51
|
Soru S, Berlino M, Sarà G, Mangano MC, De Vittor C, Pusceddu A. Effects of acidification on the biogeochemistry of unvegetated and seagrass marine sediments. MARINE POLLUTION BULLETIN 2024; 199:115983. [PMID: 38277962 DOI: 10.1016/j.marpolbul.2023.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024]
Abstract
Many studies addressed ocean acidification (OA) effects on marine life, whereas its effects on sedimentary organic matter (OM) have received less attention. We investigated differences in OM features in sediments from unvegetated and seagrass (Posidonia oceanica) beds in a shallow hydrothermal area (Aeolian Archipelago, Mediterranean Sea), under natural (8.1-8.0) and acidified (7.8-7.9) conditions. We show that a pH difference of -0.3 units have minor effects on OM features in unvegetated sediments, but relevant consequences within acidified seagrass meadows, where OM quantity and nutritional quality are lower than those under natural pH conditions. Effects of acidified conditions on OM biogeochemistry vary between unvegetated and seagrass sediments, with lower C degradation rates and longer C turnover time in the former than in the latter. We conclude that OA, although with effects not consistent between unvegetated and vegetated sediments, can affect OM quantity, composition, and degradation, thus having possible far-reaching consequences for benthic trophic webs.
Collapse
Affiliation(s)
- Santina Soru
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy.
| | - Manuel Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy.
| | - Gianluca Sarà
- NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy; Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| | - Maria Cristina Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy.
| | - Cinzia De Vittor
- NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, 34010 Trieste, Italy.
| | - Antonio Pusceddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy.
| |
Collapse
|
52
|
Wu Z, Wang Z, Li Z, Hao H, Qi Y, Feng D. Impacts of ocean acidification and warming on the release and activity of the barnacle waterborne settlement pheromone, adenosine. MARINE POLLUTION BULLETIN 2024; 199:115971. [PMID: 38159384 DOI: 10.1016/j.marpolbul.2023.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The effects of ocean acidification (OA) and warming on the physiological processes of many marine species have been well documented. However, far less is known about the impacts of these global variables on chemical communication. In this study, we identified the barnacle waterborne settlement pheromone (BWSP) of Balanus albicostatus as adenosine (Ado). Our results showed that neither elevated temperature (30 °C vs. ambient 26 °C) nor elevated pCO2 (1000 μatm vs. ambient 400 μatm) significantly affected the release of Ado from B. albicostatus adults. Exposure to elevated temperature and OA did not impair larval cue perception for settlement in B. albicostatus; however, OA inhibited settlement under elevated temperature in the absence/presence of BWSP, and elevated temperature induced larval settlement only in the presence of BWSP under ambient pCO2 condition. These results provided important insights into barnacle aggregation behavior in changing oceans and may help to predict the consequences of climate change on barnacle populations.
Collapse
Affiliation(s)
- Zhiwen Wu
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhixuan Wang
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhuo Li
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huanhuan Hao
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yuxuan Qi
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
53
|
Roussel S, Coheleach M, Martin S, Day R, Badou A, Huchette S, Dubois P, Servili A, Gaillard F, Auzoux-Bordenave S. From reproductive behaviour to responses to predators: Ocean acidification does not impact the behaviour of an herbivorous marine gastropod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167526. [PMID: 37793449 DOI: 10.1016/j.scitotenv.2023.167526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Ocean acidification (OA), which reduces ocean pH and leads to substantial changes in seawater carbonate chemistry, may strongly impact organisms, especially those with carbonate skeletons. In marine molluscs, while the physiological effects of OA are well known, with a reduction of growth and shell calcification, there are few studies on behavioural effects. A large marine gastropod, Haliotis tuberculata, was exposed to ambient (pHT 8.0) or low pH (pHT 7.7) during a 5-month experiment. Because animal fitness can be affected through various behavioural changes, a broad spectrum of behavioural parameters was investigated, including situations involving no stress, responses to predators, righting to evaluate indirectly the level of energy reserves, and finally, reproductive behaviour. In addition, we measured the expression profile of the GABA A-like and serotonin receptor genes, often described as central neuromodulators of sensory performance and behaviour and known to be affected by OA in molluscs. No significant effect of low pH as compared to ambient pH was observed on abalone behaviour for any of these behavioural traits or gene expressions after either one week or several months of exposure to OA. The significance tests were corroborated by estimating the size of pH effects. The behaviour of this mollusc appears not to be affected by pH decrease expected by the end of the century, suggesting some resilience of the species to OA at the adult stage. This is probably related to the ecological niche of this abalone, where important pH variations can be observed at tidal, diurnal or seasonal scales.
Collapse
Affiliation(s)
- Sabine Roussel
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280, France.
| | - Manon Coheleach
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280, France
| | - Sophie Martin
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, Roscoff Cedex 29680, France
| | - Rob Day
- School of Biological Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Aicha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum National d'Histoire Naturelle, Station marine de Concarneau, Concarneau 29900, France
| | | | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, Brussels CP160/15 1050, Belgium
| | - Arianna Servili
- IFREMER, Université de Brest, CNRS, Plouzané IRD, LEMAR, F-29280, France
| | - Fanny Gaillard
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, Roscoff Cedex 29680, France
| | - Stéphanie Auzoux-Bordenave
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques" (BOREA), MNHN/CNRS/SU/IRD, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Concarneau 29900, France
| |
Collapse
|
54
|
Yorifuji M, Hayashi M, Ono T. Interactive effects of ocean deoxygenation and acidification on a coastal fish Sillago japonica in early life stages. MARINE POLLUTION BULLETIN 2024; 198:115896. [PMID: 38096697 DOI: 10.1016/j.marpolbul.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024]
Abstract
Acidification and deoxygenation are major threats to ocean environments. Despite the possibilities of their co-occurrence, little is known about their interactive effects on marine organisms. The effects of low pH and low dissolved oxygen (DO) on the early life stages of the coastal fish Sillago japonica were investigated. Twenty-five experimental treatments fully crossed in five levels of pH 7.6-8.1 and DO 50-230 μmol/kg (20-100 % saturation degree) were tested, and hatching rate of the embryos and survivability of the larvae after 24 h at 25 °C were investigated. Low DO treatment significantly affected the embryos and larvae compared to low pH treatment. The 50 % lethal concentration of DO showed the highest value at pH 7.6 and the lowest value at pH 7.7 and 7.9 for embryos and larvae, respectively. Therefore, effects of deoxygenation on fishes were alleviated under acidified condition around pH 7.7-7.9.
Collapse
Affiliation(s)
- Makiko Yorifuji
- Demonstration Laboratory, Marine Ecology Research Institute, 4-7-17 Arahama, Kashiwazaki, Niigata 945-0017, Japan; Marine Geo-Environment Research Group, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.
| | - Masahiro Hayashi
- Demonstration Laboratory, Marine Ecology Research Institute, 4-7-17 Arahama, Kashiwazaki, Niigata 945-0017, Japan.
| | - Tsuneo Ono
- Fisheries Resource Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| |
Collapse
|
55
|
Teixidó N, Carlot J, Alliouane S, Ballesteros E, De Vittor C, Gambi MC, Gattuso JP, Kroeker K, Micheli F, Mirasole A, Parravacini V, Villéger S. Functional changes across marine habitats due to ocean acidification. GLOBAL CHANGE BIOLOGY 2024; 30:e17105. [PMID: 38273554 DOI: 10.1111/gcb.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Global environmental change drives diversity loss and shifts in community structure. A key challenge is to better understand the impacts on ecosystem function and to connect species and trait diversity of assemblages with ecosystem properties that are in turn linked to ecosystem functioning. Here we quantify shifts in species composition and trait diversity associated with ocean acidification (OA) by using field measurements at marine CO2 vent systems spanning four reef habitats across different depths in a temperate coastal ecosystem. We find that both species and trait diversity decreased, and that ecosystem properties (understood as the interplay between species, traits, and ecosystem function) shifted with acidification. Furthermore, shifts in trait categories such as autotrophs, filter feeders, herbivores, and habitat-forming species were habitat-specific, indicating that OA may produce divergent responses across habitats and depths. Combined, these findings reveal the importance of connecting species and trait diversity of marine benthic habitats with key ecosystem properties to anticipate the impacts of global environmental change. Our results also generate new insights on the predicted general and habitat-specific ecological consequences of OA.
Collapse
Affiliation(s)
- Núria Teixidó
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Center, Naples, Italy
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Jérémy Carlot
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Samir Alliouane
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | | | - Cinzia De Vittor
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | | | - Jean-Pierre Gattuso
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, Paris, France
| | - Kristy Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Stanford Center for Ocean Solutions, Pacific Grove, California, USA
| | - Alice Mirasole
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Center, Naples, Italy
| | - Valeriano Parravacini
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Sébastien Villéger
- MARBEC, Université de Montpellier, CNRS-IRD-IFREMER-UM, Montpellier, France
| |
Collapse
|
56
|
Sharma A, Leverant CJ, Richards D, Beamis CP, Spoerke ED, Percival SJ, Rempe SB, Vanegas JM. Transport and Energetics of Carbon Dioxide in Ionic Liquids at Aqueous Interfaces. J Phys Chem B 2023. [PMID: 38048268 DOI: 10.1021/acs.jpcb.3c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A major hurdle in utilizing carbon dioxide (CO2) lies in separating it from industrial flue gas mixtures and finding suitable storage methods that enable its application in various industries. To address this issue, we utilized a combination of molecular dynamics simulations and experiments to investigate the behavior of CO2 in common room-temperature ionic liquids (RTIL) when in contact with aqueous interfaces. Our investigation of RTILs, [EMIM][TFSI] and [OMIM][TFSI], and their interaction with a pure water layer mimics the environment of a previously developed ultrathin enzymatic liquid membrane for CO2 separation. We analyzed diffusion constants and viscosity, which reveals that CO2 molecules exhibit faster mobility within the selected ILs compared to what would be predicted solely based on the viscosity of the liquids using the standard Einstein-Stokes relation. Moreover, we calculated the free energy of translocation for various species across the aqueous-IL interface, including CO2 and HCO3-. Free energy profiles demonstrate that CO2 exhibits a more favorable partitioning behavior in the RTILs compared to that in pure water, while a significant barrier hinders the movement of HCO3- from the aqueous layer. Experimental measurement of the CO2 transport in the RTILs corroborates the model. These findings strongly suggest that hydrophobic RTILs could serve as a promising option for selectively transporting CO2 from aqueous media and concentrating it as a preliminary step toward storage.
Collapse
Affiliation(s)
- Arjun Sharma
- Department of Physics, University of Vermont, Burlington, Vermont 05405, United States
| | - Calen J Leverant
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Danielle Richards
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Erik D Spoerke
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Juan M Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
57
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
58
|
A K P, M M, Rajamanickam S, Sivarethinamohan S, Gaddam MKR, Velusamy P, R G, Ravindiran G, Gurugubelli TR, Muniasamy SK. Impact of climate change and anthropogenic activities on aquatic ecosystem - A review. ENVIRONMENTAL RESEARCH 2023; 238:117233. [PMID: 37793591 DOI: 10.1016/j.envres.2023.117233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
All living things depend on their natural environment, either directly or indirectly, for their high quality of life, growth, nutrition, and development. Due to the fast emissions of greenhouse gases (GHGs), the Earth's climate system is being negatively impacted by global warming. Stresses caused by climate change, such as rising and hotter seas, increased droughts and floods, and acrid waters, threaten the world's most populated areas and aquatic ecosystems. As a result, the aquatic ecosystems of the globe are quickly reaching hazardous conditions. Marine ecosystems are essential parts of the world's environment and provide several benefits to the human population, such as water for drinking and irrigation, leisure activities, and habitat for commercially significant fisheries. Although local human activities have influenced coastal zones for millennia, it is still unclear how these impacts and stresses from climate change may combine to endanger coastal ecosystems. Recent studies have shown that rising levels of greenhouse gases are causing ocean systems to experience conditions not seen in several million years, which may cause profound and irreversible ecological shifts. Ocean productivity has declined, food web dynamics have changed, habitat-forming species are less common, species ranges have changed, and disease prevalence has increased due to human climate change. We provide an outline of the interaction between global warming and the influence of humans along the coastline. This review aims to demonstrate the significance of long-term monitoring, the creation of ecological indicators, and the applications of understanding how aquatic biodiversity and ecosystem functioning respond to global warming. This review discusses the effects of current climate change on marine biological processes both now and in the future, describes present climate change concerning historical change, and considers the potential roles aquatic systems could play in mitigating the effects of global climate change.
Collapse
Affiliation(s)
- Priya A K
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India; Centre for Nanoscience and Technology, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
| | - Muruganandam M
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - Sivarethinamohan Rajamanickam
- Symbiosis Centre for Management Studies (Constituent of Symbiosis International Deemed University), Bengaluru - 560 100, Karnataka, India.
| | - Sujatha Sivarethinamohan
- Department of Civil Engineering, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, 621 112, India.
| | | | - Priya Velusamy
- Department of Civil Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India.
| | - Gomathi R
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
| | - Gokulan Ravindiran
- Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, 500090, Telangana, India.
| | | | - Senthil Kumar Muniasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, 603308, Tamilnadu, India.
| |
Collapse
|
59
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
60
|
Zeng Q, Yang G, Zhang Q, Liu Z, Dang C, Qin B, Peng F. Elucidating the origin of catalytic activity of nitrogen-doped carbon coated nickel toward electrochemical reduction of CO 2. J Colloid Interface Sci 2023; 650:132-142. [PMID: 37399749 DOI: 10.1016/j.jcis.2023.06.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Converting CO2 into valuable chemicals and fuels through clean and renewable energy electricity provides a way to achieve sustainable development for human societies. In this study, carbon coated nickel catalysts (Ni@NCT) were prepared by solvothermal and high-temperature pyrolysis methods. A series of Ni@NC-X catalysts were obtained by pickling with different kinds of acids for electrochemical CO2 reduction reaction (ECRR). The results show that Ni@NC-N treated with nitric acid has the highest selectivity but lower activity, Ni@NC-S treated with sulfuric acid has the lowest selectivity, and Ni@NC-Cl treated with hydrochloric acid shows the best activity and good selectivity. At -1.16 V, Ni@NC-Cl has a considerable CO yield of 472.9 μmol h-1 cm-2, which is significantly superior to Ni@NC-N (327.5), Ni@NC-S (295.6) and Ni@NC (270.8). The controlled experiments show that there is a synergistic effect between Ni and N. The chlorine adsorbed on the surface can promote the performance of ECRR. The poisoning experiments indicate that the contribution of surface Ni atoms to the ECRR is very small, and the increase of activity is mainly due to the nitrogen doped carbon coated Ni particles. The relationship between activity and selectivity of ECRR on different acid-washed catalysts was correlated by theoretical calculations for the first time, which is also in good agreement with the experimental results.
Collapse
Affiliation(s)
- Qingting Zeng
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangxing Yang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiao Zhang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chengxiong Dang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Binhao Qin
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Advanced Welding Technology, Guangzhou 510650, China.
| | - Feng Peng
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
61
|
Korabik AR, Winquist T, Grosholz ED, Hollarsmith JA. Examining the reproductive success of bull kelp (Nereocystis luetkeana, Phaeophyceae, Laminariales) in climate change conditions. JOURNAL OF PHYCOLOGY 2023; 59:989-1004. [PMID: 37540062 DOI: 10.1111/jpy.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 08/05/2023]
Abstract
Climate change is affecting marine ecosystems in many ways, including raising temperatures and leading to ocean acidification. From 2014 to 2016, an extensive marine heat wave extended along the west coast of North America and had devastating effects on numerous species, including bull kelp (Nereocystis luetkeana). Bull kelp is an important foundation species in coastal ecosystems and can be affected by marine heat waves and ocean acidification; however, the impacts have not been investigated on sensitive early life stages. To determine the effects of changing temperatures and carbonate levels on Northern California's bull kelp populations, we collected sporophylls from mature bull kelp individuals in Point Arena, CA. At the Bodega Marine Laboratory, we released spores from field-collected bull kelp, and cultured microscopic gametophytes in a common garden experiment with a fully factorial design crossing modern conditions (11.63 ± 0.54°C and pH 7.93 ± 0.26) with observed extreme climate conditions (15.56 ± 0.83°C and 7.64 ± 0.32 pH). Our results indicated that both increased temperature and decreased pH influenced growth and egg production of bull kelp microscopic stages. Increased temperature resulted in decreased gametophyte survival and offspring production. In contrast, decreased pH had less of an effect but resulted in increased gametophyte survival and offspring production. Additionally, increased temperature significantly impacted reproductive timing by causing female gametophytes to produce offspring earlier than under ambient temperature conditions. Our findings can inform better predictions of the impacts of climate change on coastal ecosystems and provide key insights into environmental dynamics regulating the bull kelp lifecycle.
Collapse
Affiliation(s)
- Angela R Korabik
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| | - Tallulah Winquist
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Edwin D Grosholz
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| | | |
Collapse
|
62
|
Pu X, Cheng Q, Chen H. Spatial-temporal dynamics of land use carbon emissions and drivers in 20 urban agglomerations in China from 1990 to 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107854-107877. [PMID: 37740809 DOI: 10.1007/s11356-023-29477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/20/2023] [Indexed: 09/25/2023]
Abstract
Urban agglomerations (UAs) are the largest carbon emitters; thus, the emissions must be controlled to achieve carbon peak and carbon neutrality. We use long time series land-use and energy consumption data to estimate the carbon emissions in UAs. The standard deviational ellipse (SDE) and spatial autocorrelation analysis are used to reveal the spatiotemporal evolution of carbon emissions, and the geodetector, geographically and temporally weighted regression (GTWR), and boosted regression trees (BRTs) are used to analyze the driving factors. The results show the following: (1) Construction land and forest land are the main carbon sources and sinks, accounting for 93% and 94% of the total carbon sources and sinks, respectively. (2) The total carbon emissions of different UAs differ substantially, showing a spatial pattern of high emissions in the east and north and low emissions in the west and south. The carbon emissions of all UAs increase over time, with faster growth in UAs with lower carbon emissions. (3) The center of gravity of carbon emissions shifts to the south (except for North China, where it shifts to the west), and carbon emissions in UAs show a positive spatial correlation, with a predominantly high-high and low-low spatial aggregation pattern. (4) Population, GDP, and the annual number of cabs are the main factors influencing carbon emissions in most UAs, whereas other factors show significant differences. Most exhibit an increasing trend over time in their impact on carbon emissions. In general, China still faces substantial challenges in achieving the dual carbon goal. The carbon control measures of different UAs should be targeted in terms of energy utilization, green and low-carbon production, and consumption modes to achieve the low-carbon and green development goals of the United Nations' sustainable cities and beautiful China's urban construction as soon as possible.
Collapse
Affiliation(s)
- Xuefu Pu
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Qingping Cheng
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China.
- Southwest Research Centre for Eco-Civilization, National Forestry and Grassland Administration, Kunming, 650224, Yunnan, China.
- Yunnan Key Lab of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650091, China.
| | - Hongyue Chen
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China
| |
Collapse
|
63
|
Chen B, Yu Q, Lan X, Fang L, Wen C. Assessing China's development zones and carbon emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99298-99309. [PMID: 37610539 DOI: 10.1007/s11356-023-29324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
The present article evaluates establishment of development zones and its association with carbon emissions. In the process of industrialization, carbon emissions in underdeveloped regions of the world increase with economic growth. In order to promote economic growth in the western region and strengthen the management of enterprise pollution emissions, the Chinese government has set up hundreds of development zones. Existing research shows that development zone establishment can promote economic growth; however, literature is scarce when the relationship is tested across region. Based on the panel data of five provinces with relatively backward economy in western China from 2001 to 2017, this paper constructs a "multi-period difference-in-difference" (DID) model with the establishment of development zones as a "quasi-natural experiment" to test the relationship. Findings reveal that development zone establishment increases carbon emissions in the region, and has a significant inhibitory effect on carbon emissions at national level. The conclusions of this paper provide empirical evidence and policy implications for reducing carbon emissions in economically underdeveloped areas.
Collapse
Affiliation(s)
- Binsen Chen
- Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Qiuyue Yu
- Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiujuan Lan
- School of Business and Tourism Management, Yunnan University, Kunming, 650500, China
| | - Liuhua Fang
- Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Chuanhao Wen
- School of Economics, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
64
|
Voolstra CR, Hume BCC, Armstrong EJ, Mitushasi G, Porro B, Oury N, Agostini S, Boissin E, Poulain J, Carradec Q, Paz-García DA, Zoccola D, Magalon H, Moulin C, Bourdin G, Iwankow G, Romac S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Wincker P, Planes S, Allemand D, Forcioli D. Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. NPJ BIODIVERSITY 2023; 2:15. [PMID: 39242808 PMCID: PMC11332039 DOI: 10.1038/s44185-023-00020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 09/09/2024]
Abstract
Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf. platyphylla-across 33 sites from 11 islands. Using deep metagenomic sequencing of 269 colonies in conjunction with morphological analyses and climate variability data, we can show that despite a targeted sampling the transect encompasses multiple cryptic species. These species exhibit disparate biogeographic patterns and, most importantly, distinct evolutionary patterns in identical environmental regimes. Our findings demonstrate on a basin scale that evolutionary trajectories are species-specific and can only in part be predicted from the environment. This highlights that conservation strategies must integrate multi-species investigations to discern the distinct genomic footprints shaped by selection as well as the genetic potential for adaptive change.
Collapse
Affiliation(s)
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eric J Armstrong
- PSL Research University, EPHE, CNRS, Université de Perpignan, Perpignan, France
| | - Guinther Mitushasi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Barbara Porro
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- French National Institute for Agriculture, Food, and Environment (INRAE), Université Côte d'Azur, ISA, France
| | - Nicolas Oury
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, Col. Playa Palo de Santa Rita Sur, La Paz, 23096, Baja California Sur, México
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Hélène Magalon
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Océanographie de Villefranche, UMR 7093, Sorbonne Université, CNRS, 06230, Villefranche sur mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Matthew B Sullivan
- Department of Microbiology and Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco.
| |
Collapse
|
65
|
Masoumi Z, Tayebi M, Tayebi M, Masoumi Lari SA, Sewwandi N, Seo B, Lim CS, Kim HG, Kyung D. Electrocatalytic Reactions for Converting CO 2 to Value-Added Products: Recent Progress and Emerging Trends. Int J Mol Sci 2023; 24:9952. [PMID: 37373100 DOI: 10.3390/ijms24129952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Carbon dioxide (CO2) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method. In addition, microbial electrosynthesis which utilizes an electroactive bio-film electrode as a catalyst can be considered as another option to reduce CO2. This review highlights the methods which can contribute to the increase in efficiency of carbon dioxide reduction (CO2R) processes through electrode structure with the introduction of various electrolytes such as ionic liquid, sulfate, and bicarbonate electrolytes, with the control of pH and with the control of the operating pressure and temperature of the electrolyzer. It also presents the research status, a fundamental understanding of carbon dioxide reduction reaction (CO2RR) mechanisms, the development of electrochemical CO2R technologies, and challenges and opportunities for future research.
Collapse
Affiliation(s)
- Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Meysam Tayebi
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Mahdi Tayebi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - S Ahmad Masoumi Lari
- Department of Biology, York University, Farquharson Life Sciences Building, Ottawa Rd, Toronto, ON M3J 1P3, Canada
| | - Nethmi Sewwandi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Bongkuk Seo
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Daeseung Kyung
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| |
Collapse
|
66
|
Ye M, Xiao M, Zhang S, Huang J, Lin J, Lu Y, Liang S, Zhao J, Dai X, Xu L, Li M, Zhou Y, Overmans S, Xia J, Jin P. Multi-trait analysis reveals large interspecific differences for phytoplankton in response to thermal change. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106008. [PMID: 37121174 DOI: 10.1016/j.marenvres.2023.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/11/2023]
Abstract
Understanding the responses of multiple traits in phytoplankton, and identifying interspecific variabilities to thermal changes is crucial for predicting the impacts of ocean warming on phytoplankton distributions and community structures in future scenarios. Here, we applied a trait-based approach by examining the patterns in multi-traits variations (eight traits) and interspecific variabilities in five phytoplankton species (two diatoms, three dinoflagellates) in response to a wide range of ecologically relevant temperatures (14-30 °C). Our results show large inter-traits and interspecific variabilities of thermal reaction norms in all of the tested traits. We also found that the interspecific variability exceeded the variations induced by thermal changes. Constrained variations and trade-offs between traits both revealed substantial interspecific differences and shifted as the temperature changed. Our study helps to understand the species-specific response patterns of multiple traits to ocean warming and to investigate the implications of these responses in the context of global change.
Collapse
Affiliation(s)
- Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mingke Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Sebastian Overmans
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
67
|
Zhang J, Li X, Wang X, Guan W. Transcriptome analysis of two bloom-forming Prorocentrum species reveals physiological changes related to light and temperature. HARMFUL ALGAE 2023; 125:102421. [PMID: 37220974 DOI: 10.1016/j.hal.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
Temperature and light substantially influence red tide succession. However, it remains unclear whether the molecular mechanisms differ among species. In this study, we measured the variation in the physiological parameters of growth and pigments and transcriptional levels of two bloom-forming dinoflagellates, namely Prorocentrum micans and P. cordatum. This was undertaken in four treatments that represented two factorial temperature combinations (LT: 20 °C, HT: 28 °C) and light conditions (LL: 50 µmol photons m-2 s-1, HL: 400 µmol photons m-2 s-1) for 7-day batch culture. Growth under high temperature and high light (HTHL) was the fastest, while growth under high temperature and low light (HTLL) was the slowest. The pigments (chlorophyll a and carotenoids) decreased significantly in all high light (HL) treatments, but not in high temperature (HT) treatments. HL alleviated the low light-caused photolimitation and enhanced the growth of both species at low temperatures. However, HT inhibited the growth of both species by inducing oxidative stress under low light conditions. HL mitigated the HT-induced stress on growth in both species by upregulating photosynthesis, antioxidase activity, protein folding, and degradation. The cells of P. micans were more sensitive to HT and HL than those of P. cordatum. This study deepens our understanding of the species-specific mechanism of dinoflagellates at the transcriptomic level, adapting to the future ocean changes including higher solar radiation and higher temperatures in the upper mixed layer.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuanwen Li
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinjie Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
68
|
Somo DA, Chu K, Richards JG. Gill surface area allometry does not constrain the body mass scaling of maximum oxygen uptake rate in the tidepool sculpin, Oligocottus maculosus. J Comp Physiol B 2023:10.1007/s00360-023-01490-9. [PMID: 37149515 DOI: 10.1007/s00360-023-01490-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
The gill oxygen limitation hypothesis (GOLH) suggests that hypometric scaling of metabolic rate in fishes is a consequence of oxygen supply constraints imposed by the mismatched growth rates of gill surface area (a two-dimensional surface) and body mass (a three-dimensional volume). GOLH may, therefore, explain the size-dependent spatial distribution of fish in temperature- and oxygen-variable environments through size-dependent respiratory capacity, but this question is unstudied. We tested GOLH in the tidepool sculpin, Oligocottus maculosus, a species in which body mass decreases with increasing temperature- and oxygen-variability in the intertidal, a pattern consistent with GOLH. We statistically evaluated support for GOLH versus distributed control of [Formula: see text] allometry by comparing scaling coefficients for gill surface area, standard and maximum [Formula: see text] ([Formula: see text],Standard and [Formula: see text],Max, respectively), ventricle mass, hematocrit, and metabolic enzyme activities in white muscle. To empirically evaluate whether there is a proximate constraint on oxygen supply capacity with increasing body mass, we measured [Formula: see text],Max across a range of Po2s from normoxia to Pcrit, calculated the regulation value (R), a measure of oxyregulatory capacity, and analyzed the R-body mass relationship. In contrast with GOLH, gill surface area scaling either matched or was more than sufficient to meet [Formula: see text] demands with increasing body mass and R did not change with body mass. Ventricle mass (b = 1.22) scaled similarly to [Formula: see text],Max (b = 1.18) suggesting a possible role for the heart in the scaling of [Formula: see text],Max. Together our results do not support GOLH as a mechanism structuring the distribution of O. maculosus and suggest distributed control of oxyregulatory capacity.
Collapse
Affiliation(s)
- Derek A Somo
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Ken Chu
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
69
|
Rutterford LA, Simpson SD, Bogstad B, Devine JA, Genner MJ. Sea temperature is the primary driver of recent and predicted fish community structure across Northeast Atlantic shelf seas. GLOBAL CHANGE BIOLOGY 2023; 29:2510-2521. [PMID: 36896634 DOI: 10.1111/gcb.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2023]
Abstract
Climate change has strongly influenced the distribution and abundance of marine fish species, leading to concern about effects of future climate on commercially harvested stocks. Understanding the key drivers of large-scale spatial variation across present-day marine assemblages enables predictions of future change. Here we present a unique analysis of standardised abundance data for 198 marine fish species from across the Northeast Atlantic collected by 23 surveys and 31,502 sampling events between 2005 and 2018. Our analyses of the spatially comprehensive standardised data identified temperature as the key driver of fish community structure across the region, followed by salinity and depth. We employed these key environmental variables to model how climate change will affect both the distributions of individual species and local community structure for the years 2050 and 2100 under multiple emissions scenarios. Our results consistently indicate that projected climate change will lead to shifts in species communities across the entire region. Overall, the greatest community-level changes are predicted at locations with greater warming, with the most pronounced effects at higher latitudes. Based on these results, we suggest that future climate-driven warming will lead to widespread changes in opportunities for commercial fisheries across the region.
Collapse
Affiliation(s)
- Louise A Rutterford
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk, UK
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Stephen D Simpson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | | | - Jennifer A Devine
- Institute of Marine Research (IMR), Bergen, Norway
- National Institute of Water and Atmospheric Research (NIWA) Ltd, Nelson, New Zealand
| | - Martin J Genner
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
70
|
Paredes-Molina FJ, Chaparro OR, Navarro JM, Cubillos VM, Montory JA, Pechenik JA. Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO 2. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105971. [PMID: 37004497 DOI: 10.1016/j.marenvres.2023.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Egg capsules of the gastropod Acanthina monodon were maintained during the entire period of encapsulated development at three temperatures (10, 15, 20 °C) and two pCO2 levels (400, 1200 μatm). Embryos per capsule, size at hatching, time to hatching, embryonic metabolic rates, and the resistance of juveniles to shell breakage were quantified. No embryos maintained at 20 °C developed to hatching. The combination of temperature and pCO2 levels had synergistic effects on hatching time and developmental success, antagonistic effects on number of hatchlings per capsule, resistance to juvenile shell cracking and metabolism, and additive effect on hatching size. Juveniles hatched significantly sooner at 15 °C, independent of the pCO2 level that they had been exposed to, while individuals hatched at significantly smaller sizes if they had been held under 15 °C/1200 μatm rather than at 10 °C/low pCO2. Embryos held at the higher pCO2 had a significantly greater percentage of abnormalities. For capsules maintained at low pCO2 and 15 °C, emerging juveniles had less resistance to shell breakage. Embryonic metabolism was significantly higher at 15 °C than at 10 °C, independent of pCO2 level. The lower metabolism occurred in embryos maintained at the higher pCO2 level. Thus, in this study, temperature was the factor that had the greatest effect on the encapsulated development of A. monodon, increasing the metabolism of the embryos and consequently accelerating development, which was expressed in a shorter intracapsular development time, but with smaller individuals at hatching and a lower resistance of their shells to breakage. On the other hand, the high pCO2 level suppressed metabolism, prolonged intracapsular development, and promoted more incomplete development of the embryos. However, the combination of the two factors can mitigate--to some extent--the adverse effects of both incomplete development and lower resistance to shell breakage.
Collapse
Affiliation(s)
- F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile.
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - V M Cubillos
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile
| | - J A Montory
- Centro i∼mar, Universidad De Los Lagos, Casilla 557, Puerto Montt, Chile
| | - J A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
71
|
Yu S, Chen J, Chen C, Zhou M, Shen L, Li B, Lin H. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
72
|
Martins Medeiros IP, Souza MM. Acid times in physiology: A systematic review of the effects of ocean acidification on calcifying invertebrates. ENVIRONMENTAL RESEARCH 2023; 231:116019. [PMID: 37119846 DOI: 10.1016/j.envres.2023.116019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
The reduction in seawater pH from rising levels of carbon dioxide (CO2) in the oceans has been recognized as an important force shaping the future of marine ecosystems. Therefore, numerous studies have reported the effects of ocean acidification (OA) in different compartments of important animal groups, based on field and/or laboratory observations. Calcifying invertebrates have received considerable attention in recent years. In the present systematic review, we have summarized the physiological responses to OA in coral, echinoderm, mollusk, and crustacean species exposed to predicted ocean acidification conditions in the near future. The Scopus, Web of Science, and PubMed databases were used for the literature search, and 75 articles were obtained based on the inclusion criteria. Six main physiological responses have been reported after exposure to low pH. Growth (21.6%), metabolism (20.8%), and acid-base balance (17.6%) were the most frequent among the phyla, while calcification and growth were the physiological responses most affected by OA (>40%). Studies show that the reduction of pH in the aquatic environment, in general, supports the maintenance of metabolic parameters in invertebrates, with redistribution of energy to biological functions, generating limitations to calcification, which can have severe consequences for the health and survival of these organisms. It should be noted that the OA results are variable, with inter and/or intraspecific differences. In summary, this systematic review offers important scientific evidence for establishing paradigms in the physiology of climate change in addition to gathering valuable information on the subject and future research perspectives.
Collapse
Affiliation(s)
- Isadora Porto Martins Medeiros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
73
|
Gundogdu K, Orus Iturriza A, Orruño M, Montánchez I, Eguiraun H, Martinez I, Arana I, Kaberdin VR. Addressing the Joint Impact of Temperature and pH on Vibrio harveyi Adaptation in the Time of Climate Change. Microorganisms 2023; 11:microorganisms11041075. [PMID: 37110498 PMCID: PMC10142252 DOI: 10.3390/microorganisms11041075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Global warming and acidification of the global ocean are two important manifestations of the ongoing climate change. To characterize their joint impact on Vibrio adaptation and fitness, we analyzed the temperature-dependent adaptation of Vibrio harveyi at different pHs (7.0, 7.5, 8.0, 8.3 and 8.5) that mimic the pH of the world ocean in the past, present and future. Comparison of V. harveyi growth at 20, 25 and 30 °C show that higher temperature per se facilitates the logarithmic growth of V. harveyi in nutrient-rich environments in a pH-dependent manner. Further survival tests carried out in artificial seawater for 35 days revealed that cell culturability declined significantly upon incubation at 25 °C and 30 °C but not at 20 °C. Moreover, although acidification displayed a negative impact on cell culturability at 25 °C, it appeared to play a minor role at 30 °C, suggesting that elevated temperature, rather than pH, was the key player in the observed reduction of cell culturability. In addition, analyses of the stressed cell morphology and size distribution by epifluorescent microscopy indicates that V. harveyi likely exploits different adaptation strategies (e.g., acquisition of coccoid-like morphology) whose roles might differ depending on the temperature-pH combination.
Collapse
Affiliation(s)
- Kaan Gundogdu
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Ander Orus Iturriza
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Harkaitz Eguiraun
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- Department of Graphic Design & Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
74
|
Scanes E, Byrne M. Warming and hypoxia threaten a valuable scallop fishery: A warning for commercial bivalve ventures in climate change hotspots. GLOBAL CHANGE BIOLOGY 2023; 29:2043-2045. [PMID: 36655296 DOI: 10.1111/gcb.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 05/28/2023]
Abstract
Marine molluscs constitute the second largest marine fishery and are often caught in coastal and estuarine habitats. Temperature is increasing in these habitats at a rate greater than predicted, especially in warming "hotspots". This warming is accompanied by hypoxia in a duo of stressors that threatens coastal mollusc fisheries and aquaculture. Collapses of the northern bay scallop (Argopecten irradians irradians) fisheries on the Atlantic coast of the USA are likely to be driven by rapid rates of coastal warming and may provide an ominous glimpse into the prospects of other coastal mollusc fisheries in climate warming hotspots.
Collapse
Affiliation(s)
- Elliot Scanes
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
75
|
Santos J, Rodrigo PJ, Petersen PM, Pedersen C. Confocal LiDAR for remote high-resolution imaging of auto-fluorescence in aquatic media. Sci Rep 2023; 13:4807. [PMID: 36959390 PMCID: PMC10036608 DOI: 10.1038/s41598-023-32036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
Spatially resolved in situ monitoring of plankton can provide insights on the impacts of climate change on aquatic ecosystems due to their vital role in the biological carbon pump. However, high-resolution underwater imaging is technically complex and restricted to small close-range volumes with current techniques. Here, we report a novel inelastic scanning confocal light detection and ranging (LiDAR) system for remote underwater volumetric imaging of fluorescent objects. A continuous wave excitation beam is combined with a pinhole in a conjugated detection plane to reject out-of-focus scattering and accomplish near-diffraction limited probe volumes. The combination of bi-directional scanning with remote focusing enables the acquisition of three-dimensional data. We experimentally determine the point spread and axial weighting functions, and demonstrate selective volumetric imaging of obstructed layers through spatial filtering. Finally, we spatially resolve in vivo autofluorescence from sub-millimeter Acocyclops royi copepods to demonstrate the applicability of our novel instrument in non-intrusive morphological and spectroscopic studies of aquatic fauna. The proposed system constitutes a unique tool e.g. for profiling chlorophyll distributions and for quantitative studies of zooplankton with reduced interference from intervening scatterers in the water column that degrade the the performance of conventional imaging systems currently in place.
Collapse
Affiliation(s)
- Joaquim Santos
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Peter John Rodrigo
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Paul Michael Petersen
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Christian Pedersen
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
76
|
Jiang LQ, Kozyr A, Relph JM, Ronje EI, Kamb L, Burger E, Myer J, Nguyen L, Arzayus KM, Boyer T, Cross S, Garcia H, Hogan P, Larsen K, Parsons AR. The Ocean Carbon and Acidification Data System. Sci Data 2023; 10:136. [PMID: 36922515 PMCID: PMC10017681 DOI: 10.1038/s41597-023-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
The Ocean Carbon and Acidification Data System (OCADS) is a data management system at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). It manages a wide range of ocean carbon and acidification data, including chemical, physical, and biological observations collected from research vessels, ships of opportunity, and uncrewed platforms, as well as laboratory experiment results, and model outputs. Additionally, OCADS serves as a repository for related Global Ocean Observing System (GOOS) biogeochemistry Essential Ocean Variables (EOVs), e.g., oxygen, nutrients, transient tracers, and stable isotopes. OCADS endeavors to be one of the world's leading providers of ocean carbon and acidification data, information, products, and services. To provide the best data management services to the ocean carbon and acidification research community, OCADS prioritizes adopting a customer-centric approach and gathering knowledge and expertise from the research community to improve its data management practices. OCADS aims to make all ocean carbon and acidification data accessible via a single portal, and welcomes submissions from around the world: https://www.ncei.noaa.gov/products/ocean-carbon-acidification-data-system/.
Collapse
Affiliation(s)
- Li-Qing Jiang
- Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20740, USA.
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA.
| | - Alex Kozyr
- Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20740, USA
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - John M Relph
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - Errol I Ronje
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| | - Linus Kamb
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, 98115, USA
| | - Eugene Burger
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, 98115, USA
| | - Jonathan Myer
- NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina, 28801, USA
| | - Liem Nguyen
- Department of Computer Science, University of Maryland, College Park, Maryland, 20740, USA
| | - Krisa M Arzayus
- NOAA/NOS Integrated Ocean Observing System, Silver Spring, Maryland, 20910, USA
| | - Tim Boyer
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - Scott Cross
- NOAA/NESDIS National Centers for Environmental Information, Charleston, South Carolina, 29412, USA
| | - Hernan Garcia
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - Patrick Hogan
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| | - Kirsten Larsen
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| | - A Rost Parsons
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| |
Collapse
|
77
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
78
|
Huang J, Jiao Y, Weatherley AJ, Duan AX, Wang S, Li C, Ma Z, Liu W, Han B. Catalytic modification of corn straw facilitates the remediation of Cd contaminated water and soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130582. [PMID: 37055987 DOI: 10.1016/j.jhazmat.2022.130582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Turning postharvest residue into high-value-added products is crucial for agricultural waste management and environmental remediation. In this proof-of-concept study, nanosized Pt/TiO2 was used as a model catalyst to modify corn straw (CS) materials through a simple low-temperature oxidation process. This method was demonstrated to be self-sustainable, waste-free, and with high yields. At an optimal temperature of 220 °C, O2 treatment with 1 wt% Pt/TiO2 greatly changed ultra-micropore and mesopore structures, dissolved organic carbon, aromatic contents and surface oxygen (O)-containing functional groups in CS products. This treatment resulted in an approximately 5-fold increase of cadmium (Cd) adsorption from aqueous solution and immobilization rate of 43.1% at 7d for bioavailable Cd in soil. Spectroscopic and linear regression analysis demonstrated that both acidic and basic functional groups in CS contributed to Cd adsorption, suggesting chemical adsorption. According to the d-band theory, the unexpected role of catalysts in CS modification could be associated with dissociative adsorption of molecular O2 on the Pt surface. These results provide insights for the development of economic and sustainable technologies to reutilize agricultural waste biomass for water and soil remediation.
Collapse
Affiliation(s)
- Jie Huang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yunhong Jiao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Anthony J Weatherley
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alex Xiaofei Duan
- Melbourne Trace Analysis of Chemical, Earth and Environmental Sciences (TrACEES) Platform and School of Chemistry, Faculty of Science, The University of Melbourne, 3010, Australia
| | - Shutao Wang
- Land and Resource College, Hebei Agriculture University, Baoding 071002, PR China
| | - Chaoyu Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Zhiling Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Bing Han
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
79
|
Singh PK, Pandey AK, Chouhan A, Singh GJ. Prediction of surface temperature and CO 2 emission of leading emitters using grey model EGM (1,1, α, θ). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39708-39723. [PMID: 36598724 DOI: 10.1007/s11356-022-24954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The current study projects the increase in surface temperature and CO2 emissions using the EGM (1,1, α, θ) grey model for the six most significant CO2 contributing countries, namely China, the USA, India, Russia, Japan, and Germany. The study uses time series data for surface temperature (in degree celsius) from 2010 to 2020, and CO2 emission (metric tons per capita) data from 2009 to 2019. The empirical results show a downward trend in CO2 emissions from Japan, Germany, the USA, and Russia by 2028. However, in the same time period, CO2 emissions are expected to increase for India and remain nearly constant for China. This study indicates an increase in surface temperature at a significant rate in all the 6 countries: by 6.70 °C for China, 7.52 °C for Germany, 2.95 °C for India, 2.66 °C for Japan, 3.61 °C for Russia, and 13.48 °C for the USA by the end of 2028. The study compares the EGM (1,1, α, θ) grey model with the general EGM (1,1) grey model and finds that the EGM (1,1, α, θ) model performs better in both in-sample and out-of-sample forecasting. The paper also puts forward policy suggestions to mitigate, manage, and reduce increases in surface temperature as well as CO2 emissions.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- Department of Economics, Lakshmibai College, University of Delhi, New Delhi, India
| | - Alok Kumar Pandey
- Centre for Integrated Rural Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Anushka Chouhan
- Department of Economics, Banaras Hindu University, Varanasi, India
| | - Gopal Ji Singh
- Department of Economics, Magadh University, Bodh Gaya, India
| |
Collapse
|
80
|
Qi T, Wu L, Yu J, Song Z, Liu F, Li J, Song X, Li X. Acute low-dose phosphate disrupts glycerophospholipid metabolism and induces stress in juvenile turbot (Scophthalmus maximus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160430. [PMID: 36455734 DOI: 10.1016/j.scitotenv.2022.160430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Phosphate, as the main nutrient factor of lake eutrophication brought by pollutants discharged from agriculture and industry, is always considered to be a low-toxicity substance to aquatic animals. But the toxicity mechanism is unclear, and published information is limited. In this study, a 96 h acute stress experiment was conducted on juvenile turbot (Scophthalmus maximus) with 0, 10, and 60 mg/L phosphate solutions. Metabonomic analysis revealed that low-dose phosphate (10 mg/L) disrupted glycerophospholipid, purine, and glycolipid metabolism, as well as the tricarboxylic acid (TCA) cycle in juveniles, even at 96 h of stress, which may lead to cell structure damage and signal recognition disorder between cells. Upregulated key genes in the main glycerophospholipid metabolic pathways, which matched the results of the metabolomic study, were detected. Furthermore, low-dose phosphate (10 mg/L) induced oxidative stress and immunotoxicity in fish, resulting in the raising of relevant genes expression such as cat and sod in liver and kidney. In addition, all phosphate-treated groups had induced lesions on gill tissue, as evidenced by pathological observations. In this study on toxic effects on and mechanism of phosphate in aquatic animals using metabolomics, gene expression, and histopathology, we confirm that acute low-dose phosphate could disrupt glycerophospholipid metabolism and induce stress in juvenile turbot. This can provide advice on the amount of phosphate accumulation for marine fish farming and on protecting species diversity and marine ecosystem from the point of view of phosphate toxicity to marine animals.
Collapse
Affiliation(s)
- Ting Qi
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Lele Wu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jiachen Yu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China.
| |
Collapse
|
81
|
Tjiputra JF, Negrel J, Olsen A. Early detection of anthropogenic climate change signals in the ocean interior. Sci Rep 2023; 13:3006. [PMID: 36810764 PMCID: PMC9944908 DOI: 10.1038/s41598-023-30159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Robust detection of anthropogenic climate change is crucial to: (i) improve our understanding of Earth system responses to external forcing, (ii) reduce uncertainty in future climate projections, and (iii) develop efficient mitigation and adaptation plans. Here, we use Earth system model projections to establish the detection timescales of anthropogenic signals in the global ocean through analyzing temperature, salinity, oxygen, and pH evolution from surface to 2000 m depths. For most variables, anthropogenic changes emerge earlier in the interior ocean than at the surface, due to the lower background variability at depth. Acidification is detectable earliest, followed by warming and oxygen changes in the subsurface tropical Atlantic. Temperature and salinity changes in the subsurface tropical and subtropical North Atlantic are shown to be early indicators for a slowdown of the Atlantic Meridional Overturning Circulation. Even under mitigated scenarios, inner ocean anthropogenic signals are projected to emerge within the next few decades. This is because they originate from existing surface changes that are now propagating into the interior. In addition to the tropical Atlantic, our study calls for establishment of long-term interior monitoring systems in the Southern Ocean and North Atlantic in order to elucidate how spatially heterogeneous anthropogenic signals propagate into the interior and impact marine ecosystems and biogeochemistry.
Collapse
Affiliation(s)
- Jerry F Tjiputra
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway.
| | - Jean Negrel
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Are Olsen
- Geophysical Institute, University of Bergen, Bjerknes Centre for Climate Research, Bergen, Norway
| |
Collapse
|
82
|
Ziveri P, Gray WR, Anglada-Ortiz G, Manno C, Grelaud M, Incarbona A, Rae JWB, Subhas AV, Pallacks S, White A, Adkins JF, Berelson W. Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean. Nat Commun 2023; 14:805. [PMID: 36808154 PMCID: PMC9941586 DOI: 10.1038/s41467-023-36177-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3 production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3 production is higher than the sinking flux of CaCO3 at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3 production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3 cycle and its impact on atmospheric CO2 will largely depend on how the poorly-understood processes that determine whether CaCO3 is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification.
Collapse
Affiliation(s)
- Patrizia Ziveri
- Universitat Autònoma de Barcelona, Institute of Environmental Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Universitat Autònoma de Barcelona, BABVE Department, Barcelona, Spain.
| | - William Robert Gray
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Université Paris-Saclay, Gif-sur-Yvette, France.
- University of St Andrews, School of Earth and Environmental Sciences, St Andrews, United Kingdom.
| | - Griselda Anglada-Ortiz
- Universitat Autònoma de Barcelona, Institute of Environmental Science and Technology, Barcelona, Spain
- Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Clara Manno
- British Antarctic Survey, Natural Environmental Research Council, Cambridge, United Kingdom
| | - Michael Grelaud
- Universitat Autònoma de Barcelona, Institute of Environmental Science and Technology, Barcelona, Spain
| | - Alessandro Incarbona
- Università di Palermo, Dipartimento di Scienze della Terra e del Mare, Palermo, Italy
| | | | - Adam V Subhas
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sven Pallacks
- Universitat Autònoma de Barcelona, Institute of Environmental Science and Technology, Barcelona, Spain
| | - Angelicque White
- School of Ocean and Earth Science and Technology, Department of Oceanography, University of Hawai'i at Manoa, Honolulu, USA
| | - Jess F Adkins
- Department of Geology and Planetary Sciences, Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, USA
| | - William Berelson
- University of Southern California, Department of Earth Sciences, Los Angeles, CA, USA
| |
Collapse
|
83
|
Lutz V, Chidiak M, Frouin R, Negri R, Dogliotti AI, Santamaria-Del-Angel E, Berghoff CF, Rojas J, Filipello C, Astor Y, Segura V, Gonzalez-Silvera A, Escudero L, Ledesma J, Ueyoshi K, Silva RI, Ruiz MG, Cozzolino E, Allega L, Tan J, Kampel M. Regulation of CO 2 by the sea in areas around Latin America in a context of climate change. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:417. [PMID: 36807829 DOI: 10.1007/s10661-023-10997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities are increasing the atmospheric carbon dioxide (CO2); around a third of the CO2 emitted by these activities has been taken up by the ocean. Nevertheless, this marine ecosystem service of regulation remains largely invisible to society, and not enough is known about regional differences and trends in sea-air CO2 fluxes (FCO2), especially in the Southern Hemisphere. The objectives of this work were as follows: first to put values of FCO2 integrated over the exclusive economic zones (EEZ) of five Latin-American countries (Argentina, Brazil, Mexico, Peru, and Venezuela) into perspective regarding total country-level greenhouse gases (GHG) emissions. Second, to assess the variability of two main biological factors affecting FCO2 at marine ecological time series (METS) in these areas. FCO2 over the EEZs were estimated using the NEMO model, and GHG emissions were taken from reports to the UN Framework Convention on Climate Change. For each METS, the variability in phytoplankton biomass (indexed by chlorophyll-a concentration, Chla) and abundance of different cell sizes (phy-size) were analyzed at two time periods (2000-2015 and 2007-2015). Estimates of FCO2 at the analyzed EEZs showed high variability among each other and non-negligible values in the context of greenhouse gas emissions. The trends observed at the METS indicated, in some cases, an increase in Chla (e.g., EPEA-Argentina) and a decrease in others (e.g., IMARPE-Peru). Evidence of increasing populations of small size-phytoplankton was observed (e.g., EPEA-Argentina, Ensenada-Mexico), which would affect the carbon export to the deep ocean. These results highlight the relevance of ocean health and its ecosystem service of regulation when discussing carbon net emissions and budgets.
Collapse
Affiliation(s)
- V Lutz
- CONICET-INIDEP, 7600, Mar del Plata, Argentina.
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina.
| | - M Chidiak
- Facultad de Ciencias Económicas, Instituto Interdisciplinario de Economía Política, Universidad de Buenos Aires, C1120AAQ, Buenos Aires, Argentina
| | - R Frouin
- Scripps Institution of Oceanography, University of California San Diego, 8810 Shellback Way, La Jolla, San Diego, CA, 92037, USA
| | - R Negri
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - A I Dogliotti
- Instituto de Astronomía Y Física del Espacio (IAFE), Pabellón IAFE, CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires C1428ZAA, Buenos Aires, Argentina
- Instituto Franco-Argentino Para El Estudio del Clima Y Sus Impactos (UMI-IFAECI, CNRSCONICET-UBA), C1428EGA, Buenos Aires, Argentina
| | - E Santamaria-Del-Angel
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, 22860, Ensenada, México
| | - C F Berghoff
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - J Rojas
- Fundación La Salle de Ciencias Naturales Campus Margarita (EDIMAR), Isla Margarita, Venezuela
| | - C Filipello
- Facultad de Ciencias Económicas, Instituto Interdisciplinario de Economía Política, Universidad de Buenos Aires, C1120AAQ, Buenos Aires, Argentina
| | - Y Astor
- Fundación La Salle de Ciencias Naturales Campus Margarita (EDIMAR), Isla Margarita, Venezuela
| | - V Segura
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - A Gonzalez-Silvera
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, 22860, Ensenada, México
| | - L Escudero
- Instituto del Mar del Perú, 07021, Callao, Perú
| | - J Ledesma
- Instituto del Mar del Perú, 07021, Callao, Perú
| | - K Ueyoshi
- Scripps Institution of Oceanography, University of California San Diego, 8810 Shellback Way, La Jolla, San Diego, CA, 92037, USA
| | - R I Silva
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - M G Ruiz
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - E Cozzolino
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - L Allega
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 7600, Mar del Plata, Argentina
| | - J Tan
- Scripps Institution of Oceanography, University of California San Diego, 8810 Shellback Way, La Jolla, San Diego, CA, 92037, USA
| | - M Kampel
- Instituto Nacional de Pesquisas Espaciais, Sao Jose Dos Campos, 12227-010, Brazil
| |
Collapse
|
84
|
Li W, Wang T, Campbell DA, Gao K. Light history modulates growth and photosynthetic responses of a diatom to ocean acidification and UV radiation. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:116-125. [PMID: 37073326 PMCID: PMC10077217 DOI: 10.1007/s42995-022-00138-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/08/2022] [Indexed: 05/03/2023]
Abstract
To examine the synergetic effects of ocean acidification (OA) and light intensity on the photosynthetic performance of marine diatoms, the marine centric diatom Thalassiosira weissflogii was cultured under ambient low CO2 (LC, 390 μatm) and elevated high CO2 (HC, 1000 μatm) levels under low-light (LL, 60 μmol m-2 s-1) or high-light (HL, 220 μmol m-2 s-1) conditions for over 20 generations. HL stimulated the growth rate by 128 and 99% but decreased cell size by 9 and 7% under LC and HC conditions, respectively. However, HC did not change the growth rate under LL but decreased it by 9% under HL. LL combined with HC decreased both maximum quantum yield (F V/F M) and effective quantum yield (Φ PSII), measured under either low or high actinic light. When exposed to UV radiation (UVR), LL-grown cells were more prone to UVA exposure, with higher UVA and UVR inducing inhibition of Φ PSII compared with HL-grown cells. Light use efficiency (α) and maximum relative electron transport rate (rETRmax) were inhibited more in the HC-grown cells when UVR (UVA and UVB) was present, particularly under LL. Our results indicate that the growth light history influences the cell growth and photosynthetic responses to OA and UVR. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00138-x.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Science, Xiamen University, Xiamen, 361005 China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041 China
| | - Tifeng Wang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Science, Xiamen University, Xiamen, 361005 China
| | | | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Science, Xiamen University, Xiamen, 361005 China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China
| |
Collapse
|
85
|
Snell M, Baillie A, Berrow S, Deaville R, Penrose R, Perkins M, Williams R, Simmonds MP. An investigation into the effects of climate change on baleen whale distribution in the British Isles. MARINE POLLUTION BULLETIN 2023; 187:114565. [PMID: 36657338 DOI: 10.1016/j.marpolbul.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Climate change is predicted to impact the distribution of many marine species. In the North-East Atlantic and elsewhere in the world, studies indicate that climate change is leading to poleward shifts in cetacean distribution. Here, strandings data collected in the British Isles from 1990 to 2020 were used to assess whether there is evidence of a shift in baleen whale distribution. Linear regression models were used to compare the number of strandings over time between six regions of the British Isles and, whilst the results indicate no significant change in the number of strandings in the most southerly region of the British Isles, there have been significant increases in more northern regions. Data related to stranded minke whales is the primary driver of these increases, with a number of potential variables affecting this trend, including observer effort. These variables are discussed and further research to explore this potential association is suggested.
Collapse
Affiliation(s)
- Maria Snell
- Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, UK.
| | - Andrew Baillie
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Simon Berrow
- Marine and Freshwater Research Centre, Department of Natural Sciences, Galway Mayo Institute of Technology, Dublin Road, Ireland
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Rod Penrose
- Marine Environmental Monitoring, Penwalk, Cardigan SA43 2PS, UK
| | - Matthew Perkins
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Ruth Williams
- Cornwall Wildlife Trust, Five Acres, Allet, Truro, Cornwall TR4 9DJ, UK
| | - Mark P Simmonds
- Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, UK
| |
Collapse
|
86
|
Bermejo R, Galindo-Ponce M, Golden N, Linderhoff C, Heesch S, Hernández I, Morrison L. Two bloom-forming species of Ulva (Chlorophyta) show different responses to seawater temperature and no antagonistic interaction. JOURNAL OF PHYCOLOGY 2023; 59:167-178. [PMID: 36371650 DOI: 10.1111/jpy.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The generalized use of molecular identification tools indicated that multispecific green tides are more common than previously thought. Temporal successions between bloom-forming species on a seasonal basis were also revealed in different cold temperate estuaries, suggesting a key role of photoperiod and temperature controlling bloom development and composition. According to the Intergovernmental Panel on Climate Change, water temperatures are predicted to increase around 4°C by 2100 in Ireland, especially during late spring coinciding with early green tide development. Considering current and predicted temperatures, and photoperiods during bloom development, different eco-physiological experiments were developed. These experiments indicated that the growth of Ulva lacinulata was controlled by temperature, while U. compressa was unresponsive to the photoperiod and temperatures assayed. Considering a scenario of global warming for Irish waters, an earlier development of bloom is expected in the case of U. lacinulata. This could have significant consequences for biomass balance in Irish estuaries and the maximum accumulated biomass during peak bloom. The observed seasonal patterns and experiments also indicated that U. compressa may facilitate U. lacinulata development. When both species were co-cultivated, the culture performance showed intermediate responses to experimental treatments in comparison with monospecific cultures of both species.
Collapse
Affiliation(s)
- Ricardo Bermejo
- Department of Ecology and Geology, University of Malaga. Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), University Campus of Teatinos, E29010, Malaga, Spain
| | - Maria Galindo-Ponce
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, E11510, Puerto Real, Spain
| | - Nessa Golden
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| | | | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688, Roscoff cedex, France
| | - Ignacio Hernández
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, E11510, Puerto Real, Spain
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
87
|
Li J, Zeng H, Dong X, Ding Y, Hu S, Zhang R, Dai Y, Cui P, Xiao Z, Zhao D, Zhou L, Zheng T, Xiao J, Zeng J, Xia C. Selective CO 2 electrolysis to CO using isolated antimony alloyed copper. Nat Commun 2023; 14:340. [PMID: 36670129 PMCID: PMC9860050 DOI: 10.1038/s41467-023-35960-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Renewable electricity-powered CO evolution from CO2 emissions is a promising first step in the sustainable production of commodity chemicals, but performing electrochemical CO2 reduction economically at scale is challenging since only noble metals, for example, gold and silver, have shown high performance for CO2-to-CO. Cu is a potential catalyst to achieve CO2 reduction to CO at the industrial scale, but the C-C coupling process on Cu significantly depletes CO* intermediates, thus limiting the CO evolution rate and producing many hydrocarbon and oxygenate mixtures. Herein, we tune the CO selectivity of Cu by alloying a second metal Sb into Cu, and report an antimony-copper single-atom alloy catalyst (Sb1Cu) of isolated Sb-Cu interfaces that catalyzes the efficient conversion of CO2-to-CO with a Faradaic efficiency over 95%. The partial current density reaches 452 mA cm-2 with approximately 91% CO Faradaic efficiency, and negligible C2+ products are observed. In situ spectroscopic measurements and theoretical simulations reason that the atomic Sb-Cu interface in Cu promotes CO2 adsorption/activation and weakens the binding strength of CO*, which ends up with enhanced CO selectivity and production rates.
Collapse
Affiliation(s)
- Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Hongliang Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xue Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| | - Yimin Ding
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Runhao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Zhou Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Donghao Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China.
| |
Collapse
|
88
|
Ma S, Kang B, Li J, Sun P, Liu Y, Ye Z, Tian Y. Climate risks to fishing species and fisheries in the China Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159325. [PMID: 36216044 DOI: 10.1016/j.scitotenv.2022.159325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change is one of the most concerning topics in the Anthropocene. Increasing sea water temperature will trigger a series of ecological consequences, altering the various functions and services that marine ecosystems provide for humans. Fisheries, specifically, will likely face the most direct impact. China provides unparalleled catches with enormous and intensive fishing effort, and China Seas are suffering from significantly increasing water temperature. However, uncertainties in the impacts of climate change on fishing species and fisheries in the China Seas present challenges for the formulation of coping and adapting strategies. Here, we employed a climate risk assessment framework to evaluate the climate risks of fishing species and fisheries of various provinces in China in the past decade, aiming to benefit the development and prioritization of appropriate adaptation options to climate change. Results show that considering the water temperature in the 2010s, 20 % of fishing species in the China Seas have one-fourth of their habitats unsuitable, and the situation will become worse with future warming scenarios in the 2050s when nearly half of species will have at least one-fourth of their habitats no longer suitable. Integrating hazard, exposure and vulnerability, climate risks to fisheries feature heterogeneity among provinces. Climate risks to fisheries of northern provinces are characterized by low hazard and high exposure, while the southern counterparts are largely determined by high hazard and low exposure. Climate change is threatening fishing species and remarkably altering fishery patterns in China Seas. Shifting fishing targets, increasing fishing efficiency, raising catch diversity, and updating fishery-related industries would be effective steps to help fisheries adapt to climate change, and adaptation strategies need to be tailored considering local realities.
Collapse
Affiliation(s)
- Shuyang Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Bin Kang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianchao Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Peng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhenjiang Ye
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
89
|
Responses of Free-Living Planktonic Bacterial Communities to Experimental Acidification and Warming. Microorganisms 2023; 11:microorganisms11020273. [PMID: 36838238 PMCID: PMC9963540 DOI: 10.3390/microorganisms11020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Climate change driven by human activities encompasses the increase in atmospheric CO2 concentration and sea-surface temperature. Little is known regarding the synergistic effects of these phenomena on bacterial communities in oligotrophic marine ecosystems that are expected to be particularly vulnerable. Here, we studied bacterial community composition changes based on 16S rRNA sequencing at two fractions (0.1-0.2 and >0.2 μm) during a 10- day fully factorial mesocosm experiment in the eastern Mediterranean where the pH decreased by ~0.3 units and temperature increased by ~3 °C to project possible future changes in surface waters. The bacterial community experienced significant taxonomic differences driven by the combined effect of time and treatment; a community shift one day after the manipulations was noticed, followed by a similar state between all mesocosms at the third day, and mild shifts later on, which were remarkable mainly under sole acidification. The abundance of Synechococcus increased in response to warming, while the SAR11 clade immediately benefited from the combined acidification and warming. The effect of the acidification itself had a more persistent impact on community composition. This study highlights the importance of studying climate change consequences on ecosystem functioning both separately and simultaneously, considering the ambient environmental parameters.
Collapse
|
90
|
Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/ Exaiptasia diaphana. Animals (Basel) 2023; 13:ani13020291. [PMID: 36670832 PMCID: PMC9854479 DOI: 10.3390/ani13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Bleaching events associated with climate change are increasing worldwide, being a major threat to tropical coral reefs. Nonetheless, the indirect impacts promoted by the bleaching of organisms hosting photosynthetic endosymbionts, such as those impacting trophic interactions, have received considerably less attention by the scientific community. Bleaching significantly affects the nutritional quality of bleached organisms. The consequences promoted by such shifts remain largely overlooked, namely on specialized predators that have evolved to prey upon organisms hosting photosynthetic endosymbionts and benefit nutritionally, either directly or indirectly, from the available pool of photosynthates. In the present study, we advocate the use of the model predator-prey pair featuring the stenophagous nudibranch sea slug Berghia stephanieae that preys upon the photosymbiotic glass anemone Exaiptasia diaphana to study the impacts of bleaching on trophic interactions. These model organisms are already used in other research fields, and one may benefit from knowledge available on their physiology, omics, and culture protocols under controlled laboratory conditions. Moreover, B. stephanieae can thrive on either photosymbiotic or aposymbiotic (bleached) glass anemones, which can be easily maintained over long periods in the laboratory (unlike photosymbiotic corals). As such, one can investigate if and how nutritional shifts induced by bleaching impact highly specialized predators (stenophagous species), as well as if and how such effects cascade over consecutive generations. Overall, by using this model predator-prey pair one can start to truly unravel the trophic effects of bleaching events impacting coral reef communities, as well as their prevalence over time.
Collapse
|
91
|
Xu D, Huang S, Fan X, Zhang X, Wang Y, Wang W, Beardall J, Brennan G, Ye N. Elevated CO 2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana. Front Microbiol 2023; 13:1113388. [PMID: 36687610 PMCID: PMC9853397 DOI: 10.3389/fmicb.2022.1113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The projected ocean acidification (OA) associated with increasing atmospheric CO2 alters seawater chemistry and hence the bio-toxicity of metal ions. However, it is still unclear how OA might affect the long-term resilience of globally important marine microalgae to anthropogenic metal stress. To explore the effect of increasing pCO2 on copper metabolism in the diatom Thalassiosira pseudonana (CCMP 1335), we employed an integrated eco-physiological, analytical chemistry, and transcriptomic approach to clarify the effect of increasing pCO2 on copper metabolism of Thalassiosira pseudonana across different temporal (short-term vs. long-term) and spatial (indoor laboratory experiments vs. outdoor mesocosms experiments) scales. We found that increasing pCO2 (1,000 and 2,000 μatm) promoted growth and photosynthesis, but decreased copper accumulation and alleviated its bio-toxicity to T. pseudonana. Transcriptomics results indicated that T. pseudonana altered the copper detoxification strategy under OA by decreasing copper uptake and enhancing copper-thiol complexation and copper efflux. Biochemical analysis further showed that the activities of the antioxidant enzymes glutathione peroxidase (GPX), catalase (CAT), and phytochelatin synthetase (PCS) were enhanced to mitigate oxidative damage of copper stress under elevated CO2. Our results provide a basis for a better understanding of the bioremediation capacity of marine primary producers, which may have profound effect on the security of seafood quality and marine ecosystem sustainability under further climate change.
Collapse
Affiliation(s)
- Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shujie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Georgina Brennan
- Institute of Marine Sciences, ICM-CSIC, Barcelona, Spain,*Correspondence: Georgina Brennan, ✉
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Naihao Ye, ✉
| |
Collapse
|
92
|
Zhang X, Ye S, Shen M. Driving Factors and Spatiotemporal Characteristics of CO 2 Emissions from Marine Fisheries in China: A Commonly Neglected Carbon-Intensive Sector. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:883. [PMID: 36613203 PMCID: PMC9820055 DOI: 10.3390/ijerph20010883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The CO2 emissions from marine fisheries have a significant impact on marine ecology, despite generally being overlooked in studies on global climate change. Few studies have estimated the carbon emissions from marine fisheries while taking into account all pertinent sectors. This study evaluated marine fisheries' CO2 emissions based on three sectors: marine fishing, mariculture, and the marine aquatic product processing industry. Kernel density estimation and the spatial Durbin model were used to investigate the spatial and temporal characteristics and the key socioeconomic drivers of the CO2 emissions from marine fisheries in 11 coastal provinces of China from 2005 to 2020. The results are as follows: (1) marine fishing is the sector that produces the most CO2 emissions; trawling operations generate more CO2 than all other modes of operation combined; (2) China's marine fisheries' CO2 emissions show a rising, then declining, trend, with significant differences in coastal provinces; (3) the development of the marine fishery economy and trade have a positive driving effect on CO2 emissions, the expansion of the tertiary industry does not decrease CO2, the technical advancement and income growth of fishermen are negatively related to carbon emissions, and the effect of environmental regulation has failed to pass the significance test; (4) the carbon emissions of marine fisheries have significant spatial spillover effects.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Business, Ningbo University, Ningbo 315211, China
| | - Shengchao Ye
- School of Business, Ningbo University, Ningbo 315211, China
| | - Manhong Shen
- School of Economics and Management, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
93
|
Liu M, Li Q, Tan L, Wang L, Wu F, Li L, Zhang G. Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer. ENVIRONMENTAL RESEARCH 2023; 216:114585. [PMID: 36252835 DOI: 10.1016/j.envres.2022.114585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.
Collapse
Affiliation(s)
- Mingkun Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Lintao Tan
- Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
94
|
Huerfano IJ, Laskowski CA, Pink M, Carta V, Hillhouse GL, Caulton KG, Smith JM. Redox-Neutral Transformations of Carbon Dioxide Using Coordinatively Unsaturated Late Metal Silyl Amide Complexes. Inorg Chem 2022; 61:20986-20993. [PMID: 36516978 DOI: 10.1021/acs.inorgchem.2c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-coordinate silylamido complexes of nickel and copper rapidly react with CO2 to selectively form a new cyanate ligand along with hexamethyldisiloxane byproducts. Mechanistic insight into these reactions was obtained from the synthesis of proposed intermediates, several silyl- and phenyl- substituted amido analogues, and their subsequent reactivity with CO2. These studies suggest that a unique intramolecular double silyl transfer step facilitates CO2 deoxygenation, which likely contributes to the rapid rates of reaction. The deoxygenation reactions create a platform for a synthetic cycle in which copper amido complexes convert CO2 to organic silylcarbamates.
Collapse
Affiliation(s)
- I J Huerfano
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Carl A Laskowski
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gregory L Hillhouse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kenneth G Caulton
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
95
|
Brown I, Berry P. National Climate Change Risk Assessments to inform adaptation policy priorities and environmental sustainability outcomes: a knowledge systems perspective. CLIMATIC CHANGE 2022; 175:13. [PMID: 36568317 PMCID: PMC9768402 DOI: 10.1007/s10584-022-03464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
National Climate Change Risk Assessments (CCRAs) have a key role in informing priorities for adaptation policy but face significant challenges due to multiple facets of risk and adaptation. Issues are especially pronounced for meeting goals of environmental sustainability due to the complex dynamics of socio-ecological systems. In practice, a CCRA can therefore differ from its original conceptual blueprint. These challenges are explored from a knowledge systems perspective, focusing on the role of stakeholders/policymakers, risk descriptors, methods, evidence sources, and scientists. A UK case study evaluates recent developments (CCRA3) including identification of policy urgency through adaptation shortfalls and its application to the natural environment. Important science-policy issues are also highlighted regarding inclusion of opportunities, systemic risks, residual risks, and risk tolerance. A general conclusion is that CCRAs inevitably leave open questions which lead back to their evolving role in the science-policy interface. A knowledge systems perspective identifies CCRAs as open, adaptive, reflexive processes that help redefine interpretations of risk and adaptation, rather than just providing a specific policy-relevant product. This perspective identifies scope for progressive refinement of CCRAs to enhance collective science-policy adaptive capacity whilst also engaging wider society. For environmental sustainability, this open process can be used to iteratively redefine robust future pathways and system reference conditions that also better reflect evolving societal perceptions and tolerance on sustainability risk in the face of climate change.
Collapse
Affiliation(s)
- Iain Brown
- Dept. of Geography and Environmental Science, University of Dundee, Dundee, DD1 4HN UK
| | - Pam Berry
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY UK
| |
Collapse
|
96
|
Somo DA, Chu K, Richards JG. Aerobic scope falls to nil at Pcrit and anaerobic ATP production increases below Pcrit in the tidepool sculpin, Oligocottus maculosus. Biol Lett 2022; 18:20220342. [PMID: 36475421 PMCID: PMC9727657 DOI: 10.1098/rsbl.2022.0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The critical oxygen tension of whole-animal oxygen uptake rate, or Pcrit, has historically been defined as the oxygen partial pressure (PO2) at which aerobic scope falls to zero and further declines in PO2 require substrate-level phosphorylation to meet shortfalls in aerobic ATP production, thereby time-limiting survival. Despite the inclusion of aerobic scope and anaerobic ATP production in the definition, little effort has been made to verify that Pcrit measurements, the vast majority of which are obtained using respirometry in resting animals, actually reflect the predictions of zero aerobic scope and a transition to increasing reliance on anaerobic ATP production. To test these predictions, we compared aerobic scope and levels of whole-body lactate at oxygen partial pressures (PO2s) bracketing Pcrit obtained in resting fish during progressive hypoxia in the tidepool sculpin, Oligocottus maculosus. We found that aerobic scope falls to zero at Pcrit and, in resting fish exposed to PO2s < Pcrit, whole-body lactate accumulated pointing to an increased reliance on anaerobic ATP production. These results support the interpretation of Pcrit as a key oxygen threshold at which aerobic scope falls to nil and, below Pcrit, survival is time-limited based on anaerobic metabolic capacity.
Collapse
Affiliation(s)
- Derek A. Somo
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Ken Chu
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jeffrey G. Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
97
|
Bisanti L, Visconti G, Scotti G, Chemello R. Signals of loss: Local collapse of neglected vermetid reefs in the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2022; 185:114383. [PMID: 36427375 DOI: 10.1016/j.marpolbul.2022.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During the summer of 2022, an extensive die-off of Dendropoma cristatum and other marine organisms associated with vermetid reefs was observed in the western Mediterranean Sea (northern coast of Sicily). Quantitative data from more than 300 km of coastal stripe indicated that the percentage of dead D. cristatum specimens, showing empty and/or transversely fractured shells, ranged from 64 to 84 % in populations having a density of 2900-4730 ind./m2, suggesting that millions of organisms had recently died along the Sicilian coast. This high mortality range coincided with prolonged desiccation events during which biogenic vermetid reefs were exposed to extreme warm-air conditions for several consecutive days. This warning report about neglected shallow vermetid reefs raises concern regarding the loss of Mediterranean biodiversity, underlining the need to develop and implement monitoring and conservation efforts on a basin-wide scale.
Collapse
Affiliation(s)
- Luca Bisanti
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy.
| | - Giulia Visconti
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy
| | - Gianfranco Scotti
- ISPRA, Italian Institute for Environmental Protection and Research, 98057 Milazzo, Italy
| | - Renato Chemello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| |
Collapse
|
98
|
Labra FA, San Martín VA, Jahnsen-Guzmán N, Fernández C, Zapata J, García-Huidobroro MR, Duarte C, García-Herrera C, Vivanco JF, Lardies MA, Lagos NA. Metabolic rate allometry in intertidal mussels across environmental gradients: The role of coastal carbonate system parameters in mediating the effects of latitude and temperature. MARINE POLLUTION BULLETIN 2022; 184:114149. [PMID: 36162293 DOI: 10.1016/j.marpolbul.2022.114149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus purpuratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.
Collapse
Affiliation(s)
- Fabio A Labra
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.
| | - Valeska A San Martín
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Fernández
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Javier Zapata
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - M Roberto García-Huidobroro
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Cristián Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan F Vivanco
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Marco A Lardies
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile; Instituto Milenio de Socio-Ecología Costera - SECOS, Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Instituto Milenio de Socio-Ecología Costera - SECOS, Santiago, Chile
| |
Collapse
|
99
|
Auzoux-Bordenave S, Ledoux A, Martin S, Di Poi C, Suquet M, Badou A, Gaillard F, Servili A, Le Goïc N, Huchette S, Roussel S. Responses of early life stages of European abalone (Haliotis tuberculata) to ocean acidification after parental conditioning: Insights from a transgenerational experiment. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105753. [PMID: 36130468 DOI: 10.1016/j.marenvres.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
CO2 absorption is leading to ocean acidification (OA), which is a matter of major concern for marine calcifying species. This study investigated the effects of simulated OA on the reproduction of European abalone Haliotis tuberculata and the survival of its offspring. Four-year-old abalone were exposed during reproductive season to two relevant OA scenarios, ambient pH (8.0) and low pH (7.7). After five months of exposure, abalone were induced to spawn. The gametes, larvae and juveniles were then exposed for five months to the same pH conditions as their parents. Several biological parameters involved in adult reproduction as well as in larval, post-larval and juvenile fitness were measured. No effects on gametes, fertilisation or larval oxidative stress response were detected. However, developmental abnormalities and significant decreases in shell length and calcification were observed at veliger stages. The expression profile of a GABA A receptor-like gene appeared to be regulated by pH, depending on larval stage. Larval and post-larval survival was not affected by low pH. However, a lower survival and a reduction of growth were recorded in juveniles at pH 7.7. Our results confirm that OA negatively impacts larval and juvenile fitness and suggest the absence of carry-over effects on abalone offspring. This may compromise the survival of abalone populations in the near future.
Collapse
Affiliation(s)
- Stéphanie Auzoux-Bordenave
- UMR "Biologie des Organismes et Ecosystèmes Aquatiques" (BOREA), MNHN/CNRS/SU/IRD, Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900, Concarneau, France; Sorbonne Université, 4, place Jussieu, 75005, Paris, France.
| | - Apolline Ledoux
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Sophie Martin
- Sorbonne Université, 4, place Jussieu, 75005, Paris, France; UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Carole Di Poi
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Marc Suquet
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Aïcha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900, Concarneau, France
| | - Fanny Gaillard
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Arianna Servili
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Nelly Le Goïc
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | - Sabine Roussel
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| |
Collapse
|
100
|
Jin P, Wan J, Zhou Y, Gao K, Beardall J, Lin J, Huang J, Lu Y, Liang S, Wang K, Ma Z, Xia J. Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO 2. THE ISME JOURNAL 2022; 16:2587-2598. [PMID: 35948613 PMCID: PMC9561535 DOI: 10.1038/s41396-022-01302-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 05/30/2023]
Abstract
Although high CO2 and warming could act interactively on marine phytoplankton, little is known about the molecular basis for this interaction on an evolutionary scale. Here we explored the adaptation to high CO2 in combination with warming in a model marine diatom Phaeodactylum tricornutum. Whole-genome re-sequencing identifies, in comparison to populations grown under control conditions, a larger genetic diversity loss and a higher genetic differentiation in the populations adapted for 2 years to warming than in those adapted to high CO2. However, this diversity loss was less under high CO2 combined with warming, suggesting that the evolution driven by warming was constrained by high CO2. By integrating genomics, transcriptomics, and physiological data, we found that the underlying molecular basis for this constraint is associated with the expression of genes involved in some key metabolic pathways or biological processes, such as the glyoxylate pathway, amino acid and fatty acid metabolism, and diel variability. Our results shed new light on the evolutionary responses of marine phytoplankton to multiple environmental changes in the context of global change and provide new insights into the molecular basis underpinning interactions among those multiple drivers.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361005, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361005, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kaiqiang Wang
- Gene Denovo Biotechnology Co, Guangzhou, 510006, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|