51
|
Franchi F, Mustafa S, Ariztegui D, Chirindja FJ, Di Capua A, Hussey S, Loizeau JL, Maselli V, Matanó A, Olabode O, Pasqualotto F, Sengwei W, Tirivarombo S, Van Loon AF, Comte JC. Prolonged drought periods over the last four decades increase flood intensity in southern Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171489. [PMID: 38453074 DOI: 10.1016/j.scitotenv.2024.171489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
In semi-arid sub-Saharan Africa, climate change and the intensification of human activities have altered the hydrological balance and modified the recurrence of extreme hydroclimatic events, such as droughts and floods. The geomorphological heterogeneity of river catchments across the region, the variable human pressure, and the lack of continuous hydroclimatic data preclude the definition of proper mitigation strategies, with a direct effect on the sustainability of rural communities. Here, for the first time in Africa, we characterize hydrological extreme events using a multidisciplinary approach that includes sedimentary data from dams. We focus on the Limpopo River basin to evaluate which factors control flood magnitude since the 1970. Extreme flood events were identified across the basin in 1988-89, 1995-96, 1999-2000, 2003-04, 2010-11, 2013-14 and 2016-17. The statistical analysis of sedimentary flood records revealed a dramatic increase in their magnitude over the studied period. A positive correlation between maximum river flow and antecedent prolonged drought conditions was found in South Africa and Mozambique. Most importantly, since 1980, we observed the likely decoupling of extreme floods from the magnitude of La Niña events, suggesting that the natural interannual variability driven by El Niño-Southern Oscillation (ENSO) has been disrupted by climate changes and human activities.
Collapse
Affiliation(s)
- Fulvio Franchi
- Earth and Environmental Science Department, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana; Dipartimento di scienze della Terra e Geoambientali, Università degli studi di Bari - Aldo Moro, Bari, Italy; School of Geosciences, University of the Witwatersrand, Braamfontein, 2001 Johannesburg, South Africa.
| | - Syed Mustafa
- Hydrology and Quantitative Water Management Group, Wageningen University & Research, the Netherlands
| | - Daniel Ariztegui
- Department of Earth Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland
| | - Farisse J Chirindja
- Geology Department, Eduardo Mondlane University, Av. Mozambique km 1.5, P.O. Box 273, Maputo, Mozambique
| | - Andrea Di Capua
- CNR IGAG - Institute of Environmental Geology and Geoengineering, Via M. Bianco 9, 20131 Milan, Italy; University of Insubria, Department of Science and High Technology, Via Valleggio 11, Como, Italy
| | | | - Jean-Luc Loizeau
- Department of Earth Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland
| | - Vittorio Maselli
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Alessia Matanó
- Vrije Universiteit, Institute for Environmental Studies, De Boelelaan 1111, 1081 HV Amsterdam, the Netherlands
| | - Oluwaseun Olabode
- School of Geosciences, University of Aberdeen, King's College, AB24 3FX Aberdeen, UK
| | - Florian Pasqualotto
- University of Insubria, Department of Science and High Technology, Via Valleggio 11, Como, Italy
| | - Whatmore Sengwei
- Mathematic and Statistics Department, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Sithabile Tirivarombo
- Dipartimento di scienze della Terra e Geoambientali, Università degli studi di Bari - Aldo Moro, Bari, Italy
| | - Anne F Van Loon
- Vrije Universiteit, Institute for Environmental Studies, De Boelelaan 1111, 1081 HV Amsterdam, the Netherlands
| | - Jean-Christophe Comte
- School of Geosciences, University of Aberdeen, King's College, AB24 3FX Aberdeen, UK.
| |
Collapse
|
52
|
Paraskevopoulos AW, Sanders NJ, Resasco J. Temperature-driven homogenization of an ant community over 60 years in a montane ecosystem. Ecology 2024; 105:e4302. [PMID: 38594213 DOI: 10.1002/ecy.4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Identifying the mechanisms underlying the changes in the distribution of species is critical to accurately predict how species have responded and will respond to climate change. Here, we take advantage of a late-1950s study on ant assemblages in a canyon near Boulder, Colorado, USA, to understand how and why species distributions have changed over a 60-year period. Community composition changed over 60 years with increasing compositional similarity among ant assemblages. Community composition differed significantly between the periods, with aspect and tree cover influencing composition. Species that foraged in broader temperature ranges became more widespread over the 60-year period. Our work highlights that shifts in community composition and biotic homogenization can occur even in undisturbed areas without strong habitat degradation. We also show the power of pairing historical and contemporary data and encourage more mechanistic studies to predict species changes under climate change.
Collapse
Affiliation(s)
- Anna W Paraskevopoulos
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
53
|
Oborová V, Šugerková M, Gvoždík L. Sensitivity of amphibian embryos to timing and magnitude of present and future thermal extremes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:377-388. [PMID: 38327237 DOI: 10.1002/jez.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Ongoing climate change is increasing the frequency and intensity of extreme temperature events. Unlike the gradual increase on average environmental temperatures, these short-term and unpredictable temperature extremes impact population dynamics of ectotherms through their effect on individual survival. While previous research has predominantly focused on the survival rate of terrestrial embryos under acute heat stress, less attention has been dedicated to the nonlethal effects of ecologically realistic timing and magnitude of temperature extremes on aquatic embryos. In this study, we investigated the influence of the timing and magnitude of current and projected temperature extremes on embryonic life history traits and hatchling behavior in the alpine newt, Ichthyosaura alpestris. Using a factorial experiment under controlled laboratory conditions, we exposed 3- or 10-day-old embryos to different regimes of extreme temperatures for 3 days. Our results show that exposure to different extreme temperature regimes led to a shortened embryonic development time and an increase in hatchling length, while not significantly affecting embryonic survival. The duration of development was sensitive to the timing of temperature extremes, as early exposure accelerated embryo development. Exposure to temperature extremes during embryonic development heightened the exploratory activity of hatched larvae. We conclude that the timing and magnitude of ecologically realistic temperature extremes during embryogenesis have nonlethal effects on life history and behavioral traits. This suggests that species' vulnerability to climate change might be determined by other ecophysiological traits beyond embryonic thermal tolerance in temperate pond-breeding amphibians.
Collapse
Affiliation(s)
- Valentína Oborová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Monika Šugerková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
54
|
Grele A, Massad TJ, Uckele KA, Dyer LA, Antonini Y, Braga L, Forister ML, Sulca L, Kato M, Lopez HG, Nascimento AR, Parchman T, Simbaña WR, Smilanich AM, Stireman JO, Tepe EJ, Walla T, Richards LA. Intra- and interspecific diversity in a tropical plant clade alter herbivory and ecosystem resilience. eLife 2024; 12:RP86988. [PMID: 38662411 PMCID: PMC11045218 DOI: 10.7554/elife.86988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.
Collapse
Affiliation(s)
- Ari Grele
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | - Tara J Massad
- Department of Scientific Services, Gorongosa National ParkSofalaMozambique
| | - Kathryn A Uckele
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | - Lee A Dyer
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Hitchcock Center for Chemical Ecology, University of NevadaRenoUnited States
| | - Yasmine Antonini
- Lab. de Biodiversidade, Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro PretoOuro PretoBrazil
| | - Laura Braga
- Lab. de Biodiversidade, Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro PretoOuro PretoBrazil
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Hitchcock Center for Chemical Ecology, University of NevadaRenoUnited States
| | - Lidia Sulca
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San MarcosLimaPeru
| | - Massuo Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São PauloSão PauloBrazil
| | - Humberto G Lopez
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | | | - Thomas Parchman
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Department of Biology, University of NevadaRenoUnited States
| | | | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | - John O Stireman
- Department of Biological Sciences, Wright State UniversityDaytonUnited States
| | - Eric J Tepe
- Department of Biological Sciences, University of CincinnatiCincinnatiUnited States
| | - Thomas Walla
- Department of Biology, Mesa State CollegeGrand JunctionUnited States
| | - Lora A Richards
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Hitchcock Center for Chemical Ecology, University of NevadaRenoUnited States
| |
Collapse
|
55
|
Liu B, Liu Z, Li C, Yu H, Wang H. Geographical distribution and ecological niche dynamics of Crassostrea sikamea (Amemiya, 1928) in China's coastal regions under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171061. [PMID: 38373453 DOI: 10.1016/j.scitotenv.2024.171061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Global climate change drives species redistribution, threatening biodiversity and ecosystem heterogeneity. The Kumamoto oyster, Crassostrea sikamea (Amemiya, 1928), one of the most promising aquaculture species because of its delayed reproductive timing, was once prevalent in southern China. In this study, an ensemble species distribution model was employed to analyze the distribution range shift and ecological niche dynamics of C. sikamea along China's coastline under the current and future climate scenarios (RCP 2.6-8.5 covering 2050 s and 2100 s). The model results indicated that the current habitat distribution for C. sikamea consists of a continuous stretch extending from the coastlines of Hainan Province to the northern shores of Jiangsu Province. By the 2050 s, the distribution range will stabilize at its southern end along the coast of Hainan Province, while expanding northward to cover the coastal areas of Shandong Province, showing a more dramatic trend of contraction in the south and invasion in the north by the 2100 s. In RCP8.5, the southern end retracts to the coasts of Guangdong, whereas the northern end covers all of China's coastal areas north of 34°N. C. sikamea can maintain relatively stable ecological niche characteristics, while it may occupy different ecological niche spaces under future climate conditions. Significant niche expansion will occur in lower temperature. We concluded C. sikamea habitats are susceptible to climate change. The rapid northward expansion of C. sikamea may open new possibilities for oyster farming in China, but it will also have important consequences for the ecological balance and biodiversity of receiving areas. It's imperative that we closely examine and strategize to address these repercussions for a win-win situation.
Collapse
Affiliation(s)
- Bingxian Liu
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenqiang Liu
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, PR China
| | - Cui Li
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haolin Yu
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Haiyan Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
56
|
Keen RM, Bachle S, Bartmess M, Nippert JB. Combined effects of fire and drought are not sufficient to slow shrub encroachment in tallgrass prairie. Oecologia 2024; 204:727-742. [PMID: 38492034 DOI: 10.1007/s00442-024-05526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/03/2024] [Indexed: 03/18/2024]
Abstract
Woody encroachment-the spread of woody vegetation in open ecosystems-is a common threat to grasslands worldwide. Reversing encroachment can be exceedingly difficult once shrubs become established, particularly clonal species that resprout following disturbance. Single stressors are unlikely to reverse woody encroachment, but using multiple stressors in tandem could be successful in slowing or reversing encroachment. We explored whether increasing fire frequency in conjunction with multi-year drought could reduce growth and survival of encroaching shrubs in a tallgrass prairie in northeastern Kansas, USA. Passive rainout shelters (~ 50% rainfall reduction) were constructed over mature clonal shrubs (Cornus drummondii) and co-existing C4 grasses in two fire treatments (1-year and 4-year burn frequency). Leaf- and whole-plant level physiological responses to drought and fire frequency were monitored in shrubs and grasses from 2019 to 2022. Shrub biomass and stem density following fire were unaffected by five years of consecutive drought treatment, regardless of fire frequency. The drought treatment had more negative effects on grass leaf water potential and photosynthetic rates compared to shrubs. Shrub photosynthetic rates were remarkably stable across each growing season. Overall, we found that five consecutive years of moderate drought in combination with fire was not sufficient to reduce biomass production or stem density in an encroaching clonal shrub (C. drummondii). These results suggest that moderate but chronic press-drought events do not sufficiently stress encroaching clonal shrubs to negatively impact their resilience following fire events, even when fire frequency is high.
Collapse
Affiliation(s)
- R M Keen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - S Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
- LI-COR Biosciences, Lincoln, NE, 68504, USA
| | - M Bartmess
- United States Department of Agriculture, Natural Resource Conservation Service, Pottawatomie County, KS, USA
| | - J B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
57
|
Rush SA, Weitzel SL, Trent JA, Soehren EC. Will a changing climate affect hatching success in cavity-nesting birds: A case study with Eastern Bluebirds ( Sialia sialis)? Sci Prog 2024; 107:368504241245222. [PMID: 38745552 PMCID: PMC11097714 DOI: 10.1177/00368504241245222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A significant body of evidence indicates that climate change is influencing many aspects of avian ecology. Yet, how climate change is affecting, and is expected to influence some aspects of the breeding ecology of cavity-nesting birds remains uncertain. To explore the potential linkage between timing of first clutch, and the influence of ambient temperature on hatching success, we used Eastern Bluebird (Sialia sialis) nest records over a nine-year period from Alabama, USA. We investigated changes to annual clutch initiation dates, as well as variability in hatching success associated with ambient air temperatures during the incubation period. Using a simple linear model, we observed earlier annual egg laying dates over the nine years of this study with a difference of 24 days between earliest egg-laying date of the season. Daily temperature minima increased 2 °C across the nine-year time frame of this study. These data also indicate that Eastern Bluebird hatching success was the highest when mean ambient air temperature during incubation was between 19 °C and 24 °C (78%, as opposed to 69% and 68% above and below this temperature range, respectively). Our findings of increasing maxima, earlier maxima each year, and the lower minima of temperatures within our study area could expand the breadth of temperatures experienced by nesting Eastern Bluebirds possibly exposing them to temperatures outside of what promotes nesting success. These findings with a cavity-nesting bird highlight an optimal range of ambient temperatures associated with highest hatching success, conditions likely to be affected by climate change.
Collapse
Affiliation(s)
- Scott A Rush
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, MS, USA
| | - Spencer L Weitzel
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, MS, USA
| | - John A Trent
- Alabama Department of Conservation and Natural Resources, State Lands Division, Wehle Land Conservation Center, Midway, AL, USA
| | - Eric C Soehren
- Alabama Department of Conservation and Natural Resources, State Lands Division, Wehle Land Conservation Center, Midway, AL, USA
| |
Collapse
|
58
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
59
|
Fung T, Pande J, Shnerb NM, O'Dwyer JP, Chisholm RA. Processes governing species richness in communities exposed to temporal environmental stochasticity: A review and synthesis of modelling approaches. Math Biosci 2024; 369:109131. [PMID: 38113973 DOI: 10.1016/j.mbs.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Research into the processes governing species richness has often assumed that the environment is fixed, whereas realistic environments are often characterised by random fluctuations over time. This temporal environmental stochasticity (TES) changes the demographic rates of species populations, with cascading effects on community dynamics and species richness. Theoretical and applied studies have used process-based mathematical models to determine how TES affects species richness, but under a variety of frameworks. Here, we critically review such studies to synthesise their findings and draw general conclusions. We first provide a broad mathematical framework encompassing the different ways in which TES has been modelled. We then review studies that have analysed models with TES under the assumption of negligible interspecific interactions, such that a community is conceptualised as the sum of independent species populations. These analyses have highlighted how TES can reduce species richness by increasing the frequency at which a species becomes rare and therefore prone to extinction. Next, we review studies that have relaxed the assumption of negligible interspecific interactions. To simplify the corresponding models and make them analytically tractable, such studies have used mean-field theory to derive fixed parameters representing the typical strength of interspecific interactions under TES. The resulting analyses have highlighted community-level effects that determine how TES affects species richness, for species that compete for a common limiting resource. With short temporal correlations of environmental conditions, a non-linear averaging effect of interspecific competition strength over time gives an increase in species richness. In contrast, with long temporal correlations of environmental conditions, strong selection favouring the fittest species between changes in environmental conditions results in a decrease in species richness. We compare such results with those from invasion analysis, which examines invasion growth rates (IGRs) instead of species richness directly. Qualitative differences sometimes arise because the IGR is the expected growth rate of a species when it is rare, which does not capture the variation around this mean or the probability of the species becoming rare. Our review elucidates key processes that have been found to mediate the negative and positive effects of TES on species richness, and by doing so highlights key areas for future research.
Collapse
Affiliation(s)
- Tak Fung
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Jayant Pande
- Department of Physical and Natural Sciences, FLAME University, Pune, Maharashtra 412115, India
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - James P O'Dwyer
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505, South Goodwin Avenue, Urbana, IL 61801, United States
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
60
|
Moussa M, Pozzolini M, Ferrando S, Mannai A, Tassara E, Giovine M, Said K. Insight on thermal stress response of demosponge Chondrosia reniformis (Nardo, 1847). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169648. [PMID: 38159772 DOI: 10.1016/j.scitotenv.2023.169648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Global warming has led to an increase in extreme weather and climate phenomena, including floods and heatwaves. Marine heatwaves have frightening consequences for coastal benthic communities around the world. Each species exhibits a natural range of thermal tolerance and responds to temperature variations through behavioral, physiological, biochemical, and molecular adjustments. Physiological stress leading to disease and mass mortality appears when tolerance thresholds are exceeded. Sessile species are therefore particularly affected by these phenomena. Among these sessile species, marine sponges are important members of coral reef ecosystems. To better understand the sponge thermal stress response, we tested the response of demosponge Chondrosia reniformis (Nardo, 1847) to three different temperatures (8 °C, 24 °C and 30 °C) during two exposure periods of time (4 and 14 h). Histological studies of whole parts of the sponge, biochemical analyses (Defense enzymes) and gene expression levels of some target genes were undertaken in this study. The exposure to cold temperature (8 °C) resulted in inhibition of antioxidant enzymes and less modification in the gene expression level of the heat shock proteins (HSPs). These latter were strongly upregulated after exposure to a temperature of 24 °C for 4 h. However, exposure to 30 °C at both periods of time resulted in indication of HSP, antioxidant enzymes, the gene involved in the apoptosis process (Bcl-2: B-cell lymphoma 2), the gene involved in inflammation (TNF: Tumor Necrosis Factor), as well as the aquaporin gene, involved in H2O2 permeation. Moreover, the normal organization of the whole organism was disrupted by the extension and fusion of choanocyte chambers and alteration of the pinacoderm. Interestingly, exposure to sublethal temperatures may show that this sponge has an adaptation threshold temperature. These insights into the adaptation mechanisms of sponges contribute to better management and conservation of sponges and to the prediction of ecosystem trajectories with future climate change.
Collapse
Affiliation(s)
- Maha Moussa
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Asma Mannai
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Khaled Said
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| |
Collapse
|
61
|
van Baaren J, Boivin G, Visser B, Le Lann C. Bet-hedging in parasitoids: when optimization is not the best strategy to cope with climatic extremes. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100076. [PMID: 39027356 PMCID: PMC11256270 DOI: 10.1016/j.cris.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 07/20/2024]
Abstract
Bet-hedging occurs when unreliable environments select for genotypes exhibiting a lower variance in fitness at the cost of a lower mean fitness for each batch of progeny. This means that at the level of the genotype, the production of mostly non-optimal phenotypes may be favored when at least some phenotypes are successful. As extreme unreliable climatic events are increasing because of climate change, it is pertinent to investigate the potential of bet-hedging strategies that allow insects to cope with climate change. Evidence for bet-hedging is scarce in most insects, including parasitoids, but the unique lifestyle and biology of parasitoids leads to the expectation that bet-hedging may occur frequently. Here, we evaluate a range of parasitoid traits for which a bet-hedging strategy could be envisioned even if bet-hedging has not been identified as such yet. Under-identification of bet-hedging in nature could have resulted from a major focus of studies on parasitoid life history evolution and foraging behavior on optimality models, predicting how mean fitness can be maximized. Most environmental factors, however, vary unpredictably. Life history and behavioral adaptations are thus expected to be affected by environmental stochasticity. In this paper, we review different aspects of parasitoid behavior, physiology, and life histories and ask the question whether parasitoid traits could have evolved under selection by environmental stochasticity.
Collapse
Affiliation(s)
- Joan van Baaren
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Guy Boivin
- Horticultural Research and Development Centre, Agriculture and Agrifood Canada, 430 Boul. Gouin, St-Jean-sur-Richelieu, Quebec, Canada, J3B 3E6
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| |
Collapse
|
62
|
Duchet C, Grabicová K, Kolar V, Lepšová O, Švecová H, Csercsa A, Zdvihalová B, Randák T, Boukal DS. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. WATER RESEARCH 2024; 250:121053. [PMID: 38159539 DOI: 10.1016/j.watres.2023.121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Vojtech Kolar
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Olga Lepšová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Helena Švecová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Andras Csercsa
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Barbora Zdvihalová
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Tomáš Randák
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
63
|
Yang S, Yang H, Xu Z, Peng Q, Mao H, Yang Y, Li Z. Use of CMIP6 scenarios as a reference to understand the responses of macrophyte germination and seedling growth to future warming and allelopathy co-stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168463. [PMID: 37951270 DOI: 10.1016/j.scitotenv.2023.168463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
The application of appropriate references such as CMIP6 climate scenarios for benchmarking studies of climate change on ecosystems can promote consistency among different climate change research. However, the use of CMIP6 climate scenarios is not common among experiments on the effects of climate change on freshwater ecosystems. Also, little is known about the impact of ecological factor such as allelopathy of alien species on macrophyte germination and seedling growth under different climate scenarios. In our study, by simulating three annual mean temperature changes at global warming levels of 1.5 °C (low warming scenario), 2 °C (medium warming scenario) and 4 °C (high warming scenario) corresponding to CMIP6 multi-model mean change at the corresponding global warming level, we conducted a mesocosm experiment to investigate their possible effects of different climate scenarios and allelopathy co-stressors on macrophyte germination and seedling growth. Our study showed that three warming scenarios all can facilitate macrophyte propagule germination and seedling growth, but the effect paths vary with CMIP6 warming scenarios and there are more influence pathways under high warming scenarios than under low and medium warming scenarios. Higher aqueous extract concentrations of Eichhornia crassipes can significantly stimulate macrophyte propagule germination and seedling growth. And the medium and high warming scenarios may exacerbate the impacts of allelopathic substances on macrophyte germination and seedling growth, and their effects depend on the combination of the two stressors. These results indicated that medium- and high-temperature scenarios may have greater ecological effects on macrophytes than low-temperature scenarios. Thus, our results highlighted that future climate studies need proper benchmarks such as CMIP6 warming scenarios, because it can provide relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supportive coordination among researchers.
Collapse
Affiliation(s)
- Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| |
Collapse
|
64
|
Al Mamun MA, Sarker MR, Sarkar MAR, Roy SK, Nihad SAI, McKenzie AM, Hossain MI, Kabir MS. Identification of influential weather parameters and seasonal drought prediction in Bangladesh using machine learning algorithm. Sci Rep 2024; 14:566. [PMID: 38177219 PMCID: PMC10767098 DOI: 10.1038/s41598-023-51111-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Droughts pose a severe environmental risk in countries that rely heavily on agriculture, resulting in heightened levels of concern regarding food security and livelihood enhancement. Bangladesh is highly susceptible to environmental hazards, with droughts further exacerbating the precarious situation for its 170 million inhabitants. Therefore, we are endeavouring to highlight the identification of the relative importance of climatic attributes and the estimation of the seasonal intensity and frequency of droughts in Bangladesh. With a period of forty years (1981-2020) of weather data, sophisticated machine learning (ML) methods were employed to classify 35 agroclimatic regions into dry or wet conditions using nine weather parameters, as determined by the Standardized Precipitation Evapotranspiration Index (SPEI). Out of 24 ML algorithms, the four best ML methods, ranger, bagEarth, support vector machine, and random forest (RF) have been identified for the prediction of multi-scale drought indices. The RF classifier and the Boruta algorithms shows that water balance, precipitation, maximum and minimum temperature have a higher influence on drought intensity and occurrence across Bangladesh. The trend of spatio-temporal analysis indicates, drought intensity has decreased over time, but return time has increased. There was significant variation in changing the spatial nature of drought intensity. Spatially, the drought intensity shifted from the northern to central and southern zones of Bangladesh, which had an adverse impact on crop production and the livelihood of rural and urban households. So, this precise study has important implications for the understanding of drought prediction and how to best mitigate its impacts. Additionally, the study emphasizes the need for better collaboration between relevant stakeholders, such as policymakers, researchers, communities, and local actors, to develop effective adaptation strategies and increase monitoring of weather conditions for the meticulous management of droughts in Bangladesh.
Collapse
Affiliation(s)
- Md Abdullah Al Mamun
- Agricultural Statistics Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Mou Rani Sarker
- Sustainable Impact Platform, International Rice Research Institute, Dhaka, 1213, Bangladesh
| | - Md Abdur Rouf Sarkar
- School of Economics, Zhongnan University of Economics and Law, Wuhan, 430073, China.
- Agricultural Economics Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh.
| | - Sujit Kumar Roy
- Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | | | - Andrew M McKenzie
- Department of Agricultural Economics and Agribusiness, The University of Arkansas, Fayetteville, AR, 72701, USA
| | - Md Ismail Hossain
- Agricultural Statistics Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | | |
Collapse
|
65
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
66
|
Ding C, Newbold T, Ameca EI. Assessing the global vulnerability of dryland birds to heatwaves. GLOBAL CHANGE BIOLOGY 2024; 30:e17136. [PMID: 38273501 DOI: 10.1111/gcb.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
As global average surface temperature increases, extreme climatic events such as heatwaves are becoming more frequent and intense, which can drive biodiversity responses such as rapid population declines and/or shifts in species distributions and even local extirpations. However, the impacts of extreme climatic events are largely ignored in conservation plans. Birds are known to be susceptible to heatwaves, especially in dryland ecosystems. Understanding which birds are most vulnerable to heatwaves, and where these birds occur, can offer a scientific basis for adaptive management and conservation. We assessed the relative vulnerability of 1196 dryland bird species to heatwaves using a trait-based approach. Among them, 888 bird species are estimated to be vulnerable to heatwaves (170 highly vulnerable, eight extremely vulnerable), of which ~91% are currently considered non-threatened by the IUCN, which suggests that many species will likely become newly threatened with intensifying climate change. We identified the top three hotspot areas of heatwave-vulnerable species in Australia (208 species), Southern Africa (125 species) and Eastern Africa (99 species). Populations of vulnerable species recorded in the Living Planet Database were found to be declining significantly faster than those of non-vulnerable species (p = .048) after heatwaves occurred. In contrast, no significant difference in population trends between vulnerable and non-vulnerable species was detected when no heatwave occurred (p = .34). This suggests that our vulnerability framework correctly identified vulnerable species and that heatwaves are already impacting the population trends of these species. Our findings will help prioritize heatwave-vulnerable birds in dryland ecosystems in risk mitigation and adaptation management as the frequency of heatwaves accelerates in the coming decades.
Collapse
Affiliation(s)
- Chenchen Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Eric I Ameca
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland
| |
Collapse
|
67
|
Talukder B, Schubert JE, Tofighi M, Likongwe PJ, Choi EY, Mphepo GY, Asgary A, Bunch MJ, Chiotha SS, Matthew R, Sanders BF, Hipel KW, vanLoon GW, Orbinski J. Complex adaptive systems-based framework for modeling the health impacts of climate change. THE JOURNAL OF CLIMATE CHANGE AND HEALTH 2024; 15:100292. [PMID: 38425789 PMCID: PMC10900873 DOI: 10.1016/j.joclim.2023.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/01/2023] [Indexed: 03/02/2024]
Abstract
Introduction Climate change is a global phenomenon with far-reaching consequences, and its impact on human health is a growing concern. The intricate interplay of various factors makes it challenging to accurately predict and understand the implications of climate change on human well-being. Conventional methodologies have limitations in comprehensively addressing the complexity and nonlinearity inherent in the relationships between climate change and health outcomes. Objectives The primary objective of this paper is to develop a robust theoretical framework that can effectively analyze and interpret the intricate web of variables influencing the human health impacts of climate change. By doing so, we aim to overcome the limitations of conventional approaches and provide a more nuanced understanding of the complex relationships involved. Furthermore, we seek to explore practical applications of this theoretical framework to enhance our ability to predict, mitigate, and adapt to the diverse health challenges posed by a changing climate. Methods Addressing the challenges outlined in the objectives, this study introduces the Complex Adaptive Systems (CAS) framework, acknowledging its significance in capturing the nuanced dynamics of health effects linked to climate change. The research utilizes a blend of field observations, expert interviews, key informant interviews, and an extensive literature review to shape the development of the CAS framework. Results and discussion The proposed CAS framework categorizes findings into six key sub-systems: ecological services, extreme weather, infectious diseases, food security, disaster risk management, and clinical public health. The study employs agent-based modeling, using causal loop diagrams (CLDs) tailored for each CAS sub-system. A set of identified variables is incorporated into predictive modeling to enhance the understanding of health outcomes within the CAS framework. Through a combination of theoretical development and practical application, this paper aspires to contribute valuable insights to the interdisciplinary field of climate change and health. Integrating agent-based modeling and CLDs enhances the predictive capabilities required for effective health outcome analysis in the context of climate change. Conclusion This paper serves as a valuable resource for policymakers, researchers, and public health professionals by employing a CAS framework to understand and assess the complex network of health impacts associated with climate change. It offers insights into effective strategies for safeguarding human health amidst current and future climate challenges.
Collapse
Affiliation(s)
- Byomkesh Talukder
- Department of Global Health, Florida International University, USA
- Dahdaleh Institute for Global Health Research, York University, Canada
| | - Jochen E. Schubert
- Department of Civil and Environmental Engineering, University of California, Irvine, USA
| | - Mohammadali Tofighi
- Dahdaleh Institute for Global Health Research, York University, Canada
- ADERSIM & Disaster & Emergency Management, York University, Canada
| | - Patrick J. Likongwe
- Leadership for Environment and Development Southern and Eastern Africa (LEAD SEA), Malawi
| | - Eunice Y. Choi
- Dahdaleh Institute for Global Health Research, York University, Canada
| | - Gibson Y. Mphepo
- Leadership for Environment and Development Southern and Eastern Africa (LEAD SEA), Malawi
| | - Ali Asgary
- ADERSIM & Disaster & Emergency Management, York University, Canada
| | - Martin J. Bunch
- Faculty of Environmental and Urban Change, York University, Canada
| | - Sosten S. Chiotha
- Leadership for Environment and Development Southern and Eastern Africa (LEAD SEA), Malawi
| | - Richard Matthew
- Department of Urban Planning and Public Policy, University of California, Irvine, USA
| | - Brett F. Sanders
- Department of Civil and Environmental Engineering, University of California, Irvine, USA
- Department of Urban Planning and Public Policy, University of California, Irvine, USA
| | - Keith W. Hipel
- System Engineering Department, Waterloo University, Canada
| | - Gary W. vanLoon
- School of Environmental Studies, Queen's University, Kingston, Canada
| | - James Orbinski
- Dahdaleh Institute for Global Health Research, York University, Canada
- Faculty of Health, York University, Canada
| |
Collapse
|
68
|
Borges FO, Sampaio E, Santos CP, Rosa R. Climate-Change Impacts on Cephalopods: A Meta-Analysis. Integr Comp Biol 2023; 63:1240-1265. [PMID: 37468442 DOI: 10.1093/icb/icad102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Aside from being one of the most fascinating groups of marine organisms, cephalopods play a major role in marine food webs, both as predators and as prey, while representing key living economic assets, namely for artisanal and subsistence fisheries worldwide. Recent research suggests that cephalopods are benefitting from ongoing environmental changes and the overfishing of certain fish stocks (i.e., of their predators and/or competitors), putting forward the hypothesis that this group may be one of the few "winners" of climate change. While many meta-analyses have demonstrated negative and overwhelming consequences of ocean warming (OW), acidification (OA), and their combination for a variety of marine taxa, such a comprehensive analysis is lacking for cephalopod molluscs. In this context, the existing literature was surveyed for peer-reviewed articles featuring the sustained (≥24 h) and controlled exposure of cephalopod species (Cephalopoda class) to these factors, applying a comparative framework of mixed-model meta-analyses (784 control-treatment comparisons, from 47 suitable articles). Impacts on a wide set of biological categories at the individual level (e.g., survival, metabolism, behavior, cell stress, growth) were evaluated and contrasted across different ecological attributes (i.e., taxonomic lineages, climates, and ontogenetic stages). Contrary to what is commonly assumed, OW arises as a clear threat to cephalopods, while OA exhibited more restricted impacts. In fact, OW impacts were ubiquitous across different stages of ontogeny, taxonomical lineages (i.e., octopuses, squids, and cuttlefish). These results challenge the assumption that cephalopods benefit from novel ocean conditions, revealing an overarching negative impact of OW in this group. Importantly, we also identify lingering literature gaps, showing that most studies to date focus on OW and early life stages of mainly temperate species. Our results raise the need to consolidate experimental efforts in a wider variety of taxa, climate regions, life stages, and other key environmental stressors, such as deoxygenation and hypoxia, to better understand how cephalopods will cope with future climate change.
Collapse
Affiliation(s)
- Francisco O Borges
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
| | - Eduardo Sampaio
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitatsstrasse 10, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Biology, University of Konstanz, Universitatsstrasse 10, Konstanz 78464, Germany
| | - Catarina P Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, Carcavelos 2775-405, Portugal
- Sphyrna Association, Boa Vista Island, Sal Rei, Cape Verde
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisboa1 749-016, Portugal
| |
Collapse
|
69
|
Xiao F, Liu Q, Qin Y. Predicting the Potential Distribution of Haloxylon ammodendron under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model. BIOLOGY 2023; 13:3. [PMID: 38275724 PMCID: PMC11154351 DOI: 10.3390/biology13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Haloxylon ammodendron (H. ammodendron) is a second-class protected plant of national significance in China that is known for its growth in desert and semidesert regions, where it serves as a desert ecosystem guardian by playing a substantial role in maintaining ecosystem structure and function. The changing global climate has substantially altered the growth conditions for H. ammodendron. This study focuses on identifying the key variables influencing the distribution of H. ammodendron and determining their potential impact on future distribution. We employed the Maxent model to evaluate the current climate suitability for H. ammodendron distribution and to project its future changes across various shared socioeconomic pathway (SSP) scenarios. Our findings indicate that precipitation during the warmest quarter and precipitation during the wettest month are the most influential variables affecting the potentially suitable habitats of H. ammodendron. The highly suitable habitat area for H. ammodendron currently covers approximately 489,800 km2. The Maxent model forecasts an expansion of highly suitable H. ammodendron habitat under all future SSP scenarios, with the extent of unsuitable areas increasing with greater global warming. The increased highly suitable habitats range from 40% (SSP585) to 80% (SSP126) by the 2070s (2060-2080). Furthermore, our results indicate a continued expansion of desertification areas due to global warming, highlighting the significant role of H. ammodendron in maintaining desert ecosystem stability. This study offers valuable insights into biodiversity preservation and ecological protection in the context of future climate change scenarios.
Collapse
Affiliation(s)
- Fengjin Xiao
- National Climate Center, Chinese Meteorological Administration, Beijing 100081, China; (Q.L.); (Y.Q.)
| | | | | |
Collapse
|
70
|
Alberti S, Stasolla G, Mazzola S, Casacci LP, Barbero F. Bioacoustic IoT Sensors as Next-Generation Tools for Monitoring: Counting Flying Insects through Buzz. INSECTS 2023; 14:924. [PMID: 38132598 PMCID: PMC10743731 DOI: 10.3390/insects14120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The global loss of biodiversity is an urgent concern requiring the implementation of effective monitoring. Flying insects, such as pollinators, are vital for ecosystems, and establishing their population dynamics has become essential in conservation biology. Traditional monitoring methods are labour-intensive and show time constraints. In this work, we explore the use of bioacoustic sensors for monitoring flying insects. Data collected at four Italian farms using traditional monitoring methods, such as hand netting and pan traps, and bioacoustic sensors were compared. The results showed a positive correlation between the average number of buzzes per hour and insect abundance measured by traditional methods, primarily by pan traps. Intraday and long-term analysis performed on buzzes revealed temperature-related patterns of insect activity. Passive acoustic monitoring proved to be effective in estimating flying insect abundance, while further development of the algorithm is required to correctly identify insect taxa. Overall, innovative technologies, such as bioacoustic sensors, do not replace the expertise and data quality provided by professionals, but they offer unprecedented opportunities to ease insect monitoring to support conservation biodiversity efforts.
Collapse
Affiliation(s)
- Simona Alberti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | | | - Simone Mazzola
- 3Bee srl, Via Alessandro Volta 4, 20056 Trezzo Sull’Adda, Italy;
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| |
Collapse
|
71
|
Harris GM, Sesnie SE, Stewart DR. Climate change and ecosystem shifts in the southwestern United States. Sci Rep 2023; 13:19964. [PMID: 37968297 PMCID: PMC10651835 DOI: 10.1038/s41598-023-46371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Climate change shifts ecosystems, altering their compositions and instigating transitions, making climate change the predominant driver of ecosystem instability. Land management agencies experience these climatic effects on ecosystems they administer yet lack applied information to inform mitigation. We address this gap, explaining ecosystem shifts by building relationships between the historical locations of 22 ecosystems (c. 2000) and abiotic data (1970-2000; bioclimate, terrain) within the southwestern United States using 'ensemble' machine learning models. These relationships identify the conditions required for establishing and maintaining southwestern ecosystems (i.e., ecosystem suitability). We projected these historical relationships to mid (2041-2060) and end-of-century (2081-2100) periods using CMIP6 generation BCC-CSM2-MR and GFDL-ESM4 climate models with SSP3-7.0 and SSP5-8.5 emission scenarios. This procedure reveals how ecosystems shift, as suitability typically increases in area (~ 50% (~ 40% SD)), elevation (12-15%) and northing (4-6%) by mid-century. We illustrate where and when ecosystems shift, by mapping suitability predictions temporally and within 52,565 properties (e.g., Federal, State, Tribal). All properties had ≥ 50% changes in suitability for ≥ 1 ecosystem within them, irrespective of size (≥ 16.7 km2). We integrated 9 climate models to quantify predictive uncertainty and exemplify its relevance. Agencies must manage ecosystem shifts transcending jurisdictions. Effective mitigation requires collective action heretofore rarely instituted. Our procedure supplies the climatic context to inform their decisions.
Collapse
Affiliation(s)
- Grant M Harris
- United States Fish and Wildlife Service, Albuquerque, NM, USA.
| | - Steven E Sesnie
- United States Fish and Wildlife Service, Albuquerque, NM, USA
| | - David R Stewart
- United States Fish and Wildlife Service, Albuquerque, NM, USA
| |
Collapse
|
72
|
Chen X, Wang Q, Cui B, Chen G, Xie T, Yang W. Ecological time lags in biodiversity response to habitat changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118965. [PMID: 37741191 DOI: 10.1016/j.jenvman.2023.118965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
The decline of biodiversity can occur with a substantial delay following habitat loss, degradation, and other environmental changes, such as global warming. Considerable time lags may be involved in these responses. However, such time lags typically pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Here, we synthesize the current knowledge, categories, manifestations under different scenarios and impacts of ecological time lags. Our work reveals that studies on ecosystem structure lags are far more than ecosystem process and function lags. Due to the presence of these time-lag effects, the 'window phase' typically exists, which is widely recognized as 'relaxation time', providing a particular opportunity for biodiversity conservation. The manifestations of time lags vary under different scenarios. In addition, the different mechanisms that can result in ecological time lags are hierarchically nested, in which mechanisms at the population and metapopulation level have routinely been suggested as explanations for ecological time lags. It generally takes longer time to reach equilibrium at the metapopulation level than it takes for effects to be fully expressed at the level of individuals. Finally, we propose corresponding implications for biodiversity conservation and management. Our research will provide priorities for science and management on how to address the impact of ecological time lags to mitigate future attrition of biodiversity.
Collapse
Affiliation(s)
- Xuejuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Qing Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China; Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| | - Baoshan Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China; Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China.
| | - Guogui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China; Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Tian Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| | - Wenxin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
73
|
Tobías A, Madaniyazi L, Gasparrini A, Armstrong B. High Summer Temperatures and Heat Stroke Mortality in Spain. Epidemiology 2023; 34:892-896. [PMID: 37757878 DOI: 10.1097/ede.0000000000001661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
BACKGROUND Heat stroke is a significant cause of mortality in response to high summer temperatures. There is limited evidence on the pattern and magnitude of the association between temperature and heat stroke mortality. We examined this association in Spain, using data from a 27-year follow-up period. METHODS We used a space-time-stratified case-crossover design. We analyzed data using conditional quasi-Poisson regression with distributed lag nonlinear models. RESULTS Spain recorded a total of 285 heat stroke deaths between 1990 and 2016. Heat stroke deaths occurred in 6% of the days in the summer months. The mean temperature was, on average, 5 °C higher on days when a heat stroke was recorded than on days without heat stroke deaths. The overall relative risk was 1.74 (95% confidence interval = 1.54, 1.96) for a 1 °C rise in mean temperature above the threshold of 16 °C, at which a heat stroke death was first recorded. We observed lagged effects as long as 10 days. CONCLUSIONS Although heat stroke represents a small fraction of total heat-attributable mortality during the summer, it is strongly associated with high temperatures, providing an immediately visible warning of heat-related risk.
Collapse
Affiliation(s)
- Aurelio Tobías
- From the Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ben Armstrong
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
74
|
Shan K, Lin Y, Chu PS, Yu X, Song F. Seasonal advance of intense tropical cyclones in a warming climate. Nature 2023; 623:83-89. [PMID: 37758952 PMCID: PMC10620083 DOI: 10.1038/s41586-023-06544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Intense tropical cyclones (TCs), which often peak in autumn1,2, have destructive impacts on life and property3-5, making it crucial to determine whether any changes in intense TCs are likely to occur. Here, we identify a significant seasonal advance of intense TCs since the 1980s in most tropical oceans, with earlier-shifting rates of 3.7 and 3.2 days per decade for the Northern and Southern Hemispheres, respectively. This seasonal advance of intense TCs is closely related to the seasonal advance of rapid intensification events, favoured by the observed earlier onset of favourable oceanic conditions. Using simulations from multiple global climate models, large ensembles and individual forcing experiments, the earlier onset of favourable oceanic conditions is detectable and primarily driven by greenhouse gas forcing. The seasonal advance of intense TCs will increase the likelihood of intersecting with other extreme rainfall events, which usually peak in summer6,7, thereby leading to disproportionate impacts.
Collapse
Affiliation(s)
- Kaiyue Shan
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
| | - Yanluan Lin
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Pao-Shin Chu
- Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Xiping Yu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Fengfei Song
- Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China.
- Laoshan Laboratory, Qingdao, China.
| |
Collapse
|
75
|
Chen J, Lewis OT. Experimental heatwaves facilitate invasion and alter species interactions and composition in a tropical host-parasitoid community. GLOBAL CHANGE BIOLOGY 2023; 29:6261-6275. [PMID: 37733768 DOI: 10.1111/gcb.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023]
Abstract
As mean temperatures increase and heatwaves become more frequent, species are expanding their distributions to colonise new habitats. The resulting novel species interactions will simultaneously shape the temperature-driven reorganization of resident communities. The interactive effects of climate change and climate change-facilitated invasion have rarely been studied in multi-trophic communities, and are likely to differ depending on the nature of the climatic driver (i.e., climate extremes or constant warming). We re-created under laboratory conditions a host-parasitoid community typical of high-elevation rainforest sites in Queensland, Australia, comprising four Drosophila species and two associated parasitoid species. We subjected these communities to an equivalent increase in average temperature in the form of periodic heatwaves or constant warming, in combination with an invasion treatment involving a novel host species from lower-elevation habitats. The two parasitoid species were sensitive to both warming and heatwaves, while the demographic responses of Drosophila species were highly idiosyncratic, reflecting the combined effects of thermal tolerance, parasitism, competition, and facilitation. After multiple generations, our heatwave treatment promoted the establishment of low-elevation species in upland communities. Invasion of the low-elevation species correlated negatively with the abundance of one of the parasitoid species, leading to cascading effects on its hosts and their competitors. Our study, therefore, reveals differing, sometimes contrasting, impacts of extreme temperatures and constant warming on community composition. It also highlights how the scale and direction of climate impacts could be further modified by invading species within a bi-trophic community network.
Collapse
Affiliation(s)
- Jinlin Chen
- Department of Biology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
76
|
Maffioli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Toni M. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:15735. [PMID: 37958719 PMCID: PMC10648238 DOI: 10.3390/ijms242115735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neurotoxicity consists of the altered functionality of the nervous system caused by exposure to chemical agents or altered chemical-physical parameters. The neurotoxic effect can be evaluated from the molecular to the behavioural level. The zebrafish Danio rerio is a model organism used in many research fields, including ecotoxicology and neurotoxicology. Recent studies by our research group have demonstrated that the exposure of adult zebrafish to low (18 °C) or high (34 °C) temperatures alters their brain proteome and fish behaviour compared to control (26 °C). These results showed that thermal variation alters the functionality of the nervous system, suggesting a temperature-induced neurotoxic effect. To demonstrate that temperature variation can be counted among the factors that generate neurotoxicity, eight different protein datasets, previously published by our research group, were subjected to new analyses using an integrated proteomic approach by means of the Ingenuity Pathway Analysis (IPA) software (Release December 2022). The datasets consist of brain proteome analyses of wild type adult zebrafish kept at three different temperatures (18 °C, 26 °C, and 34 °C) for 4 days (acute) or 21 days (chronic treatment), and of BDNF+/- and BDNF-/- zebrafish kept at 26 °C or 34 °C for 21 days. The results (a) demonstrate that thermal alterations generate an effect that can be defined as neurotoxic (p value ≤ 0.05, activation Z score ≤ -2 or ≥2), (b) identify 16 proteins that can be used as hallmarks of the neurotoxic processes common to all the treatments applied and (c) provide three protein panels (p value ≤ 0.05) related to 18 °C, 34 °C, and BDNF depletion that can be linked to anxiety-like or boldness behaviour upon these treatments.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Via Alfonso Borrelli 50, 00161 Rome, Italy
| |
Collapse
|
77
|
Torres Rodríguez MD, Bhatnagar N, Pandey S. Overexpression of a Plant-Specific Gγ Protein, AGG3, in the Model Monocot Setaria viridis Confers Tolerance to Heat Stress. PLANT & CELL PHYSIOLOGY 2023; 64:1243-1256. [PMID: 37572092 DOI: 10.1093/pcp/pcad093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The vascular plant-specific, cysteine-rich type III Gγ proteins, which are integral components of the heterotrimeric G-protein complex, play crucial roles in regulating a multitude of plant processes, including those related to crop yield and responses to abiotic stresses. The presence of multiple copies of type III Gγ proteins in most plants and a propensity of the presence of specific truncated alleles in many cultivated crops present an ambiguous picture of their roles in modulating specific responses. AGG3 is a canonical type III Gγ protein of Arabidopsis, and its overexpression in additional model crops offers the opportunity to directly evaluate the effects of protein expression levels on plant phenotypes. We have shown that AGG3 overexpression in the monocot model Setaria viridis leads to an increase in seed yield. In this study, we have investigated the response of the S. viridis plants overexpressing AGG3 to heat stress (HS), one of the most important abiotic stresses affecting crops worldwide. We show that a short span of HS at a crucial developmental time point has a significant effect on plant yield in the later stages. We also show that plants with higher levels of AGG3 are more tolerant to HS. This is attributed to an altered regulation of stress-responsive genes and improved modulation of the photosynthetic efficiency during the stress. Overall, our results confirm that AGG3 plays a crucial role in regulating plant responses to unfavorable environmental conditions and may contribute positively to avoiding crop yield losses.
Collapse
Affiliation(s)
| | - Nikita Bhatnagar
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
78
|
Varga G, Meinander O, Rostási Á, Dagsson-Waldhauserova P, Csávics A, Gresina F. Saharan, Aral-Caspian and Middle East dust travels to Finland (1980-2022). ENVIRONMENT INTERNATIONAL 2023; 180:108243. [PMID: 37804716 DOI: 10.1016/j.envint.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Studies on atmospheric dust and long-range transport of mineral dust have been a focus of atmospheric science in recent years. With its wide range of direct and indirect effects, mineral dust is one of the most uncertain elements in the mechanisms of climate change, and a deeper understanding of its role is essential for understanding future processes. The aim of our research was to provide the first systematic data on the so far episodically documented northward transport mineral dust from arid-semiarid areas. So, in this paper, we present dust storm events from lower latitudes reaching the Finnish atmosphere, based on the MERRA-2 model Dust Column Mass Density data and after a multistep verification procedure using independent data source. In total, 86 long-range dust storm events were identified between 1980 and 2022, when air masses loaded with dust reached Finland. Based on backward-trajectories different sources were identified: 59 were Saharan, 22 were Aral-Caspian, and five were associated with Middle Eastern source areas. Considerable variation in inter-annual frequencies was observed among the source areas, which may be due to changes in circulation conditions and the effects of human activity (agriculture and land use changes in Aral Sea region). There is a clear maximum of dust events in spring (60%), followed by summer and autumn (where 10 of the 11 autumn episodes were from the Sahara). However, the number and proportion of scarce winter events have more than doubled since 2010 compared to the preceding 30 years, but no autumn events were registered during this period. This clear temporal variation coincides with changes in dust transport observed in other regions of Europe, driven by greater atmospheric meridionality associated with climate change and driven by reduced temperature difference between low and high latitudes due to enhanced temperature increases at Arctic regions.
Collapse
Affiliation(s)
- György Varga
- HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary; CSFK, MTA Centre of Excellence, Budapest, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary.
| | - Outi Meinander
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Ágnes Rostási
- MTA-PE Air Chemistry Research Group, Veszprém, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Pavla Dagsson-Waldhauserova
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Reykjavik, Iceland; Faculty of Environmental Sciences, Department of Water Resources and Environmental Modeling, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Adrienn Csávics
- HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary; CSFK, MTA Centre of Excellence, Budapest, Hungary
| | - Fruzsina Gresina
- HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary; CSFK, MTA Centre of Excellence, Budapest, Hungary; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Environmental and Landscape Geography, Budapest, Hungary
| |
Collapse
|
79
|
Bezerra WCA, Figueiredo GM, Kozlowsky-Suzuki B. Can we meaningfully estimate the impacts of climate on zooplankton biodiversity? A review on uses and limitations of marine time series. MARINE POLLUTION BULLETIN 2023; 195:115515. [PMID: 37716130 DOI: 10.1016/j.marpolbul.2023.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Climate events compromise ecosystems functioning and services. Marine zooplankton play a key role linking primary producers and higher consumers, in the carbon export to deeper regions, and respond quickly to environmental change. We conducted a systematic review to assess the effects of climate on marine zooplankton diversity. We describe the major findings, uses and limitations raised in the literature from worldwide time series ≥5 years. Thirty-five studies were included and only 6 presented extractable data (i.e., those that could be extracted from images) for the most studied group (i.e., copepods). Responses to climate were conflicting, and studies were mostly restricted to the global north, applied richness, alpha- and beta-diversity equally, and had a large number of unresolved taxonomic identification. Standardized open long-term data would meaningfully help unveiling assemblage reorganization and allow meta-analyses to improve our understanding of the effects of climate change and variability on zooplankton biodiversity.
Collapse
Affiliation(s)
- Wellen Cristina Alves Bezerra
- Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458, CEP: 22290-240, Urca, Rio de Janeiro, RJ, Brazil
| | - Gisela Mandali Figueiredo
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Professor Rodolfo Rocco 211, CCS, Cidade Universitária, CEP: 21941-902, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Betina Kozlowsky-Suzuki
- Departmento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458, CEP: 22290-240, Urca, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
80
|
Li S, Sato T, Nakamura T, Guo W. East Asian summer rainfall stimulated by subseasonal Indian monsoonal heating. Nat Commun 2023; 14:5932. [PMID: 37739948 PMCID: PMC10517143 DOI: 10.1038/s41467-023-41644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The responses of the East Asian summer monsoon (EASM) to the Indian summer monsoon (ISM) have been the subject of extensive investigation. Nevertheless, it remains uncertain whether the ISM can serve as a predictor for the EASM. Here, on the basis of both observations and a large-ensemble climate model experiment, we show that the subseasonal variability of abnormal diabatic heating over India enhances precipitation over central East China, the Korean Peninsula, and southern Japan in June. ISM heating triggers Rossby wave propagation along the subtropical jet, promoting southerly winds over East Asia. The southerly winds helps steer anomalous mid-tropospheric warm advection and lower-tropospheric moisture advection toward East Asia, providing conditions preferential for rainband formation. Cluster analysis shows that, depending on jet structures, ISM heating can serve as a trigger as well as a reinforcer of the rainband.
Collapse
Affiliation(s)
- Shixue Li
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Tomonori Sato
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tetsu Nakamura
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
- Climate Prediction Division, Japan Meteorological Agency, Tokyo, 105-8431, Japan
| | - Wenkai Guo
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
81
|
Suresh S, Meraj G, Kumar P, Singh D, Khan ID, Gupta A, Yadav TK, Kouser A, Avtar R. Interactions of urbanisation, climate variability, and infectious disease dynamics: insights from the Coimbatore district of Tamil Nadu. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1226. [PMID: 37725204 DOI: 10.1007/s10661-023-11856-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Climate change and shifts in land use/land cover (LULC) are critical factors affecting the environmental, societal, and health landscapes, notably influencing the spread of infectious diseases. This study delves into the intricate relationships between climate change, LULC alterations, and the prevalence of vector-borne and waterborne diseases in Coimbatore district, Tamil Nadu, India, between 1985 and 2015. The research utilised Landsat-4, Landsat-5, and Landsat-8 data to generate LULC maps, applying the maximum likelihood algorithm to highlight significant transitions over the years. This study revealed that built-up areas have increased by 67%, primarily at the expense of agricultural land, which was reduced by 51%. Temperature and rainfall data were obtained from APHRODITE Water Resources, and with a statistical analysis of the time series data revealed an annual average temperature increase of 1.8 °C and a minor but statistically significant rainfall increase during the study period. Disease data was obtained from multiple national health programmes, revealing an increasing trend in dengue and diarrhoeal diseases over the study period. In particular, dengue cases surged, correlating strongly with the increase in built-up areas and temperature. This research is instrumental for policy decisions in public health, urban planning, and climate change mitigation. Amidst limited research on the interconnections among infectious diseases, climate change, and LULC changes in India, our study serves as a significant precursor for future management strategies in Coimbatore and analogous regions.
Collapse
Affiliation(s)
- Sudha Suresh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Gowhar Meraj
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-8654, Japan
| | - Pankaj Kumar
- Institute for Global Environmental Strategies, Hayama, 240-0115, Japan
| | - Deepak Singh
- Research Institute for Humanity and Nature (RIHN), 457-4 MotoyamaKita-Ku, KamigamoKyoto, 603-8047, Japan
| | - Inam Danish Khan
- Department of Clinical Microbiology, Army Base Hospital, Delhi Cantonment, New Delhi, 110010, India
| | - Ankita Gupta
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tarun Kumar Yadav
- Centre of Environmental Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Asma Kouser
- Department of Economics, Bengaluru City University, Bengaluru, Karnataka, 560001, India
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ram Avtar
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
82
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
83
|
Putero FA, Mensch J, Schilman PE. Effect of brief exposures of anesthesia on thermotolerance and metabolic rate of the spotted-wing fly, Drosophila suzukii: Differences between sexes? JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104549. [PMID: 37495184 DOI: 10.1016/j.jinsphys.2023.104549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The spotted-wing fly, Drosophila suzukii, is a world-wide pest insect for which there is increasing interest in its physiological traits including metabolism and thermotolerance. Most studies focus only on survival to different time exposures to extreme temperatures, mainly in female flies. In addition, it has not been tested yet how anesthesia affects these measurements. We analyzed the effects of anesthesia by brief exposures to cold, anoxia by CO2 or N2 on three standard thermotolerance assays, as well as the aerobic metabolic rate in both sexes. For heat tolerance we measured CTmax by thermolimit respirometry, and CTmin and chill-coma recovery time for cold tolerance. Aerobic metabolism was calculated by CO2 production of individual flies in real time by open flow respirometry. Results showed that females have a significantly higher V̇CO2 for inactive (at 25 °C) and maximum metabolic rate than males. This difference is mainly explained by body mass and disappears after mass correction. Males had a more sensitive MR to temperature than females showed by a significantly higher Q10 (2.19 vs. 1.98, for males and females, respectively). We observed a significantly lower CTmin (X2 = 4.27, P = 0.03) in females (3.68 ± 0.38 °C) than males (4.56 ± 0.39 °C), although we did not find significant effects of anesthesia. In contrast, anesthesia significantly modifies CTmax for both sexes (F3,62 = 7.86, P < 0.001) with a decrease of the CTmax in cold-anesthetized flies. Finally, we found a significantly higher CTmax in females (37.87 ± 0.07 °C) than males (37.36 ± 0.09 °C). We conclude that cold anesthesia seems to have detrimental effects on heat tolerance, and females have broader thermotolerance range than males, which could help them to establish in invaded temperate regions with more variable environmental temperatures.
Collapse
Affiliation(s)
- Florencia A Putero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina
| | - Julian Mensch
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina.
| | - Pablo E Schilman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| |
Collapse
|
84
|
Macdonald KJ, Driscoll DA, Macdonald KJ, Hradsky B, Doherty TS. Meta-analysis reveals impacts of disturbance on reptile and amphibian body condition. GLOBAL CHANGE BIOLOGY 2023; 29:4949-4965. [PMID: 37401520 DOI: 10.1111/gcb.16852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
Ecosystem disturbance is increasing in extent, severity and frequency across the globe. To date, research has largely focussed on the impacts of disturbance on animal population size, extinction risk and species richness. However, individual responses, such as changes in body condition, can act as more sensitive metrics and may provide early warning signs of reduced fitness and population declines. We conducted the first global systematic review and meta-analysis investigating the impacts of ecosystem disturbance on reptile and amphibian body condition. We collated 384 effect sizes representing 137 species from 133 studies. We tested how disturbance type, species traits, biome and taxon moderate the impacts of disturbance on body condition. We found an overall negative effect of disturbance on herpetofauna body condition (Hedges' g = -0.37, 95% CI: -0.57, -0.18). Disturbance type was an influential predictor of body condition response and all disturbance types had a negative mean effect. Drought, invasive species and agriculture had the largest effects. The impact of disturbance varied in strength and direction across biomes, with the largest negative effects found within Mediterranean and temperate biomes. In contrast, taxon, body size, habitat specialisation and conservation status were not influential predictors of disturbance effects. Our findings reveal the widespread effects of disturbance on herpetofauna body condition and highlight the potential role of individual-level response metrics in enhancing wildlife monitoring. The use of individual response metrics alongside population and community metrics would deepen our understanding of disturbance impacts by revealing both early impacts and chronic effects within affected populations. This could enable early and more informed conservation management.
Collapse
Affiliation(s)
- Kristina J Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Don A Driscoll
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Kimberley J Macdonald
- Biodiversity Protection and Information Branch, Biodiversity Division, Department of Energy, Environment and Climate Action, East Melbourne, Victoria, Australia
| | - Bronwyn Hradsky
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Tim S Doherty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
85
|
Strahan J, Finkel J, Dinner AR, Weare J. Predicting rare events using neural networks and short-trajectory data. JOURNAL OF COMPUTATIONAL PHYSICS 2023; 488:112152. [PMID: 37332834 PMCID: PMC10270692 DOI: 10.1016/j.jcp.2023.112152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes challenging. In such cases a more effective approach is to cast statistics of interest as solutions to Feynman-Kac equations (partial differential equations). Here, we develop an approach to solve Feynman-Kac equations by training neural networks on short-trajectory data. Our approach is based on a Markov approximation but otherwise avoids assumptions about the underlying model and dynamics. This makes it applicable to treating complex computational models and observational data. We illustrate the advantages of our method using a low-dimensional model that facilitates visualization, and this analysis motivates an adaptive sampling strategy that allows on-the-fly identification of and addition of data to regions important for predicting the statistics of interest. Finally, we demonstrate that we can compute accurate statistics for a 75-dimensional model of sudden stratospheric warming. This system provides a stringent test bed for our method.
Collapse
Affiliation(s)
- John Strahan
- Department of Chemistry and James Franck Institute, the University of Chicago, Chicago, IL 60637
| | - Justin Finkel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Aaron R. Dinner
- Department of Chemistry and James Franck Institute, the University of Chicago, Chicago, IL 60637
- Committee on Computational and Applied Mathematics, the University of Chicago, Chicago, IL 60637
| | - Jonathan Weare
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| |
Collapse
|
86
|
Barratt LJ, He Z, Fellgett A, Wang L, Mason SM, Bancroft I, Harper AL. Co-expression network analysis of diverse wheat landraces reveals markers of early thermotolerance and a candidate master regulator of thermotolerance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:614-626. [PMID: 37077043 PMCID: PMC10953029 DOI: 10.1111/tpj.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Triticum aestivum L. (bread wheat) is a crop relied upon by billions of people around the world, as a major source of both income and calories. Rising global temperatures, however, pose a genuine threat to the livelihood of these people, as wheat growth and yields are extremely vulnerable to damage by heat stress. Here we present the YoGI wheat landrace panel, comprising 342 accessions that show remarkable phenotypic and genetic diversity thanks to their adaptation to different climates. We quantified the abundance of 110 790 transcripts from the panel and used these data to conduct weighted co-expression network analysis and to identify hub genes in modules associated with abiotic stress tolerance. We found that the expression of three hub genes, all heat-shock proteins (HSPs), were significantly correlated with early thermotolerance in a validation panel of landraces. These hub genes belong to the same module, with one (TraesCS4D01G207500.1) being a candidate master-regulator potentially controlling the expression of the other two hub genes, as well as a suite of other HSPs and heat-stress transcription factors (HSFs). In this work, therefore, we identify three validated hub genes, the expression of which can serve as markers of thermotolerance during early development, and suggest that TraesCS4D01G207500.1 is a potential master regulator of HSP and HSF expression - presenting the YoGI landrace panel as an invaluable tool for breeders wishing to determine and introduce novel alleles into modern varieties, for the production of climate-resilient crops.
Collapse
Affiliation(s)
- Liam J. Barratt
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Zhesi He
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Alison Fellgett
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Lihong Wang
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Simon McQueen Mason
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Ian Bancroft
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Andrea L. Harper
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| |
Collapse
|
87
|
Ghanbari M, Arabi M, Georgescu M, Broadbent AM. The role of climate change and urban development on compound dry-hot extremes across US cities. Nat Commun 2023; 14:3509. [PMID: 37316472 DOI: 10.1038/s41467-023-39205-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Compound dry-hot extreme (CDHE) events pose greater risks to the environment, society, and human health than their univariate counterparts. Here, we project decadal-length changes in the frequency and duration of CDHE events for major U.S. cities during the 21st century. Using the Weather Research and Forecasting (WRF) model coupled to an urban canopy parameterization, we find a considerable increase in the frequency and duration of future CDHE events across all U.S. major cities under the compound effect of high-intensity GHG- and urban development-induced warming. Our results indicate that while GHG-induced warming is the primary driver of the increased frequency and duration of CDHE events, urban development amplifies this effect and should not be neglected. Furthermore, We show that the highest frequency amplification of major CDHE events is expected for U.S. cities across the Great Plains South, Southwest, and the southern part of the Northwest National Climate Assessment regions.
Collapse
Affiliation(s)
- Mahshid Ghanbari
- Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO, USA.
| | - Mazdak Arabi
- Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO, USA
| | - Matei Georgescu
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
- Urban Climate Research Center, Arizona State University, Tempe, AZ, USA
| | - Ashley M Broadbent
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
- National Institute of Weather and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
88
|
Liu K, Wang Q, Wang M, Koks EE. Global transportation infrastructure exposure to the change of precipitation in a warmer world. Nat Commun 2023; 14:2541. [PMID: 37137880 PMCID: PMC10156714 DOI: 10.1038/s41467-023-38203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Transportation infrastructures are generally designed to have multi-decadal service lives. Transport infrastructure design, however, is largely based on historical conditions. Yet, in the face of global warming, we are likely going to experience more intense and frequent extreme events, which may put infrastructure at severe risk. In this study, we comprehensively analyze the exposure of road and railway infrastructure assets to changes in precipitation return periods globally. Under ~2 degrees of warming in mid-century (RCP 8.5 scenario), 43.6% of the global transportation assets are expected to experience at least a 25% decrease in design return period of extreme rainfall (a 33% increase in exceedance probability), which may increase to 69.9% under ~4 degrees of warming by late-21st century. To accommodate for such increases, we propose to incorporate a safety factor for climate change adaptation during the transportation infrastructure design process to ensure transportation assets will maintain their designed risk level in the future. Our results show that a safety factor of 1.2 would work sufficient for most regions of the world for quick design process calculations following the RCP4.5 path.
Collapse
Affiliation(s)
- Kai Liu
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, China.
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China.
| | - Qianzhi Wang
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Ming Wang
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, China
| | - Elco E Koks
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, 1081, HV, Amsterdam, Netherlands.
| |
Collapse
|
89
|
Sanches FHC, Martins FR, Conti WRP, Christofoletti RA. The increase in intensity and frequency of surface air temperature extremes throughout the western South Atlantic coast. Sci Rep 2023; 13:6293. [PMID: 37185936 PMCID: PMC10130182 DOI: 10.1038/s41598-023-32722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
The climate is changing. At this stage, it is important to specify an 'extreme' climate and identify patterns that indicate its potential harm worldwide, including the coastal zones. Herein, we considered extremes based on the "Peaks Over Threshold" method from the "Extreme Value Theory". We looked after geographical patterns of surface air temperature (SAT) extremes (e.g., Tmax, Tmin, daily temperature range (DTR), and inter-daily temperature range) over the last 40 years throughout the Brazilian coast. Overall, we found a trend increase in intensity and frequency, but the duration was barely affected. The latitudinal pattern of extremes and the temperatures considered extremes followed the settled perception that areas in higher latitudes will be more affected by the extent of warming. Additionally, the seasonal pattern of DTR demonstrated to be a good approach to make inferences about air mass changes, but joint analyses on extremes with other atmospheric variables are desirable. Given the potential effects of extreme climates on society and natural systems over the world, our study highlights the urge for action to mitigate the effects of the increase in SAT in coastal zones.
Collapse
Affiliation(s)
- Fábio H C Sanches
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, SP, 11070-102, Brazil.
| | - Fernando R Martins
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, SP, 11070-102, Brazil
| | - William R P Conti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, SP, 11070-102, Brazil
| | - Ronaldo A Christofoletti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, SP, 11070-102, Brazil
| |
Collapse
|
90
|
Carter MJ, Cortes PA, Rezende EL. Temperature variability and metabolic adaptation in terrestrial and aquatic ectotherms. J Therm Biol 2023; 115:103565. [PMID: 37393847 DOI: 10.1016/j.jtherbio.2023.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 07/04/2023]
Abstract
Thermodynamics is a major factor determining rates of energy expenditure, rates of biochemical dynamics, and ultimately the biological and ecological processes linked with resilience to global warming in ectothermic organisms. Nonetheless, whether ectothermic organisms exhibit general adaptive metabolic responses to cope with worldwide variation in thermal conditions has remained as an open question. Here we combine a model comparison approach with a global dataset of standard metabolic rates (SMR), including 1,160 measurements across 788 species of aquatic invertebrates, insects, fishes, amphibians and reptiles, to investigate the association between metabolic rates and environmental temperatures in their respective habitats. Our analyses suggest that variation in SMR after removing allometric and thermodynamic effects is best explained by the temperature range encountered across seasons, which always provided a better fit than the average temperature for the hottest and coldest month and mean annual temperatures. This pattern was consistent across taxonomic groups and robust to sensitivity analyses. Nonetheless, aquatic and terrestrial lineages responded differently to seasonality, with SMR declining - 6.8% °C-1 of thermal range across seasons in aquatic organisms and increasing 2.8% °C-1 in terrestrial organisms. These responses may reflect alternative strategies to mitigate the impact of increments in warmer temperatures on energy expenditure, either by means of metabolic reduction in thermally homogeneous water bodies or effective behavioral thermoregulation to exploit temperature heterogeneity on land.
Collapse
Affiliation(s)
- Mauricio J Carter
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile.
| | - Pablo A Cortes
- Independent Researcher, Tegualda 2000, 7770547, Ñuñoa, Chile
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, 6513677, Chile.
| |
Collapse
|
91
|
Vitanza E, Dimitri GM, Mocenni C. A multi-modal machine learning approach to detect extreme rainfall events in Sicily. Sci Rep 2023; 13:6196. [PMID: 37062782 PMCID: PMC10106478 DOI: 10.1038/s41598-023-33160-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
In 2021 almost 300 mm of rain, nearly half of the average annual rainfall, fell near Catania (Sicily Island, Italy). Such events took place in just a few hours, with dramatic consequences on the environmental, social, economic, and health systems of the region. These phenomena are now very common in various countries all around the world: this is the reason why, detecting local extreme rainfall events is a crucial prerequisite for planning actions, able to reverse possibly intensified dramatic future scenarios. In this paper, the Affinity Propagation algorithm, a clustering algorithm grounded on machine learning, was applied, to the best of our knowledge, for the first time, to detect extreme rainfall areas in Sicily. This was possible by using a high-frequency, large dataset we collected, ranging from 2009 to 2021 which we named RSE (the Rainfall Sicily Extreme dataset). Weather indicators were then been employed to validate the results, thus confirming the presence of recent anomalous rainfall events in eastern Sicily. We believe that easy-to-use and multi-modal data science techniques, such as the one proposed in this study, could give rise to significant improvements in policy-making for successfully contrasting climate change.
Collapse
Affiliation(s)
- Eleonora Vitanza
- Department of Information Engineering and Mathematics, University of Siena, Via Roma, 56, 53100, Siena, Italy
| | - Giovanna Maria Dimitri
- Department of Information Engineering and Mathematics, University of Siena, Via Roma, 56, 53100, Siena, Italy
| | - Chiara Mocenni
- Department of Information Engineering and Mathematics, University of Siena, Via Roma, 56, 53100, Siena, Italy.
| |
Collapse
|
92
|
Zhang T, Niu Z, He J, Pu P, Meng F, Xi L, Tang X, Ding L, Ma M, Chen Q. Potential Effects of High Temperature and Heat Wave on Nanorana pleskei Based on Transcriptomic Analysis. Curr Issues Mol Biol 2023; 45:2937-2949. [PMID: 37185716 PMCID: PMC10136961 DOI: 10.3390/cimb45040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In the context of climate change, understanding how indigenous amphibians of the Qinghai-Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-throughput RNA sequencing, and its gene expression was compared with frogs acclimated under either room temperature or high temperature and also heat wave exposed ones. A total of 126,465 unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were found to be differently regulated as a result of abnormal temperature acclimatization. Notably, genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups. Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger the body to maintain a hypometabolic state in an effort to survive challenging times. During heat waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy supply was largely normal to support the highly energy-consuming metabolic processes. Genes were more transcriptionally suppressed when treated with high temperatures than heat waves, and the body stayed in low-energy states for combating these long-term adverse environments to survive. It might be strategic to preserve initiation to executive protein activity under heat wave stress. Under both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in frogs. Frogs were more affected by high temperatures than by heat waves.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Fei Meng
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lu Xi
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Li Ding
- Department of Animal Science, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
93
|
Dai X, Wang L, Li X, Gong J, Cao Q. Characteristics of the extreme precipitation and its impacts on ecosystem services in the Wuhan Urban Agglomeration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161045. [PMID: 36549537 DOI: 10.1016/j.scitotenv.2022.161045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Summer extreme precipitation is one of the most frequent, intense, and influential extreme weather events that occurs frequently in the Wuhan Urban Agglomeration (WUA). Preventing meteorological disasters and coping with climate change necessitate understanding the characteristics and causes of extreme precipitation and its impact on ecosystems. In this study, the spatiotemporal characteristics of summer extreme precipitation in the WUA are analysed from 1961 to 2020. Then, NCEP reanalysis data and the relevant circulation index are used to explore the causes of extreme precipitation. Finally, how extreme precipitation influences key ecosystem services, such as water yield, water regulation, and soil conservation, is investigated. The results reveal that (1) extreme precipitation in the WUA has shown an obvious upwards trend over the past 60 years. Huanggang, Xianning, Huangshi, Wuhan, and E'zhou city demonstrate the highest values. The extreme precipitation increased significantly after 1980s, especially the R97.5P and PRCPTOT with change rate of 12.1 mm/10a and 18.82 mm/10a respectively. (2) Atmospheric circulation variation is a dominant factor affecting extreme precipitation in the WUA and causes the meridional distribution of the "+ - +" wave train in eastern China. The intensity and location of the Western Pacific subtropical high are closely related to extreme precipitation. Furthermore, the weakening of the East Asian summer monsoon circulation is also conducive to the occurrence of extreme precipitation. (3) The spatial distribution of water yield and runoff retention in abnormal extreme precipitation years are similar to the variation patterns of the total amount of extreme precipitation. Water yield and runoff retention in high-value extreme precipitation years are higher than that in low-value extreme precipitation years, while soil conservation shows no difference. In addition, ecosystem services have a synergistic relationship in high-value areas and a trade-off relationship in low-value areas. This study can contribute to the understanding of extreme precipitation in the WUA and its interaction with ecosystem services.
Collapse
Affiliation(s)
- Xin Dai
- Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
| | - Lunche Wang
- Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China.
| | - Xin Li
- Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
| | - Jie Gong
- Institute of Geological Survey, China University of Geosciences, Wuhan, China
| | - Qian Cao
- Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
| |
Collapse
|
94
|
Wan Q, Li L, Liu B, Zhang Z, Liu Y, Xie M. Different and unified responses of soil bacterial and fungal community composition and predicted functional potential to 3 years’ drought stress in a semiarid alpine grassland. Front Microbiol 2023; 14:1104944. [PMID: 37082184 PMCID: PMC10112540 DOI: 10.3389/fmicb.2023.1104944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionSoil microbial communities are key to functional processes in terrestrial ecosystems, and they serve as an important indicator of grasslands status. However, the responses of soil microbial communities and functional potential to drought stress in semiarid alpine grasslands remain unclear.MethodsHere, a field experiment was conducted under ambient precipitation as a control, −20% and −40% of precipitation to explore the responses of soil microbial diversity, community composition, and predicted functional potential to drought stress in a semiarid alpine grassland located in the northwest of China. Moreover, 16S rRNA gene and ITS sequencing were used to detect bacterial and fungal communities, and the PICRUST and FUNGuild databases were used to predict bacterial and fungal functional groups.ResultsResults showed drought stress substantially changes the community diversity of bacteria and fungi, among which the bacteria community is more sensitive to drought stress than fungi, indicating that the diversity or structure of soil bacteria community could serve as an indicator of alpine grasslands status. However, the fungal community still has difficulty maintaining resistance under excessive drought stress. Our paper also highlighted that soil moisture content, plant diversity (Shannon Wiener, Pieiou, and Simpson), and soil organic matter are the main drivers affecting soil bacterial and fungal community composition and predicted functional potential. Notably, the soil microbial functional potential could be predictable through taxonomic community profiles.ConclusionOur research provides insight for exploring the mechanisms of microbial community composition and functional response to climate change (longer drought) in a semiarid alpine grassland.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Li,
| | - Bo Liu
- Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Zhihao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Xie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
95
|
Torre I, Puig-Montserrat X, Díaz M. Global change effects on Mediterranean small mammal population dynamics: Demography of Algerian mice (Mus spretus) along land use and climate gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160875. [PMID: 36528104 DOI: 10.1016/j.scitotenv.2022.160875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Climate and land use change are key global change drivers shaping future species' distributions and abundances. Negative interactions among effects of drivers can reduce the accuracy of models aimed at predicting such distributions. Here we analyse how climate and land use affected population dynamics and demography of the Algerian mouse (Mus spretus), an open-land thermophilic Mediterranean small mammal. Change to a warmer and drier climate would facilitate the expansion of the species, whereas landscape change (forest encroachment following extensive land abandonment) would produce its retreat. We correlated abundance and demography parameters computed from captures obtained in 16 plots during a 10-years period (2008-2017; SEMICE small mammal monitoring) with climate, vegetation and land use change. Climate became warmer and dryer, and afforestation due to encroachment occurred in 81 % of plots. Expected positive effects of climate warming, derived from bioclimatic niche models, were counterbalanced by negative effects of both increasing hydric deficit and changes in vegetation and landscape structure. Abundance showed a slight but significant decline (-5 %). The species' range was more resilient to change, as shown by occupancy analyses, apparently due to strong local effects of vegetation structure on occupancy. This result highlighted that negative population trends would not necessarily produce range retractions. Simultaneously analysing both abundance trends and occupancy patterns may thus allow for deeper understanding and more accurate predictions of expected population trends in response to interacting global change drivers.
Collapse
Affiliation(s)
- Ignasi Torre
- BiBio Research Group, Natural Sciences Museum of Granollers, C/ Francesc Macià 51, E-08402 Granollers, Spain.
| | - Xavier Puig-Montserrat
- BiBio Research Group, Natural Sciences Museum of Granollers, C/ Francesc Macià 51, E-08402 Granollers, Spain
| | - Mario Díaz
- Department of Biogeography and Global Change (BGC-MNCN-CSIC), National Museum of Natural Sciences, C/ Serrano 115 Bis, E-28006 Madrid, Spain.
| |
Collapse
|
96
|
Maniscalco JM. Changes in the overwintering diet of Steller sea lions (Eumetopias jubatus) in relation to the 2014 – 2016 northeast Pacific marine heatwave. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
97
|
Yang P, He J, Ju Y, Zhang Q, Wu Y, Xia Z, Chen L, Tang S. Dual-Mode Integrated Janus Films with Highly Efficient NaH 2 PO 2 -Enhanced Infrared Radiative Cooling and Solar Heating for Year-Round Thermal Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206176. [PMID: 36638249 PMCID: PMC9982563 DOI: 10.1002/advs.202206176] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The currently available materials cannot meet the requirements of human thermal comfort against the hot and cold seasonal temperature fluctuations. In this study, a dual-mode Janus film with a bonded interface to gain dual-mode functions of both highly efficient radiative cooling and solar heating for year-round thermal management is designed and prepared. The cooling side is achieved by embedding NaH2 PO2 particles with high infrared radiation (IR) emittance into a porous polymethyl methacrylate (PMMA) film during pore formation process, which is reported for the first time to the knowledge. A synergistic enhancement of NaH2 PO2 and 3D porous structure leads to efficient radiant cooling with high solar reflectance (R̅solar ≈ 92.6%) and high IR emittance (ε̅IR ≈ 97.2%), especially the ε̅IR value is much greater than that of the reported best porous polymer films. In outdoor environments under 750 mW cm-2 solar radiation, the dual-mode Janus film shows subambient cooling temperature of ≈8.8 °C and heating temperature reaching ≈39.3 °C, indicating excellent thermal management capacity. A wide temperature range is obtained only by flipping the dual-mode Janus film for thermal management. This work provides an advanced zero-energy-consumption human thermal management technique based on the high-performance dual-mode integrated Janus film material.
Collapse
Affiliation(s)
- Peng Yang
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied SciencesNanjing UniversityNanjing210093P. R. China
- Haian Institute of High‐Tech ResearchNanjing UniversityJiangsu226600P. R. China
| | - Jiajun He
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied SciencesNanjing UniversityNanjing210093P. R. China
| | - Yanshan Ju
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied SciencesNanjing UniversityNanjing210093P. R. China
| | - Qingyuan Zhang
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied SciencesNanjing UniversityNanjing210093P. R. China
| | - Yipeng Wu
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied SciencesNanjing UniversityNanjing210093P. R. China
| | - Zhengcai Xia
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Liang Chen
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shaochun Tang
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied SciencesNanjing UniversityNanjing210093P. R. China
- Haian Institute of High‐Tech ResearchNanjing UniversityJiangsu226600P. R. China
| |
Collapse
|
98
|
Wang Y, Slotsbo S, Damgaard CF, Holmstrup M. Influence of Soil Moisture on Bioaccumulation, Growth, and Recruitment of Folsomia candida Exposed to Phenanthrene-Polluted Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3085-3094. [PMID: 36790897 DOI: 10.1021/acs.est.2c07497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Climate change has resulted in an increased occurrence of summer droughts in large parts of the world. Low soil moisture has marked impacts on the physiology of soil invertebrates and lowers degradation rates of organic contaminants in soil. Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic contaminants that readily accumulate in the lipids of soil organisms. Here, we exposed springtails (Collembola, small soil living arthropods) to phenanthrene (a common PAH) in combination with a range of soil water contents to investigate the combined effects of these factors on the bioaccumulation, survival, recruitment, and body growth in a full factorial experiment. The results showed that phenanthrene up to 60 mg/kg dry soil had moderate effects on survival (<20%), whereas dry soil (4% soil water content) caused approximately 60% mortality. The bioaccumulation of phenanthrene increased almost 3-fold when soil water content decreased from 22 to 4%. We observed a joint effect of low soil water content and phenanthrene on recruitment, suggesting a synergistic interaction. The recruitment EC50 values of phenanthrene decreased from approximately 40 mg/kg dry soil at 22% soil water content to approximately 10 mg/kg dry soil at 12% soil water content. Our results show that the effects of phenanthrene are more pronounced in dry soil partly because bioaccumulation is enhanced when soils become dry.
Collapse
Affiliation(s)
- Yang Wang
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Stine Slotsbo
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Christian Frølund Damgaard
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Martin Holmstrup
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
99
|
Agrawal P, Post LA, Glover J, Hersey D, Oberoi P, Biroscak B. The interrelationship between food security, climate change, and gender-based violence: A scoping review with system dynamics modeling. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0000300. [PMID: 36962962 PMCID: PMC10021784 DOI: 10.1371/journal.pgph.0000300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/01/2023] [Indexed: 03/26/2023]
Abstract
Gender-based violence (GBV) is a global public health and human rights problem that is exacerbated by social and environmental stressors for a multitude of interpersonal, cultural, and economic reasons. Through sudden disruptions in the microclimate of a region, climate shocks often have a negative impact on food security, which correlates with increases in GBV. Associations between the various combinations of GBV, climate change, and food insecurity have been documented in the growing international literature, but questions remain about these associations that require further clarification. The impact of the COVID-19 pandemic caused by SARS-CoV-2 provides insight through a real time demonstration into these interactions. This review of the global literature examines the interplay between GBV, climate change, and food insecurity-including recent literature regarding the COVID-19 pandemic. This review covers original research studies employing both quantitative and qualitative methodology, those that conducted secondary analyses of existing data sources and perspective pieces derived from observed evidence. An additional analytic layer of system dynamics modeling allowed for the integration of findings from the scoping review and discovery of additional insights into the interplay between disasters, food insecurity, and GBV. Findings from this review suggest that the development and adaptation of evidence-based, focused interventions and policies to reduce the effects of climate shocks and bolster food security may ultimately decrease GBV prevalence and impact.
Collapse
Affiliation(s)
- Pooja Agrawal
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lori Ann Post
- Buehler Center for Health Policy and Economics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Janis Glover
- Cushing/Whitney Medical Library, Yale University, New Haven, Connecticut, United States of America
| | - Denise Hersey
- Dana Medical Library, University of Vermont, Burlington, Vermont, United States of America
| | - Piya Oberoi
- Piya Oberoi, Wesleyan University, Middletown, Connecticut, United States of America
| | - Brian Biroscak
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
100
|
Qu Q, Xu H, Ai Z, Wang M, Wang G, Liu G, Geissen V, Ritsema CJ, Xue S. Impacts of extreme weather events on terrestrial carbon and nitrogen cycling: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120996. [PMID: 36608729 DOI: 10.1016/j.envpol.2022.120996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Some weather events like drought, increased precipitation, and warming exert substantial impact on the terrestrial C and N cycling. However, it remains largely unclear about the effect of extreme weather events (extreme drought, heavy rainfall, extreme heat, and extreme cold) on terrestrial C and N cycling. This study aims to analyze the responses of pools and fluxes of C and N in plants, soil, and microbes to extreme weather events by conducting a global meta-analysis of 656 pairwise observations. Results showed that extreme weather events (extreme drought, heavy rainfall, and extreme heat) decreased plant biomass and C flux, and extreme drought and heavy rainfall decreased the plant N pool and soil N flux. These results suggest that extreme weather events weaken the C and N cycling process in terrestrial ecosystems. However, this study did not determine the impact of extreme cold on ecosystem C and N cycling. Additional field experiments are needed to reveal the effects of extreme cold on global C and N cycling patterns.
Collapse
Affiliation(s)
- Qing Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zemin Ai
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Minggang Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Coen J Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|