Mb of DNA cannot be resolved on mitotic prometaphase chromosomes. In contrast, the relative positions of closely linked or even partially overlapping BAC clones can be resolved on a euchromatic region of rice chromosome 10 at the early pachytene stage. The resolution of pachytene FISH is dependent on early or late pachytene stages and also on the location of the DNA probes in the euchromatic or heterochromatic regions. We calibrated the fiber-FISH technique in rice using seven sequenced BAC clones. The average DNA extension was 3.21 kb/microm among the seven BAC clones. Fiber-FISH results derived from a BAC contig that spanned 1 Mb DNA matched remarkably to the sequencing data, demonstrating the high resolution of this technique in cytological mapping.
Collapse
Affiliation(s)
- Zhukuan Cheng
- Department of Horticulture, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
82
|
|
83
|
Holley WR, Mian IS, Park SJ, Rydberg B, Chatterjee A. A model for interphase chromosomes and evaluation of radiation-induced aberrations. Radiat Res 2002; 158:568-80. [PMID: 12385634 DOI: 10.1667/0033-7587(2002)158[0568:amfica]2.0.co;2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have developed a theoretical model for evaluating radiation-induced chromosomal exchanges by explicitly taking into account interphase (G(0)/G(1)) chromosome structure, nuclear organization of chromosomes, the production of double-strand breaks (DSBs), and the subsequent rejoinings in a faithful or unfaithful manner. Each of the 46 chromosomes for human lymphocytes (40 chromosomes for mouse lymphocytes) is modeled as a random polymer inside a spherical volume. The chromosome spheres are packed randomly inside a spherical nucleus with an allowed overlap controlled by a parameter Omega. The rejoining of DSBs is determined by a Monte Carlo procedure using a Gaussian proximity function with an interaction range parameter sigma. Values of Omega and sigma have been found which yield calculated results of interchromosomal aberration frequencies that agree with a wide range of experimental data. Our preferred solution is one with an interaction range of 0.5 microm coupled with a relatively small overlap parameter of 0.675 microm, which more or less confirms previous estimates. We have used our model with these parameter values and with resolution or detectability limits to calculate yields of translocations and dicentrics for human lymphocytes exposed to low-LET radiation that agree with experiments in the dose range 0.09 to 4 Gy. Five different experimental data sets have been compared with the theoretical results. Essentially all of the experimental data fall between theoretical curves corresponding to resolution limits of 1 Mbp and 20 Mbp, which may reflect the fact that different investigators use different limits for sensitivity or detectability. Translocation yields for mouse lymphocytes have also been calculated and are in good agreement with experimental data from 1 cGy to 10 cGy. There is also good agreement with recent data on complex aberrations. Our model is expected to be applicable to both low- and high-LET radiation, and we include a sample prediction of the yield of interchromosomal rejoining in the dose range 0.22 Gy to 2 Gy of 1000 MeV/nucleon iron particles. This dose range corresponds to average particle traversals per nucleus ranging from 1.0 to 9.12.
Collapse
Affiliation(s)
- W R Holley
- Lawrence Berkeley National Laboratory, Life Sciences Division, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
84
|
Abstract
Human cytogenetics was born in 1956 with the fundamental, but empowering, discovery that normal human cells contain 46 chromosomes. Since then, this field and our understanding of the link between chromosomal defects and disease have grown in spurts that have been fuelled by advances in cytogenetic technology. As a mature enterprise, cytogenetics now informs human genomics, disease and cancer genetics, chromosome evolution and the relationship of nuclear structure to function.
Collapse
Affiliation(s)
- Barbara J Trask
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| |
Collapse
|
85
|
Ostashevsky J. A polymer model for large-scale chromatin organization in lower eukaryotes. Mol Biol Cell 2002; 13:2157-69. [PMID: 12058077 PMCID: PMC117632 DOI: 10.1091/mbc.02-01-0608] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 02/28/2002] [Accepted: 03/08/2002] [Indexed: 11/11/2022] Open
Abstract
A quantitative model of large-scale chromatin organization was applied to nuclei of fission yeast Schizosaccharomyces pombe (meiotic prophase and G2 phase), budding yeast Saccharomyces cerevisiae (young and senescent cells), Drosophila (embryonic cycles 10 and 14, and polytene tissues) and Caenorhabditis elegans (G1 phase). The model is based on the coil-like behavior of chromosomal fibers and the tight packing of discrete chromatin domains in a nucleus. Intrachromosomal domains are formed by chromatin anchoring to nuclear structures (e.g., the nuclear envelope). The observed sizes for confinement of chromatin diffusional motion are similar to the estimated sizes of corresponding domains. The model correctly predicts chromosome configurations (linear, Rabl, loop) and chromosome associations (homologous pairing, centromere and telomere clusters) on the basis of the geometrical constraints imposed by nuclear size and shape. Agreement between the model predictions and literature observations supports the notion that the average linear density of the 30-nm chromatin fiber is approximately 4 nucleosomes per 10 nm contour length.
Collapse
Affiliation(s)
- Joseph Ostashevsky
- Department of Radiation Oncology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| |
Collapse
|
86
|
Abstract
A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on superhelical DNA and polynucleosomes, it reintegrates aspects of the "solenoid" and the "zig-zag" models. The DNA is modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching springs. The electrostatic interaction between the DNA segments is described by the Debye-Hückel approximation. Nucleosome core particles are represented by oblate ellipsoids; their interaction potential has been parameterized by a comparison with data from liquid crystals of nucleosome solutions. DNA and chromatosomes are linked either at the surface of the chromatosome or through a rigid nucleosome stem. Equilibrium ensembles of 100-nucleosome chains at physiological ionic strength were generated by a Metropolis-Monte Carlo algorithm. For a DNA linked at the nucleosome stem and a nucleosome repeat of 200 bp, the simulated fiber diameter of 32 nm and the mass density of 6.1 nucleosomes per 11 nm fiber length are in excellent agreement with experimental values from the literature. The experimental value of the inclination of DNA and nucleosomes to the fiber axis could also be reproduced. Whereas the linker DNA connects chromatosomes on opposite sides of the fiber, the overall packing of the nucleosomes leads to a helical aspect of the structure. The persistence length of the simulated fibers is 265 nm. For more random fibers where the tilt angles between two nucleosomes are chosen according to a Gaussian distribution along the fiber, the persistence length decreases to 30 nm with increasing width of the distribution, whereas the other observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat lengths of 212 bp also form fibers with the expected experimental properties. Systems with larger repeat length form fibers, but the mass density is significantly lower than the measured value. The theoretical characteristics of a fiber with a repeat length of 192 bp where DNA and nucleosomes are connected at the core particle are in agreement with the experimental values. Systems without a stem and a repeat length of 217 bp do not form fibers.
Collapse
Affiliation(s)
- Gero Wedemann
- German Cancer Research Center (DKFZ), Division Biophysics of Macromolecules (H0500), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
87
|
Kim JM, Ohtani T, Park JY, Chang SM, Muramatsu H. DC electric-field-induced DNA stretching for AFM and SNOM studies. Ultramicroscopy 2002; 91:139-49. [PMID: 12211462 DOI: 10.1016/s0304-3991(02)00093-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An effective method of DNA stretching on mica surfaces is proposed for an extremely low concentration of DNA. The method is based on an electric field and well applied on the concentration range from 57 x 10(-3) to 57 x 10(-6) ng/ml. The stretching exists in a gap between positive and negative electrodes. The difference in the stretching efficiency among the different surfaces of bare mica, Mg2+ soaked mica and AP-mica is discussed. The best performance of the stretching is found from the surface of AP-mica for the same experimental condition of sample concentration and applied voltage. Finally, from a Scanning near-field optical microscope image, it is found that well-stretched DNA molecules have shown more similar optical resolution, which is inferred from an optical fiber probe, itself.
Collapse
Affiliation(s)
- J M Kim
- Department of Food Engineering, National Food Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
88
|
Fantes JA, Mewborn SK, Lese CM, Hedrick J, Brown RL, Dyomin V, Chaganti RSK, Christian SL, Ledbetter DH. Organisation of the pericentromeric region of chromosome 15: at least four partial gene copies are amplified in patients with a proximal duplication of 15q. J Med Genet 2002; 39:170-7. [PMID: 11897815 PMCID: PMC1735052 DOI: 10.1136/jmg.39.3.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Clinical cytogenetic laboratories frequently identify an apparent duplication of proximal 15q that does not involve probes within the PWS/AS critical region and is not associated with any consistent phenotype. Previous mapping data placed several pseudogenes, NF1, IgH D/V, and GABRA5 in the pericentromeric region of proximal 15q. Recent studies have shown that these pseudogene sequences have increased copy numbers in subjects with apparent duplications of proximal 15q. To determine the extent of variation in a control population, we analysed NF1 and IgH D pseudogene copy number in interphase nuclei from 20 cytogenetically normal subjects by FISH. Both loci are polymorphic in controls, ranging from 1-4 signals for NF1 and 1-3 signals for IgH D. Eight subjects with apparent duplications, examined by the same method, showed significantly increased NF1 copy number (5-10 signals). IgH D copy number was also increased in 6/8 of these patients (4-9 signals). We identified a fourth pseudogene, BCL8A, which maps to the pericentromeric region and is coamplified along with the NF1 sequences. Interphase FISH ordering experiments show that IgH D lies closest to the centromere, while BCL8A is the most distal locus in this pseudogene array; the total size of the amplicon is estimated at approximately 1 Mb. The duplicated chromosome was inherited from either sex parent, indicating no parent of origin effect, and no consistent phenotype was present. FISH analysis with one or more of these probes is therefore useful in discriminating polymorphic amplification of proximal pseudogene sequences from clinically significant duplications of 15q.
Collapse
Affiliation(s)
- J A Fantes
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001; 20:8100-8. [PMID: 11781823 DOI: 10.1038/sj.onc.1204987] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 09/12/2001] [Accepted: 09/18/2001] [Indexed: 01/07/2023]
Abstract
The c-ski proto-oncogene product (c-Ski) acts as a co-repressor and binds to other co-repressors N-CoR/SMRT and mSin3A which form a complex with histone deacetylase (HDAC). c-Ski mediates the transcriptional repression by a number of repressors, including nuclear hormone receptors and Mad. c-Ski also directly binds to, and recruits the HDAC complex to Smads, leading to inhibition of tumor growth factor-beta (TGF-beta) signaling. This is consistent with the function of ski as an oncogene. Here we show that loss of one copy of c-ski increases susceptibility to tumorigenesis in mice. When challenged with a chemical carcinogen, c-ski heterozygous mice showed an increased level of tumor formation relative to wild-type mice. In addition, c-ski-deficient mouse embryonic fibroblasts (MEFs) had increased proliferative capacity, whereas overexpression of c-Ski suppressed the proliferation. Furthermore, the introduction of activated Ki-ras into c-ski-deficient MEFs resulted in neoplastic transformation. These findings demonstrate that c-ski acts as a tumor suppressor in some types of cells. The level of cdc25A mRNA, which is down regulated by two tumor suppressor gene products, Rb and Mad, was upregulated in c-ski-deficient MEFs, whereas it decreased by overexpressing c-Ski in MEFs. This is consistent with the fact that c-Ski acts as a co-repressor of Mad and Rb. These results support the view that the decreased activities of Mad and Rb in ski-deficient cells at least partly contribute to enhanced proliferation and susceptibility to tumorigenesis. Human c-ski gene was mapped to a region close to the p73 tumor suppressor gene at the 1p36.3 locus, which is already known to contain multiple uncharacterized tumor suppressor genes.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, and CREST (Core Research for Evolutionary Science and Technology) Research Project of JST (Japan Science & Technology Corporation), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
The interaction of proteins bound at distant sites on a nucleic acid chain plays an important role in many molecular biological processes. Contact between the proteins is established by looping of the intervening polymer, which can comprise either double- or single-stranded DNA or RNA, or interphase or metaphase chromatin. The effectiveness of this process, as well as the optimal separation distance, is highly dependent on the flexibility and conformation of the linker. This article reviews how the probability of looping-mediated interactions is calculated for different nucleic acid polymers. In addition, the application of the equations to the analysis of experimental data is illustrated.
Collapse
Affiliation(s)
- K Rippe
- Deutsches Krebsforschungszentrum, Organisation komplexer Genome (H0700), Im Neuenheimer Feld 280, Germany.
| |
Collapse
|
91
|
Raap AK. Overview of fluorescence in situ hybridization techniques for molecular cytogenetics. CURRENT PROTOCOLS IN CYTOMETRY 2001; Chapter 8:Unit 8.1. [PMID: 18770737 DOI: 10.1002/0471142956.cy0801s00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This unit presents an overview of the FISH methodology. It covers such topics as direct versus indirect methods, sensitivity, multiplicity, resolution, and applications.
Collapse
Affiliation(s)
- A K Raap
- Leiden University, Leiden, The Netherlands
| |
Collapse
|
92
|
Friedland W, Li WB, Jacob P, Paretzke HG. Simulation of exon deletion mutations induced by low-LET radiation at the HPRT locus. Radiat Res 2001; 155:703-15. [PMID: 11302768 DOI: 10.1667/0033-7587(2001)155[0703:soedmi]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Friedland, W., Li, W. B., Jacob, P. and Paretzke, H. G. Simulation of Exon Deletion Mutations Induced by Low-LET Radiation at the HPRT Locus. Radiat. Res. 155, 703-715 (2001). The induction of HPRT mutants with exon deletions after irradiation with photons was simulated using the biophysical radiation track structure model PARTRAC. The exon-intron structure of the human HPRT gene was incorporated into the chromatin fiber model in PARTRAC. After gamma and X irradiation, simulated double-stranded DNA fragments that overlapped with exons were assumed to result in exon deletion mutations with a probability that depended on the genomic or the geometric distance between the breakpoints. The consequences of different assumptions about this probability of deletion formation were evaluated on the basis of the resulting fractions of total, terminal and intragenic deletions. Agreement with corresponding measurements was obtained assuming a constant probability of deletion formation for fragments smaller than about 0.1 Mbp, and a probability of deletion formation decreasing with increasing geometric or genomic distance between the end points for larger fragments. For these two assumptions, yields of mutants with exon deletions, size distributions of deletions, patterns of deleted exons, and patterns of deleted STS marker sites surrounding the gene were calculated and compared with experimental data. The yields, size distributions and exon deletion patterns were grossly consistent, whereas larger deviations were found for the STS marker deletion patterns in this comparison.
Collapse
Affiliation(s)
- W Friedland
- GSF-National Research Center for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
93
|
Evans KL, Le Hellard S, Morris SW, Lawson D, Whitton C, Semple CA, Fantes JA, Torrance HS, Malloy MP, Maule JC, Humphray SJ, Ross MT, Bentley DR, Muir WJ, Blackwood DH, Porteous DJ. A 6.9-Mb high-resolution BAC/PAC contig of human 4p15.3-p16.1, a candidate region for bipolar affective disorder. Genomics 2001; 71:315-23. [PMID: 11170748 DOI: 10.1006/geno.2000.6432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component and a population lifetime risk of 1%. Our previous work identified a region of human chromosome 4p that showed significant linkage to BPAD in a large pedigree. Here, we report the construction of an accurate, high-resolution physical map of 6.9 Mb of human chromosome 4p15.3-p16.1, which includes an 11-cM (5.8 Mb) critical region for BPAD. The map consists of 460 PAC and BAC clones ordered by a combination of STS content analysis and restriction fragment fingerprinting, with a single approximately 300-kb gap remaining. A total of 289 new and existing markers from a wide range of sources have been localized on the contig, giving an average marker resolution of 1 marker/23 kb. The STSs include 57 ESTs, 9 of which represent known genes. This contig is an essential preliminary to the identification of candidate genes that predispose to bipolar affective disorder, to the completion of the sequence of the region, and to the development of a high-density SNP map.
Collapse
Affiliation(s)
- K L Evans
- Medical Genetics Section, MRC Human Genetics Unit, University of Edinburgh, Molecular Medicine Centre, Crewe Road, Edinburgh, EH4 2XU, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Severson DW, Brown SE, Knudson DL. Genetic and physical mapping in mosquitoes: molecular approaches. ANNUAL REVIEW OF ENTOMOLOGY 2001; 46:183-219. [PMID: 11112168 DOI: 10.1146/annurev.ento.46.1.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genetic background of individual mosquito species and populations within those species influences the transmission of mosquito-borne pathogens to humans. Technical advances in contemporary genomics are contributing significantly to the detailed genetic analysis of this mosquito-pathogen interaction as well as all other aspects of mosquito biology, ecology, and evolution. A variety of DNA-based marker types are being used to develop genetic maps for a number of mosquito species. Complex phenotypic traits such as vector competence are being dissected into their discrete genetic components, with the intention of eventually using this information to develop new methods to prevent disease transmission. Both genetic- and physical-mapping techniques are being used to define and compare genome architecture among and within mosquito species. The integration of genetic- and physical-map information is providing a sound framework for map-based positional cloning of target genes of interest. This review focuses on advances in genome-based analysis and their specific applications to mosquitoes.
Collapse
Affiliation(s)
- D W Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | |
Collapse
|
95
|
Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 2000; 290:138-41. [PMID: 11021799 DOI: 10.1126/science.290.5489.138] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rearrangements involving the RET gene are common in radiation-associated papillary thyroid cancer (PTC). The RET/PTC1 type of rearrangement is an inversion of chromosome 10 mediated by illegitimate recombination between the RET and the H4 genes, which are 30 megabases apart. Here we ask whether despite the great linear distance between them, RET and H4 recombination might be promoted by their proximity in the nucleus. We used two-color fluorescence in situ hybridization and three-dimensional microscopy to map the positions of the RET and H4 loci within interphase nuclei. At least one pair of RET and H4 was juxtaposed in 35% of normal human thyroid cells and in 21% of peripheral blood lymphocytes, but only in 6% of normal mammary epithelial cells. Spatial contiguity of RET and H4 may provide a structural basis for generation of RET/PTC1 rearrangement by allowing a single radiation track to produce a double-strand break in each gene at the same site in the nucleus.
Collapse
Affiliation(s)
- M N Nikiforova
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
96
|
|
97
|
Kozubek S, Lukásová E, Amrichová J, Kozubek M, Lisková A, Slotová J. Influence of cell fixation on chromatin topography. Anal Biochem 2000; 282:29-38. [PMID: 10860496 DOI: 10.1006/abio.2000.4538] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using in situ hybridization techniques, a fixation step must precede denaturation to prevent disintegration of the chromosomes. The analysis of nuclei fixed by paraformaldehyde, preserving the native structure (three-dimensional or 3D fixation and analysis) has become possible with the development of confocal microscopy; however, the analysis of those fixed by methanol and acetic acid, dehydrating the nuclei (two-dimensional or 2D fixation and analysis), remains a very valuable tool for practical use in diagnostics and also in many cases for research. We compared both types of fixation and analyses using different cell lines and different DNA probes. Fixation of cells by methanol and acetic acid leads to the enlargement of contact of nuclei with the slide surface, resulting in a substantial increase of nuclear diameter, flattening of the nucleus, and consequently to a distortion of gene topology. Our results indicate that chromatin structures located in the outer parts of the nuclear volume (e.g., heterochromatin of some centromeres) are relatively shifted to the membrane of these nuclei, keeping the absolute centromere-membrane distance constant. On the other hand, euchromatin located in the inner parts of the nuclear volume is not shifted outside proportionally to the increase of molecular dimensions; consequently, the relative distances for the center of nucleus to gene are smaller after methanol-acetic acid fixation. The limitations of the analysis of dehydrated preparations for practical use and in research are discussed.
Collapse
Affiliation(s)
- S Kozubek
- Institute of Biophysics, Academy of Sciences, Královopolská 135, Brno, 61265, Czech Republic
| | | | | | | | | | | |
Collapse
|
98
|
Nogami M, Kohda A, Taguchi H, Nakao M, Ikemura T, Okumura K. Relative locations of the centromere and imprinted SNRPN gene within chromosome 15 territories during the cell cycle in HL60 cells. J Cell Sci 2000; 113 ( Pt 12):2157-65. [PMID: 10825289 DOI: 10.1242/jcs.113.12.2157] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigations of imprinted regions provide clues that increase our understanding of the regulation of gene functions at higher order chromosomal domains. Here, the relative positions of the chromosome 15 centromere and the imprinted SNRPN gene in interphase nuclei of human myeloid leukemia HL60 cells were compared, because the homologous association of this imprinted chromosomal domain was previously observed in lymphocytes and lymphoblasts. Four targets including the chromosome 15 territory, its centromere, the SNRPN gene on this chromosome, and the nucleus, were visualized simultaneously in three-dimensionally preserved nuclei using multicolor fluorescence in situ hybridization, and the spatial distributions of these probes were analyzed with a cooled CCD camera deconvolution system. We found that preferential association of SNRPN interhomologues did not occur during the cell cycle in HL60 cells, although this gene exhibited asynchronous replication and monoallelic expression in this cells. SNRPN was found to localize at the periphery of the chromosome territories, and it preferentially faced the nuclear membrane, unlike the adjacent centromeric repeat. The SNRPN gene and the centromere were located close to each other late in S phase, reflecting that these DNA segments may be compacted into the same intranuclear subcompartments with the progress of S phase and in course of preparation for the following G(2) phase. Our results suggest that, although an imprinted gene has features similar to those observed with intranuclear localization of other gene coding sequences, the characteristic of mutual recognition of imprinted regions is determined by certain cellular regulation, and it is not necessary for the allele-specific features of an imprinted gene.
Collapse
Affiliation(s)
- M Nogami
- Laboratory of Molecular and Cellular Biology, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Ionizing radiation produces many chromosome aberrations. A rich variety of aberration types can now be seen with the technique of chromosome painting. Apart from being important in medicine and public health, radiation-produced aberrations act as colorful molecular clues to damage-processing mechanisms and, because juxtaposition of different parts of the genome is involved, to interphase nuclear organization. Recent studies using chromosome painting have helped to identify DNA double-strand-break repair and misrepair pathways, to determine the extent of chromosome territories and motions, and to characterize different aberration patterns left behind by different kinds of radiation.
Collapse
Affiliation(s)
- R K Sachs
- Departments of Mathematics and of Physics, Evans Hall, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
100
|
Abstract
Three troponin I genes have been identified in vertebrates that encode the isoforms expressed in adult cardiac muscle (TNNI3), slow skeletal muscle (TNNI1) and fast skeletal muscle (TNNI2), respectively. While the organization and regulation of human cardiac and slow skeletal muscle genes have been investigated in detail, the fast skeletal troponin I gene has to date only been examined in birds. Here, we describe the structure and complete sequence of the human fast skeletal muscle troponin I gene (TNNI2) and identify putative regulatory elements within both the 5' flanking region and the first intron. In particular, a region containing MEF-2, E-box, CCAC and CAGG elements was identified in intron 1 that closely resembles the fast internal regulatory element (FIRE) of the quail intronic enhancer. We have previously shown that the fast skeletal muscle troponin I gene is located at 11p15.5 and noted potential close linkage with the fast skeletal muscle troponin T gene (TNNT3). Here, we have isolated two independent human PAC genomic clones that contain either TNNI2 or TNNT3 and demonstrate by interphase FISH mapping that they are less than 100 kb apart in the genome. The results demonstrate that the human TNNI2 gene is closely related to its avian counterparts with conserved elements within both the putative promoter and first intron. Our data further confirm close physical linkage of TNNI2 and TNNI3 on 11p15.5.
Collapse
Affiliation(s)
- A J Mullen
- Imperial College School of Medicine, National Heart and Lung Institute, London, UK
| | | |
Collapse
|