51
|
Roy S, Shrinivas K, Bagchi B. A stochastic chemical dynamic approach to correlate autoimmunity and optimal vitamin-D range. PLoS One 2014; 9:e100635. [PMID: 24971516 PMCID: PMC4074107 DOI: 10.1371/journal.pone.0100635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/29/2014] [Indexed: 01/26/2023] Open
Abstract
Motivated by several recent experimental observations that vitamin-D could interact with antigen presenting cells (APCs) and T-lymphocyte cells (T-cells) to promote and to regulate different stages of immune response, we developed a coarse grained but general kinetic model in an attempt to capture the role of vitamin-D in immunomodulatory responses. Our kinetic model, developed using the ideas of chemical network theory, leads to a system of nine coupled equations that we solve both by direct and by stochastic (Gillespie) methods. Both the analyses consistently provide detail information on the dependence of immune response to the variation of critical rate parameters. We find that although vitamin-D plays a negligible role in the initial immune response, it exerts a profound influence in the long term, especially in helping the system to achieve a new, stable steady state. The study explores the role of vitamin-D in preserving an observed bistability in the phase diagram (spanned by system parameters) of immune regulation, thus allowing the response to tolerate a wide range of pathogenic stimulation which could help in resisting autoimmune diseases. We also study how vitamin-D affects the time dependent population of dendritic cells that connect between innate and adaptive immune responses. Variations in dose dependent response of anti-inflammatory and pro-inflammatory T-cell populations to vitamin-D correlate well with recent experimental results. Our kinetic model allows for an estimation of the range of optimum level of vitamin-D required for smooth functioning of the immune system and for control of both hyper-regulation and inflammation. Most importantly, the present study reveals that an overdose or toxic level of vitamin-D or any steroid analogue could give rise to too large a tolerant response, leading to an inefficacy in adaptive immune function.
Collapse
Affiliation(s)
- Susmita Roy
- SSCU, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Biman Bagchi
- SSCU, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
52
|
Loss of the death receptor CD95 (Fas) expression by dendritic cells protects from a chronic viral infection. Proc Natl Acad Sci U S A 2014; 111:8559-64. [PMID: 24912151 DOI: 10.1073/pnas.1401750111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic viral infections incapacitate adaptive immune responses by "exhausting" virus-specific T cells, inducing their deletion and reducing productive T-cell memory. Viral infection rapidly induces death receptor CD95 (Fas) expression by dendritic cells (DCs), making them susceptible to elimination by the immune response. Lymphocytic choriomeningitis virus (LCMV) clone 13, which normally establishes a chronic infection, is rapidly cleared in C57Black6/J mice with conditional deletion of Fas in DCs. The immune response to LCMV is characterized by an extended survival of virus-specific effector T cells. Moreover, transfer of Fas-negative DCs from noninfected mice to preinfected animals results in either complete clearance of the virus or a significant reduction of viral titers. Thus, DC-specific Fas expression plays a role in regulation of antiviral responses and suggests a strategy for stimulation of T cells in chronically infected animals and humans to achieve the clearance of persistent viruses.
Collapse
|
53
|
Abstract
Following infections and environmental exposures, memory T cells are generated that provide long-term protective immunity. Compared to their naïve T cell counterparts, memory T cells possess unique characteristics that endow them with the ability to quickly and robustly respond to foreign antigens. While such memory T cells are beneficial in protecting their hosts from recurrent infection, memory cells reactive to donor antigens pose a major barrier to successful transplantation and tolerance induction. Significant progress has been made over the past several decades contributing to our understanding of memory T cell generation, their distinct biology, and their detrimental impact in clinical and animal models of transplantation. This review focuses on the unique features which make memory T cells relevant to the transplant community and discusses potential therapies targeting memory T cells which may ameliorate allograft rejection.
Collapse
Affiliation(s)
- Charles A Su
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 ; Glickman Urological and Kidney Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Robert L Fairchild
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 ; Glickman Urological and Kidney Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
54
|
Gong C, Linderman JJ, Kirschner D. Harnessing the heterogeneity of T cell differentiation fate to fine-tune generation of effector and memory T cells. Front Immunol 2014; 5:57. [PMID: 24600448 PMCID: PMC3928592 DOI: 10.3389/fimmu.2014.00057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Abstract
Recent studies show that naïve T cells bearing identical T cell receptors experience heterogeneous differentiation and clonal expansion processes. The factors controlling this outcome are not well characterized, and their contributions to immune cell dynamics are similarly poorly understood. In this study, we develop a computational model to elaborate mechanisms occurring within and between two important physiological compartments, lymph nodes and blood, to determine how immune cell dynamics are controlled. Our multi-organ (multi-compartment) model integrates cellular and tissue level events and allows us to examine the heterogeneous differentiation of individual precursor cognate naïve T cells to generate both effector and memory T lymphocytes. Using this model, we simulate a hypothetical immune response and reproduce both primary and recall responses to infection. Increased numbers of antigen-bearing dendritic cells (DCs) are predicted to raise production of both effector and memory T cells, and distinct “sweet spots” of peptide-MHC levels on those DCs exist that favor CD4+ or CD8+ T cell differentiation toward either effector or memory cell phenotypes. This has important implications for vaccine development and immunotherapy.
Collapse
Affiliation(s)
- Chang Gong
- Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, MI , USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan , Ann Arbor, MI , USA
| | - Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
55
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
56
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
57
|
Aiello FB, Graciotti L, Procopio AD, Keller JR, Durum SK. Stemness of T cells and the hematopoietic stem cells: fate, memory, niche, cytokines. Cytokine Growth Factor Rev 2013; 24:485-501. [PMID: 24231048 PMCID: PMC6390295 DOI: 10.1016/j.cytogfr.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells are able to generate both cells that differentiate and cells that remain undifferentiated but potentially have the same developmental program. The prolonged duration of the protective immune memory for infectious diseases such as polio, small pox, and measles, suggested that memory T cells may have stem cell properties. Understanding the molecular basis for the life-long persistence of memory T cells may be useful to project targeted therapies for immune deficiencies and infectious diseases and to formulate vaccines. In the last decade evidence from different laboratories shows that memory T cells may share self-renewal pathways with bone marrow hematopoietic stem cells. In stem cells the intrinsic self-renewal activity, which depends on gene expression, is known to be modulated by extrinsic signals from the environment that may be tissue specific. These extrinsic signals for stemness of memory T cells include cytokines such as IL-7 and IL-15 and there are other cytokine signals for maintaining the cytokine signature (TH1, TH2, etc.) of memory T cells. Intrinsic and extrinsic pathways that might be common to bone marrow hematopoietic stem cells and memory T lymphocytes are discussed and related to self-renewal functions.
Collapse
Affiliation(s)
- Francesca B Aiello
- Laboratory of Molecular Immunoregulation, Frederick, MD 21702, USA; Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66013 Chieti, Italy.
| | | | | | | | | |
Collapse
|
58
|
Ashton-Rickardt PG. An emerging role for Serine Protease Inhibitors in T lymphocyte immunity and beyond. Immunol Lett 2013; 152:65-76. [PMID: 23624075 DOI: 10.1016/j.imlet.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Serine proteases control a wide variety of physiological and pathological processes in multi-cellular organisms, including blood clotting, cancer, cell death, osmo-regulation, tissue re-modeling and immunity to infection. T lymphocytes are required for adaptive cell mediated immunity and serine proteases are not only important for effector function but also homeostatic regulation of cell numbers. Serine Protease Inhibitors (Serpins) are the physiological regulators of serine proteases activity. In this review, I will discuss the role of serpins in controlling the recognition of antigen, effector function and homeostatic control of T lymphocytes through the inhibition of physiological serine protease targets. An emerging view of serpins is that they are important promoters of cellular viability through their inhibition of executioner proteases. This will be discussed in the context of the T lymphocyte survival during effector responses and the development and persistence of long-lived memory T cells. The potent anti-apoptotic properties of serpins can also work against adaptive cell immunity by protecting viruses and tumors from eradication by cytotoxic T cells (CTL). Recent insights from knock-out mouse models demonstrate that these serpins also are required for hematological progenitor cells and so are critical for the development of lineages other than T lymphocytes. Given the emerging role of serpins in multiple aspects of lymphocyte immunity and blood development I will review the progress to date in developing new immunotherapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.
Collapse
Affiliation(s)
- Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
59
|
Cytokine-mediated programmed proliferation of virus-specific CD8(+) memory T cells. Immunity 2012; 38:131-9. [PMID: 23260193 DOI: 10.1016/j.immuni.2012.09.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/26/2012] [Indexed: 01/05/2023]
Abstract
During infection, CD8(+) T cells not only respond to antigenic signals through their T cell receptor (TCR) but also incorporate inflammatory signals from cytokines produced in the local infected microenvironment. Transient TCR-mediated stimulation will result in programmed proliferation that continues despite removal of the antigenic stimulus, but it remains unclear whether brief exposure to specific cytokines will elicit similar effects. Here, we have demonstrated that brief stimulation of memory T cells with interleukin-12 (IL-12) and interleukin-18 (IL-18) results in tightly regulated programmed proliferation, in addition to acquisition of enhanced virus-specific cytokine production and cytolytic activity. CD8(+) T cells briefly exposed to IL-12 and IL-18 in vitro showed improved antiviral activity in vivo, as demonstrated by increased proliferation and reduced viremia. These results indicate that even transitory exposure to inflammatory cytokines can provide a selective advantage to infiltrating CD8(+) T cells by triggering a developmental program that is initiated prior to direct contact with virus-infected cells.
Collapse
|
60
|
Buchholz VR, Gräf P, Busch DH. The origin of diversity: studying the evolution of multi-faceted CD8+ T cell responses. Cell Mol Life Sci 2012; 69:1585-95. [PMID: 22476589 PMCID: PMC11114764 DOI: 10.1007/s00018-012-0967-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
Abstract
During the past two decades of research in T cell biology, an increasing number of distinct T cell subsets arising during the transition from naïve to antigen-experienced T cells have been identified. Recently, it has been appreciated that, in different experimental settings, distinct T cell subsets can be generated in parallel within the same immune response. While signals driving a single "lineage" path of T cell differentiation are becoming increasingly clear, it remains largely enigmatic how the phenotypic and functional diversification creating a multi-faceted T cell response is achieved. Here, we review current literature indicating that diversification is a stable trait of CD8(+) T cell responses. We showcase novel technologies providing deeper insights into the process of diversification among the descendants of individual T cells, and introduce two models that emphasize either intrinsic noise or extrinsic signals as driving forces behind the diversification of single cell-derived T cell progeny populations in vivo.
Collapse
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Trogerstr. 30, 81675 Munich, Germany
| | - Patricia Gräf
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Trogerstr. 30, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Trogerstr. 30, 81675 Munich, Germany
- Clinical Cooperation Groups “Antigen-specific Immunotherapy” and “Immune-Monitoring”, Helmholtz Center Munich (Neuherberg), TUM, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technical University Munich (TUM), Munich, Germany
- DZIF – National Centre for Infection Research, Munich, Germany
| |
Collapse
|
61
|
Kim EH, Sullivan JA, Plisch EH, Tejera MM, Jatzek A, Choi KY, Suresh M. Signal integration by Akt regulates CD8 T cell effector and memory differentiation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4305-14. [PMID: 22467649 DOI: 10.4049/jimmunol.1103568] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During a T cell response, the effector CTL pool contains two cellular subsets: short-lived effector cells (SLECs), a majority of which are destined for apoptosis, and the memory precursor effector cells, which differentiate into memory cells. Understanding the mechanisms that govern the differentiation of memory CD8 T cells is of fundamental importance in the development of effective CD8 T cell-based vaccines. The strength and nature of TCR signaling, along with signals delivered by cytokines like IL-2 and IL-12, influence differentiation of SLECs and memory precursor effector cells. A central question is, how are signals emanating from multiple receptors integrated and interpreted to define the fate of effector CTLs? Using genetic and pharmacological tools, we have identified Akt as a signal integrator that links distinct facets of CTL differentiation to the specific signaling pathways of FOXO, mTOR, and Wnt/β-catenin. Sustained Akt activation triggered by convergent extracellular signals evokes a transcription program that enhances effector functions, drives differentiation of terminal effectors, and diminishes the CTLs' potential to survive and differentiate into memory cells. Whereas sustained Akt activation severely impaired CD8 T cell memory and protective immunity, in vivo inhibition of Akt rescued SLECs from deletion and increased the number of memory CD8 T cells. Thus, the cumulative strength of convergent signals from signaling molecules such as TCR, costimulatory molecules, and cytokine receptors governs the magnitude of Akt activation, which in turn controls the generation of long-lived memory cells. These findings suggest that therapeutic modulation of Akt might be a strategy to augment vaccine-induced immunity.
Collapse
Affiliation(s)
- Eui Ho Kim
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Lovo E, Zhang M, Wang L, Ashton-Rickardt PG. Serine protease inhibitor 6 is required to protect dendritic cells from the kiss of death. THE JOURNAL OF IMMUNOLOGY 2012; 188:1057-63. [PMID: 22227570 DOI: 10.4049/jimmunol.1102667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How dendritic cells (DC) present Ag to cytotoxic T cells (CTL) without themselves being killed through contact-mediated cytotoxicity (so-called kiss of death) has proved to be controversial. Using mice deficient in serine protease inhibitor 6 (Spi6), we show that Spi6 protects DC from the kiss of death by inhibiting granzyme B (GrB) delivered by CTL. Infection of Spi6 knockout mice with lymphocytic choriomeningitis virus revealed impaired survival of CD8α DC. The impaired survival of Spi6 knockout CD8α DC resulted in impaired priming and expansion of both primary and memory lymphocytic choriomeningitis virus-specific CTL, which could be corrected by GrB deficiency. The rescue in the clonal burst obtained by GrB elimination demonstrated that GrB was the physiological target through which Spi6 protected DC from CTL. We conclude that the negative regulation of DC priming of CD8 T lymphocyte immunity by CTL killing is mitigated by the physiological inhibition of GrB by Spi6.
Collapse
Affiliation(s)
- Elena Lovo
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | |
Collapse
|
63
|
Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham QM, Zickovich JM, Lefrançois L. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4967-78. [PMID: 21987662 PMCID: PMC3208080 DOI: 10.4049/jimmunol.1102335] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.
Collapse
Affiliation(s)
- Joshua J. Obar
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
- Department of Immunology & Infectious Diseases, Montana State University, 960 Technology Boulevard, Bozeman MT 59718
| | - Evan R. Jellison
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - Brian S. Sheridan
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - David A. Blair
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - Quynh-Mai Pham
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - Julianne M. Zickovich
- Department of Immunology & Infectious Diseases, Montana State University, 960 Technology Boulevard, Bozeman MT 59718
| | - Leo Lefrançois
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| |
Collapse
|
64
|
Yang CY, Best JA, Knell J, Yang E, Sheridan AD, Jesionek AK, Li HS, Rivera RR, Lind KC, D'Cruz LM, Watowich SS, Murre C, Goldrath AW. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol 2011; 12:1221-9. [PMID: 22057289 PMCID: PMC3872000 DOI: 10.1038/ni.2158] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/06/2011] [Indexed: 12/14/2022]
Abstract
During infection, naive CD8(+) T cells differentiate into effector cells, which are armed to eliminate pathogens, and memory cells, which are poised to protect against reinfection. The transcriptional program that regulates terminal differentiation into short-lived effector-memory versus long-lived memory cells is not clearly defined. Through the use of mice expressing reporters for the DNA-binding inhibitors Id2 and Id3, we identified Id3(hi) precursors of long-lived memory cells before the peak of T cell population expansion or upregulation of cell-surface receptors that indicate memory potential. Deficiency in Id2 or Id3 resulted in loss of distinct CD8(+) effector and memory populations, which demonstrated unique roles for these inhibitors of E-protein transcription factors. Furthermore, cytokines altered the expression of Id2 and Id3 differently, which provides insight into how external cues influence gene expression.
Collapse
Affiliation(s)
- Cliff Y Yang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Keppler SJ, Aichele P. Signal 3 requirement for memory CD8+T-cell activation is determined by the infectious pathogen. Eur J Immunol 2011; 41:3176-86. [DOI: 10.1002/eji.201141537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/22/2011] [Accepted: 08/05/2011] [Indexed: 11/12/2022]
|
66
|
Zhang EY, Parker BL, Yankee TM. Gads regulates the expansion phase of CD8+ T cell-mediated immunity. THE JOURNAL OF IMMUNOLOGY 2011; 186:4579-89. [PMID: 21411729 DOI: 10.4049/jimmunol.1001604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gads adaptor protein is critical for TCR-mediated Ca(2+) mobilization. We investigated the effect of Gads deficiency on the proliferation of CD8(+) T cells following peptide stimulation and in the context of infection with an intracellular pathogen. We stimulated CD8(+) T cells from Gads(+/+) OT-I and Gads(-/-) OT-I mice with cognate Ag (SIINFEKL) or altered peptide ligand. In vitro experiments revealed that Gads was required for optimal proliferation of CD8(+) T cells. This defect was most evident at the early time points of proliferation and when low doses of Ag were used as stimuli. Cell cycle analysis demonstrated that Gads(-/-) CD8(+) T cells had impaired TCR-mediated exit from the G(0) phase of the cell cycle. Furthermore, Gads(-/-) CD8(+) T cells had delayed expression of c-myc and CD69 upon the stimulation with SIINFEKL. We then investigated how Gads deficiency would impact CD8(+) T cell-mediated immunity in the context of infection with an intracellular pathogen. At early time points, Gads(+/+) and Gads(-/-) CD8(+) T cells proliferated to a similar extent, despite the fact that expression of CD69 and CD25 was reduced in the absence of Gads. After 5 d postinfection, Gads was required to sustain the expansion phase of the immune response; the peak response of Gads(-/-) cells was significantly lower than for Gads(+/+) cells. However, Gads was not required for the differentiation of naive CD8(+) T cells into memory cells. We conclude that the primary function of Gads is to regulate the sensitivity of the TCR to Ag ligation.
Collapse
Affiliation(s)
- Elizabeth Yan Zhang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
67
|
Abstract
CD4+ T cells - often referred to as T-helper cells - play a central role in immune defense and pathogenesis. Virus infections and vaccines stimulate and expand populations of antigen-specific CD4+ T cells in mice and in man. These virus-specific CD4+ T cells are extremely important in antiviral protection: deficiencies in CD4+ T cells are associated with virus reactivation, generalized susceptibility to opportunistic infections, and poor vaccine efficacy. As described below, CD4+ T cells influence effector and memory CD8+ T cell responses, humoral immunity, and the antimicrobial activity of macrophages and are involved in recruiting cells to sites of infection. This review summarizes a few key points about the dynamics of the CD4+ T cell response to virus infection, the positive role of pro-inflammatory cytokines in the differentiation of virus-specific CD4+ T cells, and new areas of investigation to improve vaccines against virus infection.
Collapse
Affiliation(s)
- Jason K Whitmire
- Carolina Vaccine Institute, The University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
68
|
Abstract
Our T cell repertoire is shaped by antigen encounter. From a naive T cell pool that contains millions of different T cells with unknown specificities, pathogen infection leads to selection of those T cells that can detect pathogen-derived antigens. Following clearance of infection, a population of memory T cells remains and protects the individual from severe reinfection. A central question in the field has been how the generation of long-lived memory T cells, versus short-lived ("terminally differentiated") T cells, is controlled. In this review we discuss the models that have been put forward to explain the generation of memory T cells after infection and the experimental evidence supporting these hypotheses. Based on the available data we propose a new model that stipulates that during immune responses T cells do not acquire different fates that determine their subsequent long-term survival but rather T cells assume different states that simply reflect the likelihood of future survival, states that can still be modulated by external signals.
Collapse
Affiliation(s)
- Carmen Gerlach
- The Netherlands Cancer Institute, Department of Immunology, Amsterdam, The Netherlands
| | | | | |
Collapse
|
69
|
Ha SP, Klemen ND, Kinnebrew GH, Brandmaier AG, Marsh J, Hangoc G, Palmer DC, Restifo NP, Cornetta K, Broxmeyer HE, Touloukian CE. Transplantation of mouse HSCs genetically modified to express a CD4-restricted TCR results in long-term immunity that destroys tumors and initiates spontaneous autoimmunity. J Clin Invest 2010; 120:4273-88. [PMID: 21084750 PMCID: PMC2993591 DOI: 10.1172/jci43274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/29/2010] [Indexed: 12/15/2022] Open
Abstract
The development of effective cancer immunotherapies has been consistently hampered by several factors, including an inability to instigate long-term effective functional antitumor immunity. This is particularly true for immunotherapies that focus on the adoptive transfer of activated or genetically modified mature CD8+ T cells. In this study, we sought to alter and enhance long-term host immunity by genetically modifying, then transplanting, mouse HSCs. We first cloned a previously identified tumor-reactive HLA-DR4-restricted CD4+ TCR specific for the melanocyte differentiation antigen tyrosinase-related protein 1 (Tyrp1), then constructed both a high-expression lentivirus vector and a TCR-transgenic mouse expressing the genes encoding this TCR. Using these tools, we demonstrated that both mouse and human HSCs established durable, high-efficiency TCR gene transfer following long-term transplantation into lethally irradiated mice transgenic for HLA-DR4. Recipients of genetically modified mouse HSCs developed spontaneous autoimmune vitiligo that was associated with the presence of a Th1-polarized memory effector CD4+ T cell population that expressed the Tyrp1-specific TCR. Most importantly, large numbers of CD4+ T cells expressing the Tyrp1-specific TCR were detected in secondary HLA-DR4-transgenic transplant recipients, and these mice were able to destroy subcutaneously administered melanoma cells without the aid of vaccination, immune modulation, or cytokine administration. These results demonstrate the creation of what we believe to be a novel translational model of durable lentiviral gene transfer that results in long-term effective immunity.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmunity
- CD4-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- HLA-DR4 Antigen/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunotherapy
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Receptors, Antigen, T-Cell/genetics
- Transduction, Genetic
- Vitiligo/genetics
- Vitiligo/immunology
Collapse
Affiliation(s)
- Sung P. Ha
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicholas D. Klemen
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Garrett H. Kinnebrew
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Andrew G. Brandmaier
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jon Marsh
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Giao Hangoc
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Douglas C. Palmer
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicholas P. Restifo
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth Cornetta
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Hal E. Broxmeyer
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher E. Touloukian
- Indiana University School of Medicine, Indianapolis, Indiana, USA.
Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
70
|
Youngblood B, Davis CW, Ahmed R. Making memories that last a lifetime: heritable functions of self-renewing memory CD8 T cells. Int Immunol 2010; 22:797-803. [PMID: 20732857 PMCID: PMC2946216 DOI: 10.1093/intimm/dxq437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/30/2010] [Indexed: 12/22/2022] Open
Abstract
Clonal expansion of virus-specific naive T cells during an acute viral infection results in the formation of memory CD8 T cells that provide the host with long-term protective immunity against the pathogen. Memory CD8 T cells display enhanced effector functions compared with their naive precursors, allowing them to respond more rapidly and effectively to antigen re-encounter. The enhanced functions of memory CD8 T cells are mediated by heritable changes in gene regulation. Expression of select transcription factors along with locus-specific epigenetic modifications are coupled to and are essential in the formation of memory-specific gene expression patterns. Here, we will review the changes in gene expression that accompany development of memory CD8 T cells and discuss chromatin modifications as a potential means for heritable propagation of these changes during homeostatic cell division of self-renewing memory CD8 T cells. Also, we will discuss therapies that manipulate heritable gene regulation as a potential mechanism to restore function to non-functional memory CD8 T cells to combat chronic viral infection.
Collapse
|
71
|
Holmes JP, Clifton GT, Patil R, Benavides LC, Gates JD, Stojadinovic A, Mittendorf EA, Ponniah S, Peoples GE. Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer 2010; 117:463-71. [PMID: 20845479 DOI: 10.1002/cncr.25586] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 11/08/2022]
Abstract
BACKGROUND The authors are conducting clinical trials of the HER-2/neu E75-peptide vaccine in clinically disease-free breast cancer (BC) patients. Their phase 1-2 trials revealed that the E75 + granulocyte-macrophage colony-stimulating factor (GM-CSF) vaccine is safe and effective in stimulating clonal expansion of E75-specific CD8(+) T cells. They assessed the need for and response to a booster after completion of primary vaccination series. METHODS BC patients enrolled in the E75 vaccine trials who were ≥6 months from completion of their primary vaccination series were offered boosters with E75 + GM-CSF. Patients were monitored for toxicity. E75-specific CD8(+) T cells were quantified using the human leukocyte antigen-A2:immunoglobulin G dimer before and after boosting. RESULTS Fifty-three patients received the vaccine booster. Median time from primary vaccination series was 9 months (range, 6-35 months), and median residual E75-specific immunity was 0.70% (range, 0-3.49%) CD8(+) lymphocytes. Elevated residual immunity (ERI) (CD8(+) E75-specific T cells >0.5%) was seen in 94.4% of patients at 6 months from primary vaccination series versus 48% of patients at >6 months (P = .002). The booster was well tolerated, with only grade 1 and 2 toxicity observed. Local reactions were more robust in patients receiving the booster at 6 months from primary vaccination series compared with those at >6 months (99.4 ± 6.1 mm vs 81.8 ± 4.1 mm, P = .01). In patients lacking ERI, 85% had increased ERI after vaccination (P = .0014). CONCLUSIONS The HER-2/neu E75 peptide vaccine E75 stimulates specific immunity in disease-free BC patients. However, immunity wanes with time. A vaccine booster is safe and effective in stimulating E75-specific immunity in those patients without ERI. These results suggest that the booster may be most effective at 6 months after completion of the primary vaccination series.
Collapse
Affiliation(s)
- Jarrod P Holmes
- Department of Hematology and Medical Oncology, Naval Medical Center San Diego, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Serine proteases control a wide variety of physiological and pathological processes in multi-cellular organisms, including blood clotting, cancer, cell death, osmoregulation, tissue remodeling, and immunity to infection. Cytotoxic T lymphocytes (CTLs) are required for adaptive cell-mediated immunity to intracellular pathogens by killing infected cells and through the development of memory T cells. Serine proteases not only allow a CTL to kill but also impose homeostatic control on CTL number. Serine protease inhibitors (serpins) are the physiological regulators of serine proteases' activity. In this review, I discuss the role of serpins in controlling the recognition of antigen, effector function, and homeostatic control of CTLs through the inhibition of physiological serine protease targets. An emerging view of serpins is that they are important promoters of cellular viability through their inhibition of executioner proteases. This view is discussed in the context of the T-lymphocyte survival during effector responses and the development and persistence of long-lived memory T cells. Given the important role serpins play in CTL immunity, I discuss the potential for developing new immunotherapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.
Collapse
|
73
|
Abstract
SUMMARY The regulation of lymphocyte homeostasis is critical for the development and formation of productive immune responses. Cell numbers must be maintained to allow sufficient numbers of lymphocytes to combat foreign pathogens but prevent the accumulation of excess lymphocytes that may increase the risk of developing autoimmunity or neoplasia. Cell extrinsic growth factors are essential to maintain homeostasis and cell survival, and it has become increasingly apparent that a key mechanism of this control is through regulation of cell metabolism. The metabolic state of T cells can have profound influences on cell growth and survival and even differentiation. In particular, resting T cells utilize an energy efficient oxidative metabolism but shift to a highly glycolytic metabolism when stimulated to grow and proliferate by pathogen encounter. After antigen clearance, T cells must return to a more quiescent oxidative metabolism to support T-cell memory. This review highlights how these metabolic changes may be intricately involved with both T-cell growth and death in the control of homeostasis and immunity.
Collapse
Affiliation(s)
- Ryan D. Michalek
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey C. Rathmell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
74
|
Abstract
The control of the differentiation pathways followed by responding CD8(+) T cells to produce protective memory cells has been intensely studied. Recent developments have identified heterogeneity at the effector cytotoxic T-lymphocyte level within which a bona fide memory cell precursor has emerged. The challenge now is to identify the cellular and molecular factors that control this developmental pathway. This review considers aspects of the regulation of the induction of effectors, the transition of effectors to memory cells, and the dynamics of the memory population.
Collapse
Affiliation(s)
- Leo Lefrançois
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, UCONN Health Center, Farmington, CT 06030 1319, USA.
| | | |
Collapse
|
75
|
Abstract
CD8(+) T cells (also called cytotoxic T lymphocytes) play a major role in protective immunity against many infectious pathogens and can eradicate malignant cells. The path from naive precursor to effector and memory CD8(+) T-cell development begins with interactions between matured antigen-bearing dendritic cells (DCs) and antigen-specific naive T-cell clonal precursors. By integrating differences in antigenic, costimulatory, and inflammatory signals, a developmental program is established that governs many key parameters associated with the ensuing response, including the extent and magnitude of clonal expansion, the functional capacities of the effector cells, and the size of the memory pool that survives after the contraction phase. In this review, we discuss the multitude of signals that drive effector and memory CD8(+) T-cell differentiation and how the differences in the nature of these signals contribute to the diversity of CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Ramon Arens
- Laboratory of Cellular Immunology, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Stephen P. Schoenberger
- Laboratory of Cellular Immunology, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
76
|
Furmanov K, Elnekave M, Lehmann D, Clausen BE, Kotton DN, Hovav AH. The role of skin-derived dendritic cells in CD8+ T cell priming following immunization with lentivectors. THE JOURNAL OF IMMUNOLOGY 2010; 184:4889-97. [PMID: 20357252 DOI: 10.4049/jimmunol.0903062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although skin dendritic cells (DCs) have been shown to directly present Ag to CD8(+) T cells after intradermal immunization with lentivectors, the contribution of the different skin DC subsets to this process remains unclear. Using langerin-diphtheria toxin receptor transgenic mice we demonstrated that ablation of langerhans cells and langerin-expressing positive dermal DCs (Ln(+)dDCs) did not interfere with the generation of CD8(+) T cells by lentiviral vectors. Consistent with these findings, the absence of langerhans cells and Ln(+)dDCs did not hamper the presentation level of lentiviral-derived Ag by skin DCs in vitro. We further demonstrated that only dDCs and Ln(+)dDCs were capable of presenting Ag, however, the number of dDCs migrating to the draining lymph nodes was 6-fold higher than that of Ln(+)dDCs. To study how the duration of DC migration influences CD8(+) T cell responses, we analyzed the kinetics of Ag expression at the injection site and manipulated DC migration by excising the injected skin at various times after immunization. A low level of Ag expression was seen 1 wk after the immunization; peaked during week 2, and was considerably cleared by week 3 via a perforin-dependent fas-independent mechanism. Removing the injection site 3 or 5 d, but not 10 d, after the immunization, resulted in a reduced CD8(+) T cell response. These findings suggest that dDCs are the main APCs active after intradermal lentiviral-mediated immunization, and migration of dDCs in the initial 10-d period postimmunization is required for optimal CD8(+) T cell induction.
Collapse
Affiliation(s)
- Karina Furmanov
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
77
|
Sercan O, Stoycheva D, Hämmerling GJ, Arnold B, Schüler T. IFN-gamma receptor signaling regulates memory CD8+ T cell differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2855-62. [PMID: 20164422 DOI: 10.4049/jimmunol.0902708] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IFN-gamma regulates multiple processes in the immune system. Although its antimicrobial effector functions are well described, less is known about the mechanisms by which IFN-gamma regulates CD8(+) T cell homeostasis. With the help of adoptive T cell transfers, we show in this study that IFN-gammaR signaling in CD8(+) T cells is dispensable for expansion, contraction, and memory differentiation in response to peptide vaccination. In contrast, host IFN-gammaR signaling counterregulates CD8(+) T cell responses and the generation of effector memory T cell processes, which are partially regulated by CD11b(+) cells. Similar to vaccination-induced proliferation, host IFN-gammaR signaling limits the expansion of naive CD8(+) T cells and their differentiation into effector memory-like T cells in lymphopenic mice. In contrast to peptide vaccination, IFN-gammaR signaling in CD8(+) T cells contributes to memory fate decision in response to lymphopenia, an effect that is fully reversed by high-affinity TCR ligands. In conclusion, we show that host IFN-gammaR signaling controls the magnitude of CD8(+) T cell responses and subsequent memory differentiation under lymphopenic and nonlymphopenic conditions. In contrast, IFN-gammaR signaling in CD8(+) T cells does not affect cell numbers under either condition, but it directs memory fate decision in response to weak TCR ligands.
Collapse
Affiliation(s)
- Ozen Sercan
- German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
78
|
Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 2010; 32:79-90. [PMID: 20096607 DOI: 10.1016/j.immuni.2009.11.012] [Citation(s) in RCA: 620] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 08/12/2009] [Accepted: 11/03/2009] [Indexed: 12/24/2022]
Abstract
Interleukin(IL)-2 and inflammation regulate effector and memory cytolytic T-lymphocyte (CTL) generation during infection. We demonstrate a complex interplay between IL-2 and inflammatory signals during CTL differentiation. IL-2 stimulation induced the transcription factor eomesodermin (Eomes), upregulated perforin (Prf1) transcription, and repressed re-expression of memory CTL markers Bcl6 and IL-7Ralpha. Binding of Eomes and STAT5 to Prf1 cis-regulatory regions correlated with transcriptional initiation (increased recruitment of RNA polymerase II to the Prf1 promoter). Inflammation (CpG, IL-12) enhanced expression of IL-2Ralpha and the transcription factor T-bet, but countered late Eomes and perforin induction while preventing IL-7Ralpha repression by IL-2. After infection of mice with lymphocytic choriomeningitis virus, IL-2Ralpha-deficient effector CD8(+) T cells expressed more Bcl6 but less perforin and granzyme B, formed fewer KLRG-1(+) and T-bet-expressing CTL, and killed poorly. Thus, inflammation influences both effector and memory CTL differentiation, whereas persistent IL-2 stimulation promotes effector at the expense of memory CTL development.
Collapse
|
79
|
Kalia V, Sarkar S, Ahmed R. CD8 T-Cell Memory Differentiation during Acute and Chronic Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:79-95. [DOI: 10.1007/978-1-4419-6451-9_7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
80
|
Kemp RA, Pearson CF, Cornish GH, Seddon BP. Evidence of STAT5-dependent and -independent routes to CD8 memory formation and a preferential role for IL-7 over IL-15 in STAT5 activation. Immunol Cell Biol 2009; 88:213-9. [PMID: 19949423 PMCID: PMC2842934 DOI: 10.1038/icb.2009.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-7 and IL-15 have non-redundant roles in promoting development of memory CD8+ T cells. STAT5 is activated by receptors of both cytokines and has also been implicated as a requirement for generation of memory. To determine whether STAT5 activity was required for IL-7 and IL-15-mediated generation of memory, we expressed either wild type (WT) or constitutively active (CA) forms of STAT5a in normal effector cells and then observed their ability to form memory in cytokine replete or deficient hosts. Receptor independent CA-STAT5a significantly enhanced memory formation in the absence of either cytokine but did not mediate complete rescue. Interestingly, WT-STAT5a expression enhanced memory formation in a strictly IL-7 dependent manner, suggesting that IL-7 is a more potent activator of STAT5 than IL-15 in vivo. These data suggest that the non-redundant requirement for IL-7 and IL-15 is mediated through differential activation of both STAT5-dependent and STAT5-independent pathways.
Collapse
Affiliation(s)
- Roslyn A Kemp
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | |
Collapse
|
81
|
Lin CT, Yen CF, Shaw SW, Yen TC, Chen YJ, Soong YK, Lai CH. Gene gun administration of therapeutic HPV DNA vaccination restores the efficacy of prolonged defrosted viral based vaccine. Vaccine 2009; 27:7352-8. [DOI: 10.1016/j.vaccine.2009.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 09/05/2009] [Accepted: 09/13/2009] [Indexed: 01/29/2023]
|
82
|
Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B, Ferrand C, Debré P, Sidi D, Appay V. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest 2009; 119:3070-8. [PMID: 19770514 DOI: 10.1172/jci39269] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/16/2009] [Indexed: 12/31/2022] Open
Abstract
While the thymus is known to be essential for the initial production of T cells during early life, its contribution to immune development remains a matter of debate. In fact, during cardiac surgery in newborns, the thymus is completely resected to enable better access to the heart to correct congenital heart defects, suggesting that it may be dispensable during childhood and adulthood. Here, we show that young adults thymectomized during early childhood exhibit an altered T cell compartment. Specifically, absolute CD4+ and CD8+ T cell counts were decreased, and these T cell populations showed substantial loss of naive cells and accumulation of oligoclonal memory cells. A subgroup of these young patients (22 years old) exhibited a particularly altered T cell profile that is usually seen in elderly individuals (more than 75 years old). This condition was directly related to CMV infection and the induction of strong CMV-specific T cell responses, which may exhaust the naive T cell pool in the absence of adequate T cell renewal from the thymus. Together, these marked immunological alterations are reminiscent of the immune risk phenotype, which is defined by a cluster of immune markers predictive of increased mortality in the elderly. Overall, our data highlight the importance of the thymus in maintaining the integrity of T cell immunity during adult life.
Collapse
Affiliation(s)
- Delphine Sauce
- Infections and Immunity, INSERM UMRS 945, Avenir Group, Hôpital Pitié-Salpêtrière, UPMC University of Paris 06, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Bekiaris V, Gaspal F, Kim MY, Withers DR, Sweet C, Anderson G, Lane PJL. Synergistic OX40 and CD30 signals sustain CD8+ T cells during antigenic challenge. Eur J Immunol 2009; 39:2120-5. [PMID: 19609980 DOI: 10.1002/eji.200939424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prior to acquiring a memory phenotype, antigen-activated CD8(+) T cells need to expand and then undergo a contraction phase. Utilizing two different antigenic stimuli, we provide evidence that the tumor necrosis factor receptors OX40 and CD30 integrate synergistic signals during the expansion phase to help maintain CD8(+) effectors. Thus, double deficiency in OX40 and CD30 leads to CD8(+) cell loss during expansion after immunization either with OVA or with murine CMV. Following their contraction, OX40- and CD30-deficient CD8(+) T cells persist normally in CMV-infected mice. In contrast, persistence after OVA challenge is dependent on OX40 and CD30. Collectively, our data define the important role of both OX40 and CD30 during CD8(+) T-cell activation, and show that long-term CD8 persistence after contraction is regulated not only by stimulatory receptors but also by the nature of the antigen or how the antigen is presented.
Collapse
Affiliation(s)
- Vasileios Bekiaris
- Medical Research Council Centre for Immune Regulation, Birmingham Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
84
|
Mattoo H, Faulkner M, Kandpal U, Das R, Lewis V, George A, Rath S, Durdik JM, Bal V. Naive CD4 T cells from aged mice show enhanced death upon primary activation. Int Immunol 2009; 21:1277-89. [PMID: 19748905 DOI: 10.1093/intimm/dxp094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poor T cell immunity is one of the many defects seen in elderly humans and aged (Ad) mice. We report that naive CD4 T cells from aged mice (ANCD4 cells) showed greater apoptosis upon primary activation than those from young (Yg) mice, with loss of mitochondrial membrane potential, poor activation of Rel family transcription factors and increased DNA damage. Their ability to enhance glycolysis, produce lactate and induce autophagy following activation was also compromised. ANCD4 cells remained susceptible to death beyond first cell division. Activated ANCD4 cells also showed poor transition to a 'central memory' (CM) CD44(high), CD62L(high) phenotype in vitro. This correlated with low proportions of CM cells in Ad mice in vivo. Functionally, too, IFN-gamma responses recalled from T cells of immunized Ad mice, poor to begin with, worsened with time as compared with Yg mice. Thus, ANCD4 cells handle activation-associated stress very poorly due to multiple defects, possibly contributing to poor formation of long-lasting memory.
Collapse
Affiliation(s)
- Hamid Mattoo
- National Institute of Immunology, Aruna Asaf Ali, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
The adaptive immune system has evolved a unique capacity to remember a pathogen through the generation of memory T cells, which rapidly protect the host in the event of reinfection. How memory T cells develop and the relationship between effector and memory T cells has been actively debated in the literature for many years and several models have been proposed to explain the divergent developmental fates of T cell progeny. Here, Nature Reviews Immunology asks four leading researchers in the field to provide their thoughts and opinions on the ontogeny of memory T cells and its implications for vaccine design.
Collapse
|
86
|
Serre K, Mohr E, Toellner KM, Cunningham AF, Bird R, Khan M, MacLennan ICM. Early simultaneous production of intranodal CD4 Th2 effectors and recirculating rapidly responding central-memory-like CD4 T cells. Eur J Immunol 2009; 39:1573-86. [PMID: 19462378 DOI: 10.1002/eji.200838922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study characterizes the diversity of CD4 Th cells produced during a Th2 response in vivo. Kinetics of effector and memory cell differentiation by mouse OVA-specific CD4 T cells was followed during primary responses to alum-precipitated OVA. The complexity of the CD4 T response was assessed in nodes draining and distant from the site of immunization for phenotype, location and function. By 3 days IL-4-producing effector CD4 T cells developed in the draining node and a proportion of the responding cells had migrated to B-cell follicles, while yet others had left the draining node. Some of these early migrant cells were recirculating cells with a central memory phenotype. These had divided four or more times in the draining node before migrating to distant nodes not exposed to antigen. We questioned the responsiveness of these early central-memory-like cells on secondary antigen challenge at sites distant to the primary immunization. They re-entered cell cycle and migrated to B-cell follicles, much more rapidly than naive CD4 T cells and could still be induced to produce IL-4. Their production and survival were independent of the starting frequency of antigen-specific CD4 T cells. Thus intranodal effector cells and recirculating, rapidly responding central-memory-like cells emerged simultaneously from the third day of a primary Th2 response.
Collapse
MESH Headings
- Animals
- Animals, Congenic
- Antigens, CD/analysis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Cell Differentiation/immunology
- Cell Movement/immunology
- Cell Proliferation
- Gene Expression/immunology
- Immunization, Secondary
- Immunologic Memory/immunology
- Immunophenotyping
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Kinetics
- Leukocyte Common Antigens/genetics
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, CXCR5/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transplantation Chimera/immunology
- Vaccination
Collapse
Affiliation(s)
- Karine Serre
- MRC Centre for Immune Regulation, the IBR, Department of Immunology, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
87
|
Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 2009; 87:300-8. [PMID: 19308073 DOI: 10.1038/icb.2009.16] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our approach to vaccination against influenza is unique. For no other pathogen do we construct and produce a new vaccine every year in the face of uncertainty about the strains that will be circulating when it is used. The huge global cooperative effort that underpins this process reflects our awareness of the need to control this major pathogen. Moreover, the threat of devastation by a pandemic due to a newly emerging viral subtype has triggered an intense effort to improve and accelerate the production of vaccines for use if a pandemic arises. However, type A influenza viruses responsible for seasonal epidemics and those with the potential to cause a pandemic share amino acid sequences that form the targets of cytotoxic T lymphocytes (CTL). CTL activated by currently circulating viruses, therefore, offer a possible means to limit the impact of infection with future variant seasonal strains and even new subtypes. This review examines how cross-protective CTL can be exploited to improve influenza vaccination and issues that need to be considered when attempting to induce this type of immunity. We discuss the role of CTL responses in viral control and review the current knowledge relating to specificity and longevity of memory CD8(+) T cells, how vaccine antigen can be loaded into antigen-presenting cells to prime these responses and factors influencing the class of response induced. Application of these principles to the next generation of influenza vaccines should lead to much greater control of infection.
Collapse
|
88
|
Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH. Stem cell-like plasticity of naïve and distinct memory CD8+ T cell subsets. Semin Immunol 2009; 21:62-8. [PMID: 19269852 DOI: 10.1016/j.smim.2009.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022]
Abstract
Most models regarding the 'clonal' origin of CD8(+) T cell effector and memory subset diversification suggest that during the first contact of a naïve T cell with the priming antigen-presenting cell major decisions for subsequent differentiation are made. Data using novel single-cell T cell tracking technologies demonstrate that a single naïve CD8(+) T cell can give rise to virtually all different subtypes of effector and memory T cells, and direct major determinants of subset diversification to the time period beyond the first cell division. Thereby, some 'stem cell-like' characteristics typical for naïve T cells are probably still maintained within distinct subsets of memory T cells. These observations have direct consequences for clinical applications like adoptive T cell therapy.
Collapse
Affiliation(s)
- Christian Stemberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Teixeiro E, Daniels MA, Hamilton SE, Schrum AG, Bragado R, Jameson SC, Palmer E. Different T cell receptor signals determine CD8+ memory versus effector development. Science 2009; 323:502-5. [PMID: 19164748 DOI: 10.1126/science.1163612] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following infection, naïve CD8+ T cells bearing pathogen-specific T cell receptors (TCRs) differentiate into a mixed population of short-lived effector and long-lived memory T cells to mediate an adaptive immune response. How the TCR regulates memory T cell development has remained elusive. Using a mutant TCR transgenic model, we found that point mutations in the TCR beta transmembrane domain (betaTMD) impair the development and function of CD8+ memory T cells without affecting primary effector T cell responses. Mutant T cells are deficient in polarizing the TCR and in organizing the nuclear factor kappaB signal at the immunological synapse. Thus, effector and memory states of CD8+ T cells are separable fates, determined by differential TCR signaling.
Collapse
Affiliation(s)
- Emma Teixeiro
- Experimental Transplantation Immunology, Department of Biomedicine, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
T cells that respond quickly to infection and later to reinfection arise from a single precursor cell type.
Collapse
Affiliation(s)
- Sonia Feau
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Stephen P. Schoenberger
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
91
|
Bancos S, Cao Q, Bowers WJ, Crispe IN. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4. Cell Immunol 2009; 257:44-54. [PMID: 19306992 PMCID: PMC2727064 DOI: 10.1016/j.cellimm.2009.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 01/19/2023]
Abstract
The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.
Collapse
Affiliation(s)
- Simona Bancos
- David H Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642USA.
| | | | | | | |
Collapse
|
92
|
Laouar A, Manocha M, Haridas V, Manjunath N. Concurrent generation of effector and central memory CD8 T cells during vaccinia virus infection. PLoS One 2008; 3:e4089. [PMID: 19116651 PMCID: PMC2605255 DOI: 10.1371/journal.pone.0004089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/27/2008] [Indexed: 11/24/2022] Open
Abstract
It is generally thought that during the contraction phase of an acute anti-viral T cell reponse, the effector T cells that escape activation-induced cell death eventually differentiate into central memory T cells over the next several weeks. Here we report that antigen-specific CD8T cells with the phenotype and function of central memory cells develop concomitantly with effector T cells during vaccinia virus (vv) infection. As soon as 5 days after an intraperitoneal infection with vv, we could identify a subset of CD44hi and CD62L+ vv-specific CD8 T cells in the peritoneal exudate lymphocytes. This population constituted approximately 10% of all antigen-specific T cells and like central memory T cells, they also expressed high levels of CCR7 and IL-7R but expressed little granzyme B. Importantly, upon adoptive transfer into naïve congenic hosts, CD62L+, but not CD62L− CD8 T cells were able to expand and mediate a rapid recall response to a new vv challenge initiated 6 weeks after transfer, confirming that the CD62L+ vv-specific CD8 T cells are bonafide memory cells. Our results are thus consistent with the branched differentiation model, where effector and memory cells develop simultaneously. These results are likely to have implications in the context of vaccine design, particularly those based on vaccinia virus recombinants.
Collapse
Affiliation(s)
- Amale Laouar
- Immune Disease Institute, Inc and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of Ameirca
- * E-mail: (AL); (NM)
| | - Monika Manocha
- Immune Disease Institute, Inc and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of Ameirca
| | - Viraga Haridas
- Immune Disease Institute, Inc and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of Ameirca
| | - N. Manjunath
- Immune Disease Institute, Inc and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of Ameirca
- * E-mail: (AL); (NM)
| |
Collapse
|
93
|
Abstract
Immune reconstitution following haematopoietic stem cell transplantation (SCT) is an often slow and incomplete process that leads to increased risk of infection and malignant disease. Immunization in SCT is frequently unsuccessful due to the prolonged lymphopenia, especially of CD4 T cells, seen following transplant. The transfusion of T cells, also called 'adoptive T-cell therapy', has the potential to enhance anti-tumour and overall immunity, and augment vaccine efficacy in the post-transplant setting. Recent advances in tissue culture, cellular immunology and tumour biology are guiding new approaches to adoptive T-cell therapy. This chapter will discuss the challenges that face the field before adoptive T-cell therapy can be translated into routine clinical practice.
Collapse
Affiliation(s)
- Nicole A Aqui
- Abramson Family Cancer Research Institute and the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-1416, USA.
| | | |
Collapse
|
94
|
Haining WN, Ebert BL, Subrmanian A, Wherry EJ, Eichbaum Q, Evans JW, Mak R, Rivoli S, Pretz J, Angelosanto J, Smutko JS, Walker BD, Kaech SM, Ahmed R, Nadler LM, Golub TR. Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:1859-68. [PMID: 18641323 DOI: 10.4049/jimmunol.181.3.1859] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After Ag encounter, naive lymphocytes differentiate into populations of memory cells that share a common set of functions including faster response to Ag re-exposure and the ability to self-renew. However, memory lymphocytes in different lymphocyte lineages are functionally and phenotypically diverse. It is not known whether discrete populations of T and B cells use similar transcriptional programs during differentiation into the memory state. We used cross-species genomic analysis to examine the pattern of genes up-regulated during the differentiation of naive lymphocytes into memory cells in multiple populations of human CD4, CD8, and B cell lymphocytes as well as two mouse models of memory development. We identified and validated a signature of genes that was up-regulated in memory cells compared with naive cells in both human and mouse CD8 memory differentiation, suggesting marked evolutionary conservation of this transcriptional program. Surprisingly, this conserved CD8 differentiation signature was also up-regulated during memory differentiation in CD4 and B cell lineages. To validate the biologic significance of this signature, we showed that alterations in this signature of genes could distinguish between functional and exhausted CD8 T cells from a mouse model of chronic viral infection. Finally, we generated genome-wide microarray data from tetramer-sorted human T cells and showed profound differences in this differentiation signature between T cells specific for HIV and those specific for influenza. Thus, our data suggest that in addition to lineage-specific differentiation programs, T and B lymphocytes use a common transcriptional program during memory development that is disrupted in chronic viral infection.
Collapse
Affiliation(s)
- W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Northrop JK, Wells AD, Shen H. Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:865-8. [PMID: 18606637 DOI: 10.4049/jimmunol.181.2.865] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Memory CD8 T cells, unlike their naive precursors, are capable of rapidly producing high levels of cytokines, killing target cells, and proliferating into numerous secondary effectors immediately upon Ag encounter. This ready-to-respond state contributes to their superior ability to confer protective immunity, yet the underlying molecular basis remains unknown. In this study, we show that memory CD8 T cells have increased histone acetylation compared with naive CD8 T cells; however, those activated without CD4 T cell help ("unhelped") remain hypoacetylated and fail to develop into functional, protective memory. Treatment with a histone deacetylase inhibitor during activation results in increased histone acetylation in unhelped CD8 T cells and restores their ability to differentiate into functional memory cells capable of immediate cytokine production and providing protective immunity. These results demonstrate that CD4 T help-dependent chromatin remodeling provides a molecular basis for the enhanced responsiveness of memory CD8 T cells.
Collapse
Affiliation(s)
- John K Northrop
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
96
|
High-throughput gene expression profiling of memory differentiation in primary human T cells. BMC Immunol 2008; 9:44. [PMID: 18673556 PMCID: PMC2529265 DOI: 10.1186/1471-2172-9-44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/01/2008] [Indexed: 11/17/2022] Open
Abstract
Background The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1) the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2) a suitable cell-line representative of naive T cells. Results Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.
Collapse
|
97
|
Motegi A, Kinoshita M, Inatsu A, Habu Y, Saitoh D, Seki S. IL-15-induced CD8+CD122+ T cells increase antibacterial and anti-tumor immune responses: implications for immune function in aged mice. J Leukoc Biol 2008; 84:1047-56. [PMID: 18653461 DOI: 10.1189/jlb.0807530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously proposed that mouse CD8(+)CD122(+) T cells and human CD57(+) T cells, which increase with age and exhibit potent IFN-gamma production, represent a double-edged sword as they play critical roles in host defense and the lethal IL-12/LPS-induced generalized Shwartzman reaction (GSR). However, our proposal was based solely on comparisons of young and old mice. In this study, we attempted to increase CD8(+)CD122(+) T cells in young mice with exogenous IL-15 and confirm their countervailing functions in young mice. After young mice (6 weeks) were injected with IL-15, they showed significant increases in CD8(+)CD122(+) T cells in the liver and spleen. Liver CD8(+)CD122(+) T cells from IL-15-pretreated mice had a potent capacity to produce IFN-gamma after IL-12 injection or Escherichia coli infection. IL-15-pretreated mice showed increased survival to E. coli infections and enhanced anti-tumor activities against liver metastatic EL4 cells, as well as an exacerbation of the GSR. Correspondingly, liver CD8(+)CD122(+) T cells produced more perforin than CD8(+)CD122(-) T cells in EL4-inoculated mice. Unexpectedly, comparable IL-15 treatment did not induce further increases in CD8(+)CD122(+) T cells in aged mice and did not enhance their defenses against bacterial infection or tumor growth. Interestingly, however, nontreated, aged mice (50 weeks) showed twofold higher IL-15 levels (but not TNF or IFN-gamma) in liver homogenates compared with young mice. Our results further support that CD8(+)CD122(+) T cells, which are increased physiologically or therapeutically by IL-15, are involved in antibacterial immunity, anti-tumor immunity, and the GSR.
Collapse
Affiliation(s)
- Akira Motegi
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | | | | | | | | | | |
Collapse
|
98
|
van Stipdonk M, Sluijter M, Han W, Offringa R. Development of CTL memory despite arrested clonal expansion. Eur J Immunol 2008; 38:1839-46. [DOI: 10.1002/eji.200737974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99
|
Flexibility accompanies commitment of memory CD4 lymphocytes derived from IL-4 locus-activated precursors. Proc Natl Acad Sci U S A 2008; 105:9307-12. [PMID: 18591677 DOI: 10.1073/pnas.0704807105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differentiation of T helper (Th) subset 2 effector lymphocytes is thought to foreclose on IFN-gamma gene expression. Using an IL-4 locus modified to detect transcriptional induction of this effector cytokine gene in developing Th2 cells, we show here that these cells contributed effectively to a long-term memory population. A memory CD4 subset formed efficiently from an activated population after transcriptional induction of the IL-4 locus and differentiation into an IL-4-producing subset with Th2 characteristics. Memory lymphocytes derived from Th2 cells with IL-4 locus activation remained committed to transcriptional competence of Th2 cytokine genes when reactivated and cultured under strong Th1-polarizing conditions. This commitment to transcriptional competence at Th2 cytokine gene loci upon recall activation indicates that linear differentiation is a substantial component of type 2 memory. Strikingly, however, descendants of the Th2 population could turn on IFN-gamma expression when reactivated after a quiescent period, revealing an unexpected flexibility allowing activation of the forbidden IFN-gamma gene after reactivation and growth.
Collapse
|
100
|
Usharauli D, Kamala T. Brief antigenic stimulation generates effector CD8 T cells with low cytotoxic activity and high IL-2 production. THE JOURNAL OF IMMUNOLOGY 2008; 180:4507-13. [PMID: 18354172 DOI: 10.4049/jimmunol.180.7.4507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is currently believed that a brief antigenic stimulation is sufficient to induce CD8 T cells to complete their differentiation program, become effector T cells, and subsequently generate memory. Because this concept was derived from studies in which only a single effector function was analyzed (either IFN-gamma production or target cell lysis), we wondered whether monitoring for multiple effector functions might reveal novel characteristics of effector CD8 T cells elicited by brief or prolonged Ag exposure. Using an in vitro system to generate effector T cells and an in vivo adoptive transfer model to track donor CD8 T cells, we found that the differentiation programs acquired by CD8 T cells after brief or prolonged antigenic stimulation were different. Although the frequencies of IFN-gamma and TNF-alpha producers were comparable for both effector CD8 T cell populations, there were major differences in cytotoxic potential and IL-2 production. Whereas prolonged (>24 h) Ag exposure stimulated effector CD8 T cells with high cytotoxic activity and low IL-2 production, brief (<24 h) stimulation generated effector CD8 T cells with low cytotoxic activity and high IL-2 production. The latter effector T cells rapidly converted into central memory-like CD8 T cells, exhibited long-term survival in adoptively transferred hosts, and gave robust recall responses upon Ag challenge. These data suggest that not all functions of effector CD8 T cells are equally inherited after brief or prolonged antigenic stimulation.
Collapse
Affiliation(s)
- David Usharauli
- T Cell Tolerance and Memory Section (Ghost Lab), Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|