51
|
Leotta CG, Barbaraci C, Fiorito J, Coco A, di Giacomo V, Amata E, Marrazzo A, Pitari GM. HDAC/σ1R Dual-Ligand as a Targeted Melanoma Therapeutic. Pharmaceuticals (Basel) 2025; 18:179. [PMID: 40005993 PMCID: PMC11859726 DOI: 10.3390/ph18020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: In melanoma, multiligand drug strategies to disrupt cancer-associated epigenetic alterations and angiogenesis are particularly promising. Here, a novel dual-ligand with a single shared pharmacophore capable of simultaneously targeting histone deacetylases (HDACs) and sigma receptors (σRs) was synthesized and subjected to phenotypic in vitro screening. Methods: Tumor cell proliferation and spreading were investigated using immortalized human cancer and normal cell lines. Angiogenesis was also evaluated in mouse endothelial cells using a tube formation assay. Results: The dual-ligand compound exhibited superior potency in suppressing both uveal and cutaneous melanoma cell viability compared to other cancer cell types or normal cells. Melanoma selectivity reflected inhibition of the HDAC-dependent epigenetic regulation of tumor proliferative kinetics, without involvement of σR signaling. In contrast, the bifunctional compound inhibited the formation of capillary-like structures, formed by endothelial cells, and tumor cell spreading through the specific regulation of σ1R signaling, but not HDAC activity. Conclusions: Together, the present findings suggest that dual-targeted HDAC/σ1R ligands might efficiently and simultaneously disrupt tumor growth, dissemination and angiogenesis in melanoma, a strategy amenable to future clinical applications in precision cancer treatment.
Collapse
Affiliation(s)
- Claudia Giovanna Leotta
- Dream Factory Lab, Vera Salus Ricerca S.r.l., 96100 Siracusa, Italy
- J4Med Lab, Via Paolo Gaifami 9, 95126 Catania, Italy
| | - Carla Barbaraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Institut Català d’Investigació Química (ICIQ), Avinguda dels Països Catalans 16, 43007 Tarragona, Spain
| | - Jole Fiorito
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alessandro Coco
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Giovanni Mario Pitari
- Dream Factory Lab, Vera Salus Ricerca S.r.l., 96100 Siracusa, Italy
- J4Med Lab, Via Paolo Gaifami 9, 95126 Catania, Italy
| |
Collapse
|
52
|
Naponelli V, Piscazzi A, Mangieri D. Cellular and Molecular Mechanisms Modulated by Genistein in Cancer. Int J Mol Sci 2025; 26:1114. [PMID: 39940882 PMCID: PMC11818640 DOI: 10.3390/ijms26031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass of natural flavonoids that exhibits a wide range of pharmacological functions, including antioxidant and anti-inflammatory properties. These characteristics make genistein a valuable phytochemical compound for the prevention and/or treatment of cancer. Genistein effectively inhibits tumor growth and dissemination by modulating key cellular mechanisms. This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal transition, and the regulation of cancer stem cell proliferation. These effects are mediated through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin. Moreover, genistein interferes with the function of specific cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a critical role in halting tumor cell division and promoting apoptosis. The aim of this review is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic anticancer effects of this flavonoid.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Annamaria Piscazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
53
|
Yamanashi Y, Takamaru S, Okabe A, Kaito S, Azumaya Y, Kamimura YR, Yamatsugu K, Kujirai T, Kurumizaka H, Iwama A, Kaneda A, Kawashima SA, Kanai M. Chemical catalyst manipulating cancer epigenome and transcription. Nat Commun 2025; 16:887. [PMID: 39856033 PMCID: PMC11760346 DOI: 10.1038/s41467-025-56204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM in living cells without genetic engineering. Here, we report the development of a cell-permeable histone acetylation catalyst, BAHA-LANA-PEG-CPP44, which selectively enters leukemia cells, binds to chromatin, and acetylates H2BK120 of endogenous histones in a short reaction time. Time-course analyses of this in-cell catalytic reaction revealed that H2BK120 acetylation attenuates the chromatin binding of negative elongation factor E (NELFE), an onco-transcription factor. This H2BK120 acetylation-mediated removal of NELFE from chromatin reshapes transcription, slows leukemia cell viability, and reduces their tumorigenic potential in mice. Therefore, this histone acetylation catalyst provides a unique tool for elucidating the time-resolved consequences of histone PTMs and may offer a modality for cancer chemotherapy.
Collapse
Affiliation(s)
- Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinpei Takamaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Satoshi Kaito
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuto Azumaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo R Kamimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
54
|
Furlano K, Keshavarzian T, Biernath N, Fendler A, de Santis M, Weischenfeldt J, Lupien M. Epigenomics-guided precision oncology: Chromatin variants in prostate tumor evolution. Int J Cancer 2025. [PMID: 39853587 DOI: 10.1002/ijc.35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases. As cellular plasticity is largely driven by non-genetic events, complementary studies in cancer epigenomics are now being conducted to identify chromatin variants. These variants, defined as genomic loci in cancer cells that show changes in chromatin state due to the loss or gain of epigenomic marks, inclusive of histone post-translational modifications, DNA methylation and histone variants, are considered the fundamental units of epigenomic heterogeneity. In prostate cancer chromatin variants hold the promise of guiding the new era of precision oncology. In this review, we explore the role of epigenomic heterogeneity in prostate cancer, focusing on how chromatin variants contribute to tumor evolution and therapy resistance. We therefore discuss their impact on cellular plasticity and stochastic events, highlighting the value of single-cell sequencing and liquid biopsy epigenomic assays to uncover new therapeutic targets and biomarkers. Ultimately, this review aims to support a new era of precision oncology, utilizing insights from epigenomics to improve prostate cancer patient outcomes.
Collapse
Affiliation(s)
- Kira Furlano
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Tina Keshavarzian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Nadine Biernath
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Maria de Santis
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Joachim Weischenfeldt
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Biotech Research & Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
55
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
56
|
Wang X, He X, Zhong B. Oral microbiota: the overlooked catalyst in cancer initiation and progression. Front Cell Dev Biol 2025; 12:1479720. [PMID: 39872848 PMCID: PMC11769975 DOI: 10.3389/fcell.2024.1479720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The advancement of high-throughput sequencing technology in recent decades has led to a greater understanding of the components of the oral microbiota, providing a solid foundation for extensive research in this field. The oral microbiota plays an important role in an individual's overall health. It has been shown to be significantly correlated with chronic human diseases, including diabetes, rheumatoid arthritis, cardiovascular disease, periodontal disease, and Alzheimer's disease. Furthermore, tumor occurrence and development are closely related to the oral microbiome. Specific bacteria, such as Fusobacterium nucleatum (F. nucleatum), Porphyromonas gingivalis (P. gingivalis), Streptococcus, Streptomyces, Prevotella, and Fibrophagy gingivalis, play critical roles in cancer development. The oral microbiota has various oncogenic mechanisms, including bacterial inflammation, immunological suppression, tumor growth mediated by bacterial toxins, antiapoptotic activity, and carcinogenic effects. This paper reviews the role of the oral microbiota in the occurrence and progression of cancer and systematically elucidates the molecular mechanisms by which dysbiosis influences tumorigenesis and tumor progression. This information can provide a theoretical basis for exploring cancer treatment strategies and offer new insights for cancer prevention.
Collapse
Affiliation(s)
- Xinlin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Xin He
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
57
|
Furth N, Cohen N, Spitzer A, Salame TM, Dassa B, Mehlman T, Brandis A, Moussaieff A, Friedmann-Morvinski D, Castro MG, Fortin J, Suvà ML, Tirosh I, Erez A, Ron G, Shema E. Oncogenic IDH1 mut drives robust loss of histone acetylation and increases chromatin heterogeneity. Proc Natl Acad Sci U S A 2025; 122:e2403862122. [PMID: 39793065 PMCID: PMC11725805 DOI: 10.1073/pnas.2403862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2mut) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype. Yet, the complete depiction of the epigenetic alterations in IDHmut cells has not been thoroughly explored. Here, we applied an unbiased approach, leveraging epigenetic-focused cytometry by time-of-flight (CyTOF) analysis, to systematically profile the effect of mutant-IDH1 expression on a broad panel of histone modifications at single-cell resolution. This analysis revealed extensive remodeling of chromatin patterns by mutant-IDH1, with the most prominent being deregulation of histone acetylation marks. The loss of histone acetylation occurs rapidly following mutant-IDH1 induction and affects acetylation patterns over enhancers and intergenic regions. Notably, the changes in acetylation are not predominantly driven by 2-HG, can be rescued by pharmacological inhibition of mutant-IDH1, and reversed by acetate supplementations. Furthermore, cells expressing mutant-IDH1 show higher epigenetic and transcriptional heterogeneity and upregulation of oncogenes such as KRAS and MYC, highlighting its tumorigenic potential. Our study underscores the tight interaction between chromatin and metabolism dysregulation in glioma and highlights epigenetic and oncogenic pathways affected by mutant-IDH1-driven metabolic rewiring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Niv Cohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tevie Mehlman
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alexander Brandis
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem9112102, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurobiology, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Guy Ron
- Racah Institute of Physics, Hebrew University, Jerusalem9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
58
|
Wang R, Dong X, Zhang X, Liao J, Cui W, Li W. Exploring viral mimicry combined with epigenetics and tumor immunity: new perspectives in cancer therapy. Int J Biol Sci 2025; 21:958-973. [PMID: 39897033 PMCID: PMC11781167 DOI: 10.7150/ijbs.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Viral mimicry refers to an active antiviral response triggered by the activation of endogenous retroviruses (ERVs), usually manifested by the formation of double-stranded RNA (dsRNA) and activation of the cellular interferon response, which activates the immune system and produces anti-tumor effects. Epigenetic studies have shown that epigenetic modifications (e.g. DNA methylation, histone modifications, etc.) play a crucial role in tumorigenesis, progression, and treatment resistance. Particularly, alterations in DNA methylation may be closely associated with the suppression of ERVs expression, and treatment by demethylation may restore ERVs activity and thus strengthen the tumor immune response. Therefore, we propose that viral mimicry can induce immune responses in the tumor microenvironment by activating the expression of ERVs, and that epigenetic alterations may play a key regulatory role in this process. In this paper, we review the intersection of viral mimicry, epigenetics and tumor immunotherapy, and explore the possible interactions and synergistic effects among the three, aiming to provide a new theoretical basis and potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiongjian Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| |
Collapse
|
59
|
Huang C, Liu Z, Guo Y, Wang W, Yuan Z, Guan Y, Pan D, Hu Z, Sun L, Fu Z, Bian S. scCancerExplorer: a comprehensive database for interactively exploring single-cell multi-omics data of human pan-cancer. Nucleic Acids Res 2025; 53:D1526-D1535. [PMID: 39558175 PMCID: PMC11701644 DOI: 10.1093/nar/gkae1100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Genomic, epigenomic and transcriptomic alterations are hallmarks of cancer cells, and are closely connected. Especially, epigenetic regulation plays a critical role in tumorigenesis and progression. The growing single-cell epigenome data in cancer research provide new opportunities for data mining from a more comprehensive perspective. However, there is still a lack of databases designed for interactively exploring the single-cell multi-omics data of human pan-cancer, especially for the single-cell epigenome data. To fill in the gap, we developed scCancerExplorer, a comprehensive and user-friendly database to facilitate the exploration of the single-cell genome, epigenome (chromatin accessibility and DNA methylation), and transcriptome data of 50 cancer types. Five major modules were provided to explore those data interactively, including 'Integrated multi-omics analysis', 'Single-cell transcriptome', 'Single-cell epigenome', 'Single-cell genome' and 'TCGA analysis'. By simple clicking, users can easily investigate gene expression features, chromatin accessibility patterns, transcription factor activities, DNA methylation states, copy number variations and TCGA survival analysis results. Taken together, scCancerExplorer is distinguished from previous databases with rich and interactive functions for exploring the single-cell multi-omics data of human pan-cancer. It bridges the gap between single-cell multi-omics data and the end-users, and will facilitate progress in the field of cancer research. scCancerExplorer is freely accessible via https://bianlab.cn/scCancerExplorer.
Collapse
Affiliation(s)
- Changzhi Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zekai Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunlei Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanchu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Deng Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Linhua Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zan Fu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuhui Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
60
|
Wang Q, Ma C, Yang B, Zheng W, Liu X, Jian G. Dysregulation of DNA methylation in colorectal cancer: biomarker, immune regulation, and therapeutic potential. Int Immunopharmacol 2025; 145:113766. [PMID: 39644791 DOI: 10.1016/j.intimp.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with morbidity and mortality ranking third and second among all cancers, respectively. As a result of a sequence of genetic and DNA methylation alterations that gradually accumulate in the healthy colonic epithelium, colorectal adenomas and invasive adenocarcinomas eventually give rise to CRC. Global hypomethylation and promoter-specific DNA methylation are characteristics of CRC. The pathophysiological role of aberrant DNA methylation in malignant tumors has garnered significant interest in the last few decades. In addition, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. This review summarizes the most recent research on DNA methylation changes in CRC, including the role of DNA methylation-related enzymes in CRC tumorigenesis and biomarkers for diagnosis, predictive and prognostic. Besides, we focus on the emerging potential of epigenetic interventions to enhance antitumor immune responses and improve the CRC clinical practice.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China; Department of Pathology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bin Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenxin Zheng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xinya Liu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Gu Jian
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
61
|
Gambi G, Boccalatte F, Rodriguez Hernaez J, Lin Z, Nadorp B, Polyzos A, Tan J, Avrampou K, Inghirami G, Kentsis A, Apostolou E, Aifantis I, Tsirigos A. 3D chromatin hubs as regulatory units of identity and survival in human acute leukemia. Mol Cell 2025; 85:42-60.e7. [PMID: 39719705 PMCID: PMC11934262 DOI: 10.1016/j.molcel.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response. Single-cell mapping reveals heterogeneous gene activation in discrete epigenetic clones, aiding in patient stratification for relapse risk after chemotherapy. Finally, we identify MYB as a 3D hub regulator in leukemia cells and show that the targeting of key regulators leads to hub dissolution, thereby providing a novel and effective anti-leukemic strategy. Overall, our work demonstrates the relevance of studying oncogenic 3D hubs to better understand cancer biology and tumor heterogeneity and to propose novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Gambi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Javier Rodriguez Hernaez
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jimin Tan
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute and Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Departments of Pediatrics, Pharmacology, Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
62
|
Marangoni E. Patient-Derived Xenografts of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:109-121. [PMID: 39821023 DOI: 10.1007/978-3-031-70875-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Patient-derived xenografts (PDX) of breast cancer, obtained from the engraftment of tumour samples into immunodeficient mice, are the most effective preclinical models for studying the biology of human breast cancer and for the evaluation of new anti-cancer treatments. Notably, breast cancer PDX preserve the phenotypic and molecular characteristics of the donor tumours and reproduce the diversity of breast cancer. This preservation of breast cancer biology involves a number of different aspects, including tumour architecture and morphology, patterns of genomic alterations and gene expression, mutational status, and intra-tumour heterogeneity. For these reasons, these models have a strong predictive value in the translation of cancer therapeutics into clinical settings and can be considered as powerful and clinically relevant research tools for the identification of new treatments, mechanisms of drug resistance, and predictive biomarkers. PDX models have also been successfully used to analyse breast cancer metastasis and persister cancer cells surviving chemotherapy. Limitations of breast cancer PDX include the lack of a human immune system and the low take rate, especially for estrogen receptor (ER) and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France.
| |
Collapse
|
63
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
64
|
Onuselogu DA, Benz S, Mitra S. How Have Massively Parallel Sequencing Technologies Furthered Our Understanding of Oncogenesis and Cancer Progression? Methods Mol Biol 2025; 2866:265-286. [PMID: 39546208 DOI: 10.1007/978-1-0716-4192-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Massively parallel sequencing technologies have been a boon to many fields of biological science, including oncology. Cancer is an umbrella term for many diseases featuring abnormal cellular growth due to genetic and epigenetic aberrations. Advances in sequencing technology allow for interrogation of the DNA and RNA of cancer cells and other cells in the tumor microenvironment down to a single-base resolution. However, these strides come after a rich history of ground-breaking biological assays, like the discovery of the Philadelphia chromosome in the context of leukemia. Many specific genetic and epigenetic modifications have been implicated in oncogenesis, cancer progression, and response to treatment. Sequencing technologies have also helped to associate populations of bacteria in the microbiome to cancer development and prognosis. However, all this new information, especially when procured via high-throughput methods, comes at the cost of being more computationally and staff-resource intensive. There is also more risk to the privacy of the individuals with sequenced genomes. Notwithstanding, the overall benefit of sequencing technologies can greatly outweigh the risks with careful advancements and continued focus on the goal: helping those affected by cancer via precision medicine. Cancer biology has been and will continue to be elucidated by sequencing innovations in ways unimaginable without it.
Collapse
Affiliation(s)
| | - Saskia Benz
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Suparna Mitra
- Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
65
|
Levra Levron C, Elettrico L, Duval C, Piacenti G, Proserpio V, Donati G. Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization. Cell Death Differ 2025; 32:78-89. [PMID: 38228801 PMCID: PMC11742435 DOI: 10.1038/s41418-023-01254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells' epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.
Collapse
Affiliation(s)
- Chiara Levra Levron
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Luca Elettrico
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Carlotta Duval
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Gabriele Piacenti
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy.
| |
Collapse
|
66
|
Laisné M, Lupien M, Vallot C. Epigenomic heterogeneity as a source of tumour evolution. Nat Rev Cancer 2025; 25:7-26. [PMID: 39414948 DOI: 10.1038/s41568-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
In the past decade, remarkable progress in cancer medicine has been achieved by the development of treatments that target DNA sequence variants. However, a purely genetic approach to treatment selection is hampered by the fact that diverse cell states can emerge from the same genotype. In multicellular organisms, cell-state heterogeneity is driven by epigenetic processes that regulate DNA-based functions such as transcription; disruption of these processes is a hallmark of cancer that enables the emergence of defective cell states. Advances in single-cell technologies have unlocked our ability to quantify the epigenomic heterogeneity of tumours and understand its mechanisms, thereby transforming our appreciation of how epigenomic changes drive cancer evolution. This Review explores the idea that epigenomic heterogeneity and plasticity act as a reservoir of cell states and therefore as a source of tumour evolution. Best practices to quantify epigenomic heterogeneity and explore its various causes and consequences are discussed, including epigenomic reprogramming, stochastic changes and lasting memory. The design of new therapeutic approaches to restrict epigenomic heterogeneity, with the long-term objective of limiting cancer development and progression, is also addressed.
Collapse
Affiliation(s)
- Marthe Laisné
- CNRS UMR3244, Institut Curie, PSL University, Paris, France
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontorio, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontorio, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontorio, Canada.
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
67
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
68
|
Bell CC, Faulkner GJ, Gilan O. Chromatin-based memory as a self-stabilizing influence on cell identity. Genome Biol 2024; 25:320. [PMID: 39736786 DOI: 10.1186/s13059-024-03461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Cell types are traditionally thought to be specified and stabilized by gene regulatory networks. Here, we explore how chromatin memory contributes to the specification and stabilization of cell states. Through pervasive, local, feedback loops, chromatin memory enables cell states that were initially unstable to become stable. Deeper appreciation of this self-stabilizing role for chromatin broadens our perspective of Waddington's epigenetic landscape from a static surface with islands of stability shaped by evolution, to a plasticine surface molded by experience. With implications for the evolution of cell types, stabilization of resistant states in cancer, and the widespread plasticity of complex life.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4169, Australia
| | - Omer Gilan
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
69
|
Yan Z, Liu Y, Yuan Y. The plasticity of epithelial cells and its potential in the induced differentiation of gastric cancer. Cell Death Discov 2024; 10:512. [PMID: 39719478 DOI: 10.1038/s41420-024-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Cell plasticity refers to the deviation of cells from normal terminal differentiation states when faced with environmental and genetic toxic stresses, resulting in the phenomenon of transforming into other cell or tissue phenotypes. Unlocking phenotype plasticity has been defined as a hallmark of malignant tumors. The stomach is one of the organs in the body with the highest degree of self-renewal and exhibits significant cell plasticity. In this paper, based on the review of the characteristics of normal differentiation of gastric epithelial cells and their markers, the four main phenotypes of gastric epithelial cell remodeling and their relationship with gastric cancer (GC) are drawn. Furthermore, we summarize the regulatory factors and mechanisms that affect gastric epithelial cell plasticity and outline the current status of research and future prospection for the treatment targeting gastric epithelial cell plasticity. This study has important theoretical reference value for the in-depth exploration of epithelial cell plasticity and the tumor heterogeneity caused by it, as well as for the precise treatment of GC.
Collapse
Affiliation(s)
- Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
70
|
DiCiaccio B, Seehawer M, Li Z, Patmanidis A, Bui T, Foidart P, Nishida J, D'Santos CS, Papachristou EK, Papanastasiou M, Reiter AH, Qiu X, Li R, Jiang Y, Huang XY, Simeonov A, Kales SC, Rai G, Lal-Nag M, Jadhav A, Brown M, Carroll JS, Long HW, Polyak K. ZBTB7A is a modulator of KDM5-driven transcriptional networks in basal breast cancer. Cell Rep 2024; 43:114991. [PMID: 39570746 PMCID: PMC11694571 DOI: 10.1016/j.celrep.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024] Open
Abstract
We previously described that the KDM5B histone H3 lysine 4 demethylase is an oncogene in estrogen-receptor-positive breast cancer. Here, we report that KDM5A is amplified and overexpressed in basal breast tumors, and KDM5 inhibition (KDM5i) suppresses the growth of KDM5-amplified breast cancer cell lines. Using CRISPR knockout screens in a basal breast cancer cell line with or without KDM5i, we found that deletion of the ZBTB7A transcription factor and core SAGA complex sensitizes cells to KDM5i, whereas deletion of RHO-GTPases leads to resistance. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed co-localization of ZBTB7A and KDM5A/B at promoters with high histone H3K4me3 and dependence of KDM5A chromatin binding on ZBTB7A. ZBTB7A knockout altered the transcriptional response to KDM5i at NF-κB targets and mitochondrion-related pathways. High expression of ZBTB7A in triple-negative breast cancer is significantly associated with poor response to neoadjuvant chemotherapy. Our work furthers the understanding of KDM5-mediated gene regulation and identifies mediators of sensitivity to KDM5i.
Collapse
Affiliation(s)
- Benedetto DiCiaccio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Andriana Patmanidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Clive S D'Santos
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | | | | | - Andrew H Reiter
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Yun Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason S Carroll
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
71
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Tjeerdsma RB, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, van Vugt MATM, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. Mol Cell 2024; 84:4711-4728.e10. [PMID: 39536749 DOI: 10.1016/j.molcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of chromatin assembly factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyper-accessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. In turn, histone variants' usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a p53-dependent cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, indicating how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Janina Funk
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A VanInsberghe
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Richard Marsman
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Imke K Mandemaker
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Stefano G Manzo
- Oncode Institute, Utrecht, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
72
|
DeGeorgia S“N, Kaufman CK. Specific SOX10 enhancer elements modulate phenotype plasticity and drug resistance in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628224. [PMID: 39764051 PMCID: PMC11702536 DOI: 10.1101/2024.12.12.628224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown. In this study, we initially leverage the well-established zebrafish melanoma model as a high-throughput system to dissect and analyze transcriptional control elements that are hijacked by melanoma. We identify key characteristics of these elements, making them translatable to human enhancer identification despite the lack of direct sequence conservation. Building on our identification of a zebrafish sox10 enhancer necessary for melanoma initiation, we extend these findings to human melanoma, identifying two human upstream enhancer elements that are critical for full SOX10 expression. Stable biallelic deletion of these enhancers using CRISPR-Cas9 induces a distinct phenotype shift across multiple human melanoma cell lines from a melanocytic phenotype towards an undifferentiated phenotype and is also characterized by an increase in drug resistance that mirrors clinical data including an upregulation of NTRK1, a tyrosine kinase, and potential therapeutic target. These results provide new insights into the transcriptional regulation of SOX10 in human melanoma and underscore the role of individual enhancer elements and potentially NTRK1 in driving melanoma phenotype plasticity and drug resistance. Our work lays the groundwork for future gene-based and combination kinase-inhibitor therapies targeting SOX10 regulation and NTRK1 as a potential avenue for enhancing the efficacy of current melanoma treatments.
Collapse
Affiliation(s)
- Sophia “Noah” DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Charles K. Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| |
Collapse
|
73
|
Likasitwatanakul P, Li Z, Doan P, Spisak S, Raghawan AK, Liu Q, Liow P, Lee S, Chen D, Bala P, Sahgal P, Aitymbayev D, Thalappillil JS, Papanastasiou M, Hawkins W, Carr SA, Park H, Cleary JM, Qi J, Sethi NS. Chemical perturbations impacting histone acetylation govern colorectal cancer differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.626451. [PMID: 39713466 PMCID: PMC11661112 DOI: 10.1101/2024.12.06.626451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dysregulated epigenetic programs that restrict differentiation, reactivate fetal genes, and confer phenotypic plasticity are critical to colorectal cancer (CRC) development. By screening a small molecule library targeting epigenetic regulators using our dual reporter system, we found that inhibiting histone deacetylase (HDAC) 1/2 promotes CRC differentiation and anti-tumor activity. Comprehensive biochemical, chemical, and genetic experiments revealed that on-target blockade of the HDAC1/2 catalytic domain mediated the differentiated phenotype. Unbiased profiling of histone posttranslational modifications induced by HDAC1/2 inhibition nominated acetylation of specific histone lysine residues as potential regulators of differentiation. Genome-wide assessment of implicated marks indicated that H3K27ac gains at HDAC1/2-bound regions associated with open chromatin and upregulation of differentiation genes upon HDAC1/2 inhibition. Disrupting H3K27ac by degrading acetyltransferase EP300 rescued HDAC1/2 inhibitor-mediated differentiation of a patient-derived CRC model using single cell RNA-sequencing. Genetic screens revealed that DAPK3 contributes to CRC differentiation induced by HDAC1/2 inhibition. These results highlight the importance of specific chemically targetable histone modifications in governing cancer cell states and epigenetic reprogramming as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Pornlada Likasitwatanakul
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Zhixin Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Paul Doan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akhouri Kishore Raghawan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Qi Liu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Priscilla Liow
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sunwoo Lee
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Jennifer S. Thalappillil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malvina Papanastasiou
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - William Hawkins
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Haeseong Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nilay S. Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
74
|
Lai X, Liu M, Liu Y, Zhu X, Wang J. OCRClassifier: integrating statistical control chart into machine learning framework for better detecting open chromatin regions. Front Genet 2024; 15:1400228. [PMID: 39698466 PMCID: PMC11652186 DOI: 10.3389/fgene.2024.1400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 12/20/2024] Open
Abstract
Open chromatin regions (OCRs) play a crucial role in transcriptional regulation and gene expression. In recent years, there has been a growing interest in using plasma cell-free DNA (cfDNA) sequencing data to detect OCRs. By analyzing the characteristics of cfDNA fragments and their sequencing coverage, researchers can differentiate OCRs from non-OCRs. However, the presence of noise and variability in cfDNA-seq data poses challenges for the training data used in the noise-tolerance learning-based OCR estimation approach, as it contains numerous noisy labels that may impact the accuracy of the results. For current methods of detecting OCRs, they rely on statistical features derived from typical open and closed chromatin regions to determine whether a region is OCR or non-OCR. However, there are some atypical regions that exhibit statistical features that fall between the two categories, making it difficult to classify them definitively as either open or closed chromatin regions (CCRs). These regions should be considered as partially open chromatin regions (pOCRs). In this paper, we present OCRClassifier, a novel framework that combines control charts and machine learning to address the impact of high-proportion noisy labels in the training set and classify the chromatin open states into three classes accurately. Our method comprises two control charts. We first design a robust Hotelling T2 control chart and create new run rules to accurately identify reliable OCRs and CCRs within the initial training set. Then, we exclusively utilize the pure training set consisting of OCRs and CCRs to create and train a sensitized T2 control chart. This sensitized T2 control chart is specifically designed to accurately differentiate between the three categories of chromatin states: open, partially open, and closed. Experimental results demonstrate that under this framework, the model exhibits not only excellent performance in terms of three-class classification, but also higher accuracy and sensitivity in binary classification compared to the state-of-the-art models currently available.
Collapse
Affiliation(s)
- Xin Lai
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Min Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yuqian Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
75
|
De Velasco MA, Sakai K, Mitani S, Kura Y, Minamoto S, Haeno T, Hayashi H, Nishio K. A machine learning-based method for feature reduction of methylation data for the classification of cancer tissue origin. Int J Clin Oncol 2024; 29:1795-1810. [PMID: 39292320 PMCID: PMC11588780 DOI: 10.1007/s10147-024-02617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Genome DNA methylation profiling is a promising yet costly method for cancer classification, involving substantial data. We developed an ensemble learning model to identify cancer types using methylation profiles from a limited number of CpG sites. METHODS Analyzing methylation data from 890 samples across 10 cancer types from the TCGA database, we utilized ANOVA and Gain Ratio to select the most significant CpG sites, then employed Gradient Boosting to reduce these to just 100 sites. RESULTS This approach maintained high accuracy across multiple machine learning models, with classification accuracy rates between 87.7% and 93.5% for methods including Extreme Gradient Boosting, CatBoost, and Random Forest. This method effectively minimizes the number of features needed without losing performance, helping to classify primary organs and uncover subgroups within specific cancers like breast and lung. CONCLUSIONS Using a gradient boosting feature selector shows potential for streamlining methylation-based cancer classification.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Seiichiro Mitani
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Shuji Minamoto
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Takahiro Haeno
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan.
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan.
| |
Collapse
|
76
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
77
|
Gorse M, Bianchi C, Proudhon C. [Epigenetics and cancer: the role of DNA methylation]. Med Sci (Paris) 2024; 40:925-934. [PMID: 39705563 DOI: 10.1051/medsci/2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer. In particular, these markers, distributed along the genome, provide a wealth of information that offers potential for innovation in the field of liquid biopsy, in particular thanks to the emergence of artificial intelligence for diagnostic purposes. This could overcome the limitations related to sensitivities and specificities, which remain too low for the most difficult applications in oncology: the detection of cancers at an early stage, the monitoring of residual disease and the analysis of brain tumors. In addition, targeting the enzymatic processes that control the epigenome offers new therapeutic strategies that could reverse the regulatory anomalies of these altered epigenomes.
Collapse
Affiliation(s)
- Marine Gorse
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charlotte Proudhon
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| |
Collapse
|
78
|
Wang X, Sun Q, Liu T, Lu H, Lin X, Wang W, Liu Y, Huang Y, Huang G, Sun H, Chen Q, Wang J, Tian D, Yuan F, Liu L, Wang B, Gu Y, Liu B, Chen L. Single-cell multi-omics sequencing uncovers region-specific plasticity of glioblastoma for complementary therapeutic targeting. SCIENCE ADVANCES 2024; 10:eadn4306. [PMID: 39576855 PMCID: PMC11584018 DOI: 10.1126/sciadv.adn4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma (GBM) cells are highly heterogeneous and invasive, leading to treatment resistance and relapse. However, the molecular regulation in and distal to tumors remains elusive. Here, we collected paired tissues from the tumor core (TC) and peritumoral brain (PTB) for integrated snRNA-seq and snATAC-seq analyses. Tumor cells infiltrating PTB from TC behave more like oligodendrocyte progenitor cells than astrocytes at the transcriptome level. Dual-omics analyses further suggest that the distal regulatory regions in the tumor genome and specific transcription factors are potential determinants of regional heterogeneity. Notably, while activator protein 1 (AP-1) is active in all GBM states, its activity declines from TC to PTB, with another transcription factor, BACH1, showing the opposite trend. Combined inhibition of AP-1 and BACH1 more efficiently attenuates the tumor progression in mice and prolongs survival than either single-target treatment. Together, our work reveals marked molecular alterations of infiltrated GBM cells and a synergy of combination therapy targeting intratumor heterogeneity in and distal to GBM.
Collapse
Affiliation(s)
- Xin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| | - Qian Sun
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Haoran Lu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuyi Lin
- BGI Research, Hangzhou 310030, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yang Liu
- BGI Research, Hangzhou 310030, China
| | - Yunting Huang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Haixi Sun
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianxue Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Junmin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Daofeng Tian
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fan'en Yuan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
- BGI Research, Shenzhen 518083, China
| | - Ying Gu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baohui Liu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| |
Collapse
|
79
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
80
|
Wu PV, Fish M, Hazard FK, Zhu C, Vennam S, Walton H, Wagh D, Coller J, Przybyl J, Morri M, Neff N, West RB, Nusse R. A developmental biliary lineage program cooperates with Wnt activation to promote cell proliferation in hepatoblastoma. Nat Commun 2024; 15:10007. [PMID: 39567523 PMCID: PMC11579301 DOI: 10.1038/s41467-024-53802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Cancers evolve not only through the acquisition and clonal transmission of somatic mutations but also by epigenetic mechanisms that modify cell phenotype. Here, we use histology-guided and spatial transcriptomics to characterize hepatoblastoma, a childhood liver cancer that exhibits significant histologic and proliferative heterogeneity despite clonal activating mutations in the Wnt/β-catenin pathway. Highly proliferative regions with embryonal histology show high expression of Wnt target genes, the embryonic biliary transcription factor SOX4, and striking focal expression of the growth factor FGF19. In patient-derived tumoroids with constitutive Wnt activation, FGF19 is a required growth signal for FGF19-negative cells. Indeed, some tumoroids contain subsets of cells that endogenously express FGF19, downstream of Wnt/β-catenin and SOX4. Thus, the embryonic biliary lineage program cooperates with stabilized nuclear β-catenin, inducing FGF19 as a paracrine growth signal that promotes tumor cell proliferation, together with active Wnt signaling. In this pediatric cancer presumed to originate from a multipotent hepatobiliary progenitor, lineage-driven heterogeneity results in a functional growth advantage, a non-genetic mechanism whereby developmental lineage programs influence tumor evolution.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Matt Fish
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannah Walton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Population Health, NYC Health + Hospitals, New York, NY, 10004, USA
| | - Dhananjay Wagh
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - John Coller
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - Joanna Przybyl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Surgery, McGill University, Montreal, H4A 3J1, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
| | - Maurizio Morri
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
- Altos Labs, Redwood City, CA, 94065, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
81
|
Ankill J, Zhao Z, Tekpli X, Kure EH, Kristensen VN, Mathelier A, Fleischer T. Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation. PLoS Comput Biol 2024; 20:e1012565. [PMID: 39556603 DOI: 10.1371/journal.pcbi.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Norway, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
82
|
Zhu R, Ni J, Ren J, Li D, Xu J, Yu X, Ma YJ, Kou L. Transcriptomic era of cancers in females: new epigenetic perspectives and therapeutic prospects. Front Oncol 2024; 14:1464125. [PMID: 39605897 PMCID: PMC11598703 DOI: 10.3389/fonc.2024.1464125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
In the era of transcriptomics, the role of epigenetics in the study of cancers in females has gained increasing recognition. This article explores the impact of epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA, on cancers in females, including breast, cervical, and ovarian cancers (1). Our findings suggest that these epigenetic markers not only influence tumor onset, progression, and metastasis but also present novel targets for therapeutic intervention. Detailed analyses of DNA methylation patterns have revealed aberrant events in cancer cells, particularly promoter region hypermethylation, which may lead to silencing of tumor suppressor genes. Furthermore, we examined the complex roles of histone modifications and long non-coding RNAs in regulating the expression of cancer-related genes, thereby providing a scientific basis for developing targeted epigenetic therapies. Our research emphasizes the importance of understanding the functions and mechanisms of epigenetics in cancers in females to develop effective treatment strategies. Future therapeutic approaches may include drugs targeting specific epigenetic markers, which could not only improve therapeutic outcomes but also enhance patient survival and quality of life. Through these efforts, we aim to offer new perspectives and hope for the prevention, diagnosis, and treatment of cancers in females.
Collapse
Affiliation(s)
- Runhe Zhu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Ni
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayin Ren
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongye Li
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Xu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinru Yu
- The Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luan Kou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
83
|
Lee J, You C, Kwon G, Noh J, Lee K, Kim K, Kang K, Kang K. Integration of epigenomic and transcriptomic profiling uncovers EZH2 target genes linked to cysteine metabolism in hepatocellular carcinoma. Cell Death Dis 2024; 15:801. [PMID: 39516467 PMCID: PMC11549485 DOI: 10.1038/s41419-024-07198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2), a key protein implicated in various cancers including hepatocellular carcinoma (HCC), is recognized for its association with epigenetic dysregulation and pathogenesis. Despite clinical explorations into EZH2-targeting therapies, the mechanisms underlying its role in gene suppression in HCC have remained largely unexplored. Here, we integrate epigenomic and transcriptomic analyses to uncover the transcriptional landscape modulated by selective EZH2 inhibition in HCC. By reanalyzing transcriptomic data of HCC patients, we demonstrate that EZH2 overexpression correlates with poor patient survival. Treatment with the EZH2 inhibitor tazemetostat restored expression of genes involved in cysteine-methionine metabolism and lipid homeostasis, while suppressing angiogenesis and oxidative stress-related genes. Mechanistically, we demonstrate EZH2-mediated H3K27me3 enrichment at cis-regulatory elements of transsulfuration pathway genes, which is reversed upon inhibition, leading to increased chromatin accessibility. Among 16 EZH2-targeted candidate genes, BHMT and CDO1 were notably correlated with poor HCC prognosis. Tazemetostat treatment of HCC cells increased BHMT and CDO1 expression while reducing levels of ferroptosis markers FSP1, NFS1, and SLC7A11. Functionally, EZH2 inhibition dose-dependently reduced cell viability and increased lipid peroxidation in HCC cells. Our findings reveal a novel epigenetic mechanism controlling lipid peroxidation and ferroptosis susceptibility in HCC, providing a rationale for exploring EZH2-targeted therapies in this malignancy.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Geunho Kwon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junho Noh
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
84
|
Smith CIE, Burger JA, Zain R. Estimating the Number of Polygenic Diseases Among Six Mutually Exclusive Entities of Non-Tumors and Cancer. Int J Mol Sci 2024; 25:11968. [PMID: 39596040 PMCID: PMC11593959 DOI: 10.3390/ijms252211968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In the era of precision medicine with increasing amounts of sequenced cancer and non-cancer genomes of different ancestries, we here enumerate the resulting polygenic disease entities. Based on the cell number status, we first identified six fundamental types of polygenic illnesses, five of which are non-cancerous. Like complex, non-tumor disorders, neoplasms normally carry alterations in multiple genes, including in 'Drivers' and 'Passengers'. However, tumors also lack certain genetic alterations/epigenetic changes, recently named 'Goners', which are toxic for the neoplasm and potentially constitute therapeutic targets. Drivers are considered essential for malignant transformation, whereas environmental influences vary considerably among both types of polygenic diseases. For each form, hyper-rare disorders, defined as affecting <1/108 individuals, likely represent the largest number of disease entities. Loss of redundant tumor-suppressor genes exemplifies such a profoundly rare mutational event. For non-tumor, polygenic diseases, pathway-centered taxonomies seem preferable. This classification is not readily feasible in cancer, but the inclusion of Drivers and possibly also of epigenetic changes to the existing nomenclature might serve as initial steps in this direction. Based on the detailed genetic alterations, the number of polygenic diseases is essentially countless, but different forms of nosologies may be used to restrict the number.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
85
|
Li J, Long S, Yang Z, Wei W, Yu S, Liu Q, Hui X, Li X, Wang Y. Single-cell transcriptomics reveals IRF7 regulation of the tumor microenvironment in isocitrate dehydrogenase wild-type glioma. MedComm (Beijing) 2024; 5:e754. [PMID: 39492838 PMCID: PMC11531655 DOI: 10.1002/mco2.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) are important markers of glioma prognosis. However, few studies have examined the gene expression regulatory network (GRN) in IDH-mutant and wild-type gliomas. In this study, single-cell RNA sequencing and spatial transcriptome sequencing were used to analyze the GRN of cell subsets in patients with IDH-mutant and wild-type gliomas. Through gene transcriptional regulation analysis, we identified the M4 module, whose transcription factor activity is highly expressed in IDH wild-type gliomas compared to IDH-mutants. Enrichment analysis revealed that these genes were predominantly expressed in microglia and macrophages, with significant enrichment in interferon-related signaling pathways. Interferon regulatory factor 7 (IRF7), a transcription factor within this pathway, showed the highest percentage of enrichment and was primarily localized in the core region of wild-type IDH tumors. A machine-learning prognostic model identified novel subgroups within the wild-type IDH population. Additionally, IRF7 was shown to promote the proliferation and migration of T98G and U251 cells in vitro, and its knockdown affected glioma cell proliferation in vivo. This study systematically established the regulatory mechanism of IDH transcriptional activity in gliomas at the single-cell level and drew a corresponding cell map. The study presents a transcriptional regulatory activity map for IDH wild-type gliomas, involving single-cell RNA sequencing and spatial transcriptomics to identify gene regulatory networks, machine learning models for IDH subtyping, and experimental validation, highlighting the role of IRF7 in glioma progression.
Collapse
Affiliation(s)
- Jinwei Li
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Shengrong Long
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhang Yang
- Department of Vascular SurgeryFuwai Yunnan Cardiovascular HospitalAffiliated Cardiovascular Hospital of Kunming Medical UniversityKunmingChina
| | - Wei Wei
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Shuangqi Yu
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Quan Liu
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina
| | - Xuhui Hui
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Xiang Li
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
86
|
Chung DJ, Wang CH, Liu PJ, Ng SK, Luo CK, Jwo SH, Li CT, Hsu DY, Fan CC, Wei TT. Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC. Cancer Gene Ther 2024; 31:1734-1748. [PMID: 39358564 DOI: 10.1038/s41417-024-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with an increasing annual incidence. Cancer stem cells (CSCs) play important roles in the occurrence, development, recurrence, and metastasis of CRC. The molecular mechanism regulating the development of colorectal CSCs remains unclear. The discovery of human induced pluripotent stem cells (hiPSCs) through somatic cell reprogramming has revolutionized the fields of stem cell biology and translational medicine. In the present study, we converted hiPSCs into cancer stem-like cells by culture with conditioned medium (CM) from CRC cells. These transformed cells, termed hiPSC-CSCs, displayed cancer stem-like properties, including a spheroid morphology and the expression of both pluripotency and CSC markers. HiPSC-CSCs showed tumorigenic and metastatic abilities in mouse models. The epithelial-mesenchymal transition phenotype was observed in hiPSC-CSCs, which promoted their migration and angiogenesis. Interestingly, upregulation of C-MYC was observed during the differentiation of hiPSC-CSCs. Mechanistically, CREB binding protein (CBP) bound to the C-MYC promoter, while histone deacetylase 1 and 3 (HDAC1/3) dissociated from the promoter, ultimately leading to an increase in histone acetylation and C-MYC transcriptional activation during the differentiation of hiPSC-CSCs. Pharmacological treatment with a CBP inhibitor or abrogation of CBP expression with a CRISPR/Cas9-based strategy reduced the stemness of hiPSC-CSCs. This study demonstrates for the first time that colorectal CSCs can be generated from hiPSCs. The upregulation of C-MYC via histone acetylation plays a crucial role during the conversion process. Inhibition of CBP is a potential strategy for attenuating the stemness of colorectal CSCs.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Pin-Jung Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Si-Han Jwo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chin-Tzu Li
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Dai-Yi Hsu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Chu Fan
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
87
|
Kobrossy L, Xu W, Zhang C, Feng W, Turner CE, Cosgrove MS. Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation. J Biol Chem 2024; 300:107825. [PMID: 39342993 PMCID: PMC11541820 DOI: 10.1016/j.jbc.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1F) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1F-leukemic stem cells (MLL1F-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear. In our investigation, we introduced a homozygous loss-of-function point mutation in MLL1 within human-induced pluripotent stem cells. This mutation mimics the histone methylation, gene expression, and epithelial-mesenchymal transition phenotypes of MLL1F-LSCs-without requiring a translocation or functional WT MLL1. The mutation caused a genome-wide redistribution of the H3K4 trimethyl mark and upregulated LSC-maintenance genes like HoxA9-A13, Meis1, and the HOTTIP long noncoding RNA. Epithelial-mesenchymal transition markers such as ZEB1, SNAI2, and HIC-5 were also increased leading to enhanced cellular migration and invasiveness. These observations underscore the essential role of MLL1's enzymatic activity in restraining the cascade of epigenetic changes associated with the gene-activating H3K4 trimethylation mark, which we show may be catalyzed by mislocalized SETd1a H3K4 trimethyltransferase in the absence of MLL1's enzymatic activity. Challenging existing models, our findings imply that MLL1F-induced leukemias arise from a dominant-negative impact on MLL1's histone methyltransferase activity. We propose targeting SETd1a in precision medicine as a new therapeutic approach for MLL1-associated leukemias.
Collapse
Affiliation(s)
- Laila Kobrossy
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States.
| |
Collapse
|
88
|
Ge AY, Arab A, Dai R, Navickas A, Fish L, Garcia K, Asgharian H, Goudreau J, Lee S, Keenan K, Pappalardi MB, McCabe MT, Przybyla L, Goodarzi H, Gilbert LA. A multiomics approach reveals RNA dynamics promote cellular sensitivity to DNA hypomethylation. Sci Rep 2024; 14:25940. [PMID: 39472491 PMCID: PMC11522420 DOI: 10.1038/s41598-024-77314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The search for new approaches in cancer therapy requires a mechanistic understanding of cancer vulnerabilities and anti-cancer drug mechanisms of action. Problematically, some effective therapeutics target cancer vulnerabilities that have poorly defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline therapeutic approved for the treatment of high-risk acute myeloid leukemia (AML). Decitabine is thought to kill cancer cells selectively via inhibition of DNA methyltransferase enzymes, but the genes and mechanisms involved remain unclear. Here, we apply an integrated multiomics and CRISPR functional genomics approach to identify genes and processes associated with response to decitabine in AML cells. Our integrated multiomics approach reveals RNA dynamics are key regulators of DNA hypomethylation induced cell death. Specifically, regulation of RNA decapping, splicing and RNA methylation emerge as important regulators of cellular response to decitabine.
Collapse
Affiliation(s)
- Alex Y Ge
- School of Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Abolfazl Arab
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Raymond Dai
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Albertas Navickas
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lisa Fish
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kristle Garcia
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Hosseinali Asgharian
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jackson Goudreau
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sean Lee
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kathryn Keenan
- Tumor Cell Targeting Research Unit, Research, GSK, Collegeville, PA, 19426, USA
| | | | - Michael T McCabe
- Tumor Cell Targeting Research Unit, Research, GSK, Collegeville, PA, 19426, USA
| | - Laralynne Przybyla
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
| | - Hani Goodarzi
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
89
|
Liu Y, Duan Y, Bai T, Kong D. Hypermethylation of the sodium channel beta subunit gene promoter is associated with colorectal cancer. Hereditas 2024; 161:39. [PMID: 39415304 PMCID: PMC11484387 DOI: 10.1186/s41065-024-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
AIMS To better understand the role of sodium channel beta subunit (SCNN1B) in the initiation and progression of colorectal cancer (CRC) and to identify potential biomarkers for the early detection and prognosis of CRC. METHODS A total of 74 pairs of CRC tissues and their adjacent normal tissues were collected between October 2016 and November 2017. The methylation levels of the SCNN1B promoter region in CRC tissues and their adjacent normal tissues were investigated by pyrosequencing. The expression of both SCNN1B mRNA and protein were detected by RT‒qPCR and immunohistochemistry, respectively. RESULTS The results showed that the methylation levels of the SCNN1B promoter region were significantly higher in CRC tissues than in adjacent normal tissues. The expression levels of SCNN1B mRNA and protein were significantly lower in the CRC tissues than in their adjacent normal tissues. Moreover, Pearson's correlation analysis showed that the methylation levels of the SCNN1B promoter were negatively correlated with the SCNN1B mRNA levels in CRC tissues. In addition, the high methylation levels and low mRNA expression of SCNN1B showed a significant association with advanced tumour stage, increased risk of lymph node metastasis and poor prognosis of CRC patients. CONCLUSION This study suggested that the decreased expression of SCNN1B due to its promoter hypermethylation may play an important role in the progression and prognosis of CRC, and the methylation levels of the SCNN1B promoter may serve as an effective molecular marker for predicting the progression and prognosis of CRC.
Collapse
Affiliation(s)
- Yabin Liu
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ya Duan
- Department of Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei, 050011, P.R. China
| | - Tianliang Bai
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, P.R. China
| | - Dexian Kong
- Department of Endocrinology, Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
90
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
91
|
Fischetti I, De Luca M, Jachetti E. Exploring the role of EZH2 modulation in shaping the tumor microenvironment. Epigenomics 2024; 16:1265-1268. [PMID: 39387445 PMCID: PMC11534139 DOI: 10.1080/17501911.2024.2410693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Irene Fischetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michele De Luca
- Integrated Biology of Rare Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
92
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
93
|
Chen Y, Zhuo R, Sun L, Tao Y, Li G, Zhu F, Xu Y, Wang J, Li Z, Yu J, Yin H, Wu D, Li X, Fang F, Xie Y, Hu Y, Wang H, Yang C, Shi L, Wang X, Zhang Z, Pan J. Super-enhancer-driven IRF2BP2 enhances ALK activity and promotes neuroblastoma cell proliferation. Neuro Oncol 2024; 26:1878-1894. [PMID: 38864832 PMCID: PMC11449008 DOI: 10.1093/neuonc/noae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2, and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSIONS Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of the NB susceptibility gene ALK.
Collapse
Affiliation(s)
- Yanling Chen
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lichao Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Frank Zhu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yunyun Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Hongli Yin
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Di Wu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hairong Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lei Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Wang
- Department of Orthopedics, Children’s Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
94
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
95
|
Xu M, Hong JJ, Zhang X, Sun M, Liu X, Kang J, Stack H, Fang W, Lei H, Lacoste X, Okada R, Jung R, Nguyen R, Shern JF, Thiele CJ, Liu Z. Targeting SWI/SNF ATPases reduces neuroblastoma cell plasticity. EMBO J 2024; 43:4522-4541. [PMID: 39174852 PMCID: PMC11480351 DOI: 10.1038/s44318-024-00206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.
Collapse
Affiliation(s)
- Man Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jason J Hong
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ming Sun
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xingyu Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jeeyoun Kang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Stack
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wendy Fang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xavier Lacoste
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Reona Okada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Raina Jung
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
96
|
Takagi K, Takagi M, Hiyama G, Goda K. A deep-learning model for characterizing tumor heterogeneity using patient-derived organoids. Sci Rep 2024; 14:22769. [PMID: 39354045 PMCID: PMC11445485 DOI: 10.1038/s41598-024-73725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Genotypic and phenotypic diversity, which generates heterogeneity during disease evolution, is common in cancer. The identification of features specific to each patient and tumor is central to the development of precision medicine and preclinical studies for cancer treatment. However, the complexity of the disease due to inter- and intratumor heterogeneity increases the difficulty of effective analysis. Here, we introduce a sequential deep learning model, preprocessing to organize the complexity due to heterogeneity, which contrasts with general approaches that apply a single model directly. We characterized morphological heterogeneity using microscopy images of patient-derived organoids (PDOs) and identified gene subsets relevant to distinguishing differences among original tumors. PDOs, which reflect the features of their origins, can be reproduced in large quantities and varieties, contributing to increasing the variation by enhancing their common characteristics, in contrast to those from different origins. This resulted in increased efficiency in the extraction of organoid morphological features sharing the same origin. Linking these tumor-specific morphological features to PDO gene expression data enables the extraction of genes strongly correlated with intertumor differences. The relevance of the selected genes was assessed, and the results suggest potential applications in preclinical studies and personalized clinical care.
Collapse
Affiliation(s)
- Kosuke Takagi
- Research and Development, Advanced Core Technology Japan Unit 2, Evident Corp. Hachioji, 192-0033, Tokyo, Japan
| | - Motoki Takagi
- Translational Research Center, Fukushima Medical University, 960-1295, Fukushima, Japan.
- JeiserBio Inc, 220-0004, Yokohama, Japan.
| | - Gen Hiyama
- Translational Research Center, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Kazuhito Goda
- Research and Development, Advanced Biological Engineering Japan, Evident Corp., 192-0033, Hachioji, Japan
| |
Collapse
|
97
|
Di Marco T, Mazzoni M, Greco A, Cassinelli G. Non-oncogene dependencies: Novel opportunities for cancer therapy. Biochem Pharmacol 2024; 228:116254. [PMID: 38704100 DOI: 10.1016/j.bcp.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Targeting oncogene addictions have changed the history of subsets of malignancies and continues to represent an excellent therapeutic opportunity. Nonetheless, alternative strategies are required to treat malignancies driven by undruggable oncogenes or loss of tumor suppressor genes and to overcome drug resistance also occurring in cancers addicted to actionable drivers. The discovery of non-oncogene addiction (NOA) uncovered novel therapeutically exploitable "Achilles' heels". NOA refers to genes/pathways not oncogenic per sé but essential for the tumor cell growth/survival while dispensable for normal cells. The clinical success of several classes of conventional and molecular targeted agents can be ascribed to their impact on both tumor cell-associated intrinsic as well as microenvironment-related extrinsic NOA. The integration of genetic, computational and pharmacological high-throughput approaches led to the identification of an expanded repertoire of synthetic lethality interactions implicating NOA targets. Only a few of them have been translated into the clinics as most NOA vulnerabilities are not easily druggable or appealing targets. Nonetheless, their identification has provided in-depth knowledge of tumor pathobiology and suggested novel therapeutic opportunities. Here, we summarize conceptual framework of intrinsic and extrinsic NOA providing exploitable vulnerabilities. Conventional and emerging methodological approaches used to disclose NOA dependencies are reported together with their limits. We illustrate NOA paradigmatic and peculiar examples and outline the functional/mechanistic aspects, potential druggability and translational interest. Finally, we comment on difficulties in exploiting the NOA-generated knowledge to develop novel therapeutic approaches to be translated into the clinics and to fully harness the potential of clinically available drugs.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Mara Mazzoni
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
98
|
Jaiswal A, Shrivastav S, Kushwaha HR, Chaturvedi R, Singh RP. Oncogenic potential of SARS-CoV-2-targeting hallmarks of cancer pathways. Cell Commun Signal 2024; 22:447. [PMID: 39327555 PMCID: PMC11426004 DOI: 10.1186/s12964-024-01818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death. Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis. Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, potentially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activating host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and pathways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular components involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infection and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer consequences.
Collapse
Affiliation(s)
- Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanah Shrivastav
- SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
99
|
Zhang Y, Zhang S. CRISPR perfect adaptation for robust control of cellular immune and apoptotic responses. Nucleic Acids Res 2024; 52:10005-10016. [PMID: 39087566 PMCID: PMC11381330 DOI: 10.1093/nar/gkae665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
A central challenge in the quest for precise gene regulation within mammalian cells is the development of regulatory networks that can achieve perfect adaptation-where outputs consistently return to a set baseline post-stimulus. Here, we present such a system that leverages the CRISPR activation (CRISPRa) and anti-CRISPR proteins as two antithetic elements to establish perfect adaptation in mammalian cells and dynamically regulate gene expression. We demonstrate that this system can maintain stable expression levels of target genes in the face of external perturbations, thus providing a robust platform for biological applications. The versatility of our system is further showcased through its integration with endogenous regulatory mechanisms in T cells, such as the NF-κB-mediated immune response, and its ability to program apoptosis responses for precise spatial and temporal control of cellular growth and death. This study not only advances our understanding of gene regulation in mammalian cells but also opens new avenues for therapeutic intervention, particularly in diseases characterized by dysregulated gene expression.
Collapse
Affiliation(s)
- Yichi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
100
|
Hassan M, Tutar L, Sari-Ak D, Rasul A, Basheer E, Tutar Y. Non-genetic heterogeneity and immune subtyping in breast cancer: Implications for immunotherapy and targeted therapeutics. Transl Oncol 2024; 47:102055. [PMID: 39002207 PMCID: PMC11299575 DOI: 10.1016/j.tranon.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Breast cancer (BC) is a complex and multifactorial disease, driven by genetic alterations that promote tumor growth and progression. However, recent research has highlighted the importance of non-genetic factors in shaping cancer evolution and influencing therapeutic outcomes. Non-genetic heterogeneity refers to diverse subpopulations of cancer cells within breast tumors, exhibiting distinct phenotypic and functional properties. These subpopulations can arise through various mechanisms, including clonal evolution, genetic changes, epigenetic changes, and reversible phenotypic transitions. Although genetic and epigenetic changes are important points of the pathology of breast cancer yet, the immune system also plays a crucial role in its progression. In clinical management, histologic and molecular classification of BC are used. Immunological subtyping of BC has gained attention in recent years as compared to traditional techniques. Intratumoral heterogeneity revealed by immunological microenvironment (IME) has opened novel opportunities for immunotherapy research. This systematic review is focused on non-genetic variability to identify and interlink immunological subgroups in breast cancer. This review provides a deep understanding of adaptive methods adopted by tumor cells to withstand changes in the tumor microenvironment and selective pressure imposed by medications. These adaptive methods include alterations in drug targets, immune system evasion, activation of survival pathways, and alterations in metabolism. Understanding non-genetic heterogeneity is essential for the development of targeted therapies.
Collapse
Affiliation(s)
- Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical, Sciences Government College University Faisalabad, Pakistan
| | - Yusuf Tutar
- Faculty of Medicine, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|