51
|
Mortezaee K, Majidpoor J, Najafi S, Tasa D. Bypassing anti-PD-(L)1 therapy: Mechanisms and management strategies. Biomed Pharmacother 2023; 158:114150. [PMID: 36577330 DOI: 10.1016/j.biopha.2022.114150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a major issue of the current era in cancer immunotherapy. Immune evasion is a multi-factorial event, which occurs generally at a base of cold immunity. Despite advances in the field, there are still unsolved challenges about how to combat checkpoint hijacked by tumor cells and what are complementary treatment strategies to render durable anti-tumor outcomes. A point is that anti-programed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) is not the solo path of immune escape, and responses in many types of solid tumors to the PD-1/PD-L1 inhibitors are not satisfactory. Thus, seeking mechanisms inter-connecting tumor with its immune ecosystem nearby unravel more about resistance mechanisms so as to develop methods for sustained reinvigoration of immune activity against cancer. In this review, we aimed to discuss about common and specific paths taken by tumor cells to evade immune surveillance, describing novel detection strategies, as well as suggesting some approaches to recover tumor sensitivity to the anti-PD-(L)1 therapy based on the current knowledge.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Tasa
- Hepatopancreatobiliary Surgery Fellowship, Organ Transplantation Group, Massih Daneshvari Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
52
|
Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter C, Dai KZ, Madssen TS, Vaage JT, Gustavsen A, Yang W, Nissen-Meyer LSH, Douvlataniotis K, Laos M, Nielsen MM, Thiede B, Søraas A, Lund-Johansen F, Rustad EH, Olweus J. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep 2023; 42:111995. [PMID: 36656713 PMCID: PMC9826989 DOI: 10.1016/j.celrep.2023.111995] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.
Collapse
Affiliation(s)
- Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Isaac Blaas
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Trung T. Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - John T. Vaage
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | - Karolos Douvlataniotis
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Arne Søraas
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway,ImmunoLingo Convergence Center, University of Oslo, 0372 Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| |
Collapse
|
53
|
Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, Song M, Jiang M, Jiang C, Zhang X. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front Oncol 2023; 12:1054231. [PMID: 36698417 PMCID: PMC9868469 DOI: 10.3389/fonc.2022.1054231] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
The field of cancer neoantigen investigation has developed swiftly in the past decade. Predicting novel and true neoantigens derived from large multi-omics data became difficult but critical challenges. The rise of Artificial Intelligence (AI) or Machine Learning (ML) in biomedicine application has brought benefits to strengthen the current computational pipeline for neoantigen prediction. ML algorithms offer powerful tools to recognize the multidimensional nature of the omics data and therefore extract the key neoantigen features enabling a successful discovery of new neoantigens. The present review aims to outline the significant technology progress of machine learning approaches, especially the newly deep learning tools and pipelines, that were recently applied in neoantigen prediction. In this review article, we summarize the current state-of-the-art tools developed to predict neoantigens. The standard workflow includes calling genetic variants in paired tumor and blood samples, and rating the binding affinity between mutated peptide, MHC (I and II) and T cell receptor (TCR), followed by characterizing the immunogenicity of tumor epitopes. More specifically, we highlight the outstanding feature extraction tools and multi-layer neural network architectures in typical ML models. It is noted that more integrated neoantigen-predicting pipelines are constructed with hybrid or combined ML algorithms instead of conventional machine learning models. In addition, the trends and challenges in further optimizing and integrating the existing pipelines are discussed.
Collapse
Affiliation(s)
- Yu Cai
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Rui Chen
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Shenghan Gao
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Wenqing Li
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yuru Liu
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Guodong Su
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Mingming Song
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Mengju Jiang
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Chao Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China,*Correspondence: Chao Jiang, ; Xi Zhang,
| | - Xi Zhang
- School of Medicine, Northwest University, Xi’an, Shaanxi, China,*Correspondence: Chao Jiang, ; Xi Zhang,
| |
Collapse
|
54
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
55
|
Cattaneo CM, Battaglia T, Urbanus J, Moravec Z, Voogd R, de Groot R, Hartemink KJ, Haanen JBAG, Voest EE, Schumacher TN, Scheper W. Identification of patient-specific CD4 + and CD8 + T cell neoantigens through HLA-unbiased genetic screens. Nat Biotechnol 2023:10.1038/s41587-022-01547-0. [PMID: 36593398 DOI: 10.1038/s41587-022-01547-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/06/2022] [Indexed: 01/04/2023]
Abstract
Cancer neoantigens that arise from tumor mutations are drivers of tumor-specific T cell responses, but identification of T cell-recognized neoantigens in individual patients is challenging. Previous methods have restricted antigen discovery to selected HLA alleles, thereby limiting the breadth of neoantigen repertoires that can be uncovered. Here, we develop a genetic neoantigen screening system that allows sensitive identification of CD4+ and CD8+ T cell-recognized neoantigens across patients' complete HLA genotypes.
Collapse
Affiliation(s)
- Chiara M Cattaneo
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Department of Genomics of Cancer and Targeted Therapies, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Battaglia
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jos Urbanus
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Ziva Moravec
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rosa de Groot
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Koen J Hartemink
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands. .,Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands. .,Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Wouter Scheper
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Tagliamonte M, Buonaguro L. The impact of antigenic molecular mimicry on anti-cancer T-cell immune response. Front Oncol 2022; 12:1009247. [PMID: 36330482 PMCID: PMC9623278 DOI: 10.3389/fonc.2022.1009247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals are exposed to intracellular pathogens (i.e. viruses and intracellular bacteria) and intestinal microbiota, collectively microorganisms (MOs), which enter the body during the host’s lifetime. Altogether, MOs are a natural source of non-self antigens (MoAs) expressed by host’s cells in the context of the HLA class I molecules, inducing a wide pool of specific memory CD8+ T cell clones. Such MoAs have been shown in selected cases to share sequence and structural homology with cellular self-antigens (molecular mimicry), possibly inducing autoimmune reactions leading to autoimmune diseases (ADs). We have recently shown that a molecular mimicry may be found also to self-antigens presented by cancer cells (i.e. tumor-associated antigens, TAAs). Consequently, memory CD8+ T cell clones specific for the MoAs may turn out to be a natural “anti-cancer vaccination” if a nascent tumor lesion should express TAAs similar or identical to MoAs. We postulate that selecting MoAs with high homology to TAAs would greatly improve the efficacy of cancer vaccines in both preventive and therapeutic settings. Indeed, non-self MoAs are potently immunogenic because not affected by central immune tolerance. Unravelling the impact of the antigenic molecular mimicry between MoAs and TAAs might pave the way for novel anti-cancer immunotherapies with unprecedented efficacy.
Collapse
|
57
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
58
|
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, Läubli H, Reddy ST. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity 2022; 55:1953-1966.e10. [PMID: 36174557 DOI: 10.1016/j.immuni.2022.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Engimmune Therapeutics AG, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland.
| | - Johanna S Jung
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fabrice S Schlatter
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anna Mei
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Erik Aznauryan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
59
|
Yu G, He X, Li X, Wu Y. Driving neoantigen-based cancer vaccines for personalized immunotherapy into clinic: A burdensome journey to promising land. Biomed Pharmacother 2022; 153:113464. [DOI: 10.1016/j.biopha.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
60
|
de Mey W, De Schrijver P, Autaers D, Pfitzer L, Fant B, Locy H, Esprit A, Lybaert L, Bogaert C, Verdonck M, Thielemans K, Breckpot K, Franceschini L. A synthetic DNA template for fast manufacturing of versatile single epitope mRNA. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:943-954. [PMID: 36159589 PMCID: PMC9464653 DOI: 10.1016/j.omtn.2022.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
A flexible, affordable, and rapid vaccine platform is necessary to unlock the potential of personalized cancer vaccines in order to achieve full clinical efficiency. mRNA cancer vaccine manufacture relies on the rigid sequence design of multiepitope constructs produced by laborious bacterial cloning and time-consuming plasmid preparation. Here, we introduce a synthetic DNA template (SDT) assembly process, which allows cost- and time-efficient manufacturing of single (neo)epitope mRNA. We benchmarked SDT-derived mRNA against mRNA derived from a plasmid DNA template (PDT), showing that monocyte-derived dendritic cells (moDCs) electroporated with SDT-mRNA or PDT-mRNA, encoding HLA-I- or HLA-II-restricted (neo)epitopes, equally activated T cells that were modified to express the cognate T cell receptors. Furthermore, we validated the SDT-mRNA platform for neoepitope immunogenicity screening using the characterized HLA-A2-restricted neoepitope DHX40B and four new candidate HLA-A2-restricted melanoma neoepitopes. Finally, we compared SDT-mRNA with PDT-mRNA for vaccine development purposes. moDCs electroporated with mRNA encoding the HLA-A2-restricted, mutated Melan-A/Mart-1 epitope together with TriMix mRNA-generated high levels of functional Melan-A/Mart-1-specific CD8+ T cells. In conclusion, SDT single epitope mRNA can be manufactured in a more flexible, cost-efficient, and time-efficient way compared with PDT-mRNA, allowing prompt neoepitope immunogenicity screening, and might be exploited for the development of personalized cancer vaccines.
Collapse
Affiliation(s)
- Wout de Mey
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Phaedra De Schrijver
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Dorien Autaers
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Lena Pfitzer
- myNEO, Ottergemsesteenweg-Zuid 808, 9000 Ghent, Belgium
| | - Bruno Fant
- myNEO, Ottergemsesteenweg-Zuid 808, 9000 Ghent, Belgium
| | - Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Arthur Esprit
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Lien Lybaert
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
- myNEO, Ottergemsesteenweg-Zuid 808, 9000 Ghent, Belgium
| | | | - Magali Verdonck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
- Corresponding author Lorenzo Franceschini, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium.
| |
Collapse
|
61
|
Velaga R, Koo KM, Mainwaring PN. Harnessing gene fusion-derived neoantigens for 'cold' breast and prostate tumor immunotherapy. Immunotherapy 2022; 14:1165-1179. [PMID: 36043380 DOI: 10.2217/imt-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast and prostate cancers are generally considered immunologically 'cold' tumors due to multiple mechanisms rendering them unresponsive to immune checkpoint blockade therapies. With little success in garnering positive outcomes in modern immunotherapeutic clinical trials, it is prudent to re-examine the role of immunogenic neoantigens in these cold tumors. Gene fusions are driver mutations in hormone-driven cancers that can result in alternative mutation-specific neoantigens to promote immunotherapy sensitivity. This review focuses on 1) gene fusion formation mechanisms in neoantigen generation; 2) gene fusion neoantigens in cancer immunotherapeutic strategies and associated clinical trials; and 3) challenges and opportunities in computational and liquid biopsy technologies. This review is anticipated to initiate further research into gene fusion neoantigens of cold tumors for further experimental validation.
Collapse
Affiliation(s)
- Ravi Velaga
- Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kevin M Koo
- XING Technologies Pty Ltd, Brisbane, QLD 4073, Australia.,The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| | | |
Collapse
|
62
|
Molecular basis of MHC I quality control in the peptide loading complex. Nat Commun 2022; 13:4701. [PMID: 35948544 PMCID: PMC9365787 DOI: 10.1038/s41467-022-32384-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules are central to adaptive immunity. Their assembly, epitope selection, and antigen presentation are controlled by the MHC I glycan through a sophisticated network of chaperones and modifying enzymes. However, the mechanistic integration of the corresponding processes remains poorly understood. Here, we determine the multi-chaperone-client interaction network of the peptide loading complex (PLC) and report the PLC editing module structure by cryogenic electron microscopy at 3.7 Å resolution. Combined with epitope-proofreading studies of the PLC in near-native lipid environment, these data show that peptide-receptive MHC I molecules are stabilized by multivalent chaperone interactions including the calreticulin-engulfed mono-glucosylated MHC I glycan, which only becomes accessible for processing by α-glucosidase II upon loading of optimal epitopes. Our work reveals allosteric coupling between peptide-MHC I assembly and glycan processing. This inter-process communication defines the onset of an adaptive immune response and provides a prototypical example of the tightly coordinated events in endoplasmic reticulum quality control. The immune system monitors the health status of cells by surveilling fragments of foreign molecules from invaders presented on MHC I complexes at the cell surface. Here, the authors investigate the sequence of events of MHC I assembly and quality control cycle.
Collapse
|
63
|
Mazzarella L, Enblad G, Olweus J, Malmberg KJ, Jerkeman M. Advances in immune therapies in hematological malignancies. J Intern Med 2022; 292:205-220. [PMID: 34624160 DOI: 10.1111/joim.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunotherapy in cancer takes advantage of the exquisite specificity, potency, and flexibility of the immune system to eliminate alien tumor cells. It involves strategies to activate the entire immune defense, by unlocking mechanisms developed by tumor cells to escape from surrounding immune cells, as well as engineered antibody and cellular therapies. What is important to note is that these are therapeutics with curative potential. The earliest example of immune therapy is allogeneic stem cell transplantation, introduced in 1957, which is still an important modality in hematology, most notably in myeloid malignancies. In this review, we discuss developmental trends of immunotherapy in hematological malignancies, focusing on some of the strategies that we believe will have the most impact on future clinical practice in this field. In particular, we delineate novel developments for therapies that have already been introduced into the clinic, such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapies. Finally, we discuss the therapeutic potential of emerging strategies based on T-cell receptors and adoptive transfer of allogeneic natural killer cells.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
64
|
Weber D, Ibn-Salem J, Sorn P, Suchan M, Holtsträter C, Lahrmann U, Vogler I, Schmoldt K, Lang F, Schrörs B, Löwer M, Sahin U. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat Biotechnol 2022; 40:1276-1284. [PMID: 35379963 PMCID: PMC7613288 DOI: 10.1038/s41587-022-01247-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2022] [Indexed: 02/03/2023]
Abstract
Cancer-associated gene fusions are a potential source for highly immunogenic neoantigens, but the lack of computational tools for accurate, sensitive identification of personal gene fusions has limited their targeting in personalized cancer immunotherapy. Here we present EasyFuse, a machine learning computational pipeline for detecting cancer-specific gene fusions in transcriptome data obtained from human cancer samples. EasyFuse predicts personal gene fusions with high precision and sensitivity, outperforming previously described tools. By testing immunogenicity with autologous blood lymphocytes from patients with cancer, we detected pre-established CD4+ and CD8+ T cell responses for 10 of 21 (48%) and for 1 of 30 (3%) identified gene fusions, respectively. The high frequency of T cell responses detected in patients with cancer supports the relevance of individual gene fusions as neoantigens that might be targeted in personalized immunotherapies, especially for tumors with low mutation burden.
Collapse
Affiliation(s)
- D Weber
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - J Ibn-Salem
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - P Sorn
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - M Suchan
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - C Holtsträter
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | | | | | | - F Lang
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - B Schrörs
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - M Löwer
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - U Sahin
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany,BioNTech SE, Mainz, Germany,Johannes Gutenberg University Mainz, Mainz, Germany,corresponding author:
| |
Collapse
|
65
|
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: Building a bridge over troubled waters. Cell 2022; 185:2770-2788. [PMID: 35835100 PMCID: PMC9555301 DOI: 10.1016/j.cell.2022.06.035] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 12/16/2022]
Abstract
Cancer vaccines aim to direct the immune system to eradicate cancer cells. Here we review the essential immunologic concepts underpinning natural immunity and highlight the multiple unique challenges faced by vaccines targeting cancer. Recent technological advances in mass spectrometry, neoantigen prediction, genetically and pharmacologically engineered mouse models, and single-cell omics have revealed new biology, which can help to bridge this divide. We particularly focus on translationally relevant aspects, such as antigen selection and delivery and the monitoring of human post-vaccination responses, and encourage more aggressive exploration of novel approaches.
Collapse
Affiliation(s)
- MacLean C Sellars
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Edward F Fritsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
66
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
67
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
68
|
Baleeiro RB, Bouwens CJ, Liu P, Di Gioia C, Dunmall LSC, Nagano A, Gangeswaran R, Chelala C, Kocher HM, Lemoine NR, Wang Y. MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. Oncoimmunology 2022; 11:2080329. [PMID: 35655709 PMCID: PMC9154752 DOI: 10.1080/2162402x.2022.2080329] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022] Open
Abstract
MHC class II expression is a hallmark of professional antigen-presenting cells and key to the induction of CD4+ T helper cells. We found that these molecules are ectopically expressed on tumor cells in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC) and on several PDAC cell lines. In contrast to the previous reports that tumoral expression of MHC-II in melanoma enabled tumor cells to evade immunosurveillance, the expression of MHC-II on PDAC cells neither protected cancer cells from Fas-mediated cell death nor caused T-cell suppression by engagement with its ligand LAG-3 on activated T-cells. In fact and surprisingly, the MHC-II/LAG-3 pathway contributed to CD4+ and CD8+ T-cell cytotoxicity toward MHC-II-positive PDAC cells. By combining bioinformatic tools and cell-based assays, we identified a number of immunogenic neo-antigens that can be presented by the patients' HLA class II alleles. Furthermore, CD4+ T-cells stimulated with neo-antigens were capable of recognizing and killing a human PDAC cell line expressing the mutated genes. To expand this approach to a larger number of PDAC patients, we show that co-treatment with IFN-γ and/or MEK/HDAC inhibitors induced tumoral MHC-II expression on MHC-II-negative tumors that are IFN-γ-resistant. Taken together, our data point to the possibility of harnessing MHC-II expression on PDAC cells for neo-antigen-based immunotherapy.
Collapse
Affiliation(s)
- Renato B. Baleeiro
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christian J. Bouwens
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ai Nagano
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathistevy Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas R. Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou UniversitySino-British, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou UniversitySino-British, Zhengzhou, Henan, China
| |
Collapse
|
69
|
Grimmett E, Al-Share B, Alkassab MB, Zhou RW, Desai A, Rahim MMA, Woldie I. Cancer vaccines: past, present and future; a review article. Discov Oncol 2022; 13:31. [PMID: 35576080 PMCID: PMC9108694 DOI: 10.1007/s12672-022-00491-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Immunotherapy and vaccines have revolutionized disease treatment and prevention. Vaccines against infectious diseases have been in use for several decades. In contrast, only few cancer vaccines have been approved for human use. These include preventative vaccines against infectious agents associated with cancers, and therapeutic vaccines used as immunotherapy agents to treat cancers. Challenges in developing cancer vaccines include heterogeneity within and between cancer types, screening and identification of appropriate tumour-specific antigens, and the choice of vaccine delivery platforms. Recent advances in all of these areas and the lessons learnt from COVID-19 vaccines have significantly boosted interest in cancer vaccines. Further advances in these areas are expected to facilitate development of effective novel cancer vaccines. In this review, we aim to discuss the past, the present, and the future of cancer vaccines.
Collapse
Affiliation(s)
- Eddie Grimmett
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | | | | | - Ryan Weng Zhou
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Advait Desai
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Mir Munir A Rahim
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada.
| | - Indryas Woldie
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada.
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
70
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
71
|
Arnaud M, Chiffelle J, Genolet R, Navarro Rodrigo B, Perez MAS, Huber F, Magnin M, Nguyen-Ngoc T, Guillaume P, Baumgaertner P, Chong C, Stevenson BJ, Gfeller D, Irving M, Speiser DE, Schmidt J, Zoete V, Kandalaft LE, Bassani-Sternberg M, Bobisse S, Coukos G, Harari A. Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat Biotechnol 2022; 40:656-660. [PMID: 34782741 PMCID: PMC9110298 DOI: 10.1038/s41587-021-01072-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.
Collapse
Affiliation(s)
- Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Marta A S Perez
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Morgane Magnin
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Petra Baumgaertner
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Chloe Chong
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniel E Speiser
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
- Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
72
|
Keller GLJ, Weiss LI, Baker BM. Physicochemical Heuristics for Identifying High Fidelity, Near-Native Structural Models of Peptide/MHC Complexes. Front Immunol 2022; 13:887759. [PMID: 35547730 PMCID: PMC9084917 DOI: 10.3389/fimmu.2022.887759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
There is long-standing interest in accurately modeling the structural features of peptides bound and presented by class I MHC proteins. This interest has grown with the advent of rapid genome sequencing and the prospect of personalized, peptide-based cancer vaccines, as well as the development of molecular and cellular therapeutics based on T cell receptor recognition of peptide-MHC. However, while the speed and accessibility of peptide-MHC modeling has improved substantially over the years, improvements in accuracy have been modest. Accuracy is crucial in peptide-MHC modeling, as T cell receptors are highly sensitive to peptide conformation and capturing fine details is therefore necessary for useful models. Studying nonameric peptides presented by the common class I MHC protein HLA-A*02:01, here we addressed a key question common to modern modeling efforts: from a set of models (or decoys) generated through conformational sampling, which is best? We found that the common strategy of decoy selection by lowest energy can lead to substantial errors in predicted structures. We therefore adopted a data-driven approach and trained functions capable of predicting near native decoys with exceptionally high accuracy. Although our implementation is limited to nonamer/HLA-A*02:01 complexes, our results serve as an important proof of concept from which improvements can be made and, given the significance of HLA-A*02:01 and its preference for nonameric peptides, should have immediate utility in select immunotherapeutic and other efforts for which structural information would be advantageous.
Collapse
Affiliation(s)
| | | | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
73
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
74
|
Isolation of Neoantigen-Specific Human T Cell Receptors from Different Human and Murine Repertoires. Cancers (Basel) 2022; 14:cancers14071842. [PMID: 35406613 PMCID: PMC8998067 DOI: 10.3390/cancers14071842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/24/2023] Open
Abstract
Simple Summary T cell-based immunotherapy has achieved remarkable clinical responses in patients with cancer. Neoepitope-specific T cells can specifically recognize mutated tumor cells and have led to tumor regression in mouse models and clinical studies. However, isolating neoepitope-specific T cell receptors (TCRs) from the patients’ own repertoire has shown limited success. Sourcing T cell repertoires, other than the patients’ own, has certain advantages: the availability of larger amounts of blood from healthy donors, circumventing tumor-related immunosuppression in patients, and including different donors to broaden the pool of specific T cells. Here, for the first time, a side-by-side comparison of three different TCR donor repertoires, including patients and HLA-matched allogenic healthy human repertoires, as well as repertoires of transgenic mice, is performed. Our results support recent studies that using not only healthy donor T cell repertoires, but also transgenic mice might be a viable strategy for isolating TCRs with known specificity directed against neoantigens for adoptive T cell therapy. Abstract (1) Background: Mutation-specific T cell receptor (TCR)-based adoptive T cell therapy represents a truly tumor-specific immunotherapeutic strategy. However, isolating neoepitope-specific TCRs remains a challenge. (2) Methods: We investigated, side by side, different TCR repertoires—patients’ peripheral lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs), PBLs of healthy donors, and a humanized mouse model—to isolate neoepitope-specific TCRs against eight neoepitope candidates from a colon cancer and an ovarian cancer patient. Neoepitope candidates were used to stimulate T cells from different repertoires in vitro to generate neoepitope-specific T cells and isolate the specific TCRs. (3) Results: We isolated six TCRs from healthy donors, directed against four neoepitope candidates and one TCR from the murine T cell repertoire. Endogenous processing of one neoepitope, for which we isolated one TCR from both human and mouse-derived repertoires, could be shown. No neoepitope-specific TCR could be generated from the patients’ own repertoire. (4) Conclusion: Our data indicate that successful isolation of neoepitope-specific TCRs depends on various factors such as the heathy donor’s TCR repertoire or the presence of a tumor microenvironment allowing neoepitope-specific immune responses of the host. We show the advantage and feasibility of using healthy donor repertoires and humanized mouse TCR repertoires to generate mutation-specific TCRs with different specificities, especially in a setting when the availability of patient material is limited.
Collapse
|
75
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
76
|
Bollineni RC, Tran TT, Lund-Johansen F, Olweus J. Chasing neoantigens; invite naïve T cells to the party. Curr Opin Immunol 2022; 75:102172. [DOI: 10.1016/j.coi.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
|
77
|
Zitvogel L, Kroemer G. Cross-reactivity between microbial and tumor antigens. Curr Opin Immunol 2022; 75:102171. [DOI: 10.1016/j.coi.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
|
78
|
Borden ES, Ghafoor S, Buetow KH, LaFleur BJ, Wilson MA, Hastings KT. NeoScore Integrates Characteristics of the Neoantigen:MHC Class I Interaction and Expression to Accurately Prioritize Immunogenic Neoantigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1813-1827. [PMID: 35304420 DOI: 10.4049/jimmunol.2100700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Accurate prioritization of immunogenic neoantigens is key to developing personalized cancer vaccines and distinguishing those patients likely to respond to immune checkpoint inhibition. However, there is no consensus regarding which characteristics best predict neoantigen immunogenicity, and no model to date has both high sensitivity and specificity and a significant association with survival in response to immunotherapy. We address these challenges in the prioritization of immunogenic neoantigens by (1) identifying which neoantigen characteristics best predict immunogenicity; (2) integrating these characteristics into an immunogenicity score, the NeoScore; and (3) demonstrating a significant association of the NeoScore with survival in response to immune checkpoint inhibition. One thousand random and evenly split combinations of immunogenic and nonimmunogenic neoantigens from a validated dataset were analyzed using a regularized regression model for characteristic selection. The selected characteristics, the dissociation constant and binding stability of the neoantigen:MHC class I complex and expression of the mutated gene in the tumor, were integrated into the NeoScore. A web application is provided for calculation of the NeoScore. The NeoScore results in improved, or equivalent, performance in four test datasets as measured by sensitivity, specificity, and area under the receiver operator characteristics curve compared with previous models. Among cutaneous melanoma patients treated with immune checkpoint inhibition, a high maximum NeoScore was associated with improved survival. Overall, the NeoScore has the potential to improve neoantigen prioritization for the development of personalized vaccines and contribute to the determination of which patients are likely to respond to immunotherapy.
Collapse
Affiliation(s)
- Elizabeth S Borden
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| | - Suhail Ghafoor
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ
| | - Kenneth H Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ; and
| | | | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ; and
| | - K Taraszka Hastings
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ; .,Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| |
Collapse
|
79
|
Understanding of Immune Escape Mechanisms and Advances in Cancer Immunotherapy. JOURNAL OF ONCOLOGY 2022; 2022:8901326. [PMID: 35401745 PMCID: PMC8989557 DOI: 10.1155/2022/8901326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Tumor immune escape has emerged as the most significant barrier to cancer therapy. A thorough understanding of tumor immune escape therapy mechanisms is critical for further improving clinical treatment strategies. Currently, research indicates that combining several immunotherapies can boost antitumor efficacy and encourage T cells to play a more active part in the immune assault. To generate a more substantial therapeutic impact, it can establish an ideal tumor microenvironment (TME), encourage T cells to play a role, prevent T cell immune function reversal, and minimize tumor immune tolerance. In this review, we will examine the mechanisms of tumor immune escape and the limits of tumor immune escape therapy, focusing on the current development of immunotherapy based on tumor immune escape mechanisms. Individualized tumor treatment is becoming increasingly apparent as future treatment strategies. In addition, we forecast the future research direction of cancer and the clinical approach for cancer immunotherapy. It will serve as a better reference for researchers working in cancer therapy research.
Collapse
|
80
|
Kiessling A, Ramanathan K, Nilsson OB, Notari L, Renken S, Kiessling R, Grönlund H, Wickström SL. Generation of Tumor-Specific Cytotoxic T Cells From Blood via In Vitro Expansion Using Autologous Dendritic Cells Pulsed With Neoantigen-Coupled Microbeads. Front Oncol 2022; 12:866763. [PMID: 35433456 PMCID: PMC9009257 DOI: 10.3389/fonc.2022.866763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
For the past decade, adoptive cell therapy including tumor-infiltrating lymphocytes, genetically modified cytotoxic lymphocytes expressing a chimeric antigen receptor, or a novel T-cell receptor has revolutionized the treatment of many cancers. Progress within exome sequencing and neoantigen prediction technologies provides opportunities for further development of personalized immunotherapies. In this study, we present a novel strategy to deliver in silico predicted neoantigens to autologous dendritic cells (DCs) using paramagnetic beads (EpiTCer beads). DCs pulsed with EpiTCer beads are superior in enriching for healthy donor and patient blood-derived tumor-specific CD8+ T cells compared to DC loaded with whole-tumor lysate or 9mer neoantigen peptides. A dose-dependent effect was observed, with higher EpiTCer bead per DC being favorable. We concluded that CD8+ T cells enriched by DC loaded with EpiTCer beads are tumor specific with limited tumor cross-reactivity and low recognition of autologous non-activated monocytes or CD8+ T cells. Furthermore, tumor specificity and recognition were improved and preserved after additional expansion using our Good Manufacturing Process (GMP)-compatible rapid expansion protocol. Phenotypic analysis of patient-derived EpiTCer DC expanded CD8+ T cells revealed efficient maturation, with high frequencies of central memory and effector memory T cells, similar to those observed in autologous expanded tumor-infiltrating lymphocytes. These results indicate that DC pulsed with EpiTCer beads enrich for a T-cell population with high capacity of tumor recognition and elimination, which are features needed for a T-cell product to be used for personalized adoptive cell therapy.
Collapse
Affiliation(s)
- Adela Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola B. Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Luigi Notari
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Stefanie Renken
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Stina L. Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Stina L. Wickström,
| |
Collapse
|
81
|
Borden ES, Buetow KH, Wilson MA, Hastings KT. Cancer Neoantigens: Challenges and Future Directions for Prediction, Prioritization, and Validation. Front Oncol 2022; 12:836821. [PMID: 35311072 PMCID: PMC8929516 DOI: 10.3389/fonc.2022.836821] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Prioritization of immunogenic neoantigens is key to enhancing cancer immunotherapy through the development of personalized vaccines, adoptive T cell therapy, and the prediction of response to immune checkpoint inhibition. Neoantigens are tumor-specific proteins that allow the immune system to recognize and destroy a tumor. Cancer immunotherapies, such as personalized cancer vaccines, adoptive T cell therapy, and immune checkpoint inhibition, rely on an understanding of the patient-specific neoantigen profile in order to guide personalized therapeutic strategies. Genomic approaches to predicting and prioritizing immunogenic neoantigens are rapidly expanding, raising new opportunities to advance these tools and enhance their clinical relevance. Predicting neoantigens requires acquisition of high-quality samples and sequencing data, followed by variant calling and variant annotation. Subsequently, prioritizing which of these neoantigens may elicit a tumor-specific immune response requires application and integration of tools to predict the expression, processing, binding, and recognition potentials of the neoantigen. Finally, improvement of the computational tools is held in constant tension with the availability of datasets with validated immunogenic neoantigens. The goal of this review article is to summarize the current knowledge and limitations in neoantigen prediction, prioritization, and validation and propose future directions that will improve personalized cancer treatment.
Collapse
Affiliation(s)
- Elizabeth S Borden
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Research and Internal Medicine (Dermatology), Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Research and Internal Medicine (Dermatology), Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States
| |
Collapse
|
82
|
Recent Advances and Next Breakthrough in Immunotherapy for Cancer Treatment. J Immunol Res 2022; 2022:8052212. [PMID: 35340585 PMCID: PMC8956433 DOI: 10.1155/2022/8052212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
With the huge therapeutic potential, cancer immunotherapy is expected to become the mainstream of cancer treatment. In the current field of cancer immunotherapy, there are mainly five types. Immune checkpoint blockade therapy is one of the most promising directions. Adoptive cell therapy is an important component of cancer immunotherapy. The therapy with the cancer vaccine is promising cancer immunotherapy capable of cancer prevention. Cytokine therapy is one of the pillars of cancer immunotherapy. Oncolytic immunotherapy is a promising novel component of cancer immunotherapy, which with significantly lower incidence of serious adverse reactions. The recent positive results of many clinical trials with cancer immunotherapy may herald good clinical prospects. But there are still many challenges in the broad implementation of immunotherapy. Such as the immunotherapy cannot act on all tumors, and it has serious adverse effects including but not limited to nonspecific and autoimmunity inflammation. Here, we center on recent progress made within the last 5 years in cancer immunotherapy. And we discuss the theoretical background, as well as the opportunities and challenges of cancer immunotherapy.
Collapse
|
83
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
84
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
85
|
Chen YT, Hsu HC, Lee YS, Liu H, Tan BCM, Chin CY, Chang IYF, Yang CY. Longitudinal High-Throughput Sequencing of the T-Cell Receptor Repertoire Reveals Dynamic Change and Prognostic Significance of Peripheral Blood TCR Diversity in Metastatic Colorectal Cancer During Chemotherapy. Front Immunol 2022; 12:743448. [PMID: 35095836 PMCID: PMC8789675 DOI: 10.3389/fimmu.2021.743448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality and morbidity. Despite advances in chemotherapy and targeted therapy, unsustainable clinical benefit was noted due to recurrence and therapy resistance. The immune status of the cancer patient may affect the effectiveness of disease treatments. The dynamic change in the T-cell receptor (TCR) repertoire might be a clinical parameter for monitoring treatment responses. In this study, we aimed to determine the characteristics and clinical significance of the TCR repertoire in patients with unresectable metastatic colorectal cancer (mCRC). Herein, we comprehensively profile 103 peripheral blood samples from 20 healthy controls and 16 CRC patients with a follow-up of 98 to 452 days to identify hypervariable rearrangements of the TCRα and TCRβ repertoires using high-throughput sequencing. We found that TCRα repertoires, TCRβ repertoires, and CDR3 clonotypes were altered in mCRC patients compared with healthy controls. The diversity of TCR repertoires and CDR3 clonotypes decreased in most mCRC patients after therapy. Furthermore, compared with baseline TCR diversity, patients whose TCR diversity dropped considerably during therapy had better treatment responses, including lower CEA and CA19-9 levels and smaller tumor sizes. TCR baseline diversity was also significantly associated with partial response (PR) status (odds ratio: 5.29, p = 0.04). In conclusion, the present study demonstrated the association between dynamic changes in TCR diversity during chemotherapy and clinical outcomes as well as the potential utility of the TCR repertoire in predicting the prognosis of cancer treatment.
Collapse
Affiliation(s)
- Yi-Tung Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yin Chin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
86
|
Fahad AS, Chung CY, Lopez Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour Jr HH, Price DA, DeKosky BJ. Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Eng Des Sel 2022; 35:gzab034. [PMID: 35174859 PMCID: PMC9005053 DOI: 10.1093/protein/gzab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Cheng-Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry H Balfour Jr
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
87
|
Roesler AS, Anderson KS. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:649-670. [PMID: 34914074 DOI: 10.1007/978-1-0716-1884-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neoantigens are tumor-specific proteins and peptides that can be highly immunogenic. Immune-mediated tumor rejection is strongly associated with cytotoxic responses to neoantigen-derived peptides in noncovalent association with self-HLA molecules. Neoantigen-based therapies, such as adoptive T cell transfer, have shown the potential to induce remission of treatment-resistant metastatic disease in select patients. Cancer vaccines are similarly designed to elicit or amplify antigen-specific T cell populations and stimulate directed antitumor immunity, but the selection and prioritization of the neoantigens remains a challenge. Bioinformatic algorithms can predict tumor neoantigens from somatic mutations, insertion-deletions, and other aberrant peptide products, but this often leads to hundreds of potential neoepitopes, all unique for that tumor. Selecting neoantigens for cancer vaccines is complicated by the technical challenges of neoepitope discovery, the diversity of HLA molecules, and intratumoral heterogeneity of passenger mutations leading to immune escape. Despite strong preclinical evidence, few neoantigen cancer vaccines tested in vivo have generated epitope-specific T cell populations, suggesting suboptimal immune system activation. In this chapter, we review factors affecting the prioritization and delivery of candidate neoantigens in the design of therapeutic and preventive cancer vaccines and consider synergism with standard chemotherapies.
Collapse
Affiliation(s)
- Alexander S Roesler
- School of Medicine, Duke University, Durham, NC, USA
- Mayo Clinic, Scottsdale, AZ, USA
| | - Karen S Anderson
- Mayo Clinic, Scottsdale, AZ, USA.
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
88
|
Dong L, Lu D, Chen R, Lin Y, Zhu H, Zhang Z, Cai S, Cui P, Song G, Rao D, Yi X, Wu Y, Song N, Liu F, Zou Y, Zhang S, Zhang X, Wang X, Qiu S, Zhou J, Wang S, Zhang X, Shi Y, Figeys D, Ding L, Wang P, Zhang B, Rodriguez H, Gao Q, Gao D, Zhou H, Fan J. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 2022; 40:70-87.e15. [PMID: 34971568 DOI: 10.1016/j.ccell.2021.12.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/19/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
We performed proteogenomic characterization of intrahepatic cholangiocarcinoma (iCCA) using paired tumor and adjacent liver tissues from 262 patients. Integrated proteogenomic analyses prioritized genetic aberrations and revealed hallmarks of iCCA pathogenesis. Aflatoxin signature was associated with tumor initiation, proliferation, and immune suppression. Mutation-associated signaling profiles revealed that TP53 and KRAS co-mutations may contribute to iCCA metastasis via the integrin-FAK-SRC pathway. FGFR2 fusions activated the Rho GTPase pathway and could be a potential source of neoantigens. Proteomic profiling identified four patient subgroups (S1-S4) with subgroup-specific biomarkers. These proteomic subgroups had distinct features in prognosis, genetic alterations, microenvironment dysregulation, tumor microbiota composition, and potential therapeutics. SLC16A3 and HKDC1 were further identified as potential prognostic biomarkers associated with metabolic reprogramming of iCCA cells. This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in iCCA.
Collapse
Affiliation(s)
- Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Ran Chen
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhou Zhang
- Burning Rock Biotech, Shanghai 201114, China
| | - Shangli Cai
- Burning Rock Biotech, Shanghai 201114, China
| | - Peng Cui
- Burning Rock Biotech, Shanghai 201114, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Nixue Song
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Fen Liu
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yunhao Zou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shisheng Wang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University, St. Louis, MI 63108, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| | - Daming Gao
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
89
|
Liang J, Cheng K, Li Y, Xu J, Chen Y, Ma N, Feng Q, Zhu F, Ma X, Zhang T, Yue Y, Liu G, Guo X, Chen Z, Wang X, Zhao R, Zhao Y, Shi J, Zhao X, Nie G. Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells. FUNDAMENTAL RESEARCH 2022; 2:23-36. [PMID: 38933907 PMCID: PMC11197747 DOI: 10.1016/j.fmre.2021.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022] Open
Abstract
Nanocarriers with intrinsic immune adjuvant properties can activate the innate immune system while delivering tumor antigen, thus efficiently facilitating antitumor adaptive immunity. Bacteria-derived outer membrane vesicles (OMVs) are an excellent candidate due to their abundance of pathogen associated molecular patterns. However, during the uptake of OMVs by dendritic cells (DCs), the interaction between lipopolysaccharide and toll-like receptor 4 induces rapid DC maturation and uptake blockage, a phenomenon we refer to as "maturation-induced uptake obstruction" (MUO). Herein we decorated OMV with the DC-targeting αDEC205 antibody (OMV-DEC), which endowed the nanovaccine with an uptake mechanism termed as "not restricted to maturation via antibody modifying" (Normandy), thereby overcoming the MUO phenomenon. We also proved the applicability of this nanovaccine in identifying the human tumor neoantigens through rapid antigen display. In summary, this engineered OMV represents a powerful nanocarrier for personalized cancer vaccines, and this antibody modification strategy provides a reference to remodel the DC uptake pattern in nanocarrier design.
Collapse
Affiliation(s)
- Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhiqiang Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
90
|
T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat Biotechnol 2022; 40:488-498. [PMID: 34873326 PMCID: PMC9005346 DOI: 10.1038/s41587-021-01089-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Unlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80-94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.
Collapse
|
91
|
Chen M, Chen R, Jin Y, Li J, Hu X, Zhang J, Fujimoto J, Hubert SM, Gay CM, Zhu B, Tian Y, McGranahan N, Lee WC, George J, Hu X, Chen Y, Wu M, Behrens C, Chow CW, Pham HHN, Fukuoka J, Wu J, Parra ER, Little LD, Gumbs C, Song X, Wu CJ, Diao L, Wang Q, Cardnell R, Zhang J, Wang J, Le X, Gibbons DL, Heymach JV, Jack Lee J, William WN, Cheng C, Glisson B, Wistuba I, Andrew Futreal P, Thomas RK, Reuben A, Byers LA, Zhang J. Cold and heterogeneous T cell repertoire is associated with copy number aberrations and loss of immune genes in small-cell lung cancer. Nat Commun 2021; 12:6655. [PMID: 34789716 PMCID: PMC8599854 DOI: 10.1038/s41467-021-26821-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/25/2021] [Indexed: 02/03/2023] Open
Abstract
Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor heterogeneity (ITH) associated with high recurrence rate and suboptimal response to immunotherapy. Here, using multi-region whole exome/T cell receptor (TCR) sequencing as well as immunohistochemistry, we reveal a rather homogeneous mutational landscape but extremely cold and heterogeneous TCR repertoire in limited-stage SCLC tumors (LS-SCLCs). Compared to localized non-small cell lung cancers, LS-SCLCs have similar predicted neoantigen burden and genomic ITH, but significantly colder and more heterogeneous TCR repertoire associated with higher chromosomal copy number aberration (CNA) burden. Furthermore, copy number loss of IFN-γ pathway genes is frequently observed and positively correlates with CNA burden. Higher mutational burden, higher T cell infiltration and positive PD-L1 expression are associated with longer overall survival (OS), while higher CNA burden is associated with shorter OS in patients with LS-SCLC.
Collapse
Affiliation(s)
- Ming Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China. .,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China. .,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China. .,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China.
| | - Runzhe Chen
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060 China ,grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Ying Jin
- grid.410726.60000 0004 1797 8419The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022 China ,grid.9227.e0000000119573309Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China ,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022 China
| | - Jun Li
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Xin Hu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Jiexin Zhang
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Junya Fujimoto
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Shawna M. Hubert
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Carl M. Gay
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Bo Zhu
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Yanhua Tian
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Nicholas McGranahan
- grid.11485.390000 0004 0422 0975Cancer Research United Kingdom-University College London Lung Cancer Centre of Excellence, London, WC1E6BT UK
| | - Won-Chul Lee
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Julie George
- grid.6190.e0000 0000 8580 3777Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931 Germany ,grid.411097.a0000 0000 8852 305XDepartment of Otorhinolaryngology, Head and Neck Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Xiao Hu
- grid.410726.60000 0004 1797 8419The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022 China ,grid.9227.e0000000119573309Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China ,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022 China
| | - Yamei Chen
- grid.410726.60000 0004 1797 8419The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022 China ,grid.9227.e0000000119573309Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China ,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022 China
| | - Meijuan Wu
- grid.410726.60000 0004 1797 8419The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022 China ,grid.9227.e0000000119573309Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China ,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022 China
| | - Carmen Behrens
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Chi-Wan Chow
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Hoa H. N. Pham
- grid.174567.60000 0000 8902 2273Department of Pathology, Nagasaki University Graduate school of Biomedical Sciences, Nagasaki, Japan
| | - Junya Fukuoka
- grid.174567.60000 0000 8902 2273Department of Pathology, Nagasaki University Graduate school of Biomedical Sciences, Nagasaki, Japan
| | - Jia Wu
- grid.240145.60000 0001 2291 4776Department of Image Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Edwin Roger Parra
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Latasha D. Little
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Curtis Gumbs
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Xingzhi Song
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Chang-Jiun Wu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Lixia Diao
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Qi Wang
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Robert Cardnell
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Jing Wang
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Xiuning Le
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Don L. Gibbons
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - John V. Heymach
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - J. Jack Lee
- grid.240145.60000 0001 2291 4776Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - William N. William
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Chao Cheng
- grid.39382.330000 0001 2160 926XInstitute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas 77030 USA
| | - Bonnie Glisson
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Ignacio Wistuba
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - P. Andrew Futreal
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Roman K. Thomas
- grid.6190.e0000 0000 8580 3777Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, 50931 Germany ,grid.411097.a0000 0000 8852 305XDepartment of Pathology, Medical Faculty, University Hospital Cologne, Cologne, 50931 Germany ,grid.7497.d0000 0004 0492 0584DKFZ, German Cancer Research Center and German Cancer Consortium (DKTK), Heidelberg, 69115 Germany
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.
| | - Lauren A. Byers
- grid.240145.60000 0001 2291 4776Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA. .,Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.
| |
Collapse
|
92
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
93
|
Sahillioglu AC, Schumacher TN. Multimodular Optimization of Chemically Regulated T Cell Switches Demonstrates Flexible and Interchangeable Nature of Immune Cell Signaling Domains. Hum Gene Ther 2021; 32:1029-1043. [PMID: 34662227 PMCID: PMC10112874 DOI: 10.1089/hum.2021.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immune cell-based therapies can induce potent antitumor effects but are also often associated with severe toxicities. We previously developed a PD-1-based small molecule-regulated reversible T cell activation switch to control the activity of cellular immunotherapy products. This chemically regulated and SH2-delivered-inhibitory tail (CRASH-IT) switch relies on the noncovalent interaction of switch SH2 domains with phosphorylated ITAM motifs in either chimeric antigen receptors or T cell receptors. After this interaction, the immunoreceptor tyrosine-based inhibition motif/switch motif (ITIM/ITSM) containing PD-1 domain present in the CRASH-IT switch induces robust inhibition of T cell signaling, and CRASH-IT-mediated suppression of T cell activity can be reversed by small molecule-induced switch proteolysis. With the aim to develop improved second-generation switch systems, we here analyze the possibility space of both the immune cell receptor docking and inhibitory signaling domains that allow control over T cell activity. Importantly, these analyses demonstrate that the inhibitory domains that most potently suppress antigen receptor signaling in primary human T cells are not derived from inhibitory receptors, such as PD-1 and BTLA, that are endogenously expressed in T cells, but include ITIM/ITSM containing inhibitory domains derived from receptors present in myeloid cells. In addition, we demonstrate that physical proximity of the inhibitory domain to the antigen receptor is crucial to efficiently suppress T cell activation, as only switch designs that employ SH2 domains directly interacting with ITAM motifs in antigen receptors efficiently and reversibly inhibit T cell functionality. These data demonstrate the flexible and interchangeable nature of immune cell signaling domains, and inform the design of a synthetic proximity-based switch system with a superior dynamic range.
Collapse
Affiliation(s)
- Ali Can Sahillioglu
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
94
|
Peri A, Greenstein E, Alon M, Pai JA, Dingjan T, Reich-Zeliger S, Barnea E, Barbolin C, Levy R, Arnedo-Pac C, Kalaora S, Dassa B, Feldmesser E, Shang P, Greenberg P, Levin Y, Benedek G, Levesque MP, Adams DJ, Lotem M, Wilmott JS, Scolyer RA, Jönsson GB, Admon A, Rosenberg SA, Cohen CJ, Niv MY, Lopez-Bigas N, Satpathy AT, Friedman N, Samuels Y. Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. J Clin Invest 2021; 131:129466. [PMID: 34651586 DOI: 10.1172/jci129466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.
Collapse
Affiliation(s)
| | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joy A Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Tamir Dingjan
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Eilon Barnea
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Ronen Levy
- Department of Molecular Cell Biology and
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ping Shang
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - James S Wilmott
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia
| | - Göran B Jönsson
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Arie Admon
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Cyrille J Cohen
- Laboratory of Tumor Immunotherapy, The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
95
|
Ruhland MK, Alspach E. Senescence and Immunoregulation in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:754069. [PMID: 34692707 PMCID: PMC8529213 DOI: 10.3389/fcell.2021.754069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
Immunotherapies have revolutionized cancer treatment, but despite the many lives that have been extended by these therapies many patients do not respond for reasons that are not well understood. The tumor microenvironment (TME) is comprised of heterogeneous cells that regulate tumor immune responses and likely influence immunotherapy response. Senescent (e.g., aged) stroma within the TME, and its expression of the senescence-associated secretory phenotype induces chronic inflammation that encourages tumor development and disease progression. Senescent environments also regulate the function of immune cells in ways that are decidedly protumorigenic. Here we discuss recent developments in senescence biology and the immunoregulatory functions of senescent stroma. Understanding the multitude of cell types present in the TME, including senescent stroma, will aid in the development of combinatorial therapeutic strategies to increase immunotherapy efficacy.
Collapse
Affiliation(s)
- Megan K. Ruhland
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
96
|
Choi J, Goulding SP, Conn BP, McGann CD, Dietze JL, Kohler J, Lenkala D, Boudot A, Rothenberg DA, Turcott PJ, Srouji JR, Foley KC, Rooney MS, van Buuren MM, Gaynor RB, Abelin JG, Addona TA, Juneja VR. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. CELL REPORTS METHODS 2021; 1:100084. [PMID: 35474673 PMCID: PMC9017224 DOI: 10.1016/j.crmeth.2021.100084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
Oncogenic mutations in KRAS can be recognized by T cells on specific class I human leukocyte antigen (HLA-I) molecules, leading to tumor control. To date, the discovery of T cell targets from KRAS mutations has relied on occasional T cell responses in patient samples or the use of transgenic mice. To overcome these limitations, we have developed a systematic target discovery and validation pipeline. We evaluate the presentation of mutant KRAS peptides on individual HLA-I molecules using targeted mass spectrometry and identify 13 unpublished KRASG12C/D/R/V mutation/HLA-I pairs and nine previously described pairs. We assess immunogenicity, generating T cell responses to nearly all targets. Using cytotoxicity assays, we demonstrate that KRAS-specific T cells and T cell receptors specifically recognize endogenous KRAS mutations. The discovery and validation of T cell targets from KRAS mutations demonstrate the potential for this pipeline to aid the development of immunotherapies for important cancer targets.
Collapse
Affiliation(s)
- Jaewon Choi
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Scott P. Goulding
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Brandon P. Conn
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Jared L. Dietze
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Jessica Kohler
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Divya Lenkala
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Antoine Boudot
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Paul J. Turcott
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - John R. Srouji
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Kendra C. Foley
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Michael S. Rooney
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Richard B. Gaynor
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Terri A. Addona
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Vikram R. Juneja
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| |
Collapse
|
97
|
Burger ML, Cruz AM, Crossland GE, Gaglia G, Ritch CC, Blatt SE, Bhutkar A, Canner D, Kienka T, Tavana SZ, Barandiaran AL, Garmilla A, Schenkel JM, Hillman M, de Los Rios Kobara I, Li A, Jaeger AM, Hwang WL, Westcott PMK, Manos MP, Holovatska MM, Hodi FS, Regev A, Santagata S, Jacks T. Antigen dominance hierarchies shape TCF1 + progenitor CD8 T cell phenotypes in tumors. Cell 2021; 184:4996-5014.e26. [PMID: 34534464 PMCID: PMC8522630 DOI: 10.1016/j.cell.2021.08.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.
Collapse
Affiliation(s)
- Megan L Burger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amanda M Cruz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace E Crossland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giorgio Gaglia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cecily C Ritch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Blatt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tamina Kienka
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Z Tavana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexia L Barandiaran
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Garmilla
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Hillman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Izumi de Los Rios Kobara
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William L Hwang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael P Manos
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Marta M Holovatska
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - F Stephen Hodi
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Aviv Regev
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
98
|
Lee MY, Jeon JW, Sievers C, Allen CT. Antigen processing and presentation in cancer immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-001111. [PMID: 32859742 PMCID: PMC7454179 DOI: 10.1136/jitc-2020-001111] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Knowledge about and identification of T cell tumor antigens may inform the development of T cell receptor-engineered adoptive cell transfer or personalized cancer vaccine immunotherapy. Here, we review antigen processing and presentation and discuss limitations in tumor antigen prediction approaches. Methods Original articles covering antigen processing and presentation, epitope discovery, and in silico T cell epitope prediction were reviewed. Results Natural processing and presentation of antigens is a complex process that involves proteasomal proteolysis of parental proteins, transportation of digested peptides into the endoplasmic reticulum, loading of peptides onto major histocompatibility complex (MHC) class I molecules, and shuttling of peptide:MHC complexes to the cell surface. A number of T cell tumor antigens have been experimentally validated in patients with cancer. Assessment of predicted MHC class I binding and total score for these validated T cell antigens demonstrated a wide range of values, with nearly one-third of validated antigens carrying an IC50 of greater than 500 nM. Conclusions Antigen processing and presentation is a complex, multistep process. In silico epitope prediction techniques can be a useful tool, but comprehensive experimental testing and validation on a patient-by-patient basis may be required to reliably identify T cell tumor antigens.
Collapse
Affiliation(s)
- Maxwell Y Lee
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun W Jeon
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Cem Sievers
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint T Allen
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
99
|
Srivastava RM, Purohit TA, Chan TA. Diverse Neoantigens and the Development of Cancer Therapies. Semin Radiat Oncol 2021; 30:113-128. [PMID: 32381291 DOI: 10.1016/j.semradonc.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is the manifestation of uncontrolled cellular growth and immune escape mechanisms. Unrestrained tumor growth can be associated with incidental errors in the genome during replication and genotoxic agents can alter the structure and sequence of our DNA. Among all genetic aberrations in cancer, only limited number of mutations can produce immunogenic antigens which have the potential to bind human leukocyte antigen class I or human leukocyte antigen class II, and help activate the adaptive immune system. These neoantigens can be recognized by CD8+ and CD4+ neoantigen-specific T lymphocytes. Recently, several immune checkpoint targeting drugs have been approved for clinical use. Primarily, these drugs expand and facilitate the cytotoxic activity of neoantigen-specific T cells to eradicate tumors. Differential drug response across cancers could be attributed, at least in part, to differences in the 'tumor antigen landscape' and 'antigen presentation pathway' in patients. Although tumor mutational burden correlates with response to immune checkpoint inhibitors in many cancer types and has evolved as a broad biomarker, a comprehensive understanding of the neoantigen landscape and the function of cognate T cell responses is lacking and is needed for improved patient selection criteria and neoantigen vaccine design. Here, we review cancer neoantigens, their implications for antitumor responses, the dynamics of neoantigen-specific T cells, and the advancement of neoantigen-based therapy in proposed clinical trials.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
100
|
Zitvogel L, Perreault C, Finn OJ, Kroemer G. Beneficial autoimmunity improves cancer prognosis. Nat Rev Clin Oncol 2021; 18:591-602. [PMID: 33976418 DOI: 10.1038/s41571-021-00508-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Many tumour antigens that do not arise from cancer cell-specific mutations are targets of humoral and cellular immunity despite their expression on non-malignant cells. Thus, in addition to the expected ability to detect mutations and stress-associated shifts in the immunoproteome and immunopeptidome (the sum of MHC class I-bound peptides) unique to malignant cells, the immune system also recognizes antigens expressed in non-malignant cells, which can result in autoimmune reactions against non-malignant cells from the tissue of origin. These autoimmune manifestations include, among others, vitiligo, thyroiditis and paraneoplastic syndromes, concurrent with melanoma, thyroid cancer and non-small-cell lung cancer, respectively. Importantly, despite the undesirable effects of these symptoms, such events can have prognostic value and correlate with favourable disease outcomes, suggesting 'beneficial autoimmunity'. Similarly, the occurrence of dermal and endocrine autoimmune adverse events in patients receiving immune-checkpoint inhibitors can have a positive predictive value for therapeutic outcomes. Neoplasias derived from stem cells deemed 'not essential' for survival (such as melanocytes, thyroid cells and most cells in sex-specific organs) have a particularly good prognosis, perhaps because the host can tolerate autoimmune reactions that destroy tumour cells at some cost to non-malignant tissues. In this Perspective, we discuss examples of spontaneous as well as therapy-induced autoimmunity that correlate with favourable disease outcomes and make a strong case in favour of this 'beneficial autoimmunity' being important not only in patients with advanced-stage disease but also in cancer immunosurveillance.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France. .,INSERM U1015, Gustave Roussy, Villejuif, France. .,Equipe labellisée par la Ligue contre le cancer, Villejuif, France. .,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|