51
|
Müller T, Grossmann S, Mallmann RT, Rommel C, Hein L, Klugbauer N. Two-pore channels affect EGF receptor signaling by receptor trafficking and expression. iScience 2021; 24:102099. [PMID: 33644717 PMCID: PMC7887427 DOI: 10.1016/j.isci.2021.102099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 01/09/2023] Open
Abstract
Two-pore channels (TPCs) are key components for regulating Ca2+ current from endosomes and lysosomes to the cytosol. This locally restricted Ca2+ current forms the basis for fusion and fission events between endolysosomal membranes and thereby for intracellular trafficking processes. Here, we study the function of TPC1 and TPC2 for uptake, recycling, and degradation of epidermal growth factor receptor (EGFR) using a set of TPC knockout cells. RNA sequencing analysis revealed multiple changes in the expression levels of EGFR pathway-related genes in TPC1-deficient cells. We propose that a prolonged presence of activated EGFRs in endolysosomal signaling platforms, caused by genetic inactivation of TPCs, does not only affect EGFR signaling pathways but also increases de novo synthesis of EGFR. Increased basal phospho-c-Jun levels contribute to the high EGFR expression in TPC-deficient cells. Our data point to a role of TPCs not only as important regulators for the EGFR transportation network but also for EGFR-signaling and expression. Two-pore channels differently affect intracellular trafficking of EGF receptors Deletion of TPCs prolongs EGFR signaling in endolysosomal platforms TPCs affect expression of EGFR downstream signaling components JNK signaling contributes to increased EGFR expression in TPC-deficient cells
Collapse
Affiliation(s)
- Thomas Müller
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Sonja Grossmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Robert Theodor Mallmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Carolin Rommel
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Lutz Hein
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
52
|
Abstract
Changes in glycosylation on proteins or lipids are one of the hallmarks of tumorigenesis. In many cases, it is still not understood how glycan information is translated into biological function. In this review, we discuss at the example of specific cancer-related glycoproteins how their endocytic uptake into eukaryotic cells is tuned by carbohydrate modifications. For this, we not only focus on overall uptake rates, but also illustrate how different uptake processes-dependent or not on the conventional clathrin machinery-are used under given glycosylation conditions. Furthermore, we discuss the role of certain sugar-binding proteins, termed galectins, to tune glycoprotein uptake by inducing their crosslinking into lattices, or by co-clustering them with glycolipids into raft-type membrane nanodomains from which the so-called clathrin-independent carriers (CLICs) are formed for glycoprotein internalization into cells. The latter process has been termed glycolipid-lectin (GL-Lect) hypothesis, which operates in a complementary manner to the clathrin pathway and galectin lattices.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| | - Anne Billet
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Université de Paris, F-75005, Paris, France
| |
Collapse
|
53
|
Daveri E, Adamo AM, Alfine E, Zhu W, Oteiza PI. Hexameric procyanidins inhibit colorectal cancer cell growth through both redox and non-redox regulation of the epidermal growth factor signaling pathway. Redox Biol 2021; 38:101830. [PMID: 33338921 PMCID: PMC7750420 DOI: 10.1016/j.redox.2020.101830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Dietary proanthocyanidins (PAC) consumption is associated with a decreased risk for colorectal cancer (CRC). Dysregulation of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway is frequent in human cancers, including CRC. We previously showed that hexameric PAC (Hex) exert anti-proliferative and pro-apoptotic actions in human CRC cells. This work investigated if Hex could exert anti-CRC effects through its capacity to regulate the EGFR pathway. In proliferating Caco-2 cells, Hex acted attenuating EGF-induced EGFR dimerization and NADPH oxidase-dependent phosphorylation at Tyr 1068, decreasing EGFR location at lipid rafts, and inhibiting the downstream activation of pro-proliferative and anti-apoptotic pathways, i.e. Raf/MEK/ERK1/2 and PI3K/Akt. Hex also promoted EGFR internalization both in the absence and presence of EGF. While Hex decreased EGFR phosphorylation at Tyr 1068, it increased EGFR Tyr 1045 phosphorylation. The latter provides a docking site for the ubiquitin ligase c-Cbl and promotes EGFR degradation by lysosomes. Importantly, Hex acted synergistically with the EGFR-targeted chemotherapeutic drug Erlotinib, both in their capacity to decrease EGFR phosphorylation and inhibit cell growth. Thus, dietary PAC could exert anti-CRC actions by modulating, through both redox- and non-redox-regulated mechanisms, the EGFR pro-oncogenic signaling pathway. Additionally, Hex could also potentiate the actions of EGFR-targeted drugs.
Collapse
Affiliation(s)
- Elena Daveri
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA; Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Ana M Adamo
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, 1113, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eugenia Alfine
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA.
| |
Collapse
|
54
|
Giangreco G, Malabarba MG, Sigismund S. Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biol Cell 2020; 113:165-182. [PMID: 33617023 DOI: 10.1111/boc.202000129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Although endocytosis was first described as the process mediating macromolecule or nutrient uptake through the plasma membrane, it is now recognised as a critical component of the cellular infrastructure involved in numerous processes, ranging from receptor signalling, proliferation and migration to polarity and stem cell regulation. To realise these varying roles, endocytosis needs to be finely regulated. Accordingly, multiple endocytic mechanisms exist that require specialised molecular machineries and an array of endocytic adaptor proteins with cell-specific functions. This review provides some examples of specialised functions of endocytic adaptors and other components of the endocytic machinery in different cell physiological processes, and how the alteration of these functions is linked to cancer. In particular, we focus on: (i) cargo selection and endocytic mechanisms linked to different adaptors; (ii) specialised functions in clathrin-mediated versus non-clathrin endocytosis; (iii) differential regulation of endocytic mechanisms by post-translational modification of endocytic proteins; (iv) cell context-dependent expression and function of endocytic proteins. As cases in point, we describe two endocytic protein families, dynamins and epsins. Finally, we discuss how dysregulation of the physiological role of these specialised endocytic proteins is exploited by cancer cells to increase cell proliferation, migration and invasion, leading to anti-apoptotic or pro-metastatic behaviours.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| |
Collapse
|
55
|
Sarker FA, Prior VG, Bax S, O'Neill GM. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 2020; 133:133/23/jcs242461. [PMID: 33310867 DOI: 10.1242/jcs.242461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research throughout the 90s established that integrin crosstalk with growth factor receptors stimulates robust growth factor signaling. These insights were derived chiefly from comparing adherent versus suspension cell cultures. Considering the new understanding that mechanosensory inputs tune adhesion signaling, it is now timely to revisit this crosstalk in different mechanical environments. Here, we present a brief historical perspective on integrin signaling against the backdrop of the mechanically diverse extracellular microenvironment, then review the evidence supporting the mechanical regulation of integrin crosstalk with growth factor signaling. We discuss early studies revealing distinct signaling consequences for integrin occupancy (binding to matrix) and aggregation (binding to immobile ligand). We consider how the mechanical environments encountered in vivo intersect with this diverse signaling, focusing on receptor endocytosis. We discuss the implications of mechanically tuned integrin signaling for growth factor signaling, using the epidermal growth factor receptor (EGFR) as an illustrative example. We discuss how the use of rigid tissue culture plastic for cancer drug screening may select agents that lack efficacy in the soft in vivo tissue environment. Tuning of integrin signaling via external mechanical forces in vivo and subsequent effects on growth factor signaling thus has implications for normal cellular physiology and anti-cancer therapies.
Collapse
Affiliation(s)
- Farhana A Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Victoria G Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Samuel Bax
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia .,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
56
|
Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells 2020; 9:cells9122639. [PMID: 33302515 PMCID: PMC7764760 DOI: 10.3390/cells9122639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.
Collapse
|
57
|
Gammella E, Lomoriello IS, Conte A, Freddi S, Alberghini A, Poli M, Sigismund S, Cairo G, Recalcati S. Unconventional endocytosis and trafficking of transferrin receptor induced by iron. Mol Biol Cell 2020; 32:98-108. [PMID: 33236955 PMCID: PMC8120689 DOI: 10.1091/mbc.e20-02-0129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The posttranslational regulation of transferrin receptor (TfR1) is largely unknown. We investigated whether iron availability affects TfR1 endocytic cycle and protein stability in HepG2 hepatoma cells exposed to ferric ammonium citrate (FAC). NH4Cl and bafilomycin A1, but not the proteasomal inhibitor MG132, prevented the FAC-mediated decrease in TfR1 protein levels, thus indicating lysosomal involvement. Knockdown experiments showed that TfR1 lysosomal degradation is independent of 1) endocytosis mediated by the clathrin adaptor AP2; 2) Tf, which was suggested to facilitate TfR1 internalization; 3) H-ferritin; and 4) MARCH8, previously implicated in TfR1 degradation. Notably, FAC decreased the number of TfR1 molecules at the cell surface and increased the Tf endocytic rate. Colocalization experiments confirmed that, upon FAC treatment, TfR1 was endocytosed in an AP2- and Tf-independent pathway and trafficked to the lysosome for degradation. This unconventional endocytic regulatory mechanism aimed at reducing surface TfR1 may represent an additional posttranslational control to prevent iron overload. Our results show that iron is a key regulator of the trafficking of TfR1, which has been widely used to study endocytosis, often not considering its function in iron homeostasis.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Alexia Conte
- IEO, Istituto Europeo di Oncologia IRCCS, 20141 Milan, Italy
| | - Stefano Freddi
- IEO, Istituto Europeo di Oncologia IRCCS, 20141 Milan, Italy
| | - Alessandra Alberghini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, 20141 Milan, Italy.,Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, 20122, Milan, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
58
|
Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci 2020; 21:E8529. [PMID: 33198314 PMCID: PMC7696731 DOI: 10.3390/ijms21228529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase receptors (TKR) comprise more than 60 molecules that play an essential role in the molecular pathways, leading to cell survival and differentiation. Consequently, genetic alterations of TKRs may lead to tumorigenesis and, therefore, cancer development. The discovery and improvement of tyrosine kinase inhibitors (TKI) against TKRs have entailed an important step in the knowledge-expansion of tumor physiopathology as well as an improvement in the cancer treatment based on molecular alterations over many tumor types. The purpose of this review is to provide a comprehensive review of the different families of TKRs and their role in the expansion of tumor cells and how TKIs can stop these pathways to tumorigenesis, in combination or not with other therapies. The increasing growth of this landscape is driving us to strengthen the development of precision oncology with clinical trials based on molecular-based therapy over a histology-based one, with promising preliminary results.
Collapse
Affiliation(s)
- Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Juan José Soto-Castillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Inmaculada Orejana-Martín
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| |
Collapse
|
59
|
Shirane M, Shoji H, Hashimoto Y, Katagiri H, Kobayashi S, Manabe T, Miyakawa T, Nakayama KI. Protrudin-deficient mice manifest depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning. Mol Brain 2020; 13:146. [PMID: 33172474 PMCID: PMC7654181 DOI: 10.1186/s13041-020-00693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Protrudin is a protein that resides in the membrane of the endoplasmic reticulum and is highly expressed in the nervous system. Although mutations in the human protrudin gene (ZFYVE27, also known as SPG33) give rise to hereditary spastic paraplegia (HSP), the physiological role of the encoded protein has been largely unclear. We therefore generated mice deficient in protrudin and subjected them to a battery of behavioral tests designed to examine their intermediate phenotypes. The protrudin-deficient mice were found to have a reduced body size and to manifest pleiotropic behavioral abnormalities, including hyperactivity, depression-like behavior, and deficits in attention and fear-conditioning memory. They exhibited no signs of HSP, however, consistent with the notion that HSP-associated mutations of protrudin may elicit neural degeneration, not as a result of a loss of function, but rather as a result of a gain of toxic function. Overall, our results suggest that protrudin might play an indispensable role in normal neuronal development and behavior.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yutaka Hashimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hiroyuki Katagiri
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan.
| |
Collapse
|
60
|
Sposini S, Rosendale M, Claverie L, Van TNN, Jullié D, Perrais D. Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol. Nat Protoc 2020; 15:3088-3104. [PMID: 32807908 DOI: 10.1038/s41596-020-0371-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022]
Abstract
Endocytosis is a fundamental process occurring in all eukaryotic cells. Live cell imaging of endocytosis has helped to decipher many of its mechanisms and regulations. With the pulsed-pH (ppH) protocol, one can detect the formation of individual endocytic vesicles (EVs) with an unmatched temporal resolution of 2 s. The ppH protocol makes use of cargo protein (e.g., the transferrin receptor) coupled to a pH-sensitive fluorescent protein, such as superecliptic pHluorin (SEP), which is brightly fluorescent at pH 7.4 but not fluorescent at pH <6.0. If the SEP moiety is at the surface, its fluorescence will decrease when cells are exposed to a low pH (5.5) buffer. If the SEP moiety has been internalized, SEP will remain fluorescent even during application of the low pH buffer. Fast perfusion enables the complete exchange of low and high pH extracellular solutions every 2 s, defining the temporal resolution of the technique. Unlike other imaging-based endocytosis assays, the ppH protocol detects EVs without a priori hypotheses on the dynamics of vesicle formation. Here, we explain how the ppH protocol quantifies the endocytic activity of living cells and the recruitment of associated proteins in real time. We provide a step-by-step procedure for expression of the reporter proteins with transient transfection, live cell image acquisition with synchronized pH changes and automated analysis. The whole protocol can be performed in 2 d to provide quantitative information on the endocytic process being studied.
Collapse
Affiliation(s)
- Silvia Sposini
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Morgane Rosendale
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, Institut des Sciences Moléculaires, UMR 5255, Talence, France
| | - Léa Claverie
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Euroquality, Bordeaux, France
| | - Thi Nhu Ngoc Van
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Sys2diag, Montpellier, France
| | - Damien Jullié
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,University of California, San Francisco, San Francisco, CA, USA
| | - David Perrais
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France. .,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
61
|
Colella B, Colardo M, Iannone G, Contadini C, Saiz-Ladera C, Fuoco C, Barilà D, Velasco G, Segatto M, Di Bartolomeo S. mTOR Inhibition Leads to Src-Mediated EGFR Internalisation and Degradation in Glioma Cells. Cancers (Basel) 2020; 12:E2266. [PMID: 32823532 PMCID: PMC7464593 DOI: 10.3390/cancers12082266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Gianna Iannone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Claudia Contadini
- Department of Biology, University of RomeTor Vergata, 00133 Rome, Italy; (C.C.); (C.F.); (D.B.)
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a carattere Scientifico (IRCSS) Fondazione Santa Lucia, 00179 Rome, Italy
| | - Cristina Saiz-Ladera
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain; (C.S.-L.); (G.V.)
| | - Claudia Fuoco
- Department of Biology, University of RomeTor Vergata, 00133 Rome, Italy; (C.C.); (C.F.); (D.B.)
| | - Daniela Barilà
- Department of Biology, University of RomeTor Vergata, 00133 Rome, Italy; (C.C.); (C.F.); (D.B.)
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a carattere Scientifico (IRCSS) Fondazione Santa Lucia, 00179 Rome, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain; (C.S.-L.); (G.V.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| |
Collapse
|
62
|
Casamento A, Boucrot E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochem J 2020; 477:2327-2345. [PMID: 32589750 PMCID: PMC7319585 DOI: 10.1042/bcj20190342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, U.K
| |
Collapse
|
63
|
Dobner J, Simons IM, Rufinatscha K, Hänsch S, Schwarten M, Weiergräber OH, Abdollahzadeh I, Gensch T, Bode JG, Hoffmann S, Willbold D. Deficiency of GABARAP but not its Paralogs Causes Enhanced EGF-induced EGFR Degradation. Cells 2020; 9:E1296. [PMID: 32456010 PMCID: PMC7291022 DOI: 10.3390/cells9051296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The γ-aminobutyric acid type A receptor-associated protein (GABARAP) and its close paralogs GABARAPL1 and GABARAPL2 constitute a subfamily of the autophagy-related 8 (Atg8) protein family. Being associated with a variety of dynamic membranous structures of autophagic and non-autophagic origin, Atg8 proteins functionalize membranes by either serving as docking sites for other proteins or by acting as membrane tethers or adhesion factors. In this study, we describe that deficiency for GABARAP alone, but not for its close paralogs, is sufficient for accelerated EGF receptor (EGFR) degradation in response to EGF, which is accompanied by the downregulation of EGFR-mediated MAPK signaling, altered target gene expression, EGF uptake, and EGF vesicle composition over time. We further show that GABARAP and EGFR converge in the same distinct compartments at endogenous GABARAP expression levels in response to EGF stimulation. Furthermore, GABARAP associates with EGFR in living cells and binds to synthetic peptides that are derived from the EGFR cytoplasmic tail in vitro. Thus, our data strongly indicate a unique and novel role for GABARAP during EGFR trafficking.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Thomas Gensch
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Silke Hoffmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| |
Collapse
|
64
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
65
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
66
|
de Lima PO, Joseph S, Panizza B, Simpson F. Epidermal Growth Factor Receptor's Function in Cutaneous Squamous Cell Carcinoma and Its Role as a Therapeutic Target in the Age of Immunotherapies. Curr Treat Options Oncol 2020; 21:9. [PMID: 32016630 DOI: 10.1007/s11864-019-0697-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Recent studies have evidenced the potential of combining anti-EGFR therapies with anti-PD-1/PD-L1 checkpoint therapies. Both anti-EGFR and anti-PD-1/PD-L1 have been separately tested in the treatment of cutaneous SCC (cSCC). Here, we review recent data on EGFR in the context of cancer progression, as a prognostic and as a therapeutic target in cSCC. Anti-EGFR/checkpoint immunotherapy and other combination therapy approaches are discussed. With the advent of immunotherapy, EGFR is still a valid cSCC target.
Collapse
Affiliation(s)
- Priscila Oliveira de Lima
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon Joseph
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Panizza
- Faculty of Medicine, University of Queensland, Woolloongabba, Queensland, Australia.,Otolaryngology-Head and Neck Surgery Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
67
|
Wilkinson S. Emerging Principles of Selective ER Autophagy. J Mol Biol 2020; 432:185-205. [PMID: 31100386 PMCID: PMC6971691 DOI: 10.1016/j.jmb.2019.05.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a fundamental organelle in cellular metabolism and signal transduction. It is subject to complex, dynamic sculpting of morphology and composition. Degradation of ER content has an important role to play here. Indeed, a major emerging player in ER turnover is ER-phagy, the degradation of ER fragments by selective autophagy, particularly macroautophagy. This article proposes a number of unifying principles of ER-phagy mechanism and compares these with other selective autophagy pathways. A perspective on the likely roles of ER-phagy in determining cell fate is provided. Emerging related forms of intracellular catabolism of the ER or contents, including ER-phagy by microautophagy and selective ER protein removal via the lysosome, are outlined for comparison. Unresolved questions regarding the mechanism of ER-phagy and its significance in cellular and organismal health are put forward. This review concludes with a perspective on how this fundamental knowledge might inform future clinical developments.
Collapse
Affiliation(s)
- Simon Wilkinson
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, United Kingdom
| |
Collapse
|
68
|
Levy A, Tilsner J. Creating Contacts Between Replication and Movement at Plasmodesmata - A Role for Membrane Contact Sites in Plant Virus Infections? FRONTIERS IN PLANT SCIENCE 2020; 11:862. [PMID: 32719692 PMCID: PMC7350983 DOI: 10.3389/fpls.2020.00862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 05/23/2023]
Abstract
To infect their hosts and cause disease, plant viruses must replicate within cells and move throughout the plant both locally and systemically. RNA virus replication occurs on the surface of various cellular membranes, whose shape and composition become extensively modified in the process. Membrane contact sites (MCS) can mediate non-vesicular lipid-shuttling between different membranes and viruses co-opt components of these structures to make their membrane environment suitable for replication. Whereas animal viruses exit and enter cells when moving throughout their host, the rigid wall of plant cells obstructs this pathway and plant viruses therefore move between cells symplastically through plasmodesmata (PD). PD are membranous channels connecting nearly all plant cells and are now viewed to constitute a specialized type of endoplasmic reticulum (ER)-plasma membrane (PM) MCS themselves. Thus, both replication and movement of plant viruses rely on MCS. However, recent work also suggests that for some viruses, replication and movement are closely coupled at ER-PM MCS at the entrances of PD. Movement-coupled replication at PD may be distinct from the main bulk of replication and virus accumulation, which produces progeny virions for plant-to-plant transmission. Thus, MCS play a central role in plant virus infections, and may provide a link between two essential steps in the viral life cycle, replication and movement. Here, we provide an overview of plant virus-MCS interactions identified to date, and place these in the context of the connection between viral replication and cell-to-cell movement.
Collapse
Affiliation(s)
- Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St. Andrews, St. Andrews, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
69
|
Collado J, Kalemanov M, Campelo F, Bourgoint C, Thomas F, Loewith R, Martínez-Sánchez A, Baumeister W, Stefan CJ, Fernández-Busnadiego R. Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity. Dev Cell 2019; 51:476-487.e7. [PMID: 31743662 PMCID: PMC6863395 DOI: 10.1016/j.devcel.2019.10.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
Membrane contact sites (MCS) between the endoplasmic reticulum (ER) and the plasma membrane (PM) play fundamental roles in all eukaryotic cells. ER-PM MCS are particularly abundant in Saccharomyces cerevisiae, where approximately half of the PM surface is covered by cortical ER (cER). Several proteins, including Ist2, Scs2/22, and Tcb1/2/3 are implicated in cER formation, but the specific roles of these molecules are poorly understood. Here, we use cryo-electron tomography to show that ER-PM tethers are key determinants of cER morphology. Notably, Tcb proteins (tricalbins) form peaks of extreme curvature on the cER membrane facing the PM. Combined modeling and functional assays suggest that Tcb-mediated cER peaks facilitate the transport of lipids between the cER and the PM, which is necessary to maintain PM integrity under heat stress. ER peaks were also present at other MCS, implying that membrane curvature enforcement may be a widespread mechanism to regulate MCS function.
Collapse
Affiliation(s)
- Javier Collado
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Institute of Neuropathology, University Medical Center Göttingen, Göttingen 37099, Germany; Graduate School of Quantitative Biosciences Munich, Munich 81337, Germany
| | - Maria Kalemanov
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Graduate School of Quantitative Biosciences Munich, Munich 81337, Germany
| | - Felix Campelo
- ICFO, Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
| | - Clélia Bourgoint
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Ffion Thomas
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland; Swiss National Centre for Competence in Research, Program Chemical Biology, Geneva 1211, Switzerland
| | - Antonio Martínez-Sánchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Institute of Neuropathology, University Medical Center Göttingen, Göttingen 37099, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
70
|
Palamidessi A, Malinverno C, Frittoli E, Corallino S, Barbieri E, Sigismund S, Beznoussenko GV, Martini E, Garre M, Ferrara I, Tripodo C, Ascione F, Cavalcanti-Adam EA, Li Q, Di Fiore PP, Parazzoli D, Giavazzi F, Cerbino R, Scita G. Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. NATURE MATERIALS 2019; 18:1252-1263. [PMID: 31332337 DOI: 10.1038/s41563-019-0425-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.
Collapse
Affiliation(s)
| | - Chiara Malinverno
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| | | | | | | | - Sara Sigismund
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
- Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | | | | | | | - Ines Ferrara
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
- Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Dario Parazzoli
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- University of Milan, Department of Medical Biotechnology and Translational Medicine, Segrate, Italy.
| | - Roberto Cerbino
- University of Milan, Department of Medical Biotechnology and Translational Medicine, Segrate, Italy.
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| |
Collapse
|
71
|
Gao G, Zhu C, Liu E, Nabi IR. Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLoS Biol 2019; 17:e3000355. [PMID: 31469817 PMCID: PMC6742417 DOI: 10.1371/journal.pbio.3000355] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/12/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.
Collapse
Affiliation(s)
- Guang Gao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Chengjia Zhu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Emma Liu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
72
|
hTAC internalizes via both clathrin-dependent and clathrin-independent endocytosis in mammalian cells. Protein Cell 2019; 9:896-901. [PMID: 29549600 PMCID: PMC6160390 DOI: 10.1007/s13238-018-0508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
73
|
Liu C, Spinozzi S, Chen JY, Fang X, Feng W, Perkins G, Cattaneo P, Guimarães-Camboa N, Dalton ND, Peterson KL, Wu T, Ouyang K, Fu XD, Evans SM, Chen J. Nexilin Is a New Component of Junctional Membrane Complexes Required for Cardiac T-Tubule Formation. Circulation 2019; 140:55-66. [PMID: 30982350 PMCID: PMC6889818 DOI: 10.1161/circulationaha.119.039751] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Membrane contact sites are fundamental for transmission and translation of signals in multicellular organisms. The junctional membrane complexes in the cardiac dyads, where transverse (T) tubules are juxtaposed to the sarcoplasmic reticulum, are a prime example. T-tubule uncoupling and remodeling are well-known features of cardiac disease and heart failure. Even subtle alterations in the association between T-tubules and the junctional sarcoplasmic reticulum can cause serious cardiac disorders. NEXN (nexilin) has been identified as an actin-binding protein, and multiple mutations in the NEXN gene are associated with cardiac diseases, but the precise role of NEXN in heart function and disease is still unknown. METHODS Nexn global and cardiomyocyte-specific knockout mice were generated. Comprehensive phenotypic and RNA sequencing and mass spectrometry analyses were performed. Heart tissue samples and isolated single cardiomyocytes were analyzed by electron and confocal microscopy. RESULTS Global and cardiomyocyte-specific loss of Nexn in mice resulted in a rapidly progressive dilated cardiomyopathy. In vivo and in vitro analyses revealed that NEXN interacted with junctional sarcoplasmic reticulum proteins, was essential for optimal calcium transients, and was required for initiation of T-tubule invagination and formation. CONCLUSIONS These results demonstrated that NEXN is a pivotal component of the junctional membrane complex and is required for initiation and formation of T-tubules, thus providing insight into mechanisms underlying cardiomyopathy in patients with mutations in NEXN.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cells, Cultured
- Intercellular Junctions/genetics
- Intercellular Junctions/metabolism
- Intercellular Junctions/pathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/deficiency
- Microfilament Proteins/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Paola Cattaneo
- National Research Council, Institute of Genetics and Biomedical Research, Milan 20138, Italy
- Humanitas Clinical and Research Center, Rozzano 20089, Italy
| | - Nuno Guimarães-Camboa
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Berlin 13347, Germany
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
74
|
TMEM16A controls EGF-induced calcium signaling implicated in pancreatic cancer prognosis. Proc Natl Acad Sci U S A 2019; 116:13026-13035. [PMID: 31182586 DOI: 10.1073/pnas.1900703116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer typically spreads rapidly and has poor survival rates. Here, we report that the calcium-activated chloride channel TMEM16A is a biomarker for pancreatic cancer with a poor prognosis. TMEM16A is up-regulated in 75% of cases of pancreatic cancer and high levels of TMEM16A expression are correlated with low patient survival probability. TMEM16A up-regulation is associated with the ligand-dependent EGFR signaling pathway. In vitro, TMEM16A is required for EGF-induced store-operated calcium entry essential for pancreatic cancer cell migration. TMEM16A also has a profound impact on phosphoproteome remodeling upon EGF stimulation. Moreover, molecular actors identified in this TMEM16A-dependent EGFR-induced calcium signaling pathway form a gene set that makes it possible not only to distinguish neuro-endocrine tumors from other forms of pancreatic cancer, but also to subdivide the latter into three clusters with distinct genetic profiles that could reflect their molecular underpinning.
Collapse
|
75
|
Wilkinson S. ER-phagy: shaping up and destressing the endoplasmic reticulum. FEBS J 2019; 286:2645-2663. [PMID: 31116513 PMCID: PMC6772018 DOI: 10.1111/febs.14932] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) network has central roles in metabolism and cellular organization. The ER undergoes dynamic alterations in morphology, molecular composition and functional specification. Remodelling of the network under fluctuating conditions enables the continual performance of ER functions and minimizes stress. Recent data have revealed that selective autophagy‐mediated degradation of ER fragments, or ER‐phagy, fundamentally contributes to this remodelling. This review provides a perspective on established views of selective autophagy, comparing these with emerging mechanisms of ER‐phagy and related processes. The text discusses the impact of ER‐phagy on the function of the ER‐ and the cell, both in normal physiology and when dysregulated within disease settings. Finally, unanswered questions regarding the mechanisms and significance of ER‐phagy are highlighted.
Collapse
Affiliation(s)
- Simon Wilkinson
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| |
Collapse
|
76
|
Pascolutti R, Algisi V, Conte A, Raimondi A, Pasham M, Upadhyayula S, Gaudin R, Maritzen T, Barbieri E, Caldieri G, Tordonato C, Confalonieri S, Freddi S, Malabarba MG, Maspero E, Polo S, Tacchetti C, Haucke V, Kirchhausen T, Di Fiore PP, Sigismund S. Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Rep 2019; 27:3049-3061.e6. [PMID: 31167147 PMCID: PMC6581797 DOI: 10.1016/j.celrep.2019.05.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions. This subclass is retained in AP2-knockout cells and is able to support the internalization of epidermal growth factor receptor (EGFR) but not of transferrin receptor (TfR). The AP2-independent internalization mechanism relies on the endocytic adaptors eps15, eps15L1, and epsin1. The absence of AP2 impairs the recycling of the EGFR to the cell surface, thereby augmenting its degradation. Accordingly, under conditions of AP2 ablation, we detected dampening of EGFR-dependent AKT signaling and cell migration, arguing that distinct classes of CCPs could provide specialized functions in regulating EGFR recycling and signaling.
Collapse
Affiliation(s)
- Roberta Pascolutti
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Alexia Conte
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Srigokul Upadhyayula
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Raphael Gaudin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Institut de Recherche en Infectiologie de Montpellier, UMR 9004, CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Elisa Barbieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Chiara Tordonato
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Freddi
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy.
| |
Collapse
|
77
|
Larsen MB, Perez Verdaguer M, Schmidt BF, Bruchez MP, Watkins SC, Sorkin A. Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis. eLife 2019; 8:46135. [PMID: 31066673 PMCID: PMC6533059 DOI: 10.7554/elife.46135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Previously we used gene-editing to label endogenous EGF receptor (EGFR) with GFP and demonstrate that picomolar concentrations of EGFR ligand drive signaling and endocytosis of EGFR in tumors in vivo (Pinilla-Macua et al., 2017). We now use gene-editing to insert a fluorogen activating protein (FAP) in the EGFR extracellular domain. Binding of the tandem dye pair MG-Bis-SA to FAP-EGFR provides a ratiometric pH-sensitive model with dual fluorescence excitation and a single far-red emission. The excitation ratio of fluorescence intensities was demonstrated to faithfully report the fraction of FAP-EGFR located in acidic endosomal/lysosomal compartments. Coupling native FAP-EGFR expression with the high method sensitivity has allowed development of a high-throughput assay to measure the rates of clathrin-mediated FAP-EGFR endocytosis stimulated with physiological EGF concentrations. The assay was utilized to screen a phosphatase siRNA library. These studies highlight the utility of endogenous pH-sensitive FAP-receptor chimeras in high-throughput analysis of endocytosis.
Collapse
Affiliation(s)
- Mads Breum Larsen
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Mireia Perez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, United States.,Sharp Edge Laboratories, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
78
|
Little AC, Hristova M, van Lith L, Schiffers C, Dustin CM, Habibovic A, Danyal K, Heppner DE, Lin MCJ, van der Velden J, Janssen-Heininger YM, van der Vliet A. Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization and Pathogenicity in Lung Cancer. Sci Rep 2019; 9:4844. [PMID: 30890751 PMCID: PMC6425021 DOI: 10.1038/s41598-019-41395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers are frequently characterized by inappropriate activation of epidermal growth factor receptor (EGFR)-dependent signaling and epigenetic silencing of the NADPH oxidase (NOX) enzyme DUOX1, both potentially contributing to worse prognosis. Based on previous findings linking DUOX1 with redox-dependent EGFR activation, the present studies were designed to evaluate whether DUOX1 silencing in lung cancers may be responsible for altered EGFR regulation. In contrast to normal epithelial cells, EGF stimulation of lung cancer cell lines that lack DUOX1 promotes EGF-induced EGFR internalization and nuclear localization, associated with induction of EGFR-regulated genes and related tumorigenic outcomes. Each of these outcomes could be reversed by overexpression of DUOX1 or enhanced by shRNA-dependent DUOX1 silencing. EGF-induced nuclear EGFR localization in DUOX1-deficient lung cancer cells was associated with altered dynamics of cysteine oxidation of EGFR, and an overall reduction of EGFR cysteines. These various outcomes could also be attenuated by silencing of glutathione S-transferase P1 (GSTP1), a mediator of metabolic alterations and drug resistance in various cancers, and a regulator of cysteine oxidation. Collectively, our findings indicate DUOX1 deficiency in lung cancers promotes dysregulated EGFR signaling and enhanced GSTP1-mediated turnover of EGFR cysteine oxidation, which result in enhanced nuclear EGFR localization and tumorigenic properties.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.,Rogel Cancer Center, Department of Internal Medicine Hematology-Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Loes van Lith
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Miao-Chong J Lin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Yvonne M Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
79
|
Milesi C, Alberici P, Pozzi B, Oldani A, Beznoussenko GV, Raimondi A, Soppo BE, Amodio S, Caldieri G, Malabarba MG, Bertalot G, Confalonieri S, Parazzoli D, Mironov AA, Tacchetti C, Di Fiore PP, Sigismund S, Offenhäuser N. Redundant and nonredundant organismal functions of EPS15 and EPS15L1. Life Sci Alliance 2019; 2:2/1/e201800273. [PMID: 30692166 PMCID: PMC6350104 DOI: 10.26508/lsa.201800273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/24/2022] Open
Abstract
This study unveils a redundant function for the endocytic proteins Eps15 and Eps15L1 in mouse embryo development and erythropoiesis, and a unique nonredundant role for Eps15L1 in the nervous system. EPS15 and its homologous EPS15L1 are endocytic accessory proteins. Studies in mammalian cell lines suggested that EPS15 and EPS15L1 regulate endocytosis in a redundant manner. However, at the organismal level, it is not known to which extent the functions of the two proteins overlap. Here, by exploiting various constitutive and conditional null mice, we report redundant and nonredundant functions of the two proteins. EPS15L1 displays a unique nonredundant role in the nervous system, whereas both proteins are fundamental during embryo development as shown by the embryonic lethality of -Eps15/Eps15L1-double KO mice. At the cellular level, the major process redundantly regulated by EPS15 and EPS15L1 is the endocytosis of the transferrin receptor, a pathway that sustains the development of red blood cells and controls iron homeostasis. Consequently, hematopoietic-specific conditional Eps15/Eps15L1-double KO mice display traits of microcytic hypochromic anemia, due to a cell-autonomous defect in iron internalization.
Collapse
Affiliation(s)
- Cinzia Milesi
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Paola Alberici
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Benedetta Pozzi
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Amanda Oldani
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,Cogentech Società Benefit Srl, Milan, Italy
| | - Galina V Beznoussenko
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Blanche Ekalle Soppo
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Stefania Amodio
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Giovanni Bertalot
- IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Dario Parazzoli
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,Cogentech Società Benefit Srl, Milan, Italy
| | - Alexander A Mironov
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy .,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Nina Offenhäuser
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy .,Cogentech Società Benefit Srl, Milan, Italy
| |
Collapse
|
80
|
Wang P, Hussey PJ. Plant ER-PM Contact Sites in Endocytosis and Autophagy: Does the Local Composition of Membrane Phospholipid Play a Role? FRONTIERS IN PLANT SCIENCE 2019; 10:23. [PMID: 30740118 PMCID: PMC6355705 DOI: 10.3389/fpls.2019.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/08/2019] [Indexed: 05/24/2023]
Affiliation(s)
- Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Patrick J. Hussey
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
81
|
Venditti R, Masone MC, Rega LR, Di Tullio G, Santoro M, Polishchuk E, Serrano IC, Olkkonen VM, Harada A, Medina DL, La Montagna R, De Matteis MA. The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. J Cell Biol 2019; 218:783-797. [PMID: 30659099 PMCID: PMC6400556 DOI: 10.1083/jcb.201812021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
Abstract
Venditti et al. identify FAPP1 as a new determinant of ER–trans-Golgi network contacts that interacts with the phosphoinositide phosphatase Sac1 and promotes its phosphatase activity. The results suggest that, by controlling PI4P levels, FAPP1 acts as a gatekeeper of cargo Golgi exit. Phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide with key roles in the Golgi complex, is made by Golgi-associated phosphatidylinositol-4 kinases and consumed by the 4-phosphatase Sac1 that, instead, is an ER membrane protein. Here, we show that the contact sites between the ER and the TGN (ERTGoCS) provide a spatial setting suitable for Sac1 to dephosphorylate PI4P at the TGN. The ERTGoCS, though necessary, are not sufficient for the phosphatase activity of Sac1 on TGN PI4P, since this needs the phosphatidyl-four-phosphate-adaptor-protein-1 (FAPP1). FAPP1 localizes at ERTGoCS, interacts with Sac1, and promotes its in-trans phosphatase activity in vitro. We envision that FAPP1, acting as a PI4P detector and adaptor, positions Sac1 close to TGN domains with elevated PI4P concentrations allowing PI4P consumption. Indeed, FAPP1 depletion induces an increase in TGN PI4P that leads to increased secretion of selected cargoes (e.g., ApoB100), indicating that FAPP1, by controlling PI4P levels, acts as a gatekeeper of Golgi exit.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Medical School, Naples, Italy
| | | | - Laura Rita Rega
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | | | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy .,Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Medical School, Naples, Italy
| |
Collapse
|
82
|
Wee P, Wang Z. Regulation of EGFR Endocytosis by CBL During Mitosis. Cells 2018; 7:cells7120257. [PMID: 30544639 PMCID: PMC6315415 DOI: 10.3390/cells7120257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
The overactivation of epidermal growth factor (EGF) receptor (EGFR) is implicated in various cancers. Endocytosis plays an important role in EGFR-mediated cell signaling. We previously found that EGFR endocytosis during mitosis is mediated differently from interphase. While the regulation of EGFR endocytosis in interphase is well understood, little is known regarding the regulation of EGFR endocytosis during mitosis. Here, we found that contrary to interphase cells, mitotic EGFR endocytosis is more reliant on the activation of the E3 ligase CBL. By transfecting HeLa, MCF-7, and 293T cells with CBL siRNA or dominant-negative 70z-CBL, we found that at high EGF doses, CBL is required for EGFR endocytosis in mitotic cells, but not in interphase cells. In addition, the endocytosis of mutant EGFR Y1045F-YFP (mutation at the direct CBL binding site) is strongly delayed. The endocytosis of truncated EGFR Δ1044-YFP that does not bind to CBL is completely inhibited in mitosis. Moreover, EGF induces stronger ubiquitination of mitotic EGFR than interphase EGFR, and mitotic EGFR is trafficked to lysosomes for degradation. Furthermore, we showed that, different from interphase, low doses of EGF still stimulate EGFR endocytosis by non-clathrin mediated endocytosis (NCE) in mitosis. Contrary to interphase, CBL and the CBL-binding regions of EGFR are required for mitotic EGFR endocytosis at low doses. This is due to the mitotic ubiquitination of the EGFR even at low EGF doses. We conclude that mitotic EGFR endocytosis exclusively proceeds through CBL-mediated NCE.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
83
|
Stefan CJ. Building ER-PM contacts: keeping calm and ready on alarm. Curr Opin Cell Biol 2018; 53:1-8. [DOI: 10.1016/j.ceb.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
|
84
|
Sandvig K, Kavaliauskiene S, Skotland T. Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol 2018; 150:107-118. [PMID: 29774430 PMCID: PMC6096564 DOI: 10.1007/s00418-018-1678-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 11/03/2022]
Abstract
This article aims at providing an update on the complexity of clathrin-independent endocytosis. It is now almost 30 years since we first wrote a review about its existence; at that time many people believed that with the exception of macropinocytosis, which will only be briefly mentioned in this review, all uptake could be accounted for by clathrin-dependent endocytosis. Now it is generally accepted that there are different clathrin-independent mechanisms, some of them regulated by ligands and membrane lipid composition. They can be both dynamin-dependent and -independent, meaning that the uptake cannot be accounted for by caveolae and other dynamin-dependent processes such as tubular structures that can be induced by toxins, e.g. Shiga toxin, or the fast endophilin mediated endocytosis recently described. Caveolae seem to be mostly quite stable structures with other functions than endocytosis, but evidence suggests that they may have cell-type dependent functions. Although several groups have been working on endocytic mechanisms for years, and new advanced methods have improved our ability to study mechanistic details, there are still a number of important questions we need to address, such as: How many endocytic mechanisms does a cell have? How quantitatively important are they? What about the complexity in polarized cells where clathrin-independent endocytosis is differentially regulated on the apical and basolateral poles? These questions are not easy to answer since one and the same molecule may contribute to more than one process, and manipulating one mechanism can affect another. Also, several inhibitors of endocytic processes commonly used turn out to be less specific than originally thought. We will here describe the current view of clathrin-independent endocytic processes and the challenges in studying them.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Department of Molecular Biosciences, University of Oslo, 0316, Oslo, Norway.
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| |
Collapse
|
85
|
Wang T, Zhang J, Wang S, Sun X, Wang D, Gao Y, Zhang Y, Xu L, Wu Y, Wu Y, Liu F, Liu X, Liu S, Zhang Y, Wang Y, Zou L, Liu H. The exon 19-deleted EGFR undergoes ubiquitylation-mediated endocytic degradation via dynamin activity-dependent and -independent mechanisms. Cell Commun Signal 2018; 16:40. [PMID: 29976202 PMCID: PMC6034242 DOI: 10.1186/s12964-018-0245-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 01/22/2023] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is closely implicated in cancer, and sequencing analyses have revealed a high mutation rate of EGFR in lung cancer. Recent advances have provided novel insights into the endocytic regulation of wild-type EGFR, but that of mutated EGFR remains elusive. In the present study, we aim to investigate the endocytic degradation of a frequently occurred exon 19-deleted mutant in lung cancer. Methods The EGF-induced endocytic degradation of EGFR was examined in a panel of lung cancer cells using immunoblotting. The subcellular distribution of internalized EGFR was investigated using immunofluorescence and confocal microscopy. The effects of dynamin were assessed using its small molecule inhibitors, while the influence of RTN3 was tested using shRNA-mediated knockdown. Finally the ubiquitylation status of EGFR mutant was studied using immunoprecipitation under steady state and tyrosine kinase inhibitor-treated conditions. Results EGF induced various rates of EGFR endocytic degradation in lung cancer cells. Interestingly, the exon 19 deletion mutant is constantly internalized and sorted to lysosome for degradation, and this process is independent of dynamin activity. EGF stimulation and HSP90 inhibition further enhance the endocytic degradation of the exon 19 deletion mutant, in a dynamin activity-dependent and -independent manner, respectively. Albeit with different modes of internalization, the uptake of the exon 19-deleted EGFR is mediated through receptor ubiquitylation. Conclusions The internalized EGFR mutant is constantly routed through endosome to lysosome for degradation. The endocytosis of EGFR mutant occurs through both dynamin activity-dependent and -independent mechanisms. Our findings gain novel insights into the endocytic regulation of mutated EGFR and may have potential clinical implications.
Collapse
Affiliation(s)
- Taishu Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shanshan Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiuna Sun
- Department of Respiratory Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Duchuang Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yurou Gao
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lu Xu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yue Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yueguang Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiuxiu Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuyan Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lijuan Zou
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Department of Radiation Oncology, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Han Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|
86
|
Kwon H, Jang D, Choi M, Lee J, Jeong K, Pak Y. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2169-2182. [PMID: 29604334 DOI: 10.1016/j.bbadis.2018.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Codon, Initiator/genetics
- Endocytosis
- HEK293 Cells
- Humans
- Insulin Resistance/genetics
- Lysosomes/metabolism
- Mice
- Mutagenesis, Site-Directed
- Peptide Chain Initiation, Translational/drug effects
- Peptide Chain Initiation, Translational/genetics
- Phosphorylation
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proteolysis
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donghwan Jang
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuho Jeong
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
87
|
Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol 2018; 51:139-146. [PMID: 29753924 DOI: 10.1016/j.conb.2018.04.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/22/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are neurologic disorders characterized by prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. They are among the most genetically-diverse neurologic disorders, with >80 distinct genetic loci and over 60 identified genes. Studies investigating the molecular pathogenesis underlying HSPs have emphasized the importance of converging cellular pathogenic themes in the most common forms of HSP, providing compelling targets for therapy. Most notably, these include organelle shaping and biogenesis as well as membrane and cargo trafficking.
Collapse
|
88
|
Sepehri Rad M, Cohen LB, Braubach O, Baker BJ. Monitoring voltage fluctuations of intracellular membranes. Sci Rep 2018; 8:6911. [PMID: 29720664 PMCID: PMC5932030 DOI: 10.1038/s41598-018-25083-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 02/02/2023] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the largest continuous membrane-enclosed network which surrounds a single lumen. Using a new genetically encoded voltage indicator (GEVI), we applied the patch clamp technique to cultured HEK293 cells and neurons and found that there is a very fast electrical interaction between the plasma membrane and internal membrane(s). This discovery suggests a novel mechanism for interaction between the external membrane and internal membranes as well as mechanisms for interactions between the various internal membranes. The ER may transfer electrical signals between the plasma membrane and other internal organelles. The internal membrane optical signal is reversed in polarity but has a time course similar to that of the plasma membrane signal. The optical signal of the GEVI in the plasma membrane is consistent from trial to trial. However, the internal signal decreases in size with repeated trials suggesting that the electrical coupling is degrading and/or the resistance of the internal membrane is decaying.
Collapse
Affiliation(s)
- Masoud Sepehri Rad
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Lawrence B Cohen
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Oliver Braubach
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
89
|
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal 2018; 16:12. [PMID: 29615051 PMCID: PMC5883603 DOI: 10.1186/s12964-018-0224-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound transcription factors (MTFs) are transcription factors (TFs) that are anchored in membranes in a dormant state. Activated by external or internal stimuli, MTFs are released from parent membranes and are transported to the nucleus. Existing research indicates that some plasma membrane (PM)-bound proteins and some endoplasmic reticulum (ER) membrane-bound proteins have the ability to enter the nucleus. Upon specific signal recognition cues, some PM-bound TFs undergo proteolytic cleavage to liberate the intracellular fragments that enter the nucleus to control gene transcription. However, lipid-anchored PM-bound proteins enter the nucleus in their full length for depalmitoylation. In addition, some PM-bound TFs exist as full-length proteins in cell nucleus via trafficking to the Golgi and the ER, where membrane-releasing mechanisms rely on endocytosis. In contrast, the ER membrane-bound TFs relocate to the nucleus directly or by trafficking to the Golgi. In both of these pathways, only the fragments of the ER membrane-bound TFs transit to the nucleus. Several different nuclear trafficking modes of MTFs are summarized in this review, providing an effective supplement to the mechanisms of signal transduction and gene regulation. Moreover, targeting intracellular movement pathways of disease-associated MTFs may significantly improve the survival of patients.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
90
|
Cui J, Huang W, Wu B, Jin J, Jing L, Shi WP, Liu ZY, Yuan L, Luo D, Li L, Chen ZN, Jiang JL. N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J Pathol 2018; 245:41-52. [PMID: 29431199 PMCID: PMC5947728 DOI: 10.1002/path.5054] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Abstract
While the importance of protein N-glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N-acetylglucosaminyltransferase V (GnT-V) regulates cancer processes remain largely unknown. In the current study, we report that GnT-V-mediated N-glycosylation of CD147/basigin, a tumor-associated glycoprotein that carries β1,6-N-acetylglucosamine (β1,6-GlcNAc) glycans, is upregulated during TGF-β1-induced epithelial-to-mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6-GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6-branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT-V expression and that inhibition of GnT-V-mediated N-glycosylation suppressed PI3K signaling. In summary, β1,6-branched N-glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jian Cui
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Wan Huang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Bo Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, PR China
| | - Jin Jin
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Lin Jing
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Wen-Pu Shi
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Zhen-Yu Liu
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Lin Yuan
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Dan Luo
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Ling Li
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Zhi-Nan Chen
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Jian-Li Jiang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
91
|
Ménard L, Floc'h N, Martin MJ, Cross DAE. Reactivation of Mutant-EGFR Degradation through Clathrin Inhibition Overcomes Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2018; 78:3267-3279. [PMID: 29555874 DOI: 10.1158/0008-5472.can-17-2195] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
Tyrosine kinase inhibitors (TKI) targeting mutant EGFR in non-small cell lung cancer (NSCLC) have been successful to control cancer growth, but acquired resistance inevitably occurs, including mutations directly on EGFR, for example, T790M and C797S. Strategies to prevent such acquired mutations by reducing mutant-EGFR expression have met limited success. Here, we propose a new model of mutant-EGFR trafficking and demonstrate that clathrin inhibition induces rapid degradation across a large panel of endogenous mutant-EGFR (Ex19del, L858R, and Ex20Ins). This panel included mutant-EGFR (T790M) resistant to the first- and second-generation EGFR inhibitors and to the third-generation TKI osimertinib and occurs through both mutational (C797S) and nonmutational EGFR mechanisms. Clathrin-mediated endocytosis inhibition of mutant EGFR induced a macropinocytosis-dependent lysosomal pathway associated with a loss of mutant-EGFR-dependent signaling (pAKT, pERK). Moreover, induction of this macropinocytic pathway led to robust apoptosis-dependent death across all mutant-EGFR cell lines tested, including those resistant to TKIs. We, therefore, propose a novel strategy to target mutant-EGFR refractory to approved existing TKI treatments in NSCLC and where new treatment strategies remain a key area of unmet need.Significance: These findings extend our mechanistic understanding of NSCLC mutant EGFR trafficking biology, the role that trafficking may play in resistance of mutant EGFR to tyrosine kinase inhibitors, and provide new therapeutic and biological insights to tackle this fundamental issue and improve benefit to patients. Cancer Res; 78(12); 3267-79. ©2018 AACR.
Collapse
Affiliation(s)
- Ludovic Ménard
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom.
| | - Nicolas Floc'h
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom
| | - Matthew J Martin
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom
| | - Darren A E Cross
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom.
| |
Collapse
|
92
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
93
|
Sigismund S, Scita G. The 'endocytic matrix reloaded' and its impact on the plasticity of migratory strategies. Curr Opin Cell Biol 2018; 54:9-17. [PMID: 29544103 DOI: 10.1016/j.ceb.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
An explosive growth in knowledge, in the last two decades, has conferred a new dimension to the process of endocytosis. Endocytic circuitries have come into focus as a pervasive system that controls virtual all aspects of cell biology. A few years ago, we proposed the term 'endocytic matrix' to define a cellular network of signalling wiring that is at the core of the cellular blueprint. A primary role of the endocytic matrix is the delivery of space-resolved and time-resolved signals to the cell in an interpretable format, and, as such, it has profound consequences on polarized cellular and supra-cellular functions, first and foremost, cell motility. Here, we describe a set of recent results that expand this notion and illuminate how endocytic matrix dynamically controls the plasticity of migratory strategies. We further highlight the impact of inter-organelle contact sites on motility and the role of organelle positioning in this process. Finally, we illustrate how global perturbation of the endocytic circuitry influences cellular and supra-cellular mechanics, ultimately controlling a solid-to-liquid-like transition in the mode of motility with potential consequences on cancer dissemination.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139 Milan, Italy
| | - Giorgio Scita
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy; University of Milan, School of Medicine, Department of Oncology and Hemato-Oncology-DIPO, Milan, Italy.
| |
Collapse
|
94
|
The Reticulum-Associated Protein RTN1A Specifically Identifies Human Dendritic Cells. J Invest Dermatol 2018; 138:1318-1327. [PMID: 29369773 DOI: 10.1016/j.jid.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
RTN1 is an endoplasmic reticulum-associated protein that was initially identified in neuronal tissues. Here we show that the main isoform RTN1A is a marker for dendritic cells. In the skin, HLA-DR+CD1ahighCD207+CD11cweak Langerhans cells were the only cells in the epidermis, and HLA-DR+CD11c+ dendritic cells were the main cells in the dermis, expressing this protein. RTN1A+ dendritic cells were also found in gingiva, trachea, tonsil, thymus, and peripheral blood. During differentiation of MUTZ-3 cells into Langerhans cells, expression of RTN1A mRNA and protein preceded established Langerhans cell markers CD1a and CD207, and RTN1A protein partially co-localized with the endoplasmic reticulum marker protein disulfide isomerase. In line with this observation, we found that RTN1A was expressed by around 80% of Langerhans cell precursors in human embryonic skin. Our findings show that RTN1A is a marker for cells of the dendritic lineage, including Langerhans cells and dermal dendritic cells. This unexpected finding will serve as a starting point for the elucidation of the, until now, elusive functional roles of RTN1A in both the immune and the nervous system.
Collapse
|
95
|
Moore R, Pujol MG, Zhu Z, Smythe E. Interplay of Endocytosis and Growth Factor Receptor Signalling. ENDOCYTOSIS AND SIGNALING 2018; 57:181-202. [DOI: 10.1007/978-3-319-96704-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
96
|
Caldieri G, Malabarba MG, Di Fiore PP, Sigismund S. EGFR Trafficking in Physiology and Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:235-272. [PMID: 30097778 DOI: 10.1007/978-3-319-96704-2_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer.
Collapse
Affiliation(s)
- Giusi Caldieri
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Maria Grazia Malabarba
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Pier Paolo Di Fiore
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Sara Sigismund
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy.
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy.
| |
Collapse
|
97
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 989] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
98
|
Pinilla-Macua I, Grassart A, Duvvuri U, Watkins SC, Sorkin A. EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. eLife 2017; 6. [PMID: 29268862 PMCID: PMC5741375 DOI: 10.7554/elife.31993] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Despite a well-established role for the epidermal growth factor receptor (EGFR) in tumorigenesis, EGFR activities and endocytosis in tumors in vivo have not been studied. We labeled endogenous EGFR with GFP by genome-editing of human oral squamous cell carcinoma cells, which were used to examine EGFR-GFP behavior in mouse tumor xenografts in vivo. Intravital multiphoton imaging, confocal imaging of cryosections and biochemical analysis revealed that localization and trafficking patterns, as well as levels of phosphorylation and ubiquitylation of EGFR in tumors in vivo closely resemble patterns and levels observed in the same cells treated with 20–200 pM EGF in vitro. Consistent with the prediction of low ligand concentrations in tumors, EGFR endocytosis was kinase-dependent and blocked by inhibitors of clathrin-mediated internalization; and EGFR activity was insensitive to Cbl overexpression. Collectively, our data suggest that a small pool of active EGFRs is sufficient to drive tumorigenesis by signaling primarily through the Ras-MAPK pathway.
Collapse
Affiliation(s)
- Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexandre Grassart
- Department of Molecular Microbial Pathogenesis, Institute Pasteur, Paris, France
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
99
|
Ferreira APA, Boucrot E. Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends Cell Biol 2017; 28:188-200. [PMID: 29241687 DOI: 10.1016/j.tcb.2017.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Clathrin-independent endocytosis (CIE) mediates the cellular uptake of many extracellular ligands, receptors, and pathogens, including several life-threatening bacterial toxins and viruses. So far, our understanding of CIE carrier formation has lagged behind that of clathrin-coated vesicles. Impediments have been the imprecise definition of some CIE pathways, the lack of specific cargoes being transported and of exclusive cytosolic markers and regulators. Notwithstanding these limitations, three distinct molecular mechanisms by which CIE carriers form can be defined. Cargo capture by cytosolic proteins is the main mechanism used by fast endophilin-mediated endocytosis (FEME) and interleukin 2 receptor (IL-2R) endocytosis. Acute signaling-induced membrane remodeling drives macropinocytosis. Finally, extracellular lipid or cargo clustering by the glycolipid-lectin (GL-Lect) hypothesis mediates the uptake of Shiga and cholera toxins and receptors by the CLIC/GEEC pathway. Here, we review these mechanisms and highlight current gaps in knowledge that will need to be addressed to complete our understanding of CIE.
Collapse
Affiliation(s)
- Antonio P A Ferreira
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK; Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
100
|
Bayer EM, Sparkes I, Vanneste S, Rosado A. From shaping organelles to signalling platforms: the emerging functions of plant ER-PM contact sites. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:89-96. [PMID: 28865976 DOI: 10.1016/j.pbi.2017.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The plant endoplasmic reticulum (ER) defines the biosynthetic site of lipids and proteins destined for secretion, but also contains important signal transduction and homeostasis components that regulate multiple hormonal and developmental responses. To achieve its various functions, the ER has a unique architecture, both reticulated and highly plastic, that facilitates the spatial-temporal segregation of biochemical reactions and the establishment of inter-organelle communication networks. At the cell cortex, the cortical ER (cER) anchors to and functionally couples with the PM through largely static structures known as ER-PM contact sites (EPCS). These spatially confined microdomains are emerging as critical regulators of the geometry of the cER network, and as highly specialized signalling hubs. In this review, we share recent insights into how EPCS regulate cER remodelling, and discuss the proposed roles for plant EPCS components in the integration of environmental and developmental signals at the cER-PM interface.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR 5200 CNRS, University of Bordeaux, 71 avenue Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter EX4 4QD, UK; School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Abel Rosado
- Department of Botany, Faculty of Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|