51
|
Bolotin E, Melamed D, Livnat A. Genes that are Used Together are More Likely to be Fused Together in Evolution by Mutational Mechanisms: A Bioinformatic Test of the Used-Fused Hypothesis. Evol Biol 2022; 50:30-55. [PMID: 36816837 PMCID: PMC9925542 DOI: 10.1007/s11692-022-09579-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/11/2022] [Indexed: 12/05/2022]
Abstract
Cases of parallel or recurrent gene fusions in evolution as well as in genetic disease and cancer are difficult to explain, because unlike point mutations, they can require the repetition of a similar configuration of multiple breakpoints rather than the repetition of a single point mutation. The used-together-fused-together hypothesis holds that genes that are used together repeatedly and persistently in a specific context are more likely to undergo fusion mutation in the course of evolution for mechanistic reasons. This hypothesis offers to explain gene fusion in both evolution and disease under one umbrella. Using bioinformatic data, we tested this hypothesis against alternatives, including that all gene pairs can fuse by random mutation, but among pairs thus fused, those that had interacted previously are more likely to be favored by selection. Results show that across multiple measures of gene interaction, human genes whose orthologs are fused in one or more species are more likely to interact with each other than random pairs of genes of the same genomic distance between pair members; that an overlap exists between genes that fused in the course of evolution in non-human species and genes that undergo fusion in human cancers; and that across six primate species studied, fusions predominate over fissions and exhibit substantial evolutionary parallelism. Together, these results support the used-together-fused-together hypothesis over its alternatives. Multiple implications are discussed, including the relevance of mutational mechanisms to the evolution of genome organization, to the distribution of fitness effects of mutation, to evolutionary parallelism and more. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-022-09579-9.
Collapse
Affiliation(s)
- Evgeni Bolotin
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - Daniel Melamed
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| |
Collapse
|
52
|
Spencer HG, Paul DB. In Memoriam. Am Nat 2022. [DOI: 10.1086/721258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
53
|
Xiao G, Zhou J, Huo Z, Wu T, Li Y, Li Y, Wang Y, Wang M. The Shift in Synonymous Codon Usage Reveals Similar Genomic Variation during Domestication of Asian and African Rice. Int J Mol Sci 2022; 23:12860. [PMID: 36361651 PMCID: PMC9656316 DOI: 10.3390/ijms232112860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The domestication of wild rice occurred together with genomic variation, including the synonymous nucleotide substitutions that result in synonymous codon usage bias (SCUB). SCUB mirrors the evolutionary specialization of plants, but its characteristics during domestication were not yet addressed. Here, we found cytosine- and guanidine-ending (NNC and NNG) synonymous codons (SCs) were more pronounced than adenosine- and thymine-ending SCs (NNA and NNT) in both wild and cultivated species of Asian and African rice. The ratios of NNC/G to NNA/T codons gradually decreased following the rise in the number of introns, and the preference for NNA/T codons became more obvious in genes with more introns in cultivated rice when compared with those in wild rice. SCUB frequencies were heterogeneous across the exons, with a higher preference for NNA/T in internal exons than in terminal exons. The preference for NNA/T in internal but not terminal exons was more predominant in cultivated rice than in wild rice, with the difference between wild and cultivated rice becoming more remarkable with the rise in exon numbers. The difference in the ratios of codon combinations representing DNA methylation-mediated conversion from cytosine to thymine between wild and cultivated rice coincided with their difference in SCUB frequencies, suggesting that SCUB reveals the possible association between genetic and epigenetic variation during the domestication of rice. Similar patterns of SCUB shift in Asian and African rice indicate that genomic variation occurs in the same non-random manner. SCUB representing non-neutral synonymous mutations can provide insight into the mechanism of genomic variation in domestication and can be used for the genetic dissection of agricultural traits in rice and other crops.
Collapse
Affiliation(s)
- Guilian Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Junzhi Zhou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Zhiheng Huo
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Tong Wu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yingchun Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yajing Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
54
|
Vasu K, Khan D, Ramachandiran I, Blankenberg D, Fox P. Analysis of nested alternate open reading frames and their encoded proteins. NAR Genom Bioinform 2022; 4:lqac076. [PMID: 36267124 PMCID: PMC9580016 DOI: 10.1093/nargab/lqac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, ‘alt-proteins’ lack sequence homology with host ORF-derived proteins. We show global amino acid frequencies, and consequent biochemical characteristics of Alt-ORFs nested within host ORFs (nAlt-ORFs), are genetically-driven, and predicted by summation of frequencies of hundreds of encompassing host codon-pairs. Analysis of 101 human nAlt-ORFs of length ≥150 codons confirms the theoretical predictions, revealing an extraordinarily high median isoelectric point (pI) of 11.68, due to anomalous charged amino acid levels. Also, nAlt-ORF proteins exhibit a >2-fold preference for reading frame 2 versus 3, predicted mitochondrial and nuclear localization, and elevated codon adaptation index indicative of natural selection. Our results provide a theoretical and conceptual framework for exploration of these largely unannotated, but potentially significant, alternative ORFs and their encoded proteins.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Correspondence may also be addressed to Daniel Blankenberg. Tel: +1 216 444 4336;
| | - Paul L Fox
- To whom correspondence should be addressed. Tel: +1 216 444 8053; Fax: +1 216 444 9404;
| |
Collapse
|
55
|
Tian G, Xiao G, Wu T, Zhou J, Xu W, Wang Y, Xia G, Wang M. Alteration of synonymous codon usage bias accompanies polyploidization in wheat. Front Genet 2022; 13:979902. [PMID: 36313462 PMCID: PMC9614214 DOI: 10.3389/fgene.2022.979902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The diploidization of polyploid genomes is accompanied by genomic variation, including synonymous nucleotide substitutions that may lead to synonymous codon usage bias (SCUB). SCUB can mirror the evolutionary specialization of plants, but its effect on the formation of polyploidies is not well documented. We explored this issue here with hexaploid wheat and its progenitors. Synonymous codons (SCs) ending in either cytosine (NNC) or guanidine (NNG) were more frequent than those ending in either adenosine (NNA) or thymine (NNT), and the preference for NNC/G codons followed the increase in genome ploidy. The ratios between NNC/G and NNA/T codons gradually decreased in genes with more introns, and the difference in these ratios between wheat and its progenitors diminished with increasing ploidy. SCUB frequencies were heterogeneous among exons, and the bias preferred to NNA/T in more internal exons, especially for genes with more exons; while the preference did not appear to associate with ploidy. The SCUB alteration of the progenitors was different during the formation of hexaploid wheat, so that SCUB was the homogeneous among A, B and D subgenomes. DNA methylation-mediated conversion from cytosine to thymine weakened following the increase of genome ploidy, coinciding with the stronger bias for NNC/G SCs in the genome as a function of ploidy, suggesting that SCUB contribute to the epigenetic variation in hexaploid wheat. The patterns in SCUB mirrored the formation of hexaploid wheat, which provides new insight into genome shock-induced genetic variation during polyploidization. SCs representing non-neutral synonymous mutations can be used for genetic dissection and improvement of agricultural traits of wheat and other polyploidies.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Guilian Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Tong Wu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Junzhi Zhou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wenjing Xu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Mengcheng Wang,
| |
Collapse
|
56
|
Gu X. d N/d S-H, a New Test to Distinguish Different Selection Modes in Protein Evolution and Cancer Evolution. J Mol Evol 2022; 90:342-351. [PMID: 35920867 DOI: 10.1007/s00239-022-10064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
One of the most popular measures in the analysis of protein sequence evolution is the ratio of nonsynonymous distance (dN) to synonymous distance (dS). Under the assumption that synonymous substitutions in the coding region are selectively neutral, the dN/dS ratio can be used to statistically detect the adaptive evolution (or purifying selection) if dN/dS > 1 (or dN/dS < 1) significantly. However, due to strong structural constraints and/or variable functional constraints imposed on amino acid sites, most encoding genes in most species have demonstrated dN/dS < 1. Consequently, the statistical power for testing dN/dS = 1 may be insufficient to distinguish between different selection modes. In this paper, we propose a more powerful test, called dN/dS-H, in which a new parameter H, a relative measure of rate variation among sites, was introduced. Given the condition of strong purifying selections at some sites, the dN/dS-H model predicts dN/dS = 1-H for neutral evolution, dN/dS < 1-H for nearly neutral selection, and dN/dS > 1-H for adaptive evolution. The potential of this new method for resolving the neutral-adaptive debates is illustrated by the protein sequence evolution in vertebrates, Drosophila and yeasts, as well as somatic cancer evolution (specialized as the CN/CS-H test).
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Iowa State University, Ames, IA, 50011, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
57
|
Dsouza KB, Li AY, Bhargava VK, Libbrecht MW. Latent Representation of the Human Pan-Celltype Epigenome Through a Deep Recurrent Neural Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2313-2323. [PMID: 34043510 DOI: 10.1109/tcbb.2021.3084147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The availability of thousands of assays of epigenetic activity necessitates compressed representations of these data sets that summarize the epigenetic landscape of the genome. Until recently, most such representations were cell type-specific, applying to a single tissue or cell state. Recently, neural networks have made it possible to summarize data across tissues to produce a pan-cell type representation. In this work, we propose Epi-LSTM, a deep long short-term memory (LSTM) recurrent neural network autoencoder to capture the long-term dependencies in the epigenomic data. The latent representations from Epi-LSTM capture a variety of genomic phenomena, including gene-expression, promoter-enhancer interactions, replication timing, frequently interacting regions, and evolutionary conservation. These representations outperform existing methods in a majority of cell types while yielding smoother representations along the genomic axis due to their sequential nature.
Collapse
|
58
|
Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 2022; 606:725-731. [PMID: 35676473 PMCID: PMC9650438 DOI: 10.1038/s41586-022-04823-w] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/28/2022] [Indexed: 01/12/2023]
Abstract
Synonymous mutations in protein-coding genes do not alter protein sequences and are thus generally presumed to be neutral or nearly neutral1-5. Here, to experimentally verify this presumption, we constructed 8,341 yeast mutants each carrying a synonymous, nonsynonymous or nonsense mutation in one of 21 endogenous genes with diverse functions and expression levels and measured their fitness relative to the wild type in a rich medium. Three-quarters of synonymous mutations resulted in a significant reduction in fitness, and the distribution of fitness effects was overall similar-albeit nonidentical-between synonymous and nonsynonymous mutations. Both synonymous and nonsynonymous mutations frequently disturbed the level of mRNA expression of the mutated gene, and the extent of the disturbance partially predicted the fitness effect. Investigations in additional environments revealed greater across-environment fitness variations for nonsynonymous mutants than for synonymous mutants despite their similar fitness distributions in each environment, suggesting that a smaller proportion of nonsynonymous mutants than synonymous mutants are always non-deleterious in a changing environment to permit fixation, potentially explaining the common observation of substantially lower nonsynonymous than synonymous substitution rates. The strong non-neutrality of most synonymous mutations, if it holds true for other genes and in other organisms, would require re-examination of numerous biological conclusions about mutation, selection, effective population size, divergence time and disease mechanisms that rely on the assumption that synoymous mutations are neutral.
Collapse
|
59
|
Johri P, Aquadro CF, Beaumont M, Charlesworth B, Excoffier L, Eyre-Walker A, Keightley PD, Lynch M, McVean G, Payseur BA, Pfeifer SP, Stephan W, Jensen JD. Recommendations for improving statistical inference in population genomics. PLoS Biol 2022; 20:e3001669. [PMID: 35639797 PMCID: PMC9154105 DOI: 10.1371/journal.pbio.3001669] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes. For example, the approach of directly investigating models of adaptive evolution in each newly sequenced population or species often neglects the fact that a thorough characterization of ubiquitous nonadaptive processes is a prerequisite for accurate inference. We here describe the perils of these tendencies, present our consensus views on current best practices in population genomic data analysis, and highlight areas of statistical inference and theory that are in need of further attention. Thereby, we argue for the importance of defining a biologically relevant baseline model tuned to the details of each new analysis, of skepticism and scrutiny in interpreting model fitting results, and of carefully defining addressable hypotheses and underlying uncertainties.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Berne, Berne, Switzerland
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Peter D. Keightley
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susanne P. Pfeifer
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Jeffrey D. Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
60
|
Palazzo AF, Kejiou NS. Non-Darwinian Molecular Biology. Front Genet 2022; 13:831068. [PMID: 35251134 PMCID: PMC8888898 DOI: 10.3389/fgene.2022.831068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
With the discovery of the double helical structure of DNA, a shift occurred in how biologists investigated questions surrounding cellular processes, such as protein synthesis. Instead of viewing biological activity through the lens of chemical reactions, this new field used biological information to gain a new profound view of how biological systems work. Molecular biologists asked new types of questions that would have been inconceivable to the older generation of researchers, such as how cellular machineries convert inherited biological information into functional molecules like proteins. This new focus on biological information also gave molecular biologists a way to link their findings to concepts developed by genetics and the modern synthesis. However, by the late 1960s this all changed. Elevated rates of mutation, unsustainable genetic loads, and high levels of variation in populations, challenged Darwinian evolution, a central tenant of the modern synthesis, where adaptation was the main driver of evolutionary change. Building on these findings, Motoo Kimura advanced the neutral theory of molecular evolution, which advocates that selection in multicellular eukaryotes is weak and that most genomic changes are neutral and due to random drift. This was further elaborated by Jack King and Thomas Jukes, in their paper “Non-Darwinian Evolution”, where they pointed out that the observed changes seen in proteins and the types of polymorphisms observed in populations only become understandable when we take into account biochemistry and Kimura’s new theory. Fifty years later, most molecular biologists remain unaware of these fundamental advances. Their adaptionist viewpoint fails to explain data collected from new powerful technologies which can detect exceedingly rare biochemical events. For example, high throughput sequencing routinely detects RNA transcripts being produced from almost the entire genome yet are present less than one copy per thousand cells and appear to lack any function. Molecular biologists must now reincorporate ideas from classical biochemistry and absorb modern concepts from molecular evolution, to craft a new lens through which they can evaluate the functionality of transcriptional units, and make sense of our messy, intricate, and complicated genome.
Collapse
|
61
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
62
|
Zhang X, Zhao C, Cheng C, Zhang G, Yu T, Lawrence K, Li H, Sun J, Yang Z, Ye L, Chu H, Wang Y, Han X, Jia Y, Fan S, Kanuka H, Tanaka T, Jenkins C, Gedye K, Chandra S, Price DC, Liu Q, Choi YK, Zhan X, Zhang Z, Zheng A. Rapid Spread of Severe Fever with Thrombocytopenia Syndrome Virus by Parthenogenetic Asian Longhorned Ticks. Emerg Infect Dis 2022; 28:363-372. [PMID: 35075994 PMCID: PMC8798674 DOI: 10.3201/eid2802.211532] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is spreading rapidly in Asia. This virus is transmitted by the Asian longhorned tick (Haemaphysalis longicornis), which has parthenogenetically and sexually reproducing populations. Parthenogenetic populations were found in ≥15 provinces in China and strongly correlated with the distribution of severe fever with thrombocytopenia syndrome cases. However, distribution of these cases was poorly correlated with the distribution of populations of bisexual ticks. Phylogeographic analysis suggested that the parthenogenetic population spread much faster than bisexual population because colonization is independent of sexual reproduction. A higher proportion of parthenogenetic ticks was collected from migratory birds captured at an SFTSV-endemic area, implicating the contribution to the long-range movement of these ticks in China. The SFTSV susceptibility of parthenogenetic females was similar to that of bisexual females under laboratory conditions. These results suggest that parthenogenetic Asian longhorned ticks, probably transported by migratory birds, play a major role in the rapid spread of SFTSV.
Collapse
|
63
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
64
|
BTK-inhibitor drug covalent binding to lysine in human serum albumin using LC-MS/MS. Drug Metab Pharmacokinet 2021; 42:100433. [PMID: 34896750 DOI: 10.1016/j.dmpk.2021.100433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Irreversible Bruton's tyrosine kinase (BTK) inhibitor drugs are designed to bind covalently to a free-thiol cysteine in the BTK protein active site. However, these reactive drugs bind to off-target proteins as well. In this study, seven BTK-inhibitor drugs containing acrylamide warheads were incubated with human serum albumin (HSA) and analyzed using an LC-MS/MS peptide mapping approach to determine the amino acid sites of drug covalent binding. Significant adduction at the free-thiol cysteine of HSA was only observed for two of the drugs. However, significant adduction was observed for at least four lysine residues. This is just a small percentage of the 59 total lysine residues in HSA. These four lysine residues are likely partially buried, accessible to the drugs, and exist at least partially in a neutral state. The levels of adduction observed in the in-vitro experimental conditions are only indicative of a relative propensity for adduction with the individual lysine residues of HSA, and are not in-vivo predictions. Widespread off-target lysine binding could impact clearance and bioavailability for irreversible inhibitor drugs. However, the extent of the impact on clearance may be limited in comparison to conjugation with glutathione.
Collapse
|
65
|
Shulgina Y, Eddy SR. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 2021; 10:71402. [PMID: 34751130 PMCID: PMC8629427 DOI: 10.7554/elife.71402] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic code has been proposed to be a ‘frozen accident,’ but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force that likely helped drive these codons to low frequency and enable their reassignment. All life forms rely on a ‘code’ to translate their genetic information into proteins. This code relies on limited permutations of three nucleotides – the building blocks that form DNA and other types of genetic information. Each ‘triplet’ of nucleotides – or codon – encodes a specific amino acid, the basic component of proteins. Reading the sequence of codons in the right order will let the cell know which amino acid to assemble next on a growing protein. For instance, the codon CGG – formed of the nucleotides guanine (G) and cytosine (C) – codes for the amino acid arginine. From bacteria to humans, most life forms rely on the same genetic code. Yet certain organisms have evolved to use slightly different codes, where one or several codons have an altered meaning. To better understand how alternative genetic codes have evolved, Shulgina and Eddy set out to find more organisms featuring these altered codons, creating a new software called Codetta that can analyze the genome of a microorganism and predict the genetic code it uses. Codetta was then used to sift through the genetic information of 250,000 microorganisms. This was made possible by the sequencing, in recent years, of the genomes of hundreds of thousands of bacteria and other microorganisms – including many never studied before. These analyses revealed five groups of bacteria with alternative genetic codes, all of which had changes in the codons that code for arginine. Amongst these, four had genomes with a low proportion of guanine and cytosine nucleotides. This may have made some guanine and cytosine-rich arginine codons very rare in these organisms and, therefore, easier to be reassigned to encode another amino acid. The work by Shulgina and Eddy demonstrates that Codetta is a new, useful tool that scientists can use to understand how genetic codes evolve. In addition, it can also help to ensure the accuracy of widely used protein databases, which assume which genetic code organisms use to predict protein sequences from their genomes.
Collapse
Affiliation(s)
| | - Sean R Eddy
- Molecular & Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
66
|
Fankhauser D, Alissandratos A, Liutkus M, Easton CJ. Easy Production of "Difficult Peptides" Using Cell-Free Protein Synthesis and a New Methionine Analogue as a Latent Peptide Cleavage Site. Chemistry 2021; 27:17487-17494. [PMID: 34651362 DOI: 10.1002/chem.202103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Aliphatic γ-chloro-α-amino acids incorporated in place of their canonical analogues through cell-free protein synthesis act as heat-labile linkers, offering a useful strategy for the straightforward production of target peptides as fusion proteins, from which the targets are readily released. Until now, the natural abundance of aliphatic amino acids in peptides has limited the scope of the method, as it leads to undesired cleavage sites in synthesized products, but here the authors report the development of a new cleavable chloro amino acid that incorporates in place of the relatively rare amino acid methionine, thus greatly expanding the scope of producible targets. This new strategy is employed for simplified peptide synthesis with a methionine-free fusion partner, allowing single-site incorporation of the cleavable linker for clean release and easy purification of the target peptide. Its utility is demonstrated through the straightforward preparation of two peptides reported to be challenging targets and not accessible through standard solid-phase chemical methodologies, as well as analogues.
Collapse
Affiliation(s)
- Daniel Fankhauser
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Mantas Liutkus
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Acton, ACT 2601, Australia
| |
Collapse
|
67
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
68
|
Hancock ZB, Blackmon H. Ghosts of a Structured Past: Impacts of Ancestral Patterns of Isolation-by-Distance on Divergence-Time Estimation. J Hered 2021; 111:573-582. [PMID: 33031560 PMCID: PMC7896184 DOI: 10.1093/jhered/esaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 01/25/2023] Open
Abstract
Isolation-by-distance is a widespread pattern in nature that describes the reduction of genetic correlation between subpopulations with increased geographic distance. In the population ancestral to modern sister species, this pattern may hypothetically inflate population divergence time estimation due to allele frequency differences in subpopulations at the ends of the ancestral population. In this study, we analyze the relationship between the time to the most recent common ancestor and the population divergence time when the ancestral population model is a linear stepping-stone. Using coalescent simulations, we compare the coalescent time to the population divergence time for various ratios of the divergence time over the population size. Next, we simulate whole genomes to obtain single nucleotide polymorphisms (SNPs), and use the Bayesian coalescent program SNAPP to estimate divergence times. We find that as the rate of migration between neighboring demes decreases, the coalescent time becomes significantly greater than the population divergence time when sampled from end demes. Divergence-time overestimation in SNAPP becomes severe when the divergence-to-population size ratio < 10 and migration is low. Finally, we demonstrate the impact of ancestral isolation-by-distance on divergence-time estimation using an empirical dataset of squamates (Tropidurus) endemic to Brazil. We conclude that studies estimating divergence times should be cognizant of the potential ancestral population structure in an explicitly spatial context or risk dramatically overestimating the timing of population splits.
Collapse
Affiliation(s)
- Zachary B Hancock
- Department of Biology at Texas A&M University, College Station, TX.,Ecology & Evolutionary Biology Interdisciplinary Program at Texas A&M University, College Station, TX
| | - Heath Blackmon
- Department of Biology at Texas A&M University, College Station, TX.,Ecology & Evolutionary Biology Interdisciplinary Program at Texas A&M University, College Station, TX
| |
Collapse
|
69
|
Douka K, Birds I, Wang D, Kosteletos A, Clayton S, Byford A, Vasconcelos EJR, O'Connell MJ, Deuchars J, Whitehouse A, Aspden JL. Cytoplasmic long noncoding RNAs are differentially regulated and translated during human neuronal differentiation. RNA (NEW YORK, N.Y.) 2021; 27:1082-1101. [PMID: 34193551 PMCID: PMC8370745 DOI: 10.1261/rna.078782.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 06/10/2023]
Abstract
The expression of long noncoding RNAs is highly enriched in the human nervous system. However, the function of neuronal lncRNAs in the cytoplasm and their potential translation remains poorly understood. Here we performed Poly-Ribo-Seq to understand the interaction of lncRNAs with the translation machinery and the functional consequences during neuronal differentiation of human SH-SY5Y cells. We discovered 237 cytoplasmic lncRNAs up-regulated during early neuronal differentiation, 58%-70% of which are associated with polysome translation complexes. Among these polysome-associated lncRNAs, we find 45 small ORFs to be actively translated, 17 specifically upon differentiation. Fifteen of 45 of the translated lncRNA-smORFs exhibit sequence conservation within Hominidea, suggesting they are under strong selective constraint in this clade. The profiling of publicly available data sets revealed that 8/45 of the translated lncRNAs are dynamically expressed during human brain development, and 22/45 are associated with cancers of the central nervous system. One translated lncRNA we discovered is LINC01116, which is induced upon differentiation and contains an 87 codon smORF exhibiting increased ribosome profiling signal upon differentiation. The resulting LINC01116 peptide localizes to neurites. Knockdown of LINC01116 results in a significant reduction of neurite length in differentiated cells, indicating it contributes to neuronal differentiation. Our findings indicate cytoplasmic lncRNAs interact with translation complexes, are a noncanonical source of novel peptides, and contribute to neuronal function and disease. Specifically, we demonstrate a novel functional role for LINC01116 during human neuronal differentiation.
Collapse
Affiliation(s)
- Katerina Douka
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Isabel Birds
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andreas Kosteletos
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sophie Clayton
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Abigail Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jim Deuchars
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
70
|
Lahr DJ. An emerging paradigm for the origin and evolution of shelled amoebae, integrating advances from molecular phylogenetics, morphology and paleontology. Mem Inst Oswaldo Cruz 2021; 116:e200620. [PMID: 34406221 PMCID: PMC8370470 DOI: 10.1590/0074-02760200620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
The phylogenetic paradigm of eukaryotic evolution has changed dramatically over the past two decades, with profound reflections on the understanding of life on earth. Arcellinida testate (shelled) amoebae lineages represent some of the oldest fossils of eukaryotes, and the elucidation of their phylogenetic relationships opened a window to the distant past, with important implications for understanding the evolution of life on earth. This four-part essay summarises advances made in the past 20 years regarding: (i) the phylogenetic relationships among amoebae with shells evolving in concert with the advances made in the phylogeny of eukaryotes; (ii) paleobiological studies unraveling the biological affinities of Neoproterozoic vase-shaped microfossils (VSMs); (iii) the interwoven interpretation of these different sets of data concluding that the Neoproterozoic contains a surprising diversity of organisms, in turn demanding a reinterpretation of the most profound events we know in the history of eukaryotes, and; (iv) a synthesis of the current knowledge about the evolution of Arcellinida, together with the possibilities and pitfalls of their interpretation.
Collapse
Affiliation(s)
- Daniel Jg Lahr
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brasil
| |
Collapse
|
71
|
Abstract
Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change-e.g. cultural evolution, and earliest life-acquired traits are retained; these domains do not face the problem that Darwin's theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self-other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia, Kelowna British Columbia, Canada
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
72
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
73
|
Xu W, Li Y, Li Y, Liu C, Wang Y, Xia G, Wang M. Asymmetric Somatic Hybridization Affects Synonymous Codon Usage Bias in Wheat. Front Genet 2021; 12:682324. [PMID: 34178040 PMCID: PMC8226224 DOI: 10.3389/fgene.2021.682324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Asymmetric somatic hybridization is an efficient strategy for crop breeding by introducing exogenous chromatin fragments, which leads to whole genomic shock and local chromosomal shock that induces genome-wide genetic variation including indel (insertion and deletion) and nucleotide substitution. Nucleotide substitution causes synonymous codon usage bias (SCUB), an indicator of genomic mutation and natural selection. However, how asymmetric somatic hybridization affects SCUB has not been addressed. Here, we explored this issue by comparing expressed sequence tags of a common wheat cultivar and its asymmetric somatic hybrid line. Asymmetric somatic hybridization affected SCUB and promoted the bias to A- and T-ending synonymous codon (SCs). SCUB frequencies in chromosomes introgressed with exogenous fragments were comparable to those in chromosomes without exogenous fragments, showing that exogenous fragments had no local chromosomal effect. Asymmetric somatic hybridization affected SCUB frequencies in indel-flanking sequences more strongly than in non-flanking sequences, and this stronger effect was present in both chromosomes with and without exogenous fragments. DNA methylation-driven SCUB shift was more pronounced than other SC pairs. SCUB shift was similar among seven groups of allelic chromosomes as well as three sub-genomes. Our work demonstrates that the SCUB shift induced by asymmetric somatic hybridization is attributed to the whole genomic shock, and DNA methylation is a putative force of SCUB shift during asymmetric somatic hybridization. Asymmetric somatic hybridization provides an available method for deepening the nature of SCUB shift and genetic variation induced by genomic shock.
Collapse
Affiliation(s)
- Wenjing Xu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yingchun Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yajing Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Chun Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
74
|
Simmonds P, Ansari MA. Extensive C->U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA. PLoS Pathog 2021; 17:e1009596. [PMID: 34061905 PMCID: PMC8195396 DOI: 10.1371/journal.ppat.1009596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/11/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
The rapid evolution of RNA viruses has been long considered to result from a combination of high copying error frequencies during RNA replication, short generation times and the consequent extensive fixation of neutral or adaptive changes over short periods. While both the identities and sites of mutations are typically modelled as being random, recent investigations of sequence diversity of SARS coronavirus 2 (SARS-CoV-2) have identified a preponderance of C->U transitions, proposed to be driven by an APOBEC-like RNA editing process. The current study investigated whether this phenomenon could be observed in datasets of other RNA viruses. Using a 5% divergence filter to infer directionality, 18 from 36 datasets of aligned coding region sequences from a diverse range of mammalian RNA viruses (including Picornaviridae, Flaviviridae, Matonaviridae, Caliciviridae and Coronaviridae) showed a >2-fold base composition normalised excess of C->U transitions compared to U->C (range 2.1x-7.5x), with a consistently observed favoured 5' U upstream context. The presence of genome scale RNA secondary structure (GORS) was the only other genomic or structural parameter significantly associated with C->U/U->C transition asymmetries by multivariable analysis (ANOVA), potentially reflecting RNA structure dependence of sites targeted for C->U mutations. Using the association index metric, C->U changes were specifically over-represented at phylogenetically uninformative sites, potentially paralleling extensive homoplasy of this transition reported in SARS-CoV-2. Although mechanisms remain to be functionally characterised, excess C->U substitutions accounted for 11-14% of standing sequence variability of structured viruses and may therefore represent a potent driver of their sequence diversification and longer-term evolution.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
75
|
de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CRL, Wolf JB. Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias. Mol Biol Evol 2021; 38:3247-3266. [PMID: 33871580 PMCID: PMC8321536 DOI: 10.1093/molbev/msab099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.
Collapse
Affiliation(s)
- Janaina Lima de Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil.,Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Atahualpa Castillo Morales
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Laurence D Hurst
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico 04510, Mexico
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
76
|
Terwilliger TC, Sobolev OV, Afonine PV, Adams PD, Ho CM, Li X, Zhou ZH. Protein identification from electron cryomicroscopy maps by automated model building and side-chain matching. Acta Crystallogr D Struct Biol 2021; 77:457-462. [PMID: 33825706 PMCID: PMC8025881 DOI: 10.1107/s2059798321001765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
Using single-particle electron cryo-microscopy (cryo-EM), it is possible to obtain multiple reconstructions showing the 3D structures of proteins imaged as a mixture. Here, it is shown that automatic map interpretation based on such reconstructions can be used to create atomic models of proteins as well as to match the proteins to the correct sequences and thereby to identify them. This procedure was tested using two proteins previously identified from a mixture at resolutions of 3.2 Å, as well as using 91 deposited maps with resolutions between 2 and 4.5 Å. The approach is found to be highly effective for maps obtained at resolutions of 3.5 Å and better, and to have some utility at resolutions as low as 4 Å.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- New Mexico Consortium, Los Alamos, NM 87544, USA
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Chi-Min Ho
- The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Xiaorun Li
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Z. Hong Zhou
- The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
77
|
Smerlak M. Neutral quasispecies evolution and the maximal entropy random walk. SCIENCE ADVANCES 2021; 7:7/16/eabb2376. [PMID: 33853768 PMCID: PMC8046360 DOI: 10.1126/sciadv.abb2376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Even if they have no impact on phenotype, neutral mutations are not equivalent in the eyes of evolution: A robust neutral variant-one which remains functional after further mutations-is more likely to spread in a large, diverse population than a fragile one. Quasispecies theory shows that the equilibrium frequency of a genotype is proportional to its eigenvector centrality in the neutral network. This paper explores the link between the selection for mutational robustness and the navigability of neutral networks. I show that sequences of neutral mutations follow a "maximal entropy random walk," a canonical Markov chain on graphs with nonlocal, nondiffusive dynamics. I revisit M. Smith's word-game model of evolution in this light, finding that the likelihood of certain sequences of substitutions can decrease with the population size. These counterintuitive results underscore the fertility of the interface between evolutionary dynamics, information theory, and physics.
Collapse
Affiliation(s)
- M Smerlak
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
| |
Collapse
|
78
|
Mutability of demographic noise in microbial range expansions. ISME JOURNAL 2021; 15:2643-2654. [PMID: 33746203 PMCID: PMC8397776 DOI: 10.1038/s41396-021-00951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022]
Abstract
Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.
Collapse
|
79
|
Fariselli P, Taccioli C, Pagani L, Maritan A. DNA sequence symmetries from randomness: the origin of the Chargaff's second parity rule. Brief Bioinform 2021; 22:2172-2181. [PMID: 32266404 PMCID: PMC7986665 DOI: 10.1093/bib/bbaa041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
Most living organisms rely on double-stranded DNA (dsDNA) to store their genetic information and perpetuate themselves. This biological information has been considered as the main target of evolution. However, here we show that symmetries and patterns in the dsDNA sequence can emerge from the physical peculiarities of the dsDNA molecule itself and the maximum entropy principle alone, rather than from biological or environmental evolutionary pressure. The randomness justifies the human codon biases and context-dependent mutation patterns in human populations. Thus, the DNA 'exceptional symmetries,' emerged from the randomness, have to be taken into account when looking for the DNA encoded information. Our results suggest that the double helix energy constraints and, more generally, the physical properties of the dsDNA are the hard drivers of the overall DNA sequence architecture, whereas the selective biological processes act as soft drivers, which only under extraordinary circumstances overtake the overall entropy content of the genome.
Collapse
Affiliation(s)
- Piero Fariselli
- Department of Medical Sciences of the University of Turin, Italy
| | | | - Luca Pagani
- Department of Biology of the University of Padova, Italy
| | - Amos Maritan
- Department of Physics of the University of Padova, Italy
| |
Collapse
|
80
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
81
|
Rawat P, Boehning M, Hummel B, Aprile-Garcia F, Pandit AS, Eisenhardt N, Khavaran A, Niskanen E, Vos SM, Palvimo JJ, Pichler A, Cramer P, Sawarkar R. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol Cell 2021; 81:1013-1026.e11. [PMID: 33548202 PMCID: PMC7939545 DOI: 10.1016/j.molcel.2021.01.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
In response to stress, human cells coordinately downregulate transcription and translation of housekeeping genes. To downregulate transcription, the negative elongation factor (NELF) is recruited to gene promoters impairing RNA polymerase II elongation. Here we report that NELF rapidly forms nuclear condensates upon stress in human cells. Condensate formation requires NELF dephosphorylation and SUMOylation induced by stress. The intrinsically disordered region (IDR) in NELFA is necessary for nuclear NELF condensation and can be functionally replaced by the IDR of FUS or EWSR1 protein. We find that biomolecular condensation facilitates enhanced recruitment of NELF to promoters upon stress to drive transcriptional downregulation. Importantly, NELF condensation is required for cellular viability under stressful conditions. We propose that stress-induced NELF condensates reported here are nuclear counterparts of cytosolic stress granules. These two stress-inducible condensates may drive the coordinated downregulation of transcription and translation, likely forming a critical node of the stress survival strategy.
Collapse
Affiliation(s)
- Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.
| | - Marc Boehning
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Anwit S Pandit
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; CIBSS, Centre for Integrative Biological Signaling Studies, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Nathalie Eisenhardt
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ashkan Khavaran
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Einari Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Seychelle M Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; CIBSS, Centre for Integrative Biological Signaling Studies, Freiburg, Germany; MRC, University of Cambridge, Cambridge, UK.
| |
Collapse
|
82
|
Abstract
Small populations harbour less genetic diversity and more harmful mutations. They thus adapt more slowly. A new study supports these notions and suggests that reduced recombination exacerbates these effects, highlighting the impact of genome architecture on adaptability.
Collapse
|
83
|
Differences in the Central Energy Metabolism of Cancer Cells between Conventional 2D and Novel 3D Culture Systems. Int J Mol Sci 2021; 22:ijms22041805. [PMID: 33670390 PMCID: PMC7917672 DOI: 10.3390/ijms22041805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
The conventional two-dimensional (2D) culture is available as an in vitro experimental model. However, the culture system reportedly does not recapitulate the in vivo cancer microenvironment. We recently developed a tissueoid cell culture system using Cellbed, which resembles the loose connective tissue in living organisms. The present study performed 2D and three-dimensional (3D) culture using prostate and bladder cancer cell lines and a comprehensive metabolome analysis. Compared to 3D, the 2D culture had significantly lower levels of most metabolites. The 3D culture system did not impair mitochondrial function in the cancer cells and produce energy through the mitochondria simultaneously with aerobic glycolysis. Conversely, ATP production, biomass (nucleotides, amino acids, lipids and NADPH) synthesis and redox balance maintenance were conducted in 3D culture. In contrast, in 2D culture, biomass production was delayed due to the suppression of metabolic activity. The 3D metabolome analysis using the tissueoid cell culture system capable of in vivo cancer cell culture yielded results consistent with previously reported cancer metabolism theories. This system is expected to be an essential experimental tool in a wide range of cancer research fields, especially in preclinical stages while transitioning from in vitro to in vivo.
Collapse
|
84
|
Island songbirds as windows into evolution in small populations. Curr Biol 2021; 31:1303-1310.e4. [PMID: 33476557 DOI: 10.1016/j.cub.2020.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.
Collapse
|
85
|
Diller T, Thompson J, Steer B. Biological validation of a novel process and product for quantitating western blots. J Biotechnol 2020; 326:52-60. [PMID: 33373626 DOI: 10.1016/j.jbiotec.2020.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023]
Abstract
Protein normalization of western blots has relied upon housekeeping proteins which exhibit signal saturation and varied cellular expression level variations. These issues can produce spurious results leading to erroneous conclusions. A superior method to protein normalization using housekeeping proteins is Total Protein Normalization, a method now recognized as the gold standard for quantitative westerns. Total Protein Normalization requires that all proteins on a membrane be stained or labeled uniformly, imaged, and then analyzed for total protein. It is important that such a normalization process not interfere with typical immunodetection methods, fits within existing western workflows, and exhibits a linear relationship of signal intensity to protein load under all experimental conditions. Here we report that we developed a new reagent enabling Total Protein Normalization, and we demonstrate its superior protein normalization capabilities through analysis of target proteins in different cell backgrounds. These data illustrate how housekeeping proteins exhibit signal saturation, yield erroneous normalization data, and display sample-to-sample variations averaging 48.2 % overall. Signal intensities obtained using our new method show a linear relationship to protein sample load, thus providing accurate protein normalization with an overall average variation of 7.7 %.
Collapse
Affiliation(s)
- Thomas Diller
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008-7321, United States.
| | - Jordan Thompson
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008-7321, United States
| | - Brian Steer
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008-7321, United States
| |
Collapse
|
86
|
Bettinger J, Ghaemmaghami S. Methionine oxidation within the prion protein. Prion 2020; 14:193-205. [PMID: 32744136 PMCID: PMC7518762 DOI: 10.1080/19336896.2020.1796898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/01/2022] Open
Abstract
Prion diseases are characterized by the self-templated misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc). The detailed molecular basis of the misfolding and aggregation of PrPC remains incompletely understood. It is believed that the transient misfolding of PrPC into partially structured intermediates precedes the formation of insoluble protein aggregates and is a critical component of the prion misfolding pathway. A number of environmental factors have been shown to induce the destabilization of PrPC and promote its initial misfolding. Recently, oxidative stress and reactive oxygen species (ROS) have emerged as one possible mechanism by which the destabilization of PrPC can be induced under physiological conditions. Methionine residues are uniquely vulnerable to oxidation by ROS and the formation of methionine sulfoxides leads to the misfolding and subsequent aggregation of PrPC. Here, we provide a review of the evidence for the oxidation of methionine residues in PrPC and its potential role in the formation of pathogenic prion aggregates.
Collapse
Affiliation(s)
- John Bettinger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
87
|
The Frog Fauna of Southwestern Australia: Diverse, Bizarre, Old, and Polyandrous. J HERPETOL 2020. [DOI: 10.1670/19-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
89
|
Abstract
We present selected topics of population genetics and molecular phylogeny. As several excellent review articles have been published and generally focus on European and American scientists, here, we emphasize contributions by Japanese researchers. Our review may also be seen as a belated 50-year celebration of Motoo Kimura's early seminal paper on the molecular clock, published in 1968.
Collapse
|
90
|
A search for the physical basis of the genetic code. Biosystems 2020; 195:104148. [DOI: 10.1016/j.biosystems.2020.104148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
|
91
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
92
|
Johri P, Charlesworth B, Jensen JD. Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection. Genetics 2020; 215:173-192. [PMID: 32152045 PMCID: PMC7198275 DOI: 10.1534/genetics.119.303002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 01/27/2023] Open
Abstract
The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at "neutral" sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
93
|
Abstract
The year 2020 marks the 50th anniversary of Theoretical Population Biology. This special issue examines the past and continuing contributions of the journal. We identify some of the most important developments that have taken place in the pages of TPB, connecting them to current research and to the numerous forms of significance achieved by theory in population biology.
Collapse
|
94
|
Banerjee P, Pyne A, Sarkar N. Understanding the Self-Assembling Behavior of Biological Building Block Molecules: A Spectroscopic and Microscopic Approach. J Phys Chem B 2020; 124:2065-2080. [PMID: 32081003 DOI: 10.1021/acs.jpcb.9b09123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
"Mother nature" utilizes molecular self-assembly as an efficient tool to design several fascinating supramolecular architectures from simple building blocks like amino acids, peptides, and nucleobases. The self-assembling behavior of various biologically important molecules, morphological outcomes, molecular mechanism of association, and finally their applications in the real world draw broad interest from chemical and biological point of views. In this present Feature Article, the amyloid hypothesis is extended to include nonproteinaceous single metabolites that invoke a new paradigm for the pathology of inborn metabolic disorders. In this scenario, we dedicate this paper to understanding the morphological consequences and mechanistic insight of the self-assembly of some important amino acids (e.g., l-phenylalanine, l-tyrosine, glycine, etc.) and nucleobases (adenine and eight uracil moiety derivatives). Using proper spectroscopic and microscopic tools, distinct assembling mechanisms of different amino acids and nucleobases have been established. Again, lanthanides, polyphenolic compounds such as crown ethers, and a worldwide drink, beer, are elegantly employed as inhibitors of the resulting fibrillar aggregated structures. As a consequence, this study will cover literally a vast region in the self-assembling outcomes of single biologically important molecules, and therefore, we expect that a detailed understanding of such morphological outcomes using spectroscopic and microscopic approaches may open a new paradigm in this burgeoning field.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 WB, India
| |
Collapse
|
95
|
Li J, Yang J, Mu S, Shang N, Liu C, Zhu Y, Cai Y, Liu P, Lin J, Liu W, Sun Y, Ma Y. Efficient O-Glycosylation of Triterpenes Enabled by Protein Engineering of Plant Glycosyltransferase UGT74AC1. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05232] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Shicheng Mu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Na Shang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Cui Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yi Cai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Pi Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Jianping Lin
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Weidong Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
96
|
Corning PA. Beyond the modern synthesis: A framework for a more inclusive biological synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:5-12. [PMID: 32068003 DOI: 10.1016/j.pbiomolbio.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Many theorists in recent years have been calling for evolutionary biology to move beyond the Modern Synthesis - the paradigm that has long provided the theoretical backbone for the discipline. Terms like "postmodern synthesis," "integrative synthesis," and "extended evolutionary synthesis" have been invoked by various critics in connection with the many recent developments that pose deep challenges - even contradictions - to the traditional model and underscore the need for an update, or a makeover. However, none of these critics, to this author's knowledge, has to date offered an explicit alternative that could provide a unifying theoretical paradigm for our vastly increased knowledge about living systems and the history of life on Earth (but see Noble 2015, 2017). This paper briefly summarizes the case against the Modern Synthesis and its many amendments over the years, and a new paradigm is proposed, called an "Inclusive Biological Synthesis," which, it is argued, can provide a more general framework for the biological sciences. The focus of this framework is the fundamental nature of life as a contingent dynamic process - an always at-risk "survival enterprise." The ongoing, inescapable challenge of earning a living in a given environmental context - biological survival and reproduction - presents an existential problem to which all biological phenomena can be related and comprehended. They and their "parts" can be analyzed in relation to ethologist Niko Tinbergen's four key questions. Some basic properties and guiding assumptions related to this alternative paradigm are also identified.
Collapse
Affiliation(s)
- Peter A Corning
- Institute for the Study of Complex Systems, 900 University Street, D-X, Seattle, WA, 98101, USA.
| |
Collapse
|
97
|
Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat Ecol Evol 2020; 4:461-469. [PMID: 32042119 PMCID: PMC7058517 DOI: 10.1038/s41559-020-1107-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/10/2020] [Indexed: 11/08/2022]
Abstract
The importance of positive selection in molecular evolution is debated. Evolution experiments under invariant laboratory conditions typically show a higher rate of nonsynonymous nucleotide changes than the rate of synonymous changes, demonstrating prevalent molecular adaptations. Natural evolution inferred from genomic comparisons, however, almost always exhibits the opposite pattern even among closely related conspecifics, which is indicative of a paucity of positive selection. Here we hypothesize that this apparent contradiction is at least in part attributable to ubiquitous and frequent environmental changes in nature, causing nonsynonymous mutations that are beneficial at one time to become deleterious soon after because of antagonistic pleiotropy and hindering their fixations relative to synonymous mutations despite continued population adaptations. To test this hypothesis, we performed yeast evolution experiments in changing and corresponding constant environments, followed by genome sequencing of the evolving populations. We observed a lower nonsynonymous to synonymous rate ratio in antagonistic changing environments than in the corresponding constant environments, and the population dynamics of mutations supports our hypothesis. These findings and the accompanying population genetic simulations suggest that molecular adaptation is consistently underestimated in nature due to the antagonistic fitness effects of mutations in changing environments.
Collapse
|
98
|
Erber L, Franz P, Betat H, Prohaska S, Mörl M. Divergent Evolution of Eukaryotic CC- and A-Adding Enzymes. Int J Mol Sci 2020; 21:ijms21020462. [PMID: 31936900 PMCID: PMC7014341 DOI: 10.3390/ijms21020462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/04/2022] Open
Abstract
Synthesis of the CCA end of essential tRNAs is performed either by CCA-adding enzymes or as a collaboration between enzymes restricted to CC- and A-incorporation. While the occurrence of such tRNA nucleotidyltransferases with partial activities seemed to be restricted to Bacteria, the first example of such split CCA-adding activities was reported in Schizosaccharomyces pombe. Here, we demonstrate that the choanoflagellate Salpingoeca rosetta also carries CC- and A-adding enzymes. However, these enzymes have distinct evolutionary origins. Furthermore, the restricted activity of the eukaryotic CC-adding enzymes has evolved in a different way compared to their bacterial counterparts. Yet, the molecular basis is very similar, as highly conserved positions within a catalytically important flexible loop region are missing in the CC-adding enzymes. For both the CC-adding enzymes from S. rosetta as well as S. pombe, introduction of the loop elements from closely related enzymes with full activity was able to restore CCA-addition, corroborating the significance of this loop in the evolution of bacterial as well as eukaryotic tRNA nucleotidyltransferases. Our data demonstrate that partial CC- and A-adding activities in Bacteria and Eukaryotes are based on the same mechanistic principles but, surprisingly, originate from different evolutionary events.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Paul Franz
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Sonja Prohaska
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
99
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
100
|
Determining amino acid scores of the genetic code table: Complementarity, structure, function and evolution. Biosystems 2020; 187:104026. [DOI: 10.1016/j.biosystems.2019.104026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
|