51
|
Mizuno K, Narita E, Yamada M, Shinohara N, Miyakoshi J. ELF magnetic fields do not affect cell survival and DNA damage induced by ultraviolet B. Bioelectromagnetics 2013; 35:108-15. [PMID: 24123106 DOI: 10.1002/bem.21821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/12/2013] [Indexed: 11/07/2022]
Abstract
We investigated whether extremely low frequency (ELF) magnetic field exposure has modification effects on cell survival after ultraviolet B (UV-B) irradiation and on repair process of DNA damage induced by UV-B irradiation in WI38VA13 subcloned 2RA and XP2OS(SV) cells. The ELF magnetic field exposure was conducted using a Helmholtz coil-based system that was designed to generate a sinusoidal magnetic field at 5 mT and 60 Hz. Cell survival was assessed by WST assay after UV-B irradiation at 20-80 J/m(2) , ELF magnetic field exposure for 24 h, followed by incubation for 48 h. DNA damage was assessed by quantification of cyclobutane pyrimidine dimer formation and 6-4 photoproduct formation using ELISA after UV-B irradiation at 20-80 J/m(2) followed by ELF magnetic field exposure for 24 h. No significant changes were observed in cell survival between ELF magnetic field and sham exposures. Similarly, DNA damage induced by UV-B irradiation did not change significantly following ELF magnetic field exposure. Our results suggest that ELF magnetic field exposure at 5 mT does not have modification effect on cell survival after UV-B irradiation and on repair process of DNA damage induced by UV-B irradiation.
Collapse
Affiliation(s)
- Kohei Mizuno
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan; Power Engineering R&D Center, Kansai Electric Power Company, Osaka, Japan
| | | | | | | | | |
Collapse
|
52
|
Li QQ, Lee RX, Liang H, Wang G, Li JM, Zhong Y, Reed E. β-Elemene enhances susceptibility to cisplatin in resistant ovarian carcinoma cells via downregulation of ERCC-1 and XIAP and inactivation of JNK. Int J Oncol 2013; 43:721-8. [PMID: 23817665 PMCID: PMC3787889 DOI: 10.3892/ijo.2013.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/23/2013] [Indexed: 01/05/2023] Open
Abstract
β-Elemene is a promising new plant-derived drug with broad-spectrum anticancer activity. It also increases cisplatin cytotoxicity and enhances cisplatin sensitivity in resistant human carcinoma cells. However, little is known about the mechanism of its action. To explore the potential therapeutic application of β-elemene as a drug-resistance modulator, this study investigated the underlying mechanism of β-elemene activity in cisplatin-resistant ovarian cancer cells. β-Elemene enhanced cisplatin sensitivity to a much greater extent in chemoresistant A2780/CP70 and MCAS human ovarian carcinoma cells compared to the chemosensitive parental cell line A2780. The dose-modifying factors for cisplatin were between 35 and 60 for A2780/CP70 cells and between 1.6 and 2.5 for A2780 cells. In the cisplatin-resistant ovarian carcinoma cells, β-elemene abrogated cisplatin-induced expression of excision repair cross-complementation group-1 (ERCC-1), a marker gene in the nucleotide excision repair pathway that repairs cisplatin-caused DNA damage. In addition, β-elemene not only reduced the level of X-linked inhibitor of apoptosis protein (XIAP), but also downregulated cisplatin-mediated XIAP expression in chemoresistant cells. Furthermore, β-elemene blocked the cisplatin-stimulated increase in the level of phosphorylated c-Jun NH2-terminal kinase (JNK) in these cells. These novel findings suggest that the β-elemene enhancement of cisplatin sensitivity in human chemoresistant ovarian cancer cells is mediated at least in part through the impairment of DNA repair activity and the activation of apoptotic signaling pathways, thereby making resistant ovarian cancer cells susceptible to cisplatin-induced cell death.
Collapse
Affiliation(s)
- Quentin Q Li
- National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Chu H, Gu D, Xu M, Xu Z, Gong Y, Gong W, Tang Y, Zhou J, Tong N, Zhang Z, Chen J, Wang M. A genetic variant in ERCC2 is associated with gastric cancer prognosis in a Chinese population. Mutagenesis 2013; 28:441-6. [PMID: 23680703 DOI: 10.1093/mutage/get023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endogenous and exogenous factors can induce DNA damage, leading to increased risk of cancer. Nucleotide excision repair (NER) is considered as the most versatile DNA repair pathway to deal with a variety of different DNA lesions. ERCC1 and ERCC2 are the two important proteins in NER pathway. In this study, we investigated the association of three functional single nucleotide polymorphisms (SNPs) (ERCC1 rs11615, ERCC2 rs13181 and ERCC2 rs1799793) with the clinical outcome of 940 gastric cancer patients in a Chinese population. Multiplex SNaPshot technology was used to genotype these three SNPs. Our results revealed that individuals with ERCC2 rs13181TG/GG genotypes had a decreased risk of death compared with those with TT genotype [log-rank P = 0.008; adjusted hazard ratio = 0.68, 95% confidence interval = 0.51-0.91] and this protective effect was more pronounced among the subgroups of patients with tumour size ≤ 5 cm (0.59, 0.39-0.89), non-cardia gastric tumour (0.69, 0.48-0.98), no lymph node metastasis (0.55, 0.32-0.96), no distant metastasis (0.70, 0.52-0.95) and chemotherapy (0.39, 0.21-0.72). We conclude that ERCC2 rs13181 polymorphism could play different roles in the overall survival of gastric cancer. Further larger studies should be conducted to validate our findings.
Collapse
Affiliation(s)
- Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wemhoff S, Meinhardt F. Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol 2013; 97:7805-19. [PMID: 23644770 DOI: 10.1007/s00253-013-4935-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/25/2022]
Abstract
Bacillus pumilus mutants were generated by targeted deletion of a set of genes eventually facilitating genetic handling and assuring biological containment. The well-defined and stable mutants do not form functional endospores due to the deletion of yqfD, an essential sporulation gene; they are affected in DNA repair, as ΔuvrBA rendered them UV hypersensitive and, thus, biologically contained; they are deficient for the uracil phosphoribosyl-transferase (Δupp), allowing for 5-fluorouracil-based counterselection facilitating rapid allelic exchanges; and they are readily transformable due to the deletion of the restrictase encoding locus (ΔhsdR) of a type I restriction modification system. Vegetative growth as well as extracellular enzyme production and secretion are in no case affected. The combination of such gene deletions allows for development of B. pumilus strains suited for industrial use and further improvements.
Collapse
Affiliation(s)
- Stephanie Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149, Münster, Germany
| | | |
Collapse
|
55
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
56
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
57
|
Bai ZL, Wang YY, Zhe H, He JL, Hai P. ERCC1 mRNA levels can predict the response to cisplatin-based concurrent chemoradiotherapy of locally advanced cervical squamous cell carcinoma. Radiat Oncol 2012; 7:221. [PMID: 23259415 PMCID: PMC3536645 DOI: 10.1186/1748-717x-7-221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate whether the excision repair cross-complementation group 1 (ERCC1) mRNA expression could predict treatment response of patients with locally advanced cervical squamous cell carcinoma (LACSCC) who underwent cisplatin-based concurrent chemoradiotherapy (CCCRT). METHODS A total of sixty LACSCC patients, treated with radical CCCRT from a single institution were evaluated. ERCC1 mRNA expression was determined by quantitative real-time RT-PCR in pre-treatment tumor tissues. The association of ERCC1 status with clinicopathological characteristics (age, histological grade, tumor size, parametrial invasion, lymph node metastasis and FIGO stage) and treatment response were analyzed. RESULTS No significant association between ERCC1 mRNA expression and clinicopathological characteristics were observed. Patients with low ERCC1 mRNA level had a significantly higher rate of complete response (86.21%) than patients with high level of ERCC1 expression (19.36%; p < 0.001). In the logistic regression analysis, low ERCC1 mRNA level retained an independent role in predicting complete response to CCCRT (P < 0.001). An ERCC1 expression level of 0.0901 was determined as an optimal cutoff value to identify complete response patients to CCCRT treatment. The sensitivity for detection of a complete response was 81.48% with a specificity of 96.97% (area under the curve, 0.893; 95% confidence interval, 0.804-0.983). CONCLUSIONS This is the first analysis of the association between ERCC1 mRNA levels and treatment response in patients with LACSCC. Low ERCC1 mRNA level appears to be a highly specific predictor of response to CCCRT in LACSCC.
Collapse
Affiliation(s)
- Zhou-lan Bai
- Graduate School, Ningxia Medical University, No.1160 Shengli Str, Yinchuan, Ningxia 750004, China
| | | | | | | | | |
Collapse
|
58
|
Lin YL, Liau JY, Yu SC, Ou DL, Lin LI, Tseng LH, Chang YL, Yeh KH, Cheng AL. KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells. PLoS One 2012; 7:e50701. [PMID: 23209813 PMCID: PMC3508995 DOI: 10.1371/journal.pone.0050701] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC), but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V) by small interfering RNAs (siRNA) and overexpressed in KRAS-wild-type CRC cells (COLO320DM) by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR). In KRAS-wild-type CRC cells (COLO320DM), KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1) downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V), KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jau-Yu Liau
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Da-Liang Ou
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-In Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Hui Tseng
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
59
|
Allera-Moreau C, Rouquette I, Lepage B, Oumouhou N, Walschaerts M, Leconte E, Schilling V, Gordien K, Brouchet L, Delisle MB, Mazieres J, Hoffmann JS, Pasero P, Cazaux C. DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis 2012; 1:e30. [PMID: 23552402 PMCID: PMC3503291 DOI: 10.1038/oncsis.2012.29] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Clinical staging classification is generally insufficient to provide a reliable prognosis, particularly for early stages. In addition, prognostic factors are therefore needed to better forecast life expectancy and optimize adjuvant therapeutic strategy. Recent evidence indicates that alterations of the DNA replication program contribute to neoplasia from its early stages and that cancer cells are frequently exposed to endogenous replication stress. We therefore hypothesized that genes involved in the replication stress response may represent an under-explored source of biomarkers. Expressions of 77 DNA replication-associated genes implicated in different aspects of chromosomal DNA replication, including licensing, firing of origins, elongation, replication fork maintenance and recovery, lesion bypass and post-replicative repair were determined in primary tumors and adjacent normal tissues from 93 patients suffering from early- or mid-stage non-small cell lung cancer (NSCLC). We then investigated a statistically significant interaction between gene expressions and survival of early-stage NSCLC patients.The expression of five genes, that is, POLQ, PLK1, RAD51, CLASPIN and CDC6 was associated with overall, disease-free and relapse-free survival. The expression levels are independent of treatment and stage classification. Except RAD51, their prognostic role on survival persists after adjustment on age, sex, treatment, stage classification and conventional proliferation markers, with a hazard ratio of 36.3 for POLQ (95%CI 2.6–517.4, P=0.008), 23.5 for PLK1 (95%CI 1.9–288.4, P=0.01), 20.7 for CLASPIN (95%CI 1.5–275.9, P=0.02) and 18.5 for CDC6 (95%CI 1.3–267.4, P=0.03). We also show that a five-gene signature including POLQ, PLK1, RAD51, CLASPIN and CDC6 separates patients into low- and high-risk groups, with a hazard ratio of 14.3 (95% CI 5.1–40.3, P<0.001). This ‘replication stress' metamarker may be a reliable predictor of survival for NSCLC, and may also help understand the molecular mechanisms underlying tumor progression.
Collapse
Affiliation(s)
- C Allera-Moreau
- 1] Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University of Toulouse, University Paul Sabatier, Toulouse, France [2] Rangueil-Larrey University Hospital, University of Toulouse, University Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Müller MR, Thomale J, Rajewsky MF, Seeber S. Drug resistance and DNA repair in leukaemia. Cytotechnology 2012; 27:175-85. [PMID: 19002791 DOI: 10.1023/a:1008064804678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most cytotoxic agents exert their action via damage of DNA. Therefore, the repair of such lesions is of major importance for the sensitivity of malignant cells to chemotherapeutic agents. The underlying mechanisms of various DNA repair pathways have extensively been studied in yeast, bacteria and mammalian cells. Sensitive and drug resistant cancer cell lines have provided models for analysis of the contribution of DNA repair to chemosensitivity. However, the validity of results obtained by laboratory experiments with regard to the clinical situation is limited. In both acute and chronic leukaemias, the emergence of drug resistant cells is a major cause for treatment failure. Recently, assays have become available to measure cellular DNA repair capacity in clinical specimens at the single-cell level. Application of these assays to isolated lymphocytes from patients with chronic lymphatic leukaemia (CLL) revealed large interindividual differences in DNA repair rates. Accelerated O(6)-ethylguanine elimination from DNA and faster processing of repair-induced single-strand breaks were found in CLL lymphocytes from patients nonresponsive to chemotherapy with alkylating agents compared to untreated or treated sensitive patients. Moreover, modulators of DNA repair with different target mechanisms were identified which also influence the sensitivity of cancer cells to alkylating agents. In this article, we review the current knowledge about the contribution of DNA repair to drug resistance in human leukaemia.
Collapse
|
61
|
Abstract
DNA repair is an important effector of anti-cancer drug resistance. In recent years, it has become apparent that DNA repair is an extremely complex process. Processes within DNA repair that may contribute to one or more drug resistance phenotypes include; O-6-alkyltransferase activity, base excision repair, mismatch repair, nucleotide excision repair, and gene specific repair. Clearly, several of these processes may show increased activity within any single cell, or tumor, at any one time. This review attempts to touch briefly upon the question of the distinctions between each of these specific pathways; and then seeks to expand on nucleotide excision repair as a possible effector of cellular and clinical resistance to platinum-based anticancer therapy.
Collapse
Affiliation(s)
- E Reed
- Division of Clinical Sciences, National Cancer Institute, Building 10, Room 12N226, Bethesda, MD, 20892, U.S.A. E-mail,
| |
Collapse
|
62
|
Studer A, Cubillos VM, Lamare MD, Poulin R, Burritt DJ. Effects of ultraviolet radiation on an intertidal trematode parasite: an assessment of damage and protection. Int J Parasitol 2012; 42:453-61. [PMID: 22787586 DOI: 10.1016/j.ijpara.2012.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trematode parasites are integral components of intertidal ecosystems which experience high levels of ultraviolet radiation. Although these parasites mostly live within hosts, their life cycle involves free-living larval transmission stages such as cercariae which are directly exposed to ambient conditions. UV has previously been shown to considerably reduce the survival of cercariae. Here, we investigated potential mechanisms of protection and damage related to UV in the intertidal trematode Maritrema novaezealandensis. Firstly, the presence of sunscreen compounds (i.e. mycosporine-like amino acids) was quantified in the parasite tissue producing cercariae within a snail host, as well as in the free-swimming cercariae themselves. Secondly, levels of oxidative stress in cercariae after exposure to UV were investigated (i.e.protein carbonyls, catalase and superoxide dismutase). Thirdly, the DNA damage (i.e. cyclobutane–pyrimidine dimers) was compared between cercariae exposed and not exposed to UV. Lastly, functional aspects(survival and infectivity) of cercariae were assessed, comparing cercariae under light conditions versus dark after exposure to UV. We confirmed the presence of my cosporine-like amino acids in cercariae-producing tissue from within snail hosts, but were unable to do so in cercariae directly. Results further suggested that exposure to UV induced high levels of oxidative stress in cercariae which was accompanied by a reduction in the levels of protective antioxidant enzymes present. We also identified higher levels of DNA damage in cercariae exposed to UV, compared with those not exposed. Moreover, no clear effect of light condition was found on survival and infectivity of cercariae after exposure to UV. We concluded that cercariae are highly susceptible to UV damage and that they have very little scope for protection against or repair of UV-induced damage.
Collapse
Affiliation(s)
- A Studer
- Department of Zoology, P.O. Box 56, Dunedin 9054, New Zealand.
| | | | | | | | | |
Collapse
|
63
|
Yoon YK, Im SA, Min A, Kim HP, Hur HS, Lee KH, Han SW, Song SH, Youn Oh D, Kim TY, Kim WH, Bang YJ. Sunitinib synergizes the antitumor effect of cisplatin via modulation of ERCC1 expression in models of gastric cancer. Cancer Lett 2012; 321:128-136. [PMID: 22266184 DOI: 10.1016/j.canlet.2012.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 12/19/2022]
Abstract
We evaluated the effects of sunitinib monotherapy and in combination with cisplatin in human gastric cancer cell lines. Sunitinib showed antiproliferative effect in gastric cancer cells line with high PDGFRA expression. Knockdown of PDGFRA showed that sunitinib sensitivity was correlated with the basal expression of PDGFRA. Synergistic growth inhibitory activity in combination with cisplatin was identified. We further explored how sunitinib potentiated the activity of cisplatin. We found that sunitinib treatment resulted in the down-regulation of ERCC1 expression via the modulation of PDGFRA expression in gastric cancer cells. The effect was verified via SNU484 xenograft model. Our data support the rationale of clinical trial using sunitinib in combination of cisplatin in gastric cancer.
Collapse
Affiliation(s)
- Young-Kwang Yoon
- Cancer Research Institute, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ozcan MF, Dizdar O, Dincer N, Balcı S, Guler G, Gok B, Pektas G, Seker MM, Aksoy S, Arslan C, Yalcin S, Balbay MD. Low ERCC1 expression is associated with prolonged survival in patients with bladder cancer receiving platinum-based neoadjuvant chemotherapy. Urol Oncol 2012; 31:1709-15. [PMID: 22863869 DOI: 10.1016/j.urolonc.2012.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Excision repair cross-complementation group 1 enzyme (ERCC1) plays a key role in the removal of platinum induced DNA adducts and cisplatin resistance. Prognostic role of ERCC1 expression in the neoadjuvant setting in bladder cancer has not been reported before. We evaluated the prognostic role of ERCC1 expression in bladder cancer receiving platinum-based neoadjuvant chemotherapy. MATERIALS AND METHODS Thirty-eight patients with muscle invasive bladder cancer who received neoadjuvant platinum-based chemotherapy were included. Clinical and histopathologic parameters along with immunohistochemical ERCC1 staining were examined and correlated with response rates and survival. RESULTS Pathologic complete response rates were similar between patients with low and high ERCC1 expression. Median disease-free survival (DFS) was 9.3 vs. 20.5 months (P = 0.186) and median overall survival (OS) was 9.3 vs. 26.7 months (P = 0.058) in patients with high ERCC1 expression compared with those with low expression, respectively. In multivariate Cox regression analysis: pathological complete response (pCR) after chemotherapy (hazard ratio (HR) 0.1, 95% CI 0.012-0.842, P = 0.034) and high ERCC1 expression (HR 3.7, 95% CI 1.2-11.2, P = 0.019) were significantly associated with DFS. Patient age (>60 vs. ≤ 60 years) (HR 3.4, 95% CI 1.2-9.4, P = 0.018), the presence of pCR (HR 0.11, 95% CI 0.014-0.981, P = 0.048) and high ERCC expression (HR 6.1, 95 CI 1.9-19.9, P = 0.002) were significantly associated with OS. CONCLUSIONS Our results showed that high ERCC1 expression was independently associated with shorter disease-free and overall survival in patients with bladder cancer who received neoadjuvant platinum-based chemotherapy. ERCC1 may represent a potential predictive marker for platinum-based treatment in bladder cancer.
Collapse
Affiliation(s)
- Muhammet Fuat Ozcan
- Department of Urology, Ankara Ataturk Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Villaruz LC, Socinski MA. Personalized therapy for non-small cell lung cancer: which drug for which patient? Semin Thorac Cardiovasc Surg 2012; 23:281-90. [PMID: 22443647 DOI: 10.1053/j.semtcvs.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2012] [Indexed: 01/04/2023]
Abstract
The elucidation of the molecular alterations in non-small cell lung cancer (NSCLC) and the development of molecularly targeted agents have permanently shifted NSCLC therapy to a personalized approach. In the metastatic setting, the addition of the anti-vascular endothelial growth factor monoclonal antibody, bevacizumab, to chemotherapy improves overall survival. The oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, prolong progression-free survival in patients selected for the presence of an EGFR activating mutation. The monoclonal antibody to EGFR, cetuximab, improves survival in patients with metastatic NSCLC, and the inhibitor of the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein, crizotinib, has resulted in an unprecedented overall survival advantage in patients harboring the EML4-ALK translocation. In the adjuvant setting, gefitinib has not been shown to improve patient survival outcomes; however, there are several ongoing clinical trials in the adjuvant setting evaluating the role of erlotinib, bevacizumab, and the MAGE-A3 and MUC1 vaccines. The realm of personalized lung cancer therapy also includes the study of chemotherapy selected on the basis of the pharmacogenetic profile of a patient's tumor. Several ongoing clinical trials in both the metastatic and adjuvant settings are studying the excision repair cross-complementing group 1 (ERCC1) protein, the ribonucleotide reductase subunit 1 (RRM1) protein, thymidylate synthase, and BRCA1 as predictors of chemotherapy response. This review will outline the current state of the art of personalized NSCLC therapy.
Collapse
Affiliation(s)
- Liza C Villaruz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | | |
Collapse
|
66
|
Suicide gene therapy in cancer: where do we stand now? Cancer Lett 2012; 324:160-70. [PMID: 22634584 DOI: 10.1016/j.canlet.2012.05.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/11/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
Abstract
Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial gene, which allows the conversion of a non-toxic compound into a lethal drug. Although suicide gene therapy has been successfully used in a large number of in vitro and in vivo studies, its application to cancer patients has not reached the desirable clinical significance. However, recent reports on pre-clinical cancer models demonstrate the huge potential of this strategy when used in combination with new therapeutic approaches. In this review, we summarize the different suicide gene systems and gene delivery vectors addressed to cancer, with particular emphasis on recently developed systems and associated bystander effects. In addition, we review the different strategies that have been used in combination with suicide gene therapy and provide some insights into the future directions of this approach, particularly towards cancer stem cell eradication.
Collapse
|
67
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
68
|
Van Den Broeck A, Nissou D, Brambilla E, Eymin B, Gazzeri S. Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis 2012; 33:320-325. [DOI: 10.1093/carcin/bgr292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
69
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
70
|
REITER MAXIMILIAN, BAUMEISTER PHILIPP, JAISER SONJA, REISS ANDREAS, SCHWENK-ZIEGER SABINA, KLEINSASSER NORBERT, HARRÉUS ULRICH. DNA repair and mutagen sensitivity of epithelial cells and lymphocytes in oropharyngeal cancer. Oncol Lett 2012; 3:100-106. [PMID: 22740863 PMCID: PMC3362385 DOI: 10.3892/ol.2011.417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/24/2011] [Indexed: 11/05/2022] Open
Abstract
Tobacco-associated nitrosamines are known carcinogens causing DNA damage in epithelial cells of the head and neck. A matched case-control study was performed to evaluate the sensitivity of patients with squamous cell cancer (SCC) of the oropharynx, and controls to tobacco-associated nitrosamines. Quantitative DNA repair was evaluated following a period of 15 and 30 min. Fresh biopsies from 100 male donors of macroscopically healthy oropharyngeal cells and lymphocytes (50 SCC patients and 50 controls) were incubated with N-nitrosodiethylamine (NDEA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) or N-nitrosonornicotine (NNN). DNA damage in epithelial cells and lymphocytes was assessed using the comet assay. Following incubation with NDEA, cells underwent a period of DNA repair. All of the nitrosamines caused equivalent genotoxic damage in mucosal cells and lymphocytes of the two groups. Lymphocyte DNA repair capacity in the control group (26.8 and 37.1% after 15 and 30 min) was comparable to the tumor group (23.6 and 40.6%). However, epithelial cell DNA repair capacity of carcinoma patients was significantly reduced to 17.1% (15 min) and 23% (30 min) compared to the DNA repair of the control group (36.2%, 15 min and 46.0%, 30 min). Mutagen sensitivity was comparable in patients and controls. Thus, reduced epithelial cell DNA repair capacity of tumor patients is a possible endogenous risk factor for the development of head and neck squamous cell cancer.
Collapse
Affiliation(s)
- MAXIMILIAN REITER
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University, D-81377 Munich
| | - PHILIPP BAUMEISTER
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University, D-81377 Munich
| | - SONJA JAISER
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University, D-81377 Munich
| | - ANDREAS REISS
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University, D-81377 Munich
| | - SABINA SCHWENK-ZIEGER
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University, D-81377 Munich
| | - NORBERT KLEINSASSER
- Department of Otorhinolaryngology and Head and Neck Surgery, Julius Maximilians University, D-97080 Wuerzburg
| | - ULRICH HARRÉUS
- Department of Otolaryngology and Head and Neck Surgery, Friedrich Alexander University, D-91054 Erlangen, Germany
| |
Collapse
|
71
|
Duarte S, Faneca H, Lima MCPD. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo. Int J Pharm 2011; 423:365-77. [PMID: 22209825 DOI: 10.1016/j.ijpharm.2011.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 12/20/2022]
Abstract
The lack of suitable vectors for efficient nucleic acid delivery into target cells represents a major hurdle for the successful application of gene therapy. Cationic liposomes exhibit attractive features for gene delivery, but their efficacy is still unsatisfactory, particularly for in vivo applications, which justifies the drive to further improve their performance by developing novel and efficient formulations. In the present study, we generated a new formulation of lipoplexes through electrostatic association of folate (FA) to 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC):cholesterol (Chol) liposomes, prepared at different lipid/DNA charge ratios, and explored their potential to mediate gene delivery. The optimal FA-lipoplex formulation was evaluated for its efficacy to mediate antitumoral activity upon application of HSV-tk suicide gene therapy, both in vitro and in an animal model of oral cancer. Our results demonstrate that FA-EPOPC:Chol/DNA lipoplexes were able to promote a great enhancement of transfection and high in vitro antitumoral activity compared to plain lipoplexes in two different cancer cell lines. Most importantly, a considerable reduction of tumor growth was achieved with the developed FA-lipoplexes as compared to that observed for control FA-lipoplexes or plain lipoplexes. Overall, our study shows that FA-EPOPC:Chol/DNA lipoplexes constitute a promising system for the successful application of suicide gene therapy aiming at treating solid tumors.
Collapse
Affiliation(s)
- Sónia Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
72
|
Kuper J, Wolski SC, Michels G, Kisker C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 2011; 31:494-502. [PMID: 22081108 DOI: 10.1038/emboj.2011.374] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/20/2011] [Indexed: 01/16/2023] Open
Abstract
The XPD protein is a vital subunit of the general transcription factor TFIIH which is not only involved in transcription but is also an essential component of the eukaryotic nucleotide excision DNA repair (NER) pathway. XPD is a superfamily-2 5'-3' helicase containing an iron-sulphur cluster. Its helicase activity is indispensable for NER and it plays a role in the damage verification process. Here, we report the first structure of XPD from Thermoplasma acidophilum (taXPD) in complex with a short DNA fragment, thus revealing the polarity of the translocated strand and providing insights into how the enzyme achieves its 5'-3' directionality. Accompanied by a detailed mutational and biochemical analysis of taXPD, we define the path of the translocated DNA strand through the protein and identify amino acids that are critical for protein function.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
73
|
Roth JA, Carlson JJ. Prognostic role of ERCC1 in advanced non-small-cell lung cancer: a systematic review and meta-analysis. Clin Lung Cancer 2011; 12:393-401. [PMID: 21723790 PMCID: PMC3206990 DOI: 10.1016/j.cllc.2011.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/29/2011] [Accepted: 04/26/2011] [Indexed: 02/08/2023]
Abstract
UNLABELLED Small observational studies have demonstrated an association between high ERCC1 expression level and poor prognosis in advanced NSCLC treated with platinum-based chemotherapy. This meta-analysis presents pooled estimates of association from 11 studies. High ERCC1 patients had lower response rates and higher risk of death relative to low ERCC1 patients. These results support the prognostic significance of ERCC1 expression level in advanced NSCLC. BACKGROUND Observational studies have demonstrated an association between excision repair cross-complementation group 1 (ERCC1) expression level and health outcomes in patients with advanced non-small-cell lung cancer (NSCLC) treated with platinum-based regimens. This analysis presents pooled estimates of association from these studies to better elucidate the prognostic role of ERCC1 in advanced NSCLC. METHODS A systematic literature search was conducted using the MEDLINE, EMBASE, and American Society of Clinical Oncology (ASCO) annual meeting databases from June 1995 to December 2010. Included studies were evaluated for clinical, methodological, and statistical heterogeneity. Pooled analyses were conducted using fixed and random effects models. RESULTS In high ERCC1 expression versus low ERCC1 expression patients, pooled analysis results demonstrated a significantly lower response (risk ratio [RR], 0.80, 0.66-0.98) and significantly higher risk of death (hazard ratio [HR], 2.04, (1.48-2.80)), respectively. Subgroup analyses demonstrated significant heterogeneity in outcomes by ERCC1 measurement method (I(2): 90.7%, P = 0.001) and patient population ethnicity (I(2): 66%, P = 0.003). CONCLUSION This study's findings support the hypothesis that ERCC1 expression is associated with response rate and overall survival (OS) in patients with advanced NSCLC treated with platinum-based chemotherapy. Heterogeneity in subgroup analyses demonstrates the need for standardized methods to classify ERCC1 expression level, studies evaluating the association between ERCC1 expression and OS in non-Asian populations, and studies evaluating interaction between ERCC1 and other known prognostic factors in advanced NSCLC.
Collapse
Affiliation(s)
- Joshua A Roth
- University of Washington, Pharmaceutical Outcomes Research and Policy Program, Seattle, Washington 98195, USA.
| | | |
Collapse
|
74
|
Richard M, Fryett M, Miller S, Booth I, Grebogi C, Moura A. Optimality in DNA repair. J Theor Biol 2011; 292:39-43. [PMID: 21945337 PMCID: PMC4071444 DOI: 10.1016/j.jtbi.2011.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/07/2011] [Accepted: 08/22/2011] [Indexed: 12/25/2022]
Abstract
DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge.
Collapse
Affiliation(s)
- Morgiane Richard
- Institute of Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
75
|
Ye J, Wu H, Zhang H, Wu Y, Yang J, Jin X, Shi X. Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol 2011; 249:1681-7. [PMID: 21842132 DOI: 10.1007/s00417-011-1755-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/22/2011] [Accepted: 07/28/2011] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the toxic effects of benzalkonium chloride (BAC), a preservative commonly used in ophthalmic preparations, on DNA single- and double-strand breaks in immortalized human corneal epithelial cells (HCEs). METHODS HCEs were treated with BAC in concentrations ranging from 0.00005% to 0.001% for 30 min. Cells were examined immediately after BAC exposure and after 24-h recovery. Alkaline comet assay was used to detect DNA single-strand breaks (SSBs). Immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci indicated DNA double-strand breaks (DSBs). Cell viability was measured by the MTT test. RESULTS A significant increase of SSBs, detected by alkaline comet assay, was observed in a dose-dependent manner with BAC exposure in HCEs at concentrations of 0.00005% and higher. Such BAC treatment also exhibited a dose-dependent increase in DSBs, evaluated by number of γH2AX foci. In addition, a significant change in the relative cell survival rate of HCEs was observed after exposure to 0.001% BAC for 30 min. Although the toxic effects of BAC could be partly repaired after 24 h of cell recovery, SSBs and DSBs in HCEs were still present after BAC removal. CONCLUSIONS The results demonstrated that exposure to BAC in HCEs, even at low concentrations, could induce DNA strand breaks, which were present after BAC removal. Cell survival analysis indicated that BAC-induced DNA damage was correlated with the cytotoxic effects.
Collapse
Affiliation(s)
- Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | | | | | | | | | | | | |
Collapse
|
76
|
Expression of ERCC1, p53, and Class III β-Tubulin Do Not Reveal Chemoresistance in Endometrial Cancer. Int J Gynecol Cancer 2011; 21:1071-7. [DOI: 10.1097/igc.0b013e318218f28b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
77
|
Sugunadevi G, Suresh K, Vijayaanand MA, Rajalingam K, Sathiyapriya J. Anti genotoxic effect of Mosinone-A on 7, 12-dimethyl benz[a] anthracene induced genotoxicity in male golden Syrian hamsters. Pathol Oncol Res 2011; 18:69-77. [PMID: 21706277 DOI: 10.1007/s12253-011-9418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 05/26/2011] [Indexed: 12/01/2022]
Abstract
The present study was aimed to evaluate the antigenotoxic effect of Mosinone-A on 7,12-dimethylbenz[a]anthracene induced genotoxicity. The frequency of micronucleated polychromatic erythrocytes [MnPCEs], chromosomal aberrations [CA], DNA damage (comet assay) as cytogenetic markers and the status of lipid peroxidation byproducts, antioxidants and phase II detoxification agents were used as biochemical markers to assess the antigenotoxic effect of Mosinone-A on DMBA induced genotoxicity. A single intraperitoneal injection of DMBA (30 mg/kg b.wt) to golden Syrian hamsters, resulted in marked elevation in the frequency of MnPCEs, aberrations in the chromosomal structure were found in bone marrow and DNA damage (comet assay) was found in blood cells and altered level of lipid peroxidation, antioxidants, and phase II detoxification agents. Oral pretreatment of Mosinone-A (2 mg/kg b.wt) for 5 days to DMBA treated animals significantly reduced the frequency of MnPCEs, chromosomal abnormalities such as chromosomal break, gap, minute, fragment, DNA damage and reversed the status of biochemical variables. Our results thus demonstrated the antigenotoxic effect of Mosinone-A on DMBA induced genotoxicity in male golden Syrian hamsters.
Collapse
Affiliation(s)
- Govindasamy Sugunadevi
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
78
|
Deenen MJ, Cats A, Beijnen JH, Schellens JHM. Part 4: pharmacogenetic variability in anticancer pharmacodynamic drug effects. Oncologist 2011; 16:1006-20. [PMID: 21659612 DOI: 10.1634/theoncologist.2010-0261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Response to treatment with anticancer drugs is subject to wide interindividual variability. This variability is expressed not only as differences in severity and type of toxicity, but also as differences in effectiveness. Variability in the constitution of genes involved in the pharmacokinetic and pharmacodynamic pathways of anticancer drugs has been shown to possibly translate into differences in treatment outcome. The overall knowledge in the field of pharmacogenetics has tremendously increased over the last couple of years, and has thereby provided opportunities for patient-tailored anticancer therapy. In previous parts of this series, we described pharmacogenetic variability in anticancer phase I and phase II drug metabolism and drug transport. This fourth part of a four-part series of reviews is focused on pharmacodynamic variability and encompasses genetic variation in drug target genes such as those encoding thymidylate synthase, methylene tetrahydrofolate reductase, and ribonucleotide reductase. Furthermore, genetic variability in other pharmacodynamic candidate genes involved in response to anticancer drugs is discussed, including genes involved in DNA repair such as those encoding excision repair crosscomplementing group 1 and group 2, x-ray crosscomplementing group 1 and group 3, and breast cancer genes 1 and 2. Finally, somatic mutations in KRAS and the gene encoding epidermal growth factor receptor (EGFR) and implications for EGFR-targeted drugs are discussed. Potential implications and opportunities for patient and drug selection for genotype-driven anticancer therapy are outlined.
Collapse
Affiliation(s)
- Maarten J Deenen
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
79
|
Filosso PL, Sandri A, Oliaro A, Filippi AR, Cassinis MC, Ricardi U, Lausi PO, Asioli S, Ruffini E. Emerging treatment options in the management of non-small cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2011; 2:11-28. [PMID: 28210115 DOI: 10.2147/lctt.s8618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer (LC) has become the leading cancer-related cause of death in the US and in developed European countries in the last decade. Its incidence is still growing in females and in smokers. Surgery remains the treatment of choice whenever feasible, but unfortunately, many patients have an advanced LC at presentation and one-third of potentially operable patients do not receive a tumor resection because of their low compliance for intervention due to their compromised cardiopulmonary functions and other comorbidities. For these patients the alternative therapeutic options are stereotactic radiotherapy or percutaneous radiofrequency. When surgery is planned, an anatomical resection (segmentectomy, lobectomy, bilobectomy, pneumonectomy, sleeve lobectomy) is usually performed; wedge resection (considered as a nonanatomical one) is generally the accepted option for unfit patients. The recent increase in discovering small and peripheral LCs and/or ground-glass opacities with screening programs has dramatically increased surgeons' interest in limited resections. The role of these resections is discussed. Also, recent improvements in molecular biology techniques have increased the chemotherapic options for neoadjuvant LC treatment. The role and the importance of targeted chemotherapy is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Umberto Ricardi
- Department of Medical and Surgical Disciplines, Radiation Therapy Division
| | | | - Sofia Asioli
- Department of Oncology and Biomedical Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
80
|
Zhang H, Xie C, Spencer HJ, Zuo C, Higuchi M, Ranganathan G, Kern PA, Chou MW, Huang Q, Szczesny B, Mitra S, Watson AJ, Margison GP, Fan CY. Obesity and hepatosteatosis in mice with enhanced oxidative DNA damage processing in mitochondria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1715-27. [PMID: 21435453 PMCID: PMC3078437 DOI: 10.1016/j.ajpath.2010.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/19/2010] [Accepted: 12/30/2010] [Indexed: 12/21/2022]
Abstract
Mitochondria play critical roles in oxidative phosphorylation and energy metabolism. Increasing evidence supports that mitochondrial DNA (mtDNA) damage and dysfunction play vital roles in the development of many mitochondria-related diseases, such as obesity, diabetes mellitus, infertility, neurodegenerative disorders, and malignant tumors in humans. Human 8-oxoguanine-DNA glycosylase 1 (hOGG1) transgenic (TG) mice were produced by nuclear microinjection. Transgene integration was analyzed by PCR. Transgene expression was measured by RT-PCR and Western blot analysis. Mitochondrial DNA damage was analyzed by mutational analyses and measurement of mtDNA copy number. Total fat content was measured by a whole-body scan using dual-energy X-ray absorptiometry. The hOGG1 overexpression in mitochondria increased the abundance of intracellular free radicals and major deletions in mtDNA. Obesity in hOGG1 TG mice resulted from increased fat content in tissues, produced by hyperphagia. The molecular mechanisms of obesity involved overexpression of genes in the central orexigenic (appetite-stimulating) pathway, peripheral lipogenesis, down-regulation of genes in the central anorexigenic (appetite-suppressing) pathway, peripheral adaptive thermogenesis, and fatty acid oxidation. Diffuse hepatosteatosis, female infertility, and increased frequency of malignant lymphoma were also seen in these hOGG1 TG mice. High levels of hOGG1 expression in mitochondria, resulting in enhanced oxidative DNA damage processing, may be an important factor in human metabolic syndrome, infertility, and malignancy.
Collapse
Affiliation(s)
- Haihong Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hou C, Zhang T, Tian L, Huang J, Gu L, Li GM. The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins. Cell Biosci 2011; 1:11. [PMID: 21711735 PMCID: PMC3125201 DOI: 10.1186/2045-3701-1-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/09/2011] [Indexed: 11/29/2022] Open
Abstract
Background During DNA replication or repair, disease-associated (CAG)n/(CTG)n expansion can result from formation of hairpin structures in the repeat tract of the newly synthesized or nicked DNA strand. Recent studies identified a nick-directed (CAG)n/(CTG)n hairpin repair (HPR) system that removes (CAG)n/(CTG)n hairpins from human cells via endonucleolytic incisions. Because the process is highly similar to the mechanism by which XPG and XPF endonucleases remove bulky DNA lesions during nucleotide excision repair, we assessed the potential role of XPG in conducting (CAG)n/(CTG)n HPR. Results To determine if the XPG endonuclease is involved in (CAG)n/(CTG)n hairpin removal, two XPG-deficient cell lines (GM16024 and AG08802) were examined for their ability to process (CAG)n/(CTG)n hairpins in vitro. We demonstrated that the GM16024 cell line processes all hairpin substrates as efficiently as HeLa cells, and that the AG08802 cell line is partially defective in HPR. Analysis of repair intermediates revealed that nuclear extracts from both XPG-deficient lines remove CAG/CTG hairpins via incisions, but the incision products are distinct from those generated in HeLa extracts. We also show that purified recombinant XPG protein greatly stimulates HPR in XPG-deficient extracts by promoting an incision 5' to the hairpin. Conclusions Our results strongly suggest that 1) human cells possess multiple pathways to remove (CAG)n/(CTG)n hairpins located in newly synthesized (or nicked) DNA strand; and 2) XPG, although not essential for (CAG)n/(CTG)n hairpin removal, stimulates HPR by facilitating a 5' incision to the hairpin. This study reveals a novel role for XPG in genome-maintenance and implicates XPG in diseases caused by trinucleotide repeat expansion.
Collapse
Affiliation(s)
- Caixia Hou
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Wu Y, Brosh RM. Helicase-inactivating mutations as a basis for dominant negative phenotypes. Cell Cycle 2011; 9:4080-90. [PMID: 20980836 DOI: 10.4161/cc.9.20.13667] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANCJ helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | | |
Collapse
|
83
|
ERCC1 (excision repair cross-complementation group 1) expression as a predictor for response of neoadjuvant chemotherapy for FIGO stage 2B uterine cervix cancer. Gynecol Oncol 2011; 120:275-9. [DOI: 10.1016/j.ygyno.2010.10.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/19/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
|
84
|
Rautio M, Tartarotti B. UV radiation and freshwater zooplankton: damage, protection and recovery. FRESHWATER REVIEWS : A JOURNAL OF THE FRESHWATER BIOLOGICAL ASSOCIATION 2010; 3:105-131. [PMID: 21516254 PMCID: PMC3079903 DOI: 10.1608/frj-3.2.157] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiological protection mechanism seems to be superior, and while several unexplained and contradictory patterns exist in zooplankton UVR ecology, recent increases in our understanding are consistent with UVR playing an important role for zooplankton. This review examines the variability in freshwater zooplankton responses to UVR, with a focus on crustacean zooplankton (Cladocera and Copepoda). We present an overview of UVR-induced damages, and the protection and recovery mechanisms freshwater zooplankton use when exposed to UVR. We review the current knowledge of UVR impact on freshwater zooplankton at species and community levels, and discuss briefly how global change over the last three decades has influenced the UVR milieu in lakes.
Collapse
Affiliation(s)
- Milla Rautio
- Department of Environmental Science, 40014 University of Jyväskylä, Finland
- Département des sciences fondamentales & Centre for Northern Studies (CEN), Université du Québec à Chicoutimi, Québec G7H 2B1, Canada
| | - Barbara Tartarotti
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
85
|
Kim KH, Do IG, Kim HS, Chang MH, Kim HS, Jun HJ, Uhm J, Yi SY, Lim DH, Ji SH, Park MJ, Lee J, Park SH, Kwon GY, Lim HY. Excision repair cross-complementation group 1 (ERCC1) expression in advanced urothelial carcinoma patients receiving cisplatin-based chemotherapy. APMIS 2010; 118:941-8. [PMID: 21091775 DOI: 10.1111/j.1600-0463.2010.02648.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cisplatin has been the cornerstone of the chemotherapy regimen for urothelial carcinoma. Excision repair cross-complementation group 1 (ERCC1) is a key component of the platinum-DNA repair machinery responsible for nucleotide excision repair. Recent reports have suggested that ERCC1 is a predictive and prognostic marker in solid cancers treated with platinum-based chemotherapy. We performed this study to determine whether or not immunohistochemical expression of ERCC1 can predict objective tumor response and cancer-specific survival in patients with advanced urothelial carcinoma treated with cisplatin-based chemotherapy. We performed a retrospective analysis of 89 patients with advanced or recurrent urothelial cancer, who had undergone treatment at Samsung Medical Center between May 2001 and August 2007. Pretherapeutic biopsy samples from 89 patients with a known tumor response were available. ERCC1 expression was assessed by immunohistochemistry. Of the 89 patients, ERCC1 expression was positive in 49 patients (55%). The overall response rate after chemotherapy was 68.5% (95% CI 54.8-74.8%). Among 61 patients who obtained a response, 27 were negative for ERCC-1 expression and 34 were positive (p = 0.61). Median duration of follow-up was 53.7 months (range 14.4-152.3 months). Progression-free survival (PFS) was 10.6 months for ERCC-1-negative patients and 8.4 months for ERCC-1-positive patients (p = 0.03); the difference in overall survival between patients with ERCC-1-negative tumors and ERCC-1-positive tumors (p = 0.73) was not statistically significant. Other than ERCC1 expression, there was no independent prognostic factor for PFS. These results suggest a negative contribution by ERCC1expression to PFS in metastatic urothelial carcinoma patients treated with cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Kyoung Ha Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The evaluation of gene and protein expression profiles is a promising strategy to drive the therapeutical decision-making in non-small cell lung cancer (NSCLC). Among the several candidate genes that have been proposed, many retrospective studies have indicated excision repair cross-complementing 1 (ERCC1), an endonuclease responsible for the repair of DNA damages, as a reliable biomarker of tumor sensitivity to platinum-based agents. Moreover, the recent evidences showing the clinical efficacy of next-generation multitargeted antifolate drugs, in NSCLC, have highlighted the role of the determination of thymidylate synthase (TS) expression levels. Here is presented a brief overview of the literature regarding these two genes that are currently under prospective investigation as predictive markers of treatment efficacy in NSCLC.
Collapse
|
87
|
Yun J, Kim KM, Kim ST, Kim JH, Kim JA, Kong JH, Lee SH, Won YW, Sun JM, Lee J, Park SH, Park JO, Park YS, Lim HY, Kang WK. Predictive value of the ERCC1 expression for treatment response and survival in advanced gastric cancer patients receiving cisplatin-based first-line chemotherapy. Cancer Res Treat 2010; 42:101-6. [PMID: 20622964 DOI: 10.4143/crt.2010.42.2.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/20/2010] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The aim of this study was to determine whether the ERCC1 expression is effective to predict the clinical outcomes of patients with advanced gastric cancer (AGC) and who were treated with cisplatin-based first-line chemotherapy. MATERIALS AND METHODS A total of 89 measurable AGC patients received cisplatin and capecitabine, with or without epirubicin, as a part of a randomized phase II study. Patients were included for the current molecular analysis if they had received two or more cycles of chemotherapy, their objective tumor responses were measured and if their paraffin-embedded tumor samples were available. The ERCC1 expression was examined by performing immunohistochemical (IHC) staining, and the patients were divided into two groups (positive or negative) according to the presence of IHC staining of the tumor cell nuclei. RESULTS Of the 32 eligible patients, 21 patients (66%) had tumor with a positive expression of ERCC1 and the remaining 11 patients had tumor with a negative ERCC1-expression. The ERCC1-negative patients achieved a higher response rate than that of the ERCC1-positive patients (44% vs. 28%, respectively), although the difference was not statistically significant (p=0.42). The median survival time for the all patients was 14.6 months (95% CI: 13.6 to 15.6 months). The one-year survival rate was similar for the ERCC1-negative patients (61%) and the ERCC1-positive patients (70%). CONCLUSION In the current study, the tumor ERCC1 expression by IHC staining could not predict the clinical response or survival of AGC patients who were treated with cisplatin-based first-line chemotherapy. The ERCC1 protein expression does not appear to be a useful tool for the selection of tailored chemotherapy for these patients.
Collapse
Affiliation(s)
- Jina Yun
- Department of Medicine, Sungkyunkwan University Samsung Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Wagner MK, Li F, Li J, Li XF, Le XC. Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem 2010; 397:3213-24. [DOI: 10.1007/s00216-010-3847-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 02/02/2023]
|
89
|
Abstract
Mismatch repair in Escherichia coli involves a number of proteins including MutL and UvrD. Eukaryotes also possess MutL homologues; however, no UvrD helicase homologues have been identified. The hyperthermophilic bacterium Aquifex aeolicus has a MutL protein (Aae MutL) that possesses a latent endonuclease activity similar to eukaryotic, but different from E. coli, MutL proteins. By sequence homology Aq793 is a member of the PcrA/UvrD/Rep helicase subfamily. We expressed Aae MutL and the putative A. aeolicus DNA helicase (Aq793) proteins in E. coli. Using synthetic oligonucleotide substrates, we observed that lower concentrations of Aq793 were required to unwind double-stranded DNA that had a 3'-poly(dT) overhang as compared with double-stranded DNA with a 5'-poly(dT) or lacking a poly(dT) tail. This unwinding activity was stimulated by adding Aae MutL with maximal stimulation observed at an approximately 1.5:1 (MutL:Aq793) stoichiometric ratio. The enhancement of Aq793 helicase activity did not require the Aae MutL protein to retain endonuclease activity. Furthermore, the C-terminal 123 amino acid residues of Aae MutL were sufficient to stimulate Aq793 helicase activity, albeit at a significantly reduced efficacy. To the best of our knowledge this is the first time a human PMS2 homologue has been demonstrated to stimulate a PcrA/UvrD/Rep subfamily helicase, and this finding may further our understanding of the evolution of the mismatch repair pathway.
Collapse
Affiliation(s)
- Jerome Mauris
- From New England Biolabs Inc., Ipswich, Massachusetts 01938
| | - Thomas C. Evans
- From New England Biolabs Inc., Ipswich, Massachusetts 01938
- To whom correspondence should be addressed: New England Biolabs, 240 County Rd., Ipswich, MA 01938. Fax: 978-380-7515; E-mail:
| |
Collapse
|
90
|
|
91
|
Pillaire MJ, Selves J, Gordien K, Gourraud PA, Gouraud PA, Gentil C, Danjoux M, Do C, Negre V, Bieth A, Guimbaud R, Trouche D, Pasero P, Méchali M, Hoffmann JS, Cazaux C. A 'DNA replication' signature of progression and negative outcome in colorectal cancer. Oncogene 2010; 29:876-87. [PMID: 19901968 DOI: 10.1038/onc.2009.378] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 07/15/2009] [Accepted: 10/05/2009] [Indexed: 11/09/2022]
Abstract
Colorectal cancer is one of the most frequent cancers worldwide. As the tumor-node-metastasis (TNM) staging classification does not allow to predict the survival of patients in many cases, additional prognostic factors are needed to better forecast their outcome. Genes involved in DNA replication may represent an underexplored source of such prognostic markers. Indeed, accidents during DNA replication can trigger 'replicative stress', one of the main features of cancer from earlier stages onward. In this study, we assessed the expression of 47 'DNA replication' genes in primary tumors and adjacent normal tissues from a homogeneous series of 74 patients. We found that genes coding for translesional (TLS) DNA polymerases, initiation of DNA replication, S-phase signaling and protection of replication forks were significantly deregulated in tumors. We also observed that the overexpression of either the MCM7 helicase or the TLS DNA polymerase POLQ (if also associated with a concomitant overexpression of firing genes) was significantly related to poor patient survival. Our data suggest the existence of a 'DNA replication signature' that might represent a source of new prognostic markers. Such a signature could help in understanding the molecular mechanisms underlying tumor progression in colorectal cancer patients.
Collapse
Affiliation(s)
- M-J Pillaire
- Genetic Instability and Cancer Group, Department Biology of Cancer, Institute of Pharmacology and Structural Biology, UMR5089 CNRS, University of Toulouse, University Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 2009; 31:135-48. [PMID: 19858070 DOI: 10.1093/carcin/bgp252] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exogenous chemical carcinogenesis is an extremely complex multifactorial process during which gene-environment interactions involving chronic exposure to exogenous chemical carcinogens (ECCs) and polymorphisms of cancer susceptibility genes add further complexity. We describe the properties and molecular mechanisms of ECCs that contribute to induce and generate cancer. A basic and specific property of many lipophilic organic ECCs including polycyclic aromatic hydrocarbons and polyhalogenated aromatic hydrocarbons is their ability to bioaccumulate in the adipose tissue from where they may be released in the blood circulation and target peripheral tissues for carcinogenesis. Many organic ECCs are procarcinogens and consequently need to be activated by the cytochrome P450 (CYP) system and/or other enzymes before they can adduct DNA and proteins. Because they contribute not only to the cocarcinogenic and promoting effects of many aromatic pollutants but also to their mutagenic effects, the aryl hydrocarbon receptor-activating and the inducible CYP systems are central to exogenous chemical carcinogenesis. Another basic property of ECCs is their ability to induce stable and bulky DNA adducts that cannot be simply repaired by the different repair systems. In addition, following ECC exposure, mutagenesis may also be caused indirectly by free-radical production and by epigenetic alterations. As a result of complex molecular interplays, direct and/or indirect mutagenesis may especially account for the carcinogenic effects of many exogenous metals and metalloids. Because of these molecular properties and action mechanisms, we conclude that ECCs could be major contributors to human cancer, with obviously great public health consequences.
Collapse
Affiliation(s)
- Philippe Irigaray
- Cancer Research Center, Association for Research and Treatments Against Cancer, Paris, France.
| | | |
Collapse
|
93
|
Roth HM, Tessmer I, Van Houten B, Kisker C. Bax1 is a novel endonuclease: implications for archaeal nucleotide excision repair. J Biol Chem 2009; 284:32272-8. [PMID: 19759013 DOI: 10.1074/jbc.m109.055913] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The helicases XPB and XPD are part of the TFIIH complex, which mediates transcription initiation as well as eukaryotic nucleotide excision repair (NER). Although there is no TFIIH complex present in archaea, most species contain both XPB and XPD and serve as a model for their eukaryotic homologs. Recently, a novel binding partner for XPB, Bax1 (binds archeal XPB), was identified in archaea. To gain insights into its role in NER, Bax1 from Thermoplasma acidophilum was characterized. We identified Bax1 as a novel Mg(2+)-dependent structure-specific endonuclease recognizing DNA containing a 3' overhang. Incision assays conducted with DNA substrates providing different lengths of the 3' overhang indicate that Bax1 specifically incises DNA in the single-stranded region of the 3' overhang 4-6 nucleotides to the single-stranded DNA/double-stranded DNA junction and thus is a structure-specific and not a sequence-specific endonuclease. In contrast, no incision was detected in the presence of a 5' overhang, double-stranded DNA, or DNA containing few unpaired nucleotides forming a bubble. Several Bax1 variants were generated based on multiple sequence alignments and examined with respect to their ability to perform the incision reaction. Residues Glu-124, Asp-132, Tyr-152, and Glu-155 show a dramatic reduction in incision activity, indicating a pivotal role in catalysis. Interestingly, Bax1 does not exhibit any incision activity in the presence of XPB, thus suggesting a role in NER in which the endonuclease activity is tightly regulated until the damage has been recognized and verified prior to the incision event.
Collapse
Affiliation(s)
- Heide M Roth
- Rudolf-Virchow-Center for Experimental Biomedicine, 97080 Würzburg, Germany
| | | | | | | |
Collapse
|
94
|
Prieto González EA, Fuchs AG, Sánchez GS. Amifostine (WR2721) confers DNA protection to in vivo cisplatin-treated murine peripheral blood leukocytes. Dose Response 2009; 7:234-46. [PMID: 19809542 DOI: 10.2203/dose-response.08-026.prieto] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Amifostine [S-2-3-aminopropyl amino ethyl phosphorotioic acid], a modulator agent for antineoplastic drugs involved in free radicals generation has given controversial results in cisplatin treated leukocytes in vitro. We have evaluated the amifostine protection over leukocytes in vivo, using comet assay. Groups of five OF1 male mice were given one of three doses of amifostine (56, 105 and 200 mg/Kg) after a cisplatin single injection (10 mg/Kg). Serum malonyldialdehyde levels, catalase and superoxide dismutase activity were also evaluated. Amifostine showed significant DNA protection (p< 0.01) at the two lower doses evaluated. Malonyldialdehyde decreased in all amifostine treatments with respect to cisplatin while antioxidant enzyme activities remained unchanged. However, DNA migration increased with the highest amifostine dose; in fact highest dose of amifostine did no protect damage caused by cisplatin this result have implications on amifostine treatment schedules in clinical practice.
Collapse
Affiliation(s)
- E A Prieto González
- Centro de Altos Estudios en Ciencias de la Salud, Universidad Abierta Interamericana, Ave. Montes de Oca. No. 745, Buenos Aires Capital, Federal Argentina.
| | | | | |
Collapse
|
95
|
Hwang IG, Ahn MJ, Park BB, Ahn YC, Han J, Lee S, Kim J, Shim YM, Ahn JS, Park K. ERCC1 expression as a prognostic marker in N2(+) nonsmall-cell lung cancer patients treated with platinum-based neoadjuvant concurrent chemoradiotherapy. Cancer 2008; 113:1379-86. [PMID: 18623378 DOI: 10.1002/cncr.23693] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Excision repair cross-complementation Group 1 (ERCC1) overexpression is associated with resistance to cisplatin-based chemotherapy in patients with nonsmall-cell lung cancer (NSCLC). A preliminary study also suggested that ERCC1 expression is associated with radioresistance in lung cancer cells. The aim of this study was to evaluate the clinical implications of ERCC1 expression in stage IIIA N2-positive NSCLC patients treated with platinum-based neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery. METHODS Sixty-eight patients with mediastinoscopy-proven N2-positive NSCLC were enrolled between August 1997 and September 2003. ERCC1 expression was assessed by immunohistochemistry from pretreatment mediastinoscopic biopsy specimens. RESULTS ERCC1 expression was positive in 31 of 68 specimens (46%). Among 14 patients who obtained pathologic complete response, 6 were positive for ERCC1 expression and 8 were negative (P = .818). On univariate analysis, with median follow-up of 61.8 months (range, 34.3-108.8 months), progression-free survival was 15.9 months for ERCC1-positive and 29.5 months for ERCC1-negative patients (P = .062), and there was a statistically significant difference in overall survival between ERCC1-negative tumors and ERCC1-positive tumors (89.2 vs 26.0 months, P = .014). On multivariate analysis, ERCC1 negativity (P = .041) and achieving mediastinal nodal clearance (downstage to pathological N0 or N1) after neoadjuvant CCRT followed by surgery (P = .005) were significant independent prognostic factors for the prolongation of survival. CONCLUSIONS These results suggest that N2-positive NSCLC patients with ERCC1 negative tumors show a survival benefit from neoadjuvant CCRT with a platinum-containing regimen.
Collapse
Affiliation(s)
- In Gyu Hwang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Gadd45 genes have been implicated in stress signaling in response to physiological or environmental stressors, which results in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated implies that Gadd45 proteins function as stress sensors is mediated by a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. What deterministic factors dictate whether Gadd45 and partner proteins function in either cell survival or apoptosis remains to be determined. An attractive working model to consider is that the extent of cellular/DNA damage, in a given cell type, dictates the association of different Gadd45 proteins with particular partner proteins, which determines the outcome.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research & Molecular Biology, & Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
97
|
Han J, Lee DH, Song JE, Lee SY, Kim HY, Kim HT, Lee JS. Randomized phase 2 study of irinotecan plus cisplatin versus gemcitabine plus vinorelbine as first‐line chemotherapy with second‐line crossover in patients with advanced nonsmall cell lung cancer. Cancer 2008; 113:388-95. [DOI: 10.1002/cncr.23582] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
98
|
Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Houten BV, Kisker C. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 2008; 6:e149. [PMID: 18578568 PMCID: PMC2435149 DOI: 10.1371/journal.pbio.0060149] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/07/2008] [Indexed: 11/17/2022] Open
Abstract
DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an alpha-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster-containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.
Collapse
Affiliation(s)
- Stefanie C Wolski
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - James J Truglio
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Deborah L Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
99
|
Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and cancer prevention : pathways and targets for intervention. Sports Med 2008; 38:271-96. [PMID: 18348589 DOI: 10.2165/00007256-200838040-00002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity, an established epidemiological risk factor for many cancers, has risen steadily for the past several decades in the US and many other countries. Particularly alarming are the increasing rates of obesity among children, portending continuing increases in the rates of obesity and obesity-related cancers for many years to come. Modulation of energy balance, via increased physical activity, has been shown in numerous comprehensive epidemiological reviews to reduce cancer risk. Unfortunately, the effects and mechanistic targets of physical activity interventions on the carcinogenesis process have not been thoroughly characterized. Studies to date suggest that exercise can exert its cancer-preventive effects at many stages during the process of carcinogenesis, including both tumour initiation and progression. As discussed in this review, exercise may be altering tumour initiation events by modifying carcinogen activation, specifically by enhancing the cytochrome P450 system and by enhancing selective enzymes in the carcinogen detoxification pathway, including, but not limited to, glutathione-S-transferases. Furthermore, exercise may reduce oxidative damage by increasing a variety of anti-oxidant enzymes, enhancing DNA repair systems and improving intracellular protein repair systems. In addition to altering processes related to tumour initiation, exercise may also exert a cancer-preventive effect by dampening the processes involved in the promotion and progression stages of carcinogenesis, including scavenging reactive oxygen species (ROS); altering cell proliferation, apoptosis and differentiation; decreasing inflammation; enhancing immune function; and suppressing angiogenesis. A paucity of data exists as to whether exercise may be working as an anti-promotion strategy via altering ROS in initiated or preneoplastic models; therefore, no conclusions can be made about this possible mechanism. The studies directly examining cell proliferation and apoptosis have shown that exercise can enhance both processes, which is difficult to interpret in the context of carcinogenesis. Studies examining the relationship between exercise and chronic inflammation suggest that exercise may reduce pro-inflammatory mediators and reduce the state of low-grade, chronic inflammation. Additionally, exercise has been shown to enhance components of the innate immune response (i.e. macrophage and natural killer cell function). Finally, only a limited number of studies have explored the relationship between exercise and angiogenesis; therefore, no conclusions can be made currently about the role of exercise in the angiogenesis process as it relates to tumour progression. In summary, exercise can alter biological processes that contribute to both anti-initiation and anti-progression events in the carcinogenesis process. However, more sophisticated, detailed studies are needed to examine each of the potential mechanisms contributing to an exercise-induced decrease in carcinogenesis in order to determine the minimum dose, duration and frequency of exercise needed to yield significant cancer-preventive effects, and whether exercise can be used prescriptively to reverse the obesity-induced physiological changes that increase cancer risk.
Collapse
Affiliation(s)
- Connie J Rogers
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
100
|
Mack PC, Gandara DR. 2008 Highlights from: The IASLC-ESMO 1st European Lung Cancer Conference; Geneva, Switzerland; April 2008. Clin Lung Cancer 2008. [DOI: 10.1016/s1525-7304(11)70149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|