51
|
Abstract
Aim: To determine whether biochemical parameters of cholinergic and oxidative stress function including red cell acetylcholinesterase (AChE), serum/plasma thyroglobulin, selenium, iron, ferritin, vitamins C, E, and A affect risk in apparent life-threatening event (ALTE), sudden infant death syndrome (SIDS), and sudden unexpected death in infancy (SUDI). To assess these biochemical parameters as a function of age; and for influence of pharmacology and epidemiology, including infant health, care, and feeding practices. Methods: A multicentre, case–control study with blood samples from 34 ALTE and 67 non-ALTE (control) infants matched for age, and 30 SIDS/SUDI and four non-SIDS/non-SUDI (post-mortem control) infants. Results: Levels/activity of the biochemical parameters were not significantly different in ALTE vs. control infants, with the exception of higher vitamin C levels in the ALTE group (p = 0.009). In ALTE and control groups, AChE and thyroglobulin levels increased and decreased respectively from birth to attain normal adult levels from 6 months. Levels of iron and ferritin were higher in the first 6 month period for all infant groups studied, intersecting with vitamin C levels peaking around 4 months of age. Conclusion: Lower AChE levels and higher combined levels of iron and vitamin C in the first 6 months of life may augment cholinergic and oxidative stress effect, particularly at the age when SIDS is most prevalent. This may contribute to risk of ALTE and SIDS/SUDI events during infancy.
Collapse
Affiliation(s)
- Anne Dick
- Canterbury Cot Death Fellow, Community Paediatric Unit, Christchurch, New Zealand.
| | | |
Collapse
|
52
|
Coddou C, Bravo E, Eugenín J. Alterations in cholinergic sensitivity of respiratory neurons induced by pre-natal nicotine: a mechanism for respiratory dysfunction in neonatal mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:2527-35. [PMID: 19651654 DOI: 10.1098/rstb.2009.0078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nicotine may link cigarette smoking during pregnancy with sudden infant death syndrome (SIDS). Pre-natal nicotine leads to diminished ventilatory responses to hypercarbia and reduced central chemoreception in mice at post-natal days 0-3. We studied how pre-natal nicotine exposure changes the cholinergic contribution to central respiratory chemoreception in neonatal isolated brainstem-spinal cord and slice preparations. Osmotic minipumps, implanted subcutaneously into 5-7 days pregnant mice, delivered saline or nicotine ditartrate 60 mg kg(-1) d(-1) for up to 28 days. In control preparations, acidification of the superfusion medium from pH 7.4 to 7.3 increased the frequency and reduced the amplitude of fictive respiration. In nicotine-exposed neonatal mice, the reduction in amplitude induced by acidification was reduced. In control preparations, atropine suppressed respiratory responses to acidification, while hexamethonium did not. By contrast, in nicotine-exposed preparations, hexamethonium blocked chemosensory responses but atropine did not. Our results indicate that pre-natal nicotine exposure switches cholinergic mechanisms of central chemosensory responses from muscarinic receptors to nicotinic receptors. Modification of the cholinergic contribution to central chemoreception may produce respiratory dysfunctions, as suggested by receptor-binding studies in victims of SIDS.
Collapse
Affiliation(s)
- Claudio Coddou
- Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago, USACH, Chile, Casilla 40, Correo 33, Santiago, Chile
| | | | | |
Collapse
|
53
|
Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC. Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome. Acta Neuropathol 2009; 118:519-30. [PMID: 19396608 PMCID: PMC3271725 DOI: 10.1007/s00401-009-0535-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/05/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
Mild infection may trigger sudden death in the vulnerable infant by cytokine interactions with a compromised medullary serotonergic (5-HT) system, leading to disrupted cardiorespiratory regulation and sleep-related sudden death. The cytokine interleukin (IL)-6 is elevated in the cerebrospinal fluid in SIDS. We tested the hypothesis that the expression of IL-6 receptors (IL-6R) and/or gp130 (involved in IL-6R signaling) is altered in the medullary 5-HT system in SIDS. Immunohistochemistry of IL-6R and gp130 was performed on medullae from 25 SIDS infants, 20 infectious deaths, and 14 controls using a semi-quantitative grading system. In the SIDS cases, mean IL-6R intensity grade in the arcuate nucleus (major component of medullary 5-HT system) was significantly higher than in the control group (2.00 +/- 0.07 vs. 1.77 +/- 0.08, P = 0.04), with no other differences in IL-6R or gp130 expression at any other site. Arcuate 5-HT neurons expressed IL-6R, indicating a site of IL-6/5-HT interaction. In SIDS, IL-6R expression is abnormal in the arcuate nucleus, the putative human homolog of rodent ventral medullary chemosensitivity sites involving 5-HT. Aberrant interactions between IL-6 and the arcuate nucleus may contribute to impaired responses to hypercapnia generated by infection (hyper-metabolism) combined with rebreathing.
Collapse
Affiliation(s)
- Ingvar Jon Rognum
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Akkurt D, Akay YM, Akay M. Nicotine and elevated body temperature reduce the complexity of the genioglossus and diaphragm EMG signals in rats during early maturation. J Neural Eng 2009; 6:056004. [DOI: 10.1088/1741-2560/6/5/056004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
55
|
Richardson HL, Walker AM, Horne RSC. Stimulus type does not affect infant arousal response patterns. J Sleep Res 2009; 19:111-5. [PMID: 19691474 DOI: 10.1111/j.1365-2869.2009.00764.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have examined infant arousal responses to various arousal stimuli; however it is unclear whether the patterns of responses to different stimuli are comparable within subjects across early development. The aim of the study was to compare the effects of both respiratory and somatosensory stimulation on arousal processes in the same infants throughout the first 6 months of life. Ten healthy term infants were studied with daytime polysomnography at 2-4 weeks, 2-3 and 5-6 months. Infants were challenged with both hypoxia (15% O(2), balanced N(2)) and a pulsatile air-jet to the nostrils. Stimulus-induced sub-cortical activations (SCA) and cortical arousals (CA) were expressed as percentages of total arousals. Heart rate (HR) changes and electroencephalogram (EEG) desynchronization were also contrasted for the two stimuli. During active sleep (AS), there was no significant effect of stimulus type on proportions of CA at any of the ages studied. During quiet sleep (QS), hypoxia elicited higher CA proportions than the air-jet at 2-3 and 5-6 months (P < 0.01). Overall, HR responses associated with SCA and CA and the duration of EEG desynchronization during CA were similar for both stimuli. Mild hypoxia and nasal air-jet stimulation produce qualitatively similar patterns of arousal responses during the first 6 months of life, supporting the concept of a final common neural pathway of cortical activation. Quantitatively, full CA from QS is more likely with hypoxia, in keeping with it being a life-threatening stimulus. This study supports the nasal air-jet as an appropriate stimulus for assessing developmental patterns of infant arousal process.
Collapse
Affiliation(s)
- Heidi L Richardson
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
56
|
Affiliation(s)
- Richard L Verrier
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Cardiovascular Institute, Boston, Mass 02115, USA.
| | | |
Collapse
|
57
|
Kinney HC. Brainstem mechanisms underlying the sudden infant death syndrome: evidence from human pathologic studies. Dev Psychobiol 2009; 51:223-33. [PMID: 19235901 DOI: 10.1002/dev.20367] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The brainstem hypothesis is one of the leading hypotheses concerning the sudden infant death syndrome (SIDS). It states that SIDS, or an important subset of SIDS, is due to abnormal brainstem mechanisms in the control of respiration, chemosensitivity, autonomic regulation, and/or arousal which impairs the infant's response to life-threatening, but often occurring, stressors during sleep (e.g., hypoxia, hypercarbia, asphyxia, hyperthermia) and leads to sudden death in a vulnerable developmental period. In this review, we summarize neuropathologic evidence from SIDS cases that support this hypothesis, beginning with the seminal report of subtle brainstem gliosis three decades ago. We focus upon recent neurochemical studies in our laboratory concerning the neurotransmitter serotonin (5-HT) and its key role in mediating protective responses to homeostatic stressors via medullary circuits. The possible fetal origin of brainstem defects in SIDS is reviewed, including evidence for adverse effects of prenatal exposure to maternal cigarette smoking and alcohol upon the postnatal development of human brainstem 5-HT pathways.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Shao XM, Feldman JL. Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol Sin 2009; 30:761-70. [PMID: 19498418 PMCID: PMC4002383 DOI: 10.1038/aps.2009.88] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/05/2009] [Indexed: 12/13/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of alpha4* nAChRs in the preBötzinger Complex (preBötC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBötC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic alpha4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
59
|
Campos M, Bravo E, Eugenín J. Respiratory dysfunctions induced by prenatal nicotine exposure. Clin Exp Pharmacol Physiol 2009; 36:1205-17. [PMID: 19473189 DOI: 10.1111/j.1440-1681.2009.05214.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Maternal tobacco smoking is the principal risk factor associated with sudden infant death syndrome (SIDS), a leading cause of death of infants under 1 year of age. Victims of SIDS show a higher incidence of respiratory control abnormalities, including central apnoeas, delayed arousal responses and diminished ventilatory chemoreflexes. 2. Nicotine is likely the link between maternal tobacco smoking and SIDS. Prenatal nicotine exposure can alter the breathing pattern and can reduce hypoxia- and hypercarbia-induced ventilatory chemoreflexes. In vitro approaches have revealed that prenatal nicotine exposure impairs central chemosensitivity, switching the cholinergic contribution from a muscarinic to a nicotinic receptor-based drive. In addition, serotonergic, noradrenergic, GABAergic, glycinergic and glutamatergic, among others, are affected by prenatal nicotine. 3. Here we propose that prenatal nicotine affects the respiratory network through two main processes: (i) reorganization of neurotransmitter systems; and (ii) remodelling of neural circuits. These changes make breathing more vulnerable to fail in early postnatal life, which could be related to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Marlys Campos
- Laboratory of Neural Systems, Department of Biology, Universidad de Santiago, USACH, Santiago, Chile
| | | | | |
Collapse
|
60
|
Pilowsky PM. Neurochemical phenotypes of cardiorespiratory neurons. Respir Physiol Neurobiol 2009; 164:12-7. [PMID: 18707031 DOI: 10.1016/j.resp.2008.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/20/2008] [Accepted: 07/21/2008] [Indexed: 02/07/2023]
Abstract
Interactions between the cardiovascular and respiratory systems have been known for many years but the functional significance of the interactions is still widely debated. Here I discuss the possible role of metabotropic receptors in regulating cardiorespiratory neurons in the brainstem and spinal cord. It is clear that, although much has been discovered, cardiorespiratory regulation is certainly one area that still has a long way to go before its secrets are fully divulged and their function in controlling circulatory and respiratory function is revealed.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School ofAdvanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, Sydney 2109, NSW, Australia.
| |
Collapse
|
61
|
Abstract
OBJECTIVE Impairment of the arousal process from sleep is thought to be involved in the pathogenesis of sudden infant death syndrome (SIDS). We hypothesized that a greater propensity for cortical arousal in the prone position may, in a normal infant, be a protective mechanism to promote complete arousal in a vulnerable sleeping position, a protection that is absent in SIDS victims. We aimed to examine the arousal process in a group of infants exposed to maternal smoking, who are thus at higher risk for SIDS. DESIGN Twelve healthy, full-term infants born to smoking mothers were studied using daytime polysomnography at 2 to 4 weeks, 2 to 3 months and 5 to 6 months postnatal age. Data were compared with 13 healthy infants born to nonsmoking mothers. Arousal was induced by pulsatile air-jet stimulation to the nostrils during active and quiet sleep, in both supine and prone positions. For each stimulus, physiologic and electroencephalogram changes were visually assessed and arousal responses were classified as sub-cortical activation or cortical arousal. RESULTS In smoke-exposed infants, the progression from sub-cortical activation to cortical arousal was depressed at 2 to 4 weeks and 5 to 6 months. There was no effect of maternal smoking observed at 2 to 3 months; however, a significant dose-dependent relationship between cortical activation proportions and urinary cotinine levels was present in both supine and prone positions. CONCLUSION We have shown that maternal smoking is associated with impaired arousal processes to trigeminal stimulation that may increase the risk for SIDS. This further highlights the importance of public education of the risks of maternal smoking.
Collapse
Affiliation(s)
- Heidi L. Richardson
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Adrian M. Walker
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Rosemary S.C. Horne
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Neuropathology provides new insight in the pathogenesis of the sudden infant death syndrome. Acta Neuropathol 2009; 117:247-55. [PMID: 19205708 DOI: 10.1007/s00401-009-0490-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|
63
|
Akkurt D, Akay YM, Akay M. The effects of elevated body temperature on the complexity of the diaphragm EMG signals during maturation. J Neural Eng 2009; 6:024001. [PMID: 19213991 DOI: 10.1088/1741-2560/6/2/024001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, we examine the effect of elevated body temperature on the complexity of the diaphragm electromyography (EMGdia), the output of the respiratory neural network--using the approximate entropy method. The diaphragm EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) in chronically instrumented rats were recorded at two postnatal ages: 25-35 days age (juvenile, n = 5) and 36-44 days age (early adult, n = 6) groups during control (36-37 degrees C), mild elevated body temperature (38 degrees C) and severe elevated body temperature (39-40 degrees C). Three to five trials of the recordings were performed at normal body temperature before raising the animal's core temperature by 1-4 degrees C with an electric heating pad. At the elevated temperature, another 3-5 trials were performed. Finally, the animal was cooled to the original temperature, and trials were again repeated. Complexity values of the diaphragm EMG signal were estimated and evaluated using the approximate entropy method (ApEn) over the ten consecutive breaths. Our results suggested that the mean approximate entropy values for the juvenile age group were 1.01 +/- 0.01 (standard error) during control, 0.91 +/- 0.02 during mild elevated body temperature and 0.81 +/- 0.02 during severe elevated body temperature. For the early adult age group, these values were 0.94 +/- 0.01 during control, 0.93 +/- 0.01 during mild elevated body temperature and 0.92 +/- 0.01 during severe elevated body temperature. Our results show that the complexity values and the durations of the diaphragm EMG (EMGdia) were significantly decreased when the elevated body temperature was shifted from control or mild to severe body temperature (p < 0.05) for the juvenile age group. However, for the early adult age group, an increase in body temperature slightly reduced the complexity measures and the duration of the EMGdia. But, these changes were not statistically significant. These results furthermore suggest that during maturation, the output of the central pattern generator becomes less complex probably because the elevated body temperature reduces the neural activity and alters the behavior of the central respiratory controller, making it more susceptible to sudden infant death syndrome (SIDS).
Collapse
Affiliation(s)
- David Akkurt
- Harrington Department of Bioengineering, Ira A Fulton School of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
64
|
Prenatal to early postnatal nicotine exposure impairs central chemoreception and modifies breathing pattern in mouse neonates: a probable link to sudden infant death syndrome. J Neurosci 2009; 28:13907-17. [PMID: 19091979 DOI: 10.1523/jneurosci.4441-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotine is a neuroteratogen and is the likely link between maternal cigarette smoking during pregnancy and sudden infant death syndrome (SIDS). Osmotic minipumps were implanted in 5-7 d CF1 pregnant mice to deliver nicotine bitartrate (60 mg Kg(-1) day(-1)) or saline (control) solutions for up to 28 d. Prenatal to early postnatal nicotine exposure did not modify the number of newborns per litter or their postnatal growth; however, nicotine-exposed neonates hypoventilated and had reduced responses to hypercarbia (inhalation of air enriched with 10% CO(2) for 20 min) and hypoxia (inhalation of 100% N(2) for 20 s) at postnatal days 0-3 (P0-P3). In contrast, at postnatal day 8, nicotine-exposed neonates were indistinguishable from controls. Isolated brainstem-spinal cord preparations obtained from P0 to P3 nicotine-exposed neonates showed fictive respiration with respiratory cycles longer and more irregular than those of controls, as indicated by high short- and long-term variability in Poincaré plots. In addition, their responses to acidification were reduced, indicating compromise of central chemoreception. Furthermore, the cholinergic contribution to central chemosensory responses switched from muscarinic receptor to nicotinic receptor-based mechanisms. No significant astrogliosis was detectable in the ventral respiratory group of neurons with glial fibrillary acidic protein immunohistochemistry. These results indicate that nicotine exposure affects the respiratory rhythm pattern generator and causes a decline in central chemoreception during early postnatal life. Consequently, breathing would become highly vulnerable, failing to respond to chemosensory demands. Such impairment could be related to the ventilatory abnormalities observed in SIDS.
Collapse
|
65
|
Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE. The brainstem and serotonin in the sudden infant death syndrome. ANNUAL REVIEW OF PATHOLOGY 2009; 4:517-50. [PMID: 19400695 PMCID: PMC3268259 DOI: 10.1146/annurev.pathol.4.110807.092322] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sudden infant death syndrome (SIDS) is the sudden death of an infant under one year of age that is typically associated with sleep and that remains unexplained after a complete autopsy and death scene investigation. A leading hypothesis about its pathogenesis is that many cases result from defects in brainstem-mediated protective responses to homeostatic stressors occurring during sleep in a critical developmental period. Here we review the evidence for the brainstem hypothesis in SIDS with a focus upon abnormalities related to the neurotransmitter serotonin in the medulla oblongata, as these are the most robust pathologic findings to date. In this context, we synthesize the human autopsy data with genetic, whole-animal, and cellular data concerning the function and development of the medullary serotonergic system. These emerging data suggest an important underlying mechanism in SIDS that may help lead to identification of infants at risk and specific interventions to prevent death.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
66
|
Boudinot E, Bernard V, Camp S, Taylor P, Champagnat J, Krejci E, Foutz AS. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respir Physiol Neurobiol 2009; 165:40-8. [PMID: 18977317 PMCID: PMC2706911 DOI: 10.1016/j.resp.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/01/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
Abstract
A mouse strain with a deleted acetylcholinesterase (AChE) gene (AChE knockout) shows a decreased inspiration time and increased tidal volume and ventilation .To investigate the respective roles of AChE in brain and muscle, we recorded respiration by means of whole-body plethysmography in knockout mice with tissue selective deletions in AChE expression. A mouse strain with the anchoring domains of AChE deleted (del E5+6 knockout mice) has very low activity in the brain and neuromuscular junction, but increased monomeric AChE in serum. A mouse strain with deletion of the muscle specific region of AChE (del i1RR knockout mice) exhibits no expression in muscle, but unaltered expression in the central nervous system. Neither strain exhibits the pronounced phenotypic traits observed in the complete AChE knockout strain. A third strain lacking the anchor molecule PRiMA, has no functional AChE and butyrylcholinesterase (BChE) in brain and an unaltered respiratory function. BChE inhibition by bambuterol decreases tidal volume and body temperature in del E5+6 and i1RR knockout strains, but not in PRiMA deletion or wild-type controls. We find that: (1) deletion of the full AChE gene is required for a pronounced alteration in respiratory phenotype, (2) BChE is involved in respiratory muscles contraction and temperature control in del E5+6 and i1RR knockout mice, and (3) AChE expression requiring a gene product splice to either exons 5 and 6 or regulated by intron1 influences temperature control.
Collapse
Affiliation(s)
- Eliane Boudinot
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| | - Véronique Bernard
- Biologie des Jonctions Neuromusculaires Normales et Pathologiques, Université Paris Descartes, Inserm UMR S686, 45 rue des Saint-Pères, 75006 Paris, France
| | - Shelley Camp
- Department Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences 0657, University of California-San Diego, La Jolla, CA, USA
| | - Palmer Taylor
- Department Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences 0657, University of California-San Diego, La Jolla, CA, USA
| | - Jean Champagnat
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| | - Eric Krejci
- Biologie des Jonctions Neuromusculaires Normales et Pathologiques, Université Paris Descartes, Inserm UMR S686, 45 rue des Saint-Pères, 75006 Paris, France
| | - Arthur S. Foutz
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| |
Collapse
|
67
|
Duncan JR, Paterson DS, Kinney HC. The development of nicotinic receptors in the human medulla oblongata: inter-relationship with the serotonergic system. Auton Neurosci 2008; 144:61-75. [PMID: 18986852 PMCID: PMC2767323 DOI: 10.1016/j.autneu.2008.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 02/05/2023]
Abstract
Maternal cigarette smoking during pregnancy adversely affects fetal development and increases the risk for the sudden infant death syndrome (SIDS). In SIDS we have reported abnormalities in the medullary serotonergic (5-HT) system, which is vital for homeostatic control. In this study we analyzed the inter-relationship between nicotinic receptors (nAChRs), to which nicotine in cigarette smoke bind, and the medullary 5-HT system in the human fetus and infant as a step towards determining the mechanisms whereby smoking increases SIDS risk in infants with 5-HT defects. Immunohistochemistry for the alpha4 nAChR subunit and 5-HT neurons was applied in fetal and infant medullae (15-92 postconceptional weeks, n=9). The distribution of different nAChRs was determined from 39-82 postconceptional weeks (n=5) using tissue autoradiography for 3H-nicotine, 3H-epibatidine, 3H-cytisine, and 125I-bungarotoxin; the findings were compared to laboratory 5-HT1A and 5-HT transporter binding data, and 5-HT neuronal density. Alpha4 immunoreactivity was ubiquitously expressed in medullary nuclei related to homeostatic functions from 15 weeks on, including rhombic lip germinal cells. At all ages, alpha4 co-localized with 5-HT neurons, indicating a potential site of interaction whereby exogenous nicotine may adversely affect 5-HT neuronal development and function. Binding for heteromeric nAChRs was highest in the inferior olive, and for homomeric nAChRs, in the vagal complex. In the paragigantocellularis lateralis, 5-HT1A receptor binding simultaneously increased as alpha7 binding decreased across infancy. This study indicates parallel dynamic and complex changes in the medullary nicotinic and 5-HT systems throughout early life, i.e., the period of risk for SIDS.
Collapse
Affiliation(s)
- Jhodie R Duncan
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
68
|
Berner J, Ringstedt T, Brodin E, Hökfelt T, Lagercrantz H, Wickström R. Prenatal exposure to nicotine affects substance p and preprotachykinin-A mRNA levels in newborn rat. Pediatr Res 2008; 64:621-4. [PMID: 18679163 DOI: 10.1203/pdr.0b013e318186e5f5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prenatal nicotine exposure influences neuronal development including effects on several neurotransmitter systems. It also attenuates the ventilatory response to hypoxia, known to require a functional substance P-ergic system. Previous studies have shown that nicotine increases the risk for sudden infant death syndrome (SIDS) by 4-fold, and that SIDS-victims have elevated brainstem levels of substance P. We, therefore, studied the effect of prenatal nicotine exposure on the levels of substance P-like immunoreactivity by RIA in the brain in newborn rat pups. The expression of the substance P precursor preprotachykinin A mRNA was also determined by real-time reverse transcriptase-polymerase chain reaction in carotid body, in petrosal/jugular and trigeminal ganglia, in cervical and lumbar dorsal root ganglia, and in the brainstem. We found that prenatal nicotine exposure increased levels of substance P-like immunoreactivity in the brainstem without changing levels in other parts of the brain or in the adrenals. Furthermore, mRNA levels were increased in the carotid bodies and in the petrosal ganglia, in contrast to the decreased levels in the cervical dorsal root ganglia. We conclude that nicotine causes alterations in the substance P-ergic system in the brainstem, possibly linked to the increased risk for SIDS after prenatal nicotine exposure.
Collapse
Affiliation(s)
- Jonas Berner
- Department of Woman and Child Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
69
|
VERBEEK MARJANMA, RICHARDSON HEIDIL, PARSLOW PETERM, WALKER ADRIANM, HARDING RICHARD, HORNE ROSEMARYSC. Arousal and ventilatory responses to mild hypoxia in sleeping preterm infants. J Sleep Res 2008; 17:344-53. [DOI: 10.1111/j.1365-2869.2008.00653.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Dragomir A, Akay Y, Curran AK, Akay M. Complexity measures of the central respiratory networks during wakefulness and sleep. J Neural Eng 2008; 5:254-61. [PMID: 18506077 DOI: 10.1088/1741-2560/5/2/015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since sleep is known to influence respiratory activity we studied whether the sleep state would affect the complexity value of the respiratory network output. Specifically, we tested the hypothesis that the complexity values of the diaphragm EMG (EMGdia) activity would be lower during REM compared to NREM. Furthermore, since REM is primarily generated by a homogeneous population of neurons in the medulla, the possibility that REM-related respiratory output would be less complex than that of the awake state was also considered. Additionally, in order to examine the influence of neuron vulnerabilities within the rostral ventral medulla (RVM) on the complexity of the respiratory network output, we inhibited respiratory neurons in the RVM by microdialysis of GABA(A) receptor agonist muscimol. Diaphragm EMG, nuchal EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from five unanesthetized chronically instrumented intact piglets (3-10 days old). Complexity of the diaphragm EMG (EMGdia) signal during wakefulness, NREM and REM was evaluated using the approximate entropy method (ApEn). ApEn values of the EMGdia during NREM and REM sleep were found significantly (p < 0.05 and p < 0.001, respectively) lower than those of awake EMGdia after muscimol inhibition. In the absence of muscimol, only the differences between REM and wakefulness ApEn values were found to be significantly different.
Collapse
Affiliation(s)
- Andrei Dragomir
- Harrington Department of Bioengineering, Ira. A. Fulton School of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
71
|
Shao XM, Tan W, Xiu J, Puskar N, Fonck C, Lester HA, Feldman JL. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J Neurosci 2008; 28:519-28. [PMID: 18184794 PMCID: PMC3477875 DOI: 10.1523/jneurosci.3666-07.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 12/04/2007] [Accepted: 12/04/2007] [Indexed: 12/29/2022] Open
Abstract
Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9'A) of the nAChR alpha4 subunit; this mutation renders alpha4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice. Nicotine affected respiratory rhythm at concentrations approximately 100-fold lower in the homozygous L9'A knock-in mice compared with wild-type mice. Bath application of 5 nm nicotine increased the excitability of preBötC inspiratory neurons, increased respiratory frequency, and induced tonic/seizure-like activities in XIIn in L9'A mice, effects similar to those induced by 1 microM nicotine in wild-type mice. In L9'A mice, microinjection of low nanomolar concentrations of nicotine into the preBötC increased respiratory frequency, whereas injection into the ipsilateral hypoglossal (XII) nucleus induced tonic/seizure-like activity. The alpha4*-selective nAChR antagonist dihydro-beta-erythroidine produced opposite effects and blocked the nicotinic responses. These data, showing that nAChRs in the preBötC and XII nucleus in L9'A mice are hypersensitive to nicotine and endogenous ACh, suggest that functional alpha4* nAChRs are present in the preBötC. They mediate cholinergic/nicotinic modulation of the excitability of preBötC inspiratory neurons and of respiratory rhythm. Furthermore, functional alpha4* nAChRs are present in XII nucleus and mediate cholinergic/nicotinic modulation of tonic activity in XIIn.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Sudden and unexpected natural deaths and nonnatural deaths may result from various pulmonary conditions. Additionally, several nonpulmonary conditions of forensic significance may be complicated by the development of respiratory lesions. Certain situations with pulmonary pathology are particularly likely to be critically scrutinized and may form the basis of allegations of medical negligence, other personal injury liability, or wrongful death.1
Collapse
|
73
|
Prenatal exposure to nicotine with associated in utero hypoxia decreased fetal brain muscarinic mRNA in the rat. Brain Res 2007; 1189:43-50. [PMID: 18053972 DOI: 10.1016/j.brainres.2007.10.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/23/2007] [Accepted: 10/31/2007] [Indexed: 11/20/2022]
Abstract
Prenatal exposure to nicotine can be associated with fetal abnormal development and brain damage. This study determined the effect of administration of nicotine with associated in utero hypoxia in maternal rats from early, middle, and late gestation on fetal blood hemoglobin, and expression of cholinergic receptor subtypes in the fetal brain. Our results demonstrated that maternal subcutaneous nicotine from the early gestation increased fetal hemoglobin and hematocrit, associated with reduction of PO(2). Although exposure to nicotine during late gestation had no effects on fetal brain weight, nicotine administration from the early gestation significantly decreased fetal brain muscarinic receptor (M1, M2, M3, and M4) mRNA expression, associated with restricted brain growth. Nicotine-altered muscarinic receptor subtype expression in the fetal forebrain and hindbrain showed regional differences. In addition, there were gestational differences for fetal brain muscarinic suppression by prenatal nicotine. Together, the results demonstrate that nicotine-induced in utero hypoxia is associated with poor development of muscarinic receptors in the fetal brain and restricted brain growth, and that either prolonged prenatal exposure to nicotine or critical "window" period for the brain development during pregnancy may play a role in prenatal nicotine-induced fetal muscarinic-receptor deficiency in the fetal brain.
Collapse
|
74
|
Xia L, Damon T, Niblock MM, Bartlett D, Leiter JC. Unilateral microdialysis of gabazine in the dorsal medulla reverses thermal prolongation of the laryngeal chemoreflex in decerebrate piglets. J Appl Physiol (1985) 2007; 103:1864-72. [PMID: 17823299 DOI: 10.1152/japplphysiol.00524.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The laryngeal chemoreflex (LCR) is elicited by water in the larynx and leads to apnea and respiratory disruption in immature animals. The LCR is exaggerated by the elevation of brain temperature within or near the nucleus of the solitary tract (NTS) in decerebrate piglets. Thermal prolongation of reflex apnea elicited by superior laryngeal nerve stimulation is reduced by systemic administration of GABA(A) receptor antagonists. Therefore, we tested the hypothesis that microdialysis within or near the NTS of gabazine, a GABA(A) receptor antagonist, would reverse thermal prolongation of the LCR. We examined this hypothesis in 21 decerebrate piglets (age 3-13 days). We elicited the LCR by injecting 0.1 ml of water into the larynx before and after each piglet's body temperature was elevated by approximately 2.5 degrees C and before and after 2-5 mM gabazine was dialyzed unilaterally and focally in the medulla. Elevated body temperature failed to prolong the LCR in one piglet, which was excluded from analysis. Elevated body temperature prolonged the LCR in all the remaining animals, and dialysis of gabazine into the region near the NTS (n = 10) reversed the thermal prolongation of the LCR even though body temperature remained elevated. Dialysis of gabazine in other medullary sites (n = 10) did not reverse thermal prolongation of the LCR. Gabazine had no consistent effect on baseline respiratory activity during hyperthermia. These findings are consistent with the hypothesis that hyperthermia activates GABAergic mechanisms in or near the NTS that are necessary for the thermal prolongation of the LCR.
Collapse
Affiliation(s)
- Luxi Xia
- Dept. of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
75
|
Abstract
The objective of this study was to assess the role of the newborn vestibular system on the infant's preferred position. Neonatal electronystagmography was recorded from 80 full-term healthy neonates in the prone and supine positions. Records were analyzed by the clinical ranking of dysmetria and dysrhythmia and computerized fractal analysis. A significantly (P < .002) decreased organization of the electronystagmography signal was observed in the prone compared with the supine position. These results concur with the previously documented, more optimal physiologic functioning in the supine compared with prone position in infancy. It is possible that the vestibular system, among other factors, plays a role in the more protective supine position in infancy.
Collapse
Affiliation(s)
- Rachel Marmur
- Hannah Khoushy Child Development Center, Bnai Zion Medical Center, Haifa, Israel
| | | | | | | | | |
Collapse
|
76
|
Leiter JC, Böhm I. Mechanisms of pathogenesis in the Sudden Infant Death Syndrome. Respir Physiol Neurobiol 2007; 159:127-38. [PMID: 17644048 DOI: 10.1016/j.resp.2007.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 05/25/2007] [Accepted: 05/29/2007] [Indexed: 11/21/2022]
Abstract
The likely processes of the Sudden Infant Death Syndrome (SIDS) were identified many years ago (apnea, failed arousal, failed autoresuscitation, etc.). The neurophysiological basis of these processes and the neurophysiological reasons some infants die of SIDS and others do not are, however, only emerging now. We reviewed recent studies that have shed light on the way in which epidemiological risk factors, genetics, neurotransmitter receptor defects and neonatal cardiorespiratory reflex responses interact to lead to sudden death during sleep in a small number of normal appearing infants. As a result of this review and analysis, we hypothesize that the neurophysiological basis of SIDS resides in a persistence of fetal reflex responses into the neonatal period, amplification of inhibitory cardiorespiratory reflex responses and reduced excitatory cardiorespiratory reflex responses. The hypothesis we developed explores the ways in which multiple subtle abnormalities interact to lead to sudden death and emphasizes the difficulty of ante-mortem identification of infants at risk for SIDS, although identification of infants at risk remains an essential goal of SIDS research.
Collapse
Affiliation(s)
- J C Leiter
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, United States.
| | | |
Collapse
|
77
|
Pasquale-Styles MA, Tackitt PL, Schmidt CJ. Infant death scene investigation and the assessment of potential risk factors for asphyxia: a review of 209 sudden unexpected infant deaths. J Forensic Sci 2007; 52:924-9. [PMID: 17553088 DOI: 10.1111/j.1556-4029.2007.00477.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
At the Wayne County Medical Examiner Office (WCMEO) in Detroit, Michigan, from 2001 to 2004, thorough scene investigations were performed on 209 sudden and unexpected infant deaths, ages 3 days to 12 months. The 209 cases were reviewed to assess the position of the infant at the time of discovery and identify potential risk factors for asphyxia including bed sharing, witnessed overlay, wedging, strangulation, prone position, obstruction of the nose and mouth, coverage of the head by bedding and sleeping on a couch. Overall, one or more potential risk factors were identified in 178 of 209 cases (85.2%). The increasing awareness of infant positions at death has led to a dramatic reduction in the diagnosis of sudden infant death syndrome at the WCMEO. This study suggests that asphyxia plays a greater role in many sudden infant deaths than has been historically attributed to it.
Collapse
|
78
|
Curran AK, Leiter JC. Baroreceptor-mediated inhibition of respiration after peripheral and central administration of a 5-HT1Areceptor agonist in neonatal piglets. Exp Physiol 2007; 92:757-67. [PMID: 17392335 DOI: 10.1113/expphysiol.2007.037481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inhibition of neurones in the ventral medulla accentuates the respiratory inhibition associated with acute blood pressure elevation in piglets. Activation of presynaptic 5-HT(1A) receptors inhibits serotonergic neurones in the ventral medulla and caudal raphé, and we tested the hypothesis that administration of 8-hydroxydipropylaminotetralin (8-OH-DPAT), a 5-HT(1A) agonist, within the rostroventral medulla and caudal raphé would enhance baroreceptor-mediated inhibition of respiratory activity in decerebrate, neonatal piglets. Baroreceptor stimulation was achieved by inflating a balloon in the distal aorta to elevate carotid blood pressure. After two to four control trials of baroreceptor stimulation, each piglet was given either a single intravenous (i.v.) dose of 10 microg kg(-1) 8-OH-DPAT or treated by adding 10 or 30 mm 8-OH-DPAT to the dialysate for approximately 10 min to inhibit serotonergic neurones, after which the baroreceptor stimulation trials were repeated. Baroreceptor stimulation reduced respiratory activity, particularly the respiratory frequency, which diminished from 35.7 +/- 3.3 to 33.8 +/- 3.1 breaths min(-1) (P < 0.02) and, following i.v. 8-OH-DPAT, baroreceptor-mediated inhibition of respiratory output was significantly accentuated (P < 0.05); the respiratory frequency declined from 34.5 +/- 3.6 to 26.5 +/- 2.9 breaths min(-1). Increasing aortic blood pressure reduced the respiratory frequency (P < 0.01), but focal dialysis of 10 or 30 mm 8-OH-DPAT had, on average, no effect on the ventilatory inhibition associated with an acute elevation of blood pressure. We conclude that activation of 5-HT(1A) receptors after systemic administration of 8-OH-DPAT enhanced baroreflex-mediated inhibition of ventilation, but this effect cannot be attributed to 5-HT(1A) receptor activation within the rostroventral medulla and caudal raphé.
Collapse
Affiliation(s)
- Aidan K Curran
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
79
|
Lagercrantz H. Another new theory explaining the cause of SIDS. Acta Paediatr 2007; 96:151-2. [PMID: 17429893 DOI: 10.1111/j.1651-2227.2007.00175.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
Flaig C. Inappropriate mediastinal baroreceptor reflex as a possible cause of sudden infant death syndrome – Is thorough burping before sleep protective? Med Hypotheses 2007; 68:1276-86. [PMID: 17145140 DOI: 10.1016/j.mehy.2006.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 10/05/2006] [Indexed: 11/22/2022]
Abstract
Despite extensive research, a link between the assumed mechanisms of death and known risk factors for sudden infant death syndrome (SIDS) has not yet been established. Modifiable risk factors such as prone sleeping position, nicotine exposure and thermal stress and non-avoidable risk factors like male gender and some risky socio-economic conditions could be detected, but the etiology of SIDS remains unknown. In many SIDS cases histopathological findings suggest an involvement of vital autonomic control functions and unidentified trigger factors seem to play a role. From a hypothetical point of view, a developmental sympatheticovagal imbalance of the cardiovascular reflex control could cause a predisposition for SIDS. An assumed gastroesophageal trigger impulse is possibly developed during the first weeks of life and could lead to the infant's vagal reflex death. Air swallowed during feeding escapes through the esophagus while the infant is sleeping. The temporarily bloated esophagus exerts pressure on neighboring mediastinal baroreceptors, which is potentially misinterpreted as a rise in arterial pressure. The following cardiodepressoric baroreceptor reflex could lead to arterial hypotension, bradycardia and cardiac arrest. Sleeping in prone position may create an increased thoracic pressure on mediastinal baroreceptors, causing a more pronounced vagal reflex and an increased likelihood of SIDS. Prone position in connection with soft objects in the infant's sleeping environment potentially generates an increased oculobulbar pressure, resulting in an additional cardiodepressoric condition (Aschner-Dagnini phenomenon). From the sixth month of life onwards the sympatheticovagal balance seems to have matured sufficiently to compensate the life-threatening challenges in most infants. Insufficient postprandial burping could either create another independent modifiable risk factor or present the missing link to a common trigger mechanism for SIDS. Further investigations may possibly lead to the explicit recommendation to burp all infants sufficiently and repeatedly before sleep.
Collapse
Affiliation(s)
- Christian Flaig
- Landeskrankenhaus Bludenz, Emergency Medicine, Spitalgasse 13, 6700 Bludenz, Austria.
| |
Collapse
|
81
|
Xia L, Damon TA, Leiter JC, Bartlett D. Focal warming in the nucleus of the solitary tract prolongs the laryngeal chemoreflex in decerebrate piglets. J Appl Physiol (1985) 2006; 102:54-62. [PMID: 16959905 DOI: 10.1152/japplphysiol.00720.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The laryngeal chemoreflex (LCR), elicited by a drop of water in the larynx, is exaggerated by mild hyperthermia (body temperature = 40-41 degrees C) in neonatal piglets. We tested the hypothesis that thermal prolongation of the LCR results from heating the nucleus of the solitary tract (NTS), where laryngeal afferents first form synapses in the brain stem. Three- to 13-day-old piglets were decerebrated and vagotomized and studied without anesthesia while paralyzed and ventilated. Phrenic nerve activity and rectal temperature were recorded. A thermode was placed in the medulla, and the brain tissue temperature was recorded with a thermistor approximately 1 mm from the tip of the thermode. When the thermode was inserted into the brain stem, respiratory activity was arrested or greatly distorted in eight animals. However, the thermode was inserted in nine animals without disrupting respiratory activity, and in these animals, warming the medullary thermode (thermistor temperature = 40-41 degrees C) while holding rectal temperature constant reversibly exaggerated the LCR. The caudal raphé was warmed focally by approximately 2 degrees C in four additional animals; this did not alter the duration of the LCR in these animals. Thermodes placed in the NTS did not disrupt respiratory activity, but they did prolong the LCR when warmed. Thermodes that were placed deep to the NTS in the region of the nucleus ambiguus disrupted respiratory activity, which precluded any analysis of the LCR. We conclude that prolongation of the laryngeal chemoreflex by whole body hyperthermia originates from the elevation of brain tissue temperature within in the NTS.
Collapse
Affiliation(s)
- L Xia
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Fatal child abuse has been mistaken for sudden infant death syndrome. When a healthy infant younger than 1 year dies suddenly and unexpectedly, the cause of death may be certified as sudden infant death syndrome. Sudden infant death syndrome is more common than infanticide. Parents of sudden infant death syndrome victims typically are anxious to provide unlimited information to professionals involved in death investigation or research. They also want and deserve to be approached in a nonaccusatory manner. This clinical report provides professionals with information and suggestions for procedures to help avoid stigmatizing families of sudden infant death syndrome victims while allowing accumulation of appropriate evidence in potential cases of infanticide. This clinical report addresses deficiencies and updates recommendations in the 2001 American Academy of Pediatrics policy statement of the same name.
Collapse
|
83
|
Darnall RA, Harris MB, Gill WH, Hoffman JM, Brown JW, Niblock MM. Inhibition of serotonergic neurons in the nucleus paragigantocellularis lateralis fragments sleep and decreases rapid eye movement sleep in the piglet: implications for sudden infant death syndrome. J Neurosci 2006; 25:8322-32. [PMID: 16148240 PMCID: PMC6725532 DOI: 10.1523/jneurosci.1770-05.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonergic receptor binding is altered in the medullary serotonergic nuclei, including the paragigantocellularis lateralis (PGCL), in many infants who die of sudden infant death syndrome (SIDS). The PGCL receives inputs from many sites in the caudal brainstem and projects to the spinal cord and to more rostral areas important for arousal and vigilance. We have shown previously that local unilateral nonspecific neuronal inhibition in this region with GABA(A) agonists disrupts sleep architecture. We hypothesized that specifically inhibiting serotonergic activity in the PGCL would result in less sleep and heightened vigilance. We analyzed sleep before and after unilaterally dialyzing the 5-HT1A agonist (+/-)-8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT) into the juxtafacial PGCL in conscious newborn piglets. 8-OH-DPAT dialysis resulted in fragmented sleep with an increase in the number and a decrease in the duration of bouts of nonrapid eye movement (NREM) sleep and a marked decrease in amount of rapid eye movement (REM) sleep. After 8-OH-DPAT dialysis, there were decreases in body movements, including shivering, during NREM sleep; body temperature and heart rate also decreased. The effects of 8-OH-DPAT were blocked by local pretreatment with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexane-carboxamide, a selective 5-HT1A antagonist. Destruction of serotonergic neurons with 5,7-DHT resulted in fragmented sleep and eliminated the effects of subsequent 8-OH-DPAT dialysis on REM but not the effects on body temperature or heart rate. We conclude that neurons expressing 5-HT1A autoreceptors in the juxtafacial PGCL are involved in regulating or modulating sleep. Abnormalities in the function of these neurons may alter sleep homeostasis and contribute to the etiology of SIDS.
Collapse
Affiliation(s)
- Robert A Darnall
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Paterson DS, Thompson EG, Kinney HC. Serotonergic and glutamatergic neurons at the ventral medullary surface of the human infant: Observations relevant to central chemosensitivity in early human life. Auton Neurosci 2006; 124:112-24. [PMID: 16458076 DOI: 10.1016/j.autneu.2005.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 09/29/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Central chemoreception is the mechanism by which the brain detects the level of carbon dioxide (CO(2)) in the arterial blood and alters breathing accordingly in order to maintain it within physiological levels. The ventral surface of the medulla oblongata (VMS) of animals has long been recognized as a site of chemosensitivity, culminating in the recent identification of chemosensitive serotonergic (5-HT) and glutamatergic (Glut) neurons in this region. In this study, we analyzed the distribution of 5-HT and Glut neurons and their receptors in the arcuate nucleus (Arc) at the VMS of the human infant, using single-and double-label immunohistochemistry with specific antibodies. We also examined the expression of astrocytes, as experimental evidence suggests that astrocytes mediate, at least in part, central chemosensitivity via 5-HT and/or Glut receptors. We identified a small number of 5-HT neurons (approximately 5% of Arc neurons), distributed over the entire extent of the VMS, a large number of Glut neurons (approximately 95% of Arc neurons) that localized almost exclusively to the medial Arc, and a large number of astrocytes distributed across the entire extent of the VMS. The Arc also contained 5-HT(1A), kainate (GluR5), and 5-HT(2A) receptors, which localized predominantly to 5-HT neurons, glutamate neurons and astrocytes, respectively. Astrocytes also expressed the vesicular glutamate transporter 2 and low levels of 5-HT(1A) and kainate (GluR5) receptors, indicating that astrocytes may store and release glutamate, possibly in response to stimulation by 5-HT and/or Glut. These observations suggest that important functional interactions exist between 5-HT, glutamate, and astrocytes in the Arc. They also support the idea that the Arc is homologous to chemosensitive zones at the VMS in experimental animals. These data are important towards delineating the role of the human Arc in modulation of homeostasis, and its dysfunction in brainstem-associated pathologies such as the sudden infant death syndrome.
Collapse
Affiliation(s)
- David S Paterson
- Department of Pathology, Enders 1111, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
85
|
Reid GM. Sudden infant death syndrome (SIDS): Microgravity and inadequate sensory stimulation. Med Hypotheses 2006; 66:920-4. [PMID: 16377097 DOI: 10.1016/j.mehy.2005.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/19/2022]
Abstract
In early gestation, the human foetus develops in a buoyant environment, which is similar to the near-weightlessness of space flight. After the 26th week of gestation, the foetus gradually becomes exposed to gravitational forces. The influence of fluid immersion declines as the weight of the foetus increases. In this way, the foetus adapts and trains for the gravity environment after birth. Failure of gravitational loading in the last trimester of pregnancy delays development and maintains the pathophysiological environment of microgravity as experienced by the astronaut in space flight. The deconditioning effects of microgravity during space flight are the reverse processes of intrauterine development after the 26th week when the foetus begins training body processes for adaptation to an earthly environment. Growth requires space and movement, which suggests that a growth-retarded foetus may have been deprived of the mechanical dimension of uterine wall pressure, and, in twins, the smaller sibling may have been deprived of space. The behaviour of a study group of sudden infant death syndrome infants suggested a continuation of the effects of the foetal akinesia syndrome during the third trimester period of gestation. NASA research into the pathophysiology of microgravity was based on a simple insight: that the physiological effects of human space travel were virtually identical to the adjustments the body makes when lying down. This is the same environment as that of the human foetus in the first 22 weeks of gestation after which the uterine environment becomes a prelude to adaptations to the force of gravity.
Collapse
|
86
|
Thach BT. The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol 2005; 149:343-53. [PMID: 16122993 DOI: 10.1016/j.resp.2005.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 06/22/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Although sudden death in infants resulting from cardiac arrhythmias are well documented these appear to account for no more than 5-10% of SIDS cases. Sudden respiratory failure currently is viewed as the most likely cause of death in the remainder. Accidental asphyxiation appears to have a causal role in less then 50% of deaths diagnosed as SIDS. The rest are most likely do to some form of acute respiratory failure. Although failure of autoresuscitation or failure to arouse from sleep likely contribute to the final sequence of events leading to at least some SIDS deaths, these cannot be regarded as causes of the primary respiratory failure initiating the fatal sequence. Past and current studies provide strong circumstantial evidence that obstructive sleep apnea and/or apnea of prematurity likely account for respiratory failure leading to SIDS in some or many deaths. In drawing conclusions it is well to recognize that mechanisms leading to death in SIDS are heterogeneous and therefore there is room for several plausible theories for respiratory or circulatory abnormalities contributing to SIDS.
Collapse
Affiliation(s)
- Bradley T Thach
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid, Campus Box 8208, St. Louis, MO 63110, USA.
| |
Collapse
|
87
|
Emery MJ, Krous HF, Nadeau-Manning JM, Marck BT, Matsumoto AM. Serum testosterone and estradiol in sudden infant death. J Pediatr 2005; 147:586-91. [PMID: 16291346 DOI: 10.1016/j.jpeds.2005.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/21/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To test the hypothesis that among infants who die unexpectedly, testosterone and/or estradiol levels are elevated in those diagnosed with SIDS versus those with known causes of death (controls). STUDY DESIGN Postmortem blood was collected and coded from infant autopsies, and serum was prepared and frozen until assayed for total testosterone and estradiol by fluoroimmunoassay. Subject information was then collected from the medical examiner's report. RESULTS Testosterone, but not estradiol, was significantly higher in 127 SIDS cases versus 42 controls for both males (4.8 +/- 0.4 vs 2.2 +/- 0.4 nmol, respectively; P < .005) and females (2.4 +/- 0.2 vs 1.6 +/- 0.2 nmol, respectively; P < 0.03). CONCLUSIONS Higher testosterone levels in infant victims of unexpected, unexplained death may indicate a role for testosterone or related steroids in SIDS. Further research is needed to understand the potential utility of testosterone as an indicator of SIDS risk.
Collapse
Affiliation(s)
- Michael J Emery
- Department of Physiology & Biophysics, University of Miami School of Medicine, Miami, FL, USA.
| | | | | | | | | |
Collapse
|
88
|
Chiaretti A, Zorzi G, Di Rocco C, Genovese O, Antonelli A, Piastra M, Polidori G, Aloe L. Neurotrophic factor expression in three infants with Ondine's curse. Pediatr Neurol 2005; 33:331-6. [PMID: 16243220 DOI: 10.1016/j.pediatrneurol.2005.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/31/2005] [Accepted: 05/23/2005] [Indexed: 11/16/2022]
Abstract
This study investigates the expression of some neurotrophic factors (brain-derived neurotrophic factor, glial-derived neurotrophic factor, and nerve growth factor) in the cerebrospinal fluid of infants suffering from idiopathic congenital central hypoventilation syndrome and determines their correlations with this syndrome. Cerebrospinal fluid samples were collected from three infants suffering from idiopathic congenital central hypoventilation syndrome and 15 control subjects with obstructive hydrocephalus to measure the expression of brain-derived neurotrophic factor, glial-derived neurotrophic factor, and nerve growth factor using an immunoenzymatic assay. In the cerebrospinal fluid of patients, analysis of neurotrophic factors expression indicated a reduction, not statistically significant, of brain-derived neurotrophic factor compared with the mean level of the control group (1554 pg/mL, 1509 pg/mL, and 1582 pg/mL respectively, in comparison to 1954 +/- 103 pg/mL), whereas nerve growth factor and glial-derived neurotrophic factor did not undergo significant variations in either group. Neurotrophic factors, namely brain-derived neurotrophic factor, regulate the maturation and differentiation of respiratory neurons. The reduced expression of brain-derived neurotrophic factor in the cerebrospinal fluid samples of infants with Ondine's curse, although not statistically significant, is suggestive of a dysregulation in the brain-derived neurotrophic factor synthesis that could play an important role in the breathing disorders observed in patients with idiopathic congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Antonio Chiaretti
- Pediatric Intensive Care Unit, Catholic University Medical School, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kinney HC. Abnormalities of the brainstem serotonergic system in the sudden infant death syndrome: a review. Pediatr Dev Pathol 2005; 8:507-24. [PMID: 16222475 DOI: 10.1007/s10024-005-0067-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston, Enders Building 1112, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
90
|
Shao XM, Feldman JL. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Neuroscience 2005; 130:1069-81. [PMID: 15653001 PMCID: PMC4342058 DOI: 10.1016/j.neuroscience.2004.10.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2004] [Indexed: 12/21/2022]
Abstract
We investigated whether there is endogenous acetylcholine (ACh) release in the preBötzinger Complex (preBötC), a medullary region hypothesized to contain neurons generating respiratory rhythm, and how endogenous ACh modulates preBötCneuronal function and regulates respiratory pattern. Using a medullary slice preparation from neonatal rat, we recorded spontaneous respiratory-related rhythm from the hypoglossal nerve roots (XIIn) and patch-clamped preBötC inspiratory neurons. Unilateral microinjection of physostigmine, an acetylcholinesterase inhibitor, into the preBötC increased the frequency of respiratory-related rhythmic activity from XIIn to 116+/-13% (mean+/-S.D.) of control. Ipsilateral physostigmine injection into the hypoglossal nucleus (XII nucleus) induced tonic activity, increased the amplitude and duration of the integrated inspiratory bursts of XIIn to 122+/-17% and 117+/-22% of control respectively; but did not alter frequency. In preBötC inspiratory neurons, bath application of physostigmine (10 microM) induced an inward current of 6.3+/-10.6 pA, increased the membrane noise, decreased the amplitude of phasic inspiratory drive current to 79+/-16% of control, increased the frequency of spontaneous excitatory postsynaptic currents to 163+/-103% and decreased the whole cell input resistance to 73+/-22% of control without affecting the threshold for generation of action potentials. Bath application of physostigmine concurrently induced tonic activity, increased the frequency, amplitude and duration of inspiratory bursts of XIIn motor output. Bath application of 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 2 microM), a M3 muscarinic acetylcholine receptor (mAChR) selective antagonist, increased the input resistance of preBötC inspiratory neurons to 116+/-9% of control and blocked all of the effects of physostigmine except for the increase in respiratory frequency. Dihydro-beta-erythroidine (DH-beta-E; 0.2 microM), an alpha4beta2 nicotinic receptor (nAChR) selective antagonist, blocked all the effects of physostigmine except for the increase in inspiratory burst amplitude. In the presence of both 4-DAMP and DH-beta-E, physostigmine induced opposite effects, i.e. a decrease in frequency and amplitude of XIIn rhythmic activity. These results suggest that there is cholinergic neurotransmission in the preBötC which regulates respiratory frequency, and in XII nucleus which regulates tonic activity, and the amplitude and duration of inspiratory bursts of XIIn in neonatal rats. Physiologically relevant levels of ACh release, via mAChRs antagonized by 4-DAMP and nAChRs antagonized by DH-beta-E, modulate the excitability of inspiratory neurons and excitatory neurotransmission in the preBötC, consequently regulating respiratory rhythm.
Collapse
Affiliation(s)
- X M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Box 951763, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
91
|
Krous HF, Chadwick AE, Crandall L, Nadeau-Manning JM. Sudden unexpected death in childhood: a report of 50 cases. Pediatr Dev Pathol 2005; 8:307-19. [PMID: 16010494 DOI: 10.1007/s10024-005-1155-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
Sudden unexplained death in childhood (SUDC) is rare, with a reported incidence in the United States of 1.5 deaths per 100,000 live births compared with 56 deaths per 100,000 live births for sudden infant death syndrome in 2001. The objectives of this study include a proposal for a general definition for SUDC and presentation of 36 cases of SUDC and 14 cases of sudden unexpected death in childhood. Cases were accrued through referrals or unsolicited via our Web page (http://www.sudc.org ). Our analyses tentatively suggest a SUDC profile characterized by cases being 1 to 3 years in age, predominantly male, and frequently having a personal and family history of seizures that are often associated with a fever. A history of recent minor head trauma is not uncommon. They are usually born at term as singletons and occasionally have a family history of sudden infant death syndrome or SUDC. Most are found prone, often with their face straight down into the sleep surface. Minor findings are commonly seen at postmortem examination but do not explain their deaths. Comprehensive review of the medical history and circumstances of death and performance of a complete postmortem examination including ancillary studies and extensive histologic sampling of the brain are critical in determining the cause of death in these cases of sudden unexpected childhood death. Legislation enabling research and formation of a multicenter research team is recommended to unravel the mystery of SUDC.
Collapse
Affiliation(s)
- Henry F Krous
- Department of Pathology, Children's Hospital and Health Center, San Diego, CA 92123, USA.
| | | | | | | |
Collapse
|
92
|
Pagnotta SE, Lape R, Quitadamo C, Nistri A. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro. Neuroscience 2005; 130:783-95. [PMID: 15590160 DOI: 10.1016/j.neuroscience.2004.09.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 11/16/2022]
Abstract
The motor output of hypoglossal motoneurons to tongue muscles takes place in concert with the respiratory rhythm and is determined by the balance between excitatory glutamatergic transmission and inhibitory transmission mediated by glycine or GABA. The relative contribution by these transmitters is a phasic phenomenon modulated by other transmitters. We examined how metabotropic muscarinic receptors, widely expressed in the brainstem where they excite cranial motor nuclei, might influence synaptic activity mediated by GABA or glycine. For this purpose, using thin slices of the neonatal rat brainstem, we recorded (under whole-cell patch clamp) glycinergic or GABAergic responses from visually identified hypoglossal motoneurons after pharmacological block of glutamatergic transmission. Muscarine inhibited spontaneous and electrically induced events mediated by GABA or glycine. The amplitude of glycinergic miniature inhibitory postsynaptic currents was slightly reduced by muscarine, while GABAergic miniature inhibitory postsynaptic currents were unaffected. Motoneuron currents induced by focally applied GABA and glycine were depressed by muscarine with stronger reduction in glycine-mediated responses. Histochemical observations indicated the presence of M1, M2 and M5 subtypes of muscarinic receptors in the neonatal hypoglossal nucleus. These results suggest that muscarine potently depressed inhibitory neurotransmission on brainstem motoneurons, and that this action was exerted via preterminal and extrasynaptic receptors. Since the large reduction in inhibitory neurotransmission may contribute to overall excitation of brainstem motoneurons by muscarinic receptors, these data might help to understand the central components of action of antimuscarinic agents in preanesthetic medication or against motion sickness.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Data Interpretation, Statistical
- Electric Stimulation
- Electrophysiology
- Excitatory Postsynaptic Potentials
- Glycine/physiology
- Hypoglossal Nerve/drug effects
- Hypoglossal Nerve/physiology
- Immunohistochemistry
- In Vitro Techniques
- Motor Neurons/drug effects
- Motor Neurons/physiology
- Muscarine/pharmacology
- Muscarinic Agonists/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, GABA/drug effects
- Receptors, GABA/physiology
- Receptors, Glycine/drug effects
- Receptors, Glycine/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- S E Pagnotta
- Neurobiology Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
93
|
Falk L, Nordberg A, Seiger A, Kjaeldgaard A, Hellström-Lindahl E. Smoking during early pregnancy affects the expression pattern of both nicotinic and muscarinic acetylcholine receptors in human first trimester brainstem and cerebellum. Neuroscience 2005; 132:389-97. [PMID: 15802191 DOI: 10.1016/j.neuroscience.2004.12.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2004] [Indexed: 11/29/2022]
Abstract
Prenatal nicotine exposure is associated with an increased risk of complications during pregnancy and childhood. In this study the expression of nicotinic and muscarinic acetylcholine receptors in first trimester pons, medulla oblongata and cerebellum from abortus (5-12 weeks of gestation) of smoking and nonsmoking women was compared. A significant age-related increase in binding of nicotinic receptor subtype alpha4 was found in both pons and cerebellum only in fetal tissue from non-smoking women, while a similar increase was observed in medulla oblongata from fetuses exposed to smoking. A significant age-related increase in binding of muscarinic receptor subtype m2 was observed in pons from abortus of smoking compared with non-smoking women. The gene expression pattern of both alpha4 and alpha7 nicotinic receptor subunits was changed after smoking in all three regions investigated. Smoking also changed the expression of m1 and 2 muscarinic receptor mRNA in pons, m1 mRNA in cerebellum and the m3 mRNA in medulla oblongata. The findings indicate that early prenatal nicotine exposure affects the normal developmental pattern of the cholinergic system in human fetal brain.
Collapse
Affiliation(s)
- L Falk
- Karolinska Institutet, Neurotec Department, Division of Molecular Neuropharmacology, Karolinska University Hospital Huddinge, S-141 86, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
94
|
Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287:C1493-526. [PMID: 15525685 DOI: 10.1152/ajpcell.00282.2004] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
95
|
Battaglia M, Ogliari A. Anxiety and panic: from human studies to animal research and back. Neurosci Biobehav Rev 2004; 29:169-79. [PMID: 15652264 DOI: 10.1016/j.neubiorev.2004.06.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 06/01/2004] [Indexed: 01/01/2023]
Abstract
The role of learning and conditioning varies across human anxiety disorders, and distinguishing between fear and panic is important to guide investigation in panic disorder. By reminding that some psychological and psychobiological theories view panic attacks as false alarms of unconditioned biological origin, we suggest that employing endophenotypes of biological and evolutionary relevance--such as the respiratory responses to suffocative stimuli--can be fruitful for both human research and animal models of panic, and can help keeping unconditioned components of the clinical picture separate from the conditioned components in the experimental setting. We present a review of a model of panic disorder by which idiosyncratic environmental adverse events can promote unconditioned and unexpected spells of physical alarm. Along the proposed causal pathway the alternative splicing expression of polymorphic genes of the cholinergic system play an important role. The overproduction of the Acetylcholinesterase readthrough splice variant after minor stress can promote passive avoidance and learning through action at the level of the corticolimbic circuitries, as well as heightened sensitivity to suffocative stimuli by action upon the cholinergic components of chemoception. When a component of anticipatory anxiety complicates the clinical picture of recurrent panic attacks, and the HPA becomes activated, the glucocorticoid response element 17 kb upstream of the Acetylcholinesterase gene transcription initiation site may sustain sensitivity to suffocative stimuli for prolonged time. Finally, we review how animal models of human panic based on unconditioned provocation of alarm reactions by the same respiratory panicogens that are employed in man are viable and promising.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| | | |
Collapse
|
96
|
Curran AK, Xia L, Leiter JC, Bartlett D. Elevated body temperature enhances the laryngeal chemoreflex in decerebrate piglets. J Appl Physiol (1985) 2004; 98:780-6. [PMID: 15542573 DOI: 10.1152/japplphysiol.00906.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia and reflex apnea may both contribute to sudden infant death syndrome (SIDS). Therefore, we investigated the effect of increased body temperature on the inhibition of breathing produced by water injected into the larynx, which elicits the laryngeal chemoreflex (LCR). We studied decerebrated, vagotomized, neonatal piglets aged 3-15 days. Blood pressure, end-tidal CO(2), body temperature, and phrenic nerve activity were recorded. To elicit the LCR, we infused 0.1 ml of distilled water through a polyethylene tube passed through the nose and positioned just rostral to the larynx. Three to five LCR trials were performed with the piglet at normal body temperature. The animal's core body temperature was raised by approximately 2.5 degrees C, and three to five LCR trials were performed before the animal was cooled, and three to five LCR trials were repeated. The respiratory inhibition associated with the LCR was substantially prolonged when body temperature was elevated. Thus elevated body temperature may contribute to the pathogenesis of SIDS by increasing the inhibitory effects of the LCR.
Collapse
Affiliation(s)
- A K Curran
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
97
|
Biondo B, Magagnin S, Bruni B, Cazzullo A, Tosi D, Matturri L. Glial and neuronal alterations in the nucleus tractus solitarii of sudden infant death syndrome victims. Acta Neuropathol 2004; 108:309-18. [PMID: 15300449 DOI: 10.1007/s00401-004-0895-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 05/18/2004] [Accepted: 05/18/2004] [Indexed: 01/30/2023]
Abstract
The factors underlying the sudden infant death syndrome (SIDS) are still unknown, but in recent years much attention has been focused on the central cardiorespiratory control system. In the present work we analyzed the nucleus tractus solitarii (nTS) of 23 SIDS victims and 17 age-matched control cases. We studied the functional and morphological alterations of neurons and glial cells to evaluate the results of possible hypoxic-ischemic injury that could have led to sudden death. Morphometric and immunohistochemical analyses were performed on medullary sections. In the nTS of SIDS victims we observed modifications of both neuronal and glial cells. Brain injury triggers the activation of both astrocytes and microglia, which respond to neuronal damage by characteristic changes that could explain our observations in the nTS of SIDS victims. In our investigation of the nTS of SIDS victims we found a significant increase of reactive astrocytes density, a significantly higher percentage of necrotic cells, an increase of reactive microglial cells density, a significantly higher expression of substance P and the presence of NMDA receptors immunoreactivity. Our results support the hypothesis that there is injury of the nTS neurons in SIDS victims, even if the causes of this damage are still unknown. This neuronal damage may explain why adequate ventilation is often not maintained during hypoxia. Such histological findings have never been thought sufficient to explain SIDS, but the tissue findings could be an indication of the impairment of several pathophysiological mechanisms which may underlie brainstem dysfunction, affecting cardiorespiratory control.
Collapse
Affiliation(s)
- Bruna Biondo
- Institute of Pathology, University of Milan, Via Commenda 19, 20122 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Control of the cardiovascular and respiratory systems undergoes rapid maturation during infancy. Sleep is at a lifetime maximum during this period and has a marked influence on cardiorespiratory function. The mechanisms leading to sudden infant death syndrome (SIDS) may include a failure in the neural integration of the cardiovascular and respiratory systems, with a concomitant failure to arouse from sleep. Studies have shown that sleep states exert a marked influence on respiratory control and arousability. Infants are more arousable in active sleep compared with quiet sleep from both somatosensory and respiratory stimuli. Post-natal and gestational age at birth also have a marked influence on arousability. Arousability is depressed by the major risk factors for SIDS (prone sleeping, maternal smoking, prematurity and recent infection) and is increased by factors that decrease the risk for SIDS (e.g. use of dummies, breastfeeding).
Collapse
|
99
|
Horne RSC, Franco P, Adamson TM, Groswasser J, Kahn A. Influences of maternal cigarette smoking on infant arousability. Early Hum Dev 2004; 79:49-58. [PMID: 15282122 DOI: 10.1016/j.earlhumdev.2004.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Since the reduction in the incidence of the prone sleeping position, maternal cigarette smoking has become the strongest modifiable risk factor for Sudden Infant Death Syndrome (SIDS). This risk is dose dependent. Various mechanisms have been postulated to explain the increased risk of SIDS associated with maternal smoking, among these, impairment of arousal from sleep. This paper reviews the effects of maternal smoking on infant arousability from sleep, cardiorespiratory controls and sleep architecture. Infants exposed to maternal smoking have been shown to have both decreased spontaneous and evoked arousability from sleep. Such impairment of arousal has been demonstrated to be associated with changes in control of autonomic cardiac function. Sleep architecture appears not to be altered by smoking. During arousal, heart rate, blood pressure and breathing movements increase, while gross body movements occur to avoid the stimulus. Any impairment in arousability from sleep could occur when infants are exposed to maternal cigarette smoking, and could possibly contribute to the final pathway to SIDS.
Collapse
Affiliation(s)
- Rosemary S C Horne
- Ritchie Centre for Baby Health Research, Monash University, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
100
|
Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 2004; 5:449-61. [PMID: 15152195 DOI: 10.1038/nrn1409] [Citation(s) in RCA: 386] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- George B Richerson
- Department of Neurology, Yale University School of Medicine, New Haven, and the Veteran's Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|