51
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
52
|
Butenko S, Nagalla RR, Guerrero-Juarez CF, Palomba F, David LM, Nguyen RQ, Gay D, Almet AA, Digman MA, Nie Q, Scumpia PO, Plikus MV, Liu WF. Hydrogel crosslinking modulates macrophages, fibroblasts, and their communication, during wound healing. Nat Commun 2024; 15:6820. [PMID: 39122702 PMCID: PMC11315930 DOI: 10.1038/s41467-024-50072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024] Open
Abstract
Biomaterial wound dressings, such as hydrogels, interact with host cells to regulate tissue repair. This study investigates how crosslinking of gelatin-based hydrogels influences immune and stromal cell behavior and wound healing in female mice. We observe that softer, lightly crosslinked hydrogels promote greater cellular infiltration and result in smaller scars compared to stiffer, heavily crosslinked hydrogels. Using single-cell RNA sequencing, we further show that heavily crosslinked hydrogels increase inflammation and lead to the formation of a distinct macrophage subpopulation exhibiting signs of oxidative activity and cell fusion. Conversely, lightly crosslinked hydrogels are more readily taken up by macrophages and integrated within the tissue. The physical properties differentially affect macrophage and fibroblast interactions, with heavily crosslinked hydrogels promoting pro-fibrotic fibroblast activity that drives macrophage fusion through RANKL signaling. These findings suggest that tuning the physical properties of hydrogels can guide cellular responses and improve healing, offering insights for designing better biomaterials for wound treatment.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raji R Nagalla
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | | | - Francesco Palomba
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Li-Mor David
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Ronald Q Nguyen
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Denise Gay
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Axel A Almet
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Dermatology, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, CA, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
53
|
DeStefano S, Hartigan DR, Josyula A, Faust M, Fertil D, Lokwani R, Ngo TB, Sadtler K. Conserved and tissue-specific immune responses to biologic scaffold implantation. Acta Biomater 2024; 184:68-80. [PMID: 38879103 DOI: 10.1016/j.actbio.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Upon implantation into a patient, any biomaterial induces a cascade of immune responses that influences the outcome of that device. This cascade depends upon several factors, including the composition of the material itself and the location in which the material is implanted. There is still significant uncertainty around the role of different tissue microenvironments in the immune response to biomaterials and how that may alter downstream scaffold remodeling and integration. In this study, we present a study evaluating the immune response to decellularized extracellular matrix materials within the intraperitoneal cavity, the subcutaneous space, and in a traumatic skeletal muscle injury microenvironment. All different locations induced robust cellular recruitment, specifically of macrophages and eosinophils. The latter was most prominent in the subcutaneous space. Intraperitoneal implants uniquely recruited B cells that may alter downstream reactivity as adaptive immunity has been strongly implicated in the outcome of scaffold remodeling. These data suggest that the location of tissue implants should be taken together with the composition of the material itself when designing devices for downline therapeutics. STATEMENT OF SIGNIFICANCE: Different tissue locations have unique immune microenvironments, which can influence the immune response to biomaterial implants. By considering the specific immune profiles of the target tissue, researchers can develop implant materials that promote better integration, reduce complications, and improve the overall outcome of the implantation process.
Collapse
Affiliation(s)
- Sabrina DeStefano
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Devon R Hartigan
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aditya Josyula
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mondreakest Faust
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daphna Fertil
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ravi Lokwani
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tran B Ngo
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
54
|
Cui Y, He J, Yu Z, Zhou S, Cao D, Jiang T, Fang B, Li G. Adipose-derived stem cells transplantation improves survival and alleviates contraction of skin grafts via promoting macrophages M2 polarization. Skin Res Technol 2024; 30:e13918. [PMID: 39171846 PMCID: PMC11339854 DOI: 10.1111/srt.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Full-thickness skin grafts are widely used in plastic and reconstructive surgery. The main limitation of skin grafting is the poor textural durability and associated contracture, which often needs further corrective surgery. Excessive inflammation is the main reason for skin graft contractions, which involve overactivation of myofibroblasts. These problems have prompted the development of new therapeutic approaches, including macrophage polarization modulation and stem cell-based therapies. Currently, adipose-derived stem cells (ASCs) have shown promise in promoting skin grafts survival and regulating macrophage phenotypes. However, the roles of ASCs on macrophages in decreasing skin grafts contraction remain unknown. MATERIALS AND METHODS Rat adipose-derived stem cells (rASCs) were isolated from rat inguinal adipose tissues. Full-thickness skin graft model was constructed on male rats divided into control group and rASCs treatment group. Skin graft was assessed for concentration, elasticity modulus and stiffness. Rat bone marrow-derived macrophages (rBMDMs) were isolated from rat femurs, and subsequent RT-qPCR and coculture assays were carried out to explore the cellular mechanisms. Immunohistochemical and immunofluorescence staining were used to verify mechanisms in vivo. RESULTS In vivo results showed that after injection of ASCs, improved texture, increased survival and inhibited contraction of skin grafts were seen. Vascularization was also improved as illustrated by laser perfusion image and vascular endothelial growth factor (VEGF) concentration. Histological analysis revealed that ASCs injection significantly reduced expression of pro-inflammatory cytokines (TNF-a, IL-1β) and increased expression of anti-inflammatory (IL-10) and pro-healing cytokines (IGF-1). At cellular level, after co-culturing with rASCs, rat bone marrow derived macrophages (rBMDMs) favored M2 polarization even under inflammatory stimulus. CONCLUSION ASCs treatment enhanced vascularization via angiogenic cytokines secretion and alleviated inflammatory environment in skin grafts by driving M2 macrophages polarization, which improved survival and decreased skin grafts contraction. Our work showed that ASCs transplantation can be harnessed to enhance therapeutic efficacy of skin grafting in cutaneous defects treatment.
Collapse
Affiliation(s)
- Yuying Cui
- Department of Plastic and Reconstructive SurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jiahao He
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheyuan Yu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sizheng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dejun Cao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Taoran Jiang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Fang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guangshuai Li
- Department of Plastic and Reconstructive SurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenanChina
| |
Collapse
|
55
|
Ahmad I, Xuan T, Wang Q, Zhang S, Wang L, Gu J, Qi F, Luan W. Bacterial Lipoteichoic Acid Induces Capsular Contracture by Activating Innate Immune Response. Plast Reconstr Surg 2024; 154:333-342. [PMID: 37699551 DOI: 10.1097/prs.0000000000011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Capsular contracture is attributed to an exaggerated fibrosis response within the capsule and is partly associated with bacterial contamination in situ. However, the cellular mechanisms that initiate this response are unclear. METHODS The authors developed a mouse model of capsular contracture by repeated injection of 10 μg/mL lipoteichoic acid (LTA). The histological changes in the capsule tissue were measured by hematoxylin and eosin, Masson trichrome, and immunohistochemical staining. The expression of cytokines was measured by quantitative reverse transcription polymerase chain reaction. The authors also used pharmacological methods to verify the roles of macrophages and toll-like receptor 2 (TLR2) signaling in this pathological process. RESULTS The authors discovered that repeated LTA injection, at a low concentration, could induce thickening of the capsule tissue. Macrophage infiltration and TLR2/nuclear factor-κB signaling activated in this process could be suppressed by macrophage depletion or TLR2 receptor inhibition. CONCLUSION As TLR2 signal activation was found to cause capsular contracture by inducing macrophage infiltration as a consequence of trace amounts of LTA contamination in situ, this target is helpful for understanding that chronic or repeated subclinical infection can activate capsular contracture. CLINICAL RELEVANCE STATEMENT This finding is of significant importance for understanding that chronic or repeated subclinical infection could activate a persistent immune response and capsular contracture, and provides novel strategies to interfere with the formation of capsular contracture.
Collapse
Affiliation(s)
- Ikram Ahmad
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Tianfan Xuan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
- Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Jiangnan University
| | - Qiang Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Simin Zhang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Lu Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Jianying Gu
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Wenjie Luan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
56
|
Wang K, Dong Y, Gan D, Zhang Y, Lai Y, Liu P. Polydopamine-armored zeolitic imidazolate framework-8-incorporated zwitterionic hydrogel with multifunctional properties for infected wound healing. Int J Biol Macromol 2024; 274:133464. [PMID: 38945331 DOI: 10.1016/j.ijbiomac.2024.133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Diabetic skin wound healing is compromised by bacterial infections, oxidative stress, and vascular disruption, leading to delayed recovery and potential complications. This study developed an antibacterial, antioxidant, and adhesive hydrogel dressing that promotes rapid bacterial-infected diabetic wound healing using the biological macromolecule of polydopamine (PDA). This hydrogel comprised PDA-armored zeolitic imidazolate framework-8 nanoparticles (PDA@ZIF-8 NPs) combined with a second armor of zwitterionic polymer network (poly(acrylamide-co-sulfobetaine methacrylate); PAS), realizing low concentration Zn2+ release, good adhesion (14.7 kPa for porcine skin), and improved tensile strength (83.2 kPa). The hydrogel exhibited good antibacterial efficacy against both Staphylococcus aureus (S. aureus, 92.8 %), Escherichia coli (E. coli, 99.6 %) and methicillin-resistant S. aureus (MRSA, 99.2 %), which was attributed to the properties of the incorporated PDA@ZIF-8 NPs. Notably, in vitro, the PDA@ZIF-8 PAS hydrogel not only promoted fibroblast proliferation and migration but also facilitated endothelial cell angiogenesis. In vivo, the PDA@ZIF-8 PAS hydrogel retained its Zn2+-releasing function and effectively suppressed bacterial growth in infected wounds, thereby accelerating the regeneration of both normal and diabetic wounds. This multiarmored hydrogel is a promising sustained-release carrier for functional metal ions and drugs, making it applicable for not only skin healing, but potentially the regeneration of other complex tissues.
Collapse
Affiliation(s)
- Kangkang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yaning Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yu Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Youjin Lai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
57
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
58
|
Zhang J, Li X, Cheng M, Wan K, Yan S, Peng W, Duan G, Wu Y, Wen L. MoO 3-X nanodots coated suture for combating surgical site infection via antibacterial and anti-inflammatory properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102757. [PMID: 38889854 DOI: 10.1016/j.nano.2024.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Surgical site infection (SSI) significantly affects patient recovery time, health outcomes and quality of life which is closely associated with the use of implants or mesh. Sutures are the most frequently used implants that play a significant role in the development of SSI. Studies have demonstrated that the administration of effective bactericidal and anti-inflammatory treatments can significantly decrease the incidence of SSI. To address this concern, a versatile suture was engineered by coating MoO3-X nanodots in this study. The incorporation of MoO3-X nanodots endowed the suture with desirable antibacterial and anti-inflammatory properties that were evaluated in in vitro and in vivo experiments. The results showed its remarkable ability to facilitate wound healing and prevent SSI through its dual action of combating bacterial infection and reducing inflammation. These findings highlight the promising potential of this multifunctional surgical suture as a versatile tool to promote better outcomes in surgical procedures.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Xuexiao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Ming Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Kaichen Wan
- Department of osteology, The First Affiliated Hospital of Soochow University, Jiangsu 215000, China
| | - Shangcheng Yan
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Wei Peng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China.
| | - Yongyou Wu
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China.
| | - Ling Wen
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Jiangsu 215000, China.
| |
Collapse
|
59
|
D’Urso M, Jorba I, van der Pol A, Bouten CVC, Kurniawan NA. Spatial regulation of substrate adhesion directs fibroblast morphotype and phenotype. PNAS NEXUS 2024; 3:pgae289. [PMID: 39131910 PMCID: PMC11316223 DOI: 10.1093/pnasnexus/pgae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
The switching of the fibroblast phenotype to myofibroblast is a hallmark of a wide variety of tissue pathologies. This phenotypical switch is known to be influenced not only by humoral factors such as TGF-β, but also by mechanical and physical cues in the cellular environment, and is accompanied by distinctive changes in cell morphology. However, the causative link between these cues, the concomitant morphological changes, and the resulting phenotypic switch remain elusive. Here, we use protein micropatterning to spatially control dermal fibroblast adhesion without invoking exogenous mechanical changes and demonstrate that varying the spatial configuration of focal adhesions (FAs) is sufficient to direct fibroblast phenotype. We further developed an automated morphometry analysis pipeline, which revealed FA eccentricity as the primary determinant of cell-state positioning along the spectrum of fibroblast phenotype. Moreover, linear fibronectin patterns that constrain the FAs were found to promote a further phenotype transition, characterized by dispersed expression of alpha-smooth muscle actin, pointing to an interesting possibility of controlling fibroblast phenotype beyond the canonical fibroblast-myofibroblast axis. Together, our study reveals that the spatial configuration of adhesion to the cellular microenvironment is a key factor governing fibroblast morphotype and phenotype, shedding new light on fibroblast phenotype regulation.
Collapse
Affiliation(s)
- Mirko D’Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Facultat de Medicina i Ciències de la Salut, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
60
|
Huang H, Liu W, Lin J, Shu F, Xia Z, Zheng Y. Graphene Quantum Dots Reduce Hypertrophic Scar by Inducing Myofibroblasts To Be a Quiescent State. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37530-37544. [PMID: 38989714 DOI: 10.1021/acsami.4c05731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Contrary to the initial belief that myofibroblasts are terminally differentiated cells, myofibroblasts have now been widely recognized as an activation state that is reversible. Therefore, strategies targeting myofibroblast to be a quiescent state may be an effective way for antihypertrophic scar therapy. Graphene quantum dots (GQDs), a novel zero-dimensional and carbon-based nanomaterial, have recently garnered significant interest in nanobiomedicine, owing to their excellent biocompatibility, tunable photoluminescence, and superior physiological stability. Although multiple nanoparticles have been used to alleviate hypertrophic scars, a GQD-based therapy has not been reported. Our in vivo studies showed that GQDs exhibited significant antiscar efficacy, with scar appearance improvement, collagen reduction and rearrangement, and inhibition of myofibroblast overproliferation. Further in vitro experiments revealed that GQDs inhibited α-SMA expression, collagen synthesis, and cell proliferation and migration, inducing myofibroblasts to become quiescent fibroblasts. Mechanistic studies have demonstrated that the effect of GQDs on myofibroblast proliferation blocked cell cycle progression by disrupting the cyclin-CDK-E2F axis. This study suggests that GQDs, which promote myofibroblast-to-fibroblast transition, could be a novel antiscar nanomedicine for the treatment of hypertrophic scars and other types of pathological fibrosis.
Collapse
Affiliation(s)
- Hongchao Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Wenzhang Liu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jiezhi Lin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Futing Shu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
61
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
62
|
You DG, Jung JM, Kim CH, An JY, Bui VD, Lee J, Um W, Jo DG, Cho YW, Lee DS, Balaj L, Lee H, Park JH. Stem Cell-Derived Extracellular Vesicle-Bearing Injectable Hydrogel for Collagen Generation in Dermis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37698-37706. [PMID: 38980897 DOI: 10.1021/acsami.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Despite the remarkable advances of dermal fillers that reduce wrinkles caused by dermis thickness reduction, they still lack effective hydrogel systems that stimulate collagen generation along with injection convenience. Here, we develop a stem cell-derived extracellular vesicle (EV)-bearing thermosensitive hydrogel (EVTS-Gel) for effective in vivo collagen generation. The TS-Gel undergoes sol-gel transition at 32.6 °C, as demonstrated by the storage and loss moduli crossover. Moreover, the TS-Gel and the EVTS-Gel have comparable rheological properties. Both hydrogels are injected in a sol state; hence, they require lower injection forces than conventional hydrogel-based dermal fillers. When locally administered to mouse skin, the TS-Gel extends the retention time of EVs by 2.23 times. Based on the nature of the controlled EV release, the EVTS-Gel significantly inhibits the dermis thickness reduction caused by aging compared to the bare EV treatment for 24 weeks. After a single treatment, the collagen layer thickness of the EVTS-Gel-treated dermis becomes 2.64-fold thicker than that of the bare EV-treated dermis. Notably, the collagen generation efficacy of the bare EV is poorer than that of the EVTS-Gel of a 10× lesser dose. Overall, the EVTS-Gel shows potential as an antiaging dermal filler for in vivo collagen generation.
Collapse
Affiliation(s)
- Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Yoon An
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yong Woo Cho
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
63
|
Yang Y, Chen H, Li Y, Liang J, Huang F, Wang L, Miao H, Nanda HS, Wu J, Peng X, Zhou Y. Hydrogel Loaded with Extracellular Vesicles: An Emerging Strategy for Wound Healing. Pharmaceuticals (Basel) 2024; 17:923. [PMID: 39065772 PMCID: PMC11280375 DOI: 10.3390/ph17070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing. This review provides a comprehensive discussion and summary of the combined application of EVs and hydrogels to address the intricate scenario of wounds. The wound healing process and related biological mechanisms are outlined in the first section. Subsequently, the utilization of EV-loaded hydrogels during the wound healing process is evaluated and discussed. The moist environment created by hydrogels is conducive to wound tissue regeneration. Additionally, the continuous and controlled release of EVs from various origins could be achieved by hydrogel encapsulation. Finally, recent in vitro and in vivo studies reported on hydrogel dressings loaded with EVs are summarized and challenges and opportunities for the future clinical application of this therapeutic approach are outlined.
Collapse
Affiliation(s)
- Yucan Yang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huizhi Chen
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yunjie Li
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Junting Liang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Feng Huang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Liyan Wang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huilai Miao
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, Madhya Pradesh, India;
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xinsheng Peng
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yubin Zhou
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
64
|
Mehrotra P, Maschalidi S, Boeckaerts L, Maueröder C, Tixeira R, Pinney J, Burgoa Cardás J, Sukhov V, Incik Y, Anderson CJ, Hu B, Keçeli BN, Goncalves A, Vande Walle L, Van Opdenbosch N, Sergushichev A, Hoste E, Jain U, Lamkanfi M, Ravichandran KS. Oxylipins and metabolites from pyroptotic cells act as promoters of tissue repair. Nature 2024; 631:207-215. [PMID: 38926576 DOI: 10.1038/s41586-024-07585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1β (IL-1β). The dominant effect of IL-1β in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1β or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.
Collapse
Affiliation(s)
- Parul Mehrotra
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- KSBS, Indian Institute of Technology, New Delhi, India.
| | - Sophia Maschalidi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rochelle Tixeira
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Javier Burgoa Cardás
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vladimir Sukhov
- ITMO University, St Petersburg, Russia
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Yunus Incik
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bing Hu
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Burcu N Keçeli
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | - Nina Van Opdenbosch
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Alexey Sergushichev
- ITMO University, St Petersburg, Russia
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Esther Hoste
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Umang Jain
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- University of Virginia, Charlottesville, VA, USA.
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
65
|
Shen Y, Pang L, Jiang C, Jin J, Zhang Y, Xing H, Li J, Wu H, Chen J, Guan M, Zhu T, Gao Z, Cui W, Wang Y. Extracellular Vesicles Functional “Brick‐Cement” Bio‐Integrated System for Annulus Fibrosus Repair. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 01/06/2025]
Abstract
AbstractDue to the deficiency of mechanical supporting after discectomy and weak proliferative capacity of annulus fibrosus (AF) cells, the AF defect repair remains a clinical challenge. Herein, a myofibroblasts derived extracellular vesicles (M‐EVs) functional “brick‐cement” bio‐integrated system (M‐EVs@PGBgel) is developed to repair AF defect. The modified Poly(glycerol‐sebacate) (PGBS), “bio‐brick” layer, exhibited excellent support features on account of its elastomeric mechanical properties. The loaded M‐EVs in the “bio‐cement” layer activated ITGA6/PI3K/AKT pathway, regulated M2 macrophage polarization, thus synergistically promoting AF cell proliferation and migration. The “bio‐cement” layer integrated PGBS and remnant tissue at the defect through the Schiff base reaction and aided M‐EVs’ sustained release. This study demonstrated that M‐EVs@PGBgel significantly improved the disc's biological and mechanical properties in the AF defect microenvironments and promoted AF regeneration in vivo. The M‐EVs@PGBgel shows promise as an effective strategy to simultaneously address the mechanical imbalance and biological disruptions resulting from AF defect.
Collapse
Affiliation(s)
- Yifan Shen
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Libin Pang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chao Jiang
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Jiale Jin
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Yijian Zhang
- Department of Orthopedics The First Affiliated Hospital of Soochow University Soochow University Suzhou 215006 P. R. China
| | - Hongyuan Xing
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Jiafeng Li
- Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Honghao Wu
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Jingyao Chen
- Core Facilities Zhejiang University School of Medicine Hangzhou 310058 P. R. China
| | - Ming Guan
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering Institute for Frontier Medical Technology Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Zhongyang Gao
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| |
Collapse
|
66
|
Cooper PO, Kleb SS, Noonepalle SK, Amuso VM, Varshney R, Rudolph MC, Dhaliwal TK, Nguyen DV, Mazumder MF, Babirye NS, Gupta R, Nguyen BN, Shook BA. G-protein-coupled receptor 84 regulates acute inflammation in normal and diabetic skin wounds. Cell Rep 2024; 43:114288. [PMID: 38814782 PMCID: PMC11247419 DOI: 10.1016/j.celrep.2024.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.
Collapse
Affiliation(s)
- Paula O Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Sarah S Kleb
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Satish K Noonepalle
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Veronica M Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanvir K Dhaliwal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Darlene V Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Miguel F Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Najuma S Babirye
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Ruchi Gupta
- Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Bao-Ngoc Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Brett A Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
67
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
68
|
Abebayehu D, Pfaff BN, Bingham GC, Miller AE, Kibet M, Ghatti S, Griffin DR, Barker TH. A Thy-1-negative immunofibroblast population emerges as a key determinant of fibrotic outcomes to biomaterials. SCIENCE ADVANCES 2024; 10:eadf2675. [PMID: 38875340 PMCID: PMC11177936 DOI: 10.1126/sciadv.adf2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Fibrosis-associated fibroblasts have been identified across various fibrotic disorders, but not in the context of biomaterials, fibrotic encapsulation, and the foreign body response. In other fibrotic disorders, a fibroblast subpopulation defined by Thy-1 loss is strongly correlated with fibrosis yet we do not know what promotes Thy-1 loss. We have previously shown that Thy-1 is an integrin regulator enabling normal fibroblast mechanosensing, and here, leveraging nonfibrotic microporous annealed particle (MAP) hydrogels versus classical fibrotic bulk hydrogels, we demonstrate that Thy1-/- mice mount a fibrotic response to MAP gels that includes inflammatory signaling. We found that a distinct and cryptic α-smooth muscle actin-positive Thy-1- fibroblast population emerges in response to interleuklin-1β (IL-1β) and tumor necrosis factor-α (TNFα). Furthermore, IL-1β/TNFα-induced Thy-1- fibroblasts consist of two distinct subpopulations that are strongly proinflammatory. These findings illustrate the emergence of a unique proinflammatory, profibrotic fibroblast subpopulation that is central to fibrotic encapsulation of biomaterials.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Blaise N. Pfaff
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Grace C. Bingham
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Andrew E. Miller
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mathew Kibet
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Surabhi Ghatti
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Donald R. Griffin
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
69
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
70
|
Cheng MF, Abdullah FS, Buechler MB. Essential growth factor receptors for fibroblast homeostasis and activation: Fibroblast Growth Factor Receptor (FGFR), Platelet Derived Growth Factor Receptor (PDGFR), and Transforming Growth Factor β Receptor (TGFβR). F1000Res 2024; 13:120. [PMID: 38988879 PMCID: PMC11234085 DOI: 10.12688/f1000research.143514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor β receptor (TGFβR) on fibroblast cell states.
Collapse
Affiliation(s)
- Maye F. Cheng
- Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | |
Collapse
|
71
|
Kanzaki M, Takagi R, Mitsuboshi S, Shidei H, Isaka T, Yamato M. Dual-color FISH analyses of xenogeneic human fibroblast sheets transplanted to repair lung pleural defects in an immunocompromised rat model. BMC Res Notes 2024; 17:139. [PMID: 38750547 PMCID: PMC11097561 DOI: 10.1186/s13104-024-06792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Pulmonary air leaks (PALs) due to visceral pleura injury during surgery is frequently observed after pulmonary resections and the complication is difficult to avoid in thoracic surgery. The development of postoperative PALs is the most common cause of prolonged hospitalization. Previously, we reported that PALs sealants using autologous dermal fibroblast sheets (DFSs) harvested from temperature-responsive culture dishes successfully closed intraoperative PALs during lung resection. OBJECTIVE In this study, we investigated the fate of human DFSs xenogenetically transplanted onto lung surfaces to seal PALs of immunocompromised rat. Dual-color FISH analyses of human fibroblast was employed to detect transplantation human cells on the lung surface. RESULTS One month after transplantation, FISH analyses revealed that transplanted human fibroblasts still composed a sheet-structure, and histology also showed that beneath the sheet's angiogenesis migrating into the sheets was observed from the recipient tissues. FISH analyses revealed that even at 3 months after transplantation, the transplanted human fibroblasts still remained in the sheet. Dual-color FISH analyses of the transplanted human fibroblasts were sparsely present as a result of the cells reaching the end of their lifespan, the cells producing extracellular matrix, and remained inside the cell sheet and did not invade the lungs of the host. CONCLUSIONS DFS-transplanted human fibroblasts showed that they are retained within cell sheets and do not invade the lungs of the host.
Collapse
Affiliation(s)
- Masato Kanzaki
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shota Mitsuboshi
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroaki Shidei
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tamami Isaka
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
72
|
Sun H, Dong J, Fu Z, Lu X, Chen X, Lei H, Xiao X, Chen S, Lu J, Su D, Xiong Y, Fang Z, Mao J, Chen L, Wang X. TSG6-Exo@CS/GP Attenuates Endometrium Fibrosis by Inhibiting Macrophage Activation in a Murine IUA Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308921. [PMID: 38588501 DOI: 10.1002/adma.202308921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Intrauterine adhesion (IUA) is characterized by the formation of fibrous scar tissue within the uterine cavity, which significantly impacts female reproductive health and even leads to infertility. Unfortunately, severe cases of IUA currently lack effective treatments. This study presents a novel approach that utilizes tumor necrosis factor-(TNF) stimulated gene 6 (TSG6)-modified exosomes (Exos) in conjunction with an injectable thermosensitive hydrogel (CS/GP) to mitigate the occurrence of IUA by reducing endometrium fibrosis in a mouse IUA model. This study demonstrate that TSG6-modified Exos effectively inhibits the activation of inflammatory M1-like macrophages during the initial stages of inflammation and maintains the balance of macrophage phenotypes (M1/M2) during the repair phase. Moreover, TSG6 inhibits the interaction between macrophages and endometrial stromal fibroblasts, thereby preventing the activation of stromal fibroblasts into myofibroblasts. Furthermore, this research indicates that CS/GP facilitates the sustained release of TSG6-modified Exos, leading to a significant reduction in both the manifestations of IUA and the extent of endometrium fibrosis. Collectively, through the successful construction of CS/GP loaded with TSG6-modified Exos, a reduction in the occurrence and progression of IUA is achieved by mitigating endometrium fibrosis. Consequently, this approach holds promise for the treatment of IUA.
Collapse
Affiliation(s)
- Huijun Sun
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Zhaoyue Fu
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xueyan Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xutao Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xifeng Xiao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Danjie Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Yujing Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Zheng Fang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jiaqin Mao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| |
Collapse
|
73
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
74
|
Yang N, Yu G, Lai Y, Zhao J, Chen Z, Chen L, Fu Y, Fang P, Gao W, Cai Y, Li Z, Xiao J, Zhou K, Ding J. A snake cathelicidin enhances transcription factor EB-mediated autophagy and alleviates ROS-induced pyroptosis after ischaemia-reperfusion injury of island skin flaps. Br J Pharmacol 2024; 181:1068-1090. [PMID: 37850255 DOI: 10.1111/bph.16268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuedong Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
75
|
Lu T, Liu Y, Huang X, Sun S, Xu H, Jin A, Wang X, Gao X, Liu J, Zhu Y, Dai Q, Wang C, Lin K, Jiang L. Early-Responsive Immunoregulation Therapy Improved Microenvironment for Bone Regeneration Via Engineered Extracellular Vesicles. Adv Healthc Mater 2024; 13:e2303681. [PMID: 38054523 DOI: 10.1002/adhm.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-β1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.
Collapse
Affiliation(s)
- Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 201999, China
| | - Chao Wang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200433, China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
76
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
77
|
Yang P, Lu Y, Gou W, Qin Y, Tan J, Luo G, Zhang Q. Glycosaminoglycans' Ability to Promote Wound Healing: From Native Living Macromolecules to Artificial Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305918. [PMID: 38072674 PMCID: PMC10916610 DOI: 10.1002/advs.202305918] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Indexed: 03/07/2024]
Abstract
Glycosaminoglycans (GAGs) are important for the occurrence of signaling molecules and maintenance of microenvironment within the extracellular matrix (ECM) in living tissues. GAGs and GAG-based biomaterial approaches have been widely explored to promote in situ tissue regeneration and repair by regulating the wound microenvironment, accelerating re-epithelialization, and controlling ECM remodeling. However, most approaches remain unacceptable for clinical applications. To improve insights into material design and clinical translational applications, this review highlights the innate roles and bioactive mechanisms of native GAGs during in situ wound healing and presents common GAG-based biomaterials and the adaptability of application scenarios in facilitating wound healing. Furthermore, challenges before the widespread commercialization of GAG-based biomaterials are shared, to ensure that future designed and constructed GAG-based artificial biomaterials are more likely to recapitulate the unique and tissue-specific profile of native GAG expression in human tissues. This review provides a more explicit and clear selection guide for researchers designing biomimetic materials, which will resemble or exceed their natural counterparts in certain functions, thereby suiting for specific environments or therapeutic goals.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yifei Lu
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Weiming Gou
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yiming Qin
- Department of Dermatology and Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengdu610041China
| | - Jianglin Tan
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Qing Zhang
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| |
Collapse
|
78
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
79
|
Willenborg S, Satzinger S, Eming SA. [Skin fibrosis : Novel insights in pathophysiology and treatment]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:218-224. [PMID: 38351374 DOI: 10.1007/s00105-024-05299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/24/2024]
Abstract
The pathogenesis of fibrosing alterations in the skin and other organ systems is not yet sufficiently understood and current therapeutic options are limited. Fibrosing diseases of the skin lead to a loss of function, which can subsequently be accompanied by serious impairments in quality of life, increased morbidity and ultimately increased mortality. There are currently only a few pharmacological and therapeutic approaches approved to prevent or ameliorate fibrosing diseases. Furthermore, tissue-specific versus common, non-organ-specific pathophysiological cellular and molecular mechanisms are not resolved. The development of new, cause-based and therefore likely more efficient therapeutic approaches is urgently needed. This represents a major challenge, but also opens up the opportunity for special contributions to improve this medically unsolved problem. Here we present important findings from recent years with a focus on the role of the immune response in fibrogenesis.
Collapse
Affiliation(s)
- Sebastian Willenborg
- Klinik und Poliklinik für Dermatologie und Venerologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Sabrina Satzinger
- Klinik und Poliklinik für Dermatologie und Venerologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Sabine A Eming
- Klinik und Poliklinik für Dermatologie und Venerologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Deutschland.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Deutschland.
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Köln, Deutschland.
| |
Collapse
|
80
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
81
|
Sun X, Wu Y, Wang X, Gao X, Zhang S, Sun Z, Liu R, Hu K. Beyond Small Molecules: Antibodies and Peptides for Fibroblast Activation Protein Targeting Radiopharmaceuticals. Pharmaceutics 2024; 16:345. [PMID: 38543239 PMCID: PMC10974899 DOI: 10.3390/pharmaceutics16030345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2025] Open
Abstract
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Yuxuan Wu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Zhicheng Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Ruping Liu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| |
Collapse
|
82
|
Wang Z, Zeng H, Wang C, Wang J, Zhang J, Qu S, Han Y, Yang L, Ni Y, Peng W, Liu H, Tang H, Zhao Q, Zhang Y. Tim4 deficiency reduces CD301b + macrophage and aggravates periodontitis bone loss. Int J Oral Sci 2024; 16:20. [PMID: 38418808 PMCID: PMC10902347 DOI: 10.1038/s41368-023-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Ziming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Can Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yue Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Liu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
83
|
ZHANG YANG, QIN NANNAN, WANG XIJUN, LIANG RUI, LIU QUAN, GENG RUOYI, JIANG TIANXIAO, LIU YUNFEI, LI JINWEI. Glycogen metabolism-mediated intercellular communication in the tumor microenvironment influences liver cancer prognosis. Oncol Res 2024; 32:563-576. [PMID: 38361757 PMCID: PMC10865732 DOI: 10.32604/or.2023.029697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 02/17/2024] Open
Abstract
Glycogen metabolism plays a key role in the development of hepatocellular carcinoma (HCC), but the function of glycogen metabolism genes in the tumor microenvironment (TME) is still to be elucidated. Single-cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells, and 65 glycogen metabolism genes were analyzed by a nonnegative matrix factorization (NMF). The prognosis and immune response of new glycogen TME cell clusters were predicted by using HCC and immunotherapy cohorts from public databases. HCC single-cell analysis was divided into fibroblasts, NT T cells, macrophages, endothelial cells, and B cells, which were separately divided into new cell clusters by glycogen metabolism gene annotation. Pseudo-temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell clusters. Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell-related subtypes and different glycogen subtype cell clusters. SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism. In addition, TME cell clusters of glycogen metabolism were found to be enriched in expression in CAF subtypes, CD8 depleted, M1, and M2 types. Bulk-seq analysis showed the prognostic significance of glycogen metabolism-mediated TME cell clusters in HCC, while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade (ICB), especially for CAFs, T cells, and macrophages. In summary, our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell clusters.
Collapse
Affiliation(s)
- YANG ZHANG
- Graduate School, Kunming Medical University, Kunming, 650000, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650000, China
| | - NANNAN QIN
- Department of Gynecology Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - XIJUN WANG
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - RUI LIANG
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - QUAN LIU
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - RUOYI GENG
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - TIANXIAO JIANG
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - YUNFEI LIU
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - JINWEI LI
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, China
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| |
Collapse
|
84
|
He J, Fang B, Shan S, Li Q. Mechanical stiffness promotes skin fibrosis through FAPα-AKT signaling pathway. J Dermatol Sci 2024; 113:51-61. [PMID: 38155020 DOI: 10.1016/j.jdermsci.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Myofibroblasts contribute to the excessive production, remodeling and cross-linking of the extracellular matrix that characterizes the progression of skin fibrosis. An important insight into the pathogenesis of tissue fibrosis has been the discovery that increased matrix stiffness during fibrosis progression is involved in myofibroblast activation. However, mechanistic basis for this phenomenon remains elusive. OBJECTIVE To explore the role of fibroblast activation protein-α (FAPα) in mechanical stiffness-induced skin fibrosis progression. METHODS RNA-seq was performed to compare differential genes of mouse dermal fibroblasts (MDFs) grown on low or high stiffness plates. This process identified FAPα, which is a membrane protein usually overexpressed in activated fibroblasts, as a suitable candidate. In vitro assay, we investigate the role of FAPα in mechanical stiffness-induced MDFs activation and downstream pathway. By establishing mouse skin fibrosis model and intradermally administrating FAPα adeno-associated virus (AAV) or a selective Fap inhibitor FAPi, we explore the role of FAPα in skin fibrosis in vivo. RESULTS We show that FAPα, a membrane protein highly expressed in myofibroblasts of skin fibrotic tissues, is regulated by increased matrix stiffness. Genetic deletion or pharmacological inhibition of FAPα significantly inhibits mechanical stiffness-induced activation of myofibroblasts in vitro. Mechanistically, FAPα promotes myofibroblast activation by stimulating the PI3K-Akt pathway. Furthermore, we showed that administration of the inhibitor FAPi or FAPα targeted knockdown ameliorated the progression of skin fibrosis. CONCLUSION Taken together, we identify FAPα as an important driver of mechanical stiffness-induced skin fibrosis and a potential therapeutic target for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
85
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
86
|
Lin X, Lai Y. Scarring Skin: Mechanisms and Therapies. Int J Mol Sci 2024; 25:1458. [PMID: 38338767 PMCID: PMC10855152 DOI: 10.3390/ijms25031458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Skin injury always results in fibrotic, non-functional scars in adults. Although multiple factors are well-known contributors to scar formation, the precise underlying mechanisms remain elusive. This review aims to elucidate the intricacies of the wound healing process, summarize the known factors driving skin cells in wounds toward a scarring fate, and particularly to discuss the impact of fibroblast heterogeneity on scar formation. To the end, we explore potential therapeutic interventions used in the treatment of scarring wounds.
Collapse
Affiliation(s)
- Xinye Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
87
|
He J, Cheng X, Fang B, Shan S, Li Q. Mechanical stiffness promotes skin fibrosis via Piezo1-Wnt2/Wnt11-CCL24 positive feedback loop. Cell Death Dis 2024; 15:84. [PMID: 38267432 PMCID: PMC10808102 DOI: 10.1038/s41419-024-06466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Skin fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) caused by fibrotic disorders of the skin. In recent years, ECM stiffness has emerged as a prominent mechanical cue that precedes skin fibrosis and drives its progression by promoting fibroblasts activation. However, how stiffness influences fibroblasts activation for skin fibrosis progression remains unknown. Here, we report a positive feedback loop mediated by the mechanosensitive ion channel Piezo1 and aberrant tissue mechanics in driving skin fibrosis. Piezo1 is upregulated in fibrotic skin in both humans and mice. Piezo1 knockdown dermal fibroblasts lose their fibroproliferative phenotypes despite being grown on a stiffer substrate. We show that Piezo1 acts through the Wnt2/Wnt11 pathway to mechanically induce secretion of C-C motif chemokine ligand 24 (CCL24, also known as eotaxin-2), a potent cytokine associated with fibrotic disorders. Importantly, adeno-associated virus (AAV)-mediated Piezo1 knockdown ameliorated the progression of skin fibrosis and skin stiffness in mice. Overall, increased matrix stiffness promotes skin fibrosis through the inflammatory Piezo1-Wnt2/Wnt11-CCL24 pathway. In turn, a stiffer skin microenvironment increases Piezo1 expression to exacerbate skin fibrosis aggression. Therefore, targeting Piezo1 represents a strategy to break the positive feedback loop between fibroblasts mechanotransduction and aberrant tissue mechanics in skin fibrosis.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
88
|
Huang F, Zhang E, Lei Y, Yan Q, Xue C. Tripterine Inhibits Proliferation and Promotes Apoptosis of Keloid Fibroblasts by Targeting ROS/JNK Signaling. J Burn Care Res 2024; 45:104-111. [PMID: 37436955 PMCID: PMC11023317 DOI: 10.1093/jbcr/irad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/14/2023]
Abstract
Keloids are benign skin tumors characterized by excessive fibroblast proliferation and collagen deposition. The current treatment of keloids with hormone drug injection, surgical excision, radiotherapy, physical compression, laser therapy, cryotherapy often have unsatisfactory outcomes. The phytochemical compounds have shown great potential in treating keloids. Tripterine, a natural triterpene derived from the traditional Chinese medicine Thunder God Vine (Tripterygium wilfordii), was previously reported to exhibit an anti-scarring bioactivity in mouse embryonic fibroblast NIH/3T3 cells. Accordingly, our study was dedicated to explore its role in regulating the pathological phenotypes of keloid fibroblasts. Human keloid fibroblasts were treated with tripterine (0-10 μM) for 24 hours. Cell viability, proliferation, migration, apoptosis, and extracellular matrix (ECM) deposition were determined by CCK-8, EdU, wound healing, Transwell, flow cytometry, western blotting, and RT-qPCR assays. The effects of tripterine treatment on reactive oxygen species (ROS) generation and JNK activation in keloid fibroblasts were assessed by DCFH-DA staining and western blotting analysis. Tripterine at the concentrations higher than 4 μM attenuated the viability of human keloid fibroblasts in a dose-dependent manner. Treatment with tripterine (4, 6, and 8 μM) dose-dependently inhibited cell proliferation and migration, promoted cell apoptosis, reduced α-SMA, Col1, and Fn expression, induced ROS production, and enhanced JNK phosphorylation in keloid fibroblasts. Collectively, tripterine ameliorates the pathological characteristics of keloid fibroblasts that are associated with keloidformation and growth by inducing ROS generation and activating JNK signalingpathway.
Collapse
Affiliation(s)
- Fang Huang
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Enjing Zhang
- Department of Pharmacy, Third Municipal Hospital, Wuhan, China
| | - Yan Lei
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Yan
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chengbin Xue
- Department of Pharmacy, Hospital of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Zhou Y, Cao T, Li Z, Qiao H, Dang E, Shao S, Wang G. Fibroblasts in immune-mediated inflammatory diseases: The soil of inflammation. Clin Immunol 2024; 258:109849. [PMID: 38008146 DOI: 10.1016/j.clim.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
As one of the most abundant stromal cells, fibroblasts are primarily responsible for the production and remodeling of the extracellular matrix. Traditionally, fibroblasts have been viewed as quiescent cells. However, recent advances in multi-omics technologies have demonstrated that fibroblasts exhibit remarkable functional diversity at the single-cell level. Additionally, fibroblasts are heterogeneous in their origins, tissue locations, and transitions with stromal cells. The dynamic nature of fibroblasts is further underscored by the fact that disease stages can impact their heterogeneity and behavior, particularly in immune-mediated inflammatory diseases such as psoriasis, inflammatory bowel diseases, and rheumatoid arthritis, etc. Fibroblasts can actively contribute to the disease initiation, progression, and relapse by responding to local microenvironmental signals, secreting downstream inflammatory factors, and interacting with immune cells during the pathological process. Here we focus on the development, plasticity, and heterogeneity of fibroblasts in inflammation, emphasizing the need for a developmental and dynamic perspective on fibroblasts.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiguo Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Shuai Shao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Gang Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| |
Collapse
|
90
|
Jiang Y, Li S, Shi R, Yin W, Lv W, Tian T, Lin Y. A Novel Bioswitchable miRNA Mimic Delivery System: Therapeutic Strategies Upgraded from Tetrahedral Framework Nucleic Acid System for Fibrotic Disease Treatment and Pyroptosis Pathway Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305622. [PMID: 37984862 PMCID: PMC10767442 DOI: 10.1002/advs.202305622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
There has been considerable interest in gene vectors and their role in regulating cellular activities and treating diseases since the advent of nucleic acid drugs. MicroRNA (miR) therapeutic strategies are research hotspots as they regulate gene expression post-transcriptionally and treat a range of diseases. An original tetrahedral framework nucleic acid (tFNA) analog, a bioswitchable miR inhibitor delivery system (BiRDS) carrying miR inhibitors, is previously established; however, it remains unknown whether BiRDS can be equipped with miR mimics. Taking advantage of the transport capacity of tetrahedral framework nucleic acid (tFNA) and upgrading it further, the treatment outcomes of a traditional tFNA and BiRDS at different concentrations on TGF-β- and bleomycin-induced fibrosis simultaneously in vitro and in vivo are compared. An upgraded traditional tFNA is designed by successfully synthesizing a novel BiRDS, carrying a miR mimic, miR-27a, for treating skin fibrosis and inhibiting the pyroptosis pathway, which exhibits stability and biocompatibility. BiRDS has three times higher efficiency in delivering miRNAs than the conventional tFNA with sticky ends. Moreover, BiRDS is more potent against fibrosis and pyroptosis-related diseases than tFNAs. These findings indicate that the BiRDS can be applied as a drug delivery system for disease treatment.
Collapse
Affiliation(s)
- Yueying Jiang
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Songhang Li
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Ruijianghan Shi
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Wumeng Yin
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Weitong Lv
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsSichuan UniversityChengduSichuan610041China
| |
Collapse
|
91
|
Yuan T, Meijia L, Rong C, Jian Y, Lijun H. Identification of novel biomarkers of ferroptosis involved in keloid based on bioinformatics analysis. Int Wound J 2024; 21:e14606. [PMID: 38272797 PMCID: PMC10805535 DOI: 10.1111/iwj.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Keloid is a fibroproliferative disease of unknown aetiology, which has a significant impact the quality of life of patients. Ferroptosis plays an important role in the occurrence and development of fibrosis, but there is still a lack of research related to keloids. The objective of this work was to identify the hub genes related to ferroptosis in keloid to better understand the keloid process. The microarray data (GSE7890 GSE145725, and GSE44270) (23 keloid and 22 normal fibroblast) were analysed via the gene expression comprehensive database (GEO). Only GSE7890 met the FerrDB database. Cell cycle and pathway analysis were performed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to differentially expressed genes (DEG). The differential genes were confirmed in other GEO datasets (GSE145725 and GSE44270), and multi-fibrosis-gene correlation analysed. To validate these hub genes, quantitative real-time PCR (qRT-PCR) was conducted. A total of 581 DEGs were screened, with 417 genes down-regulated and 164 genes up-regulated, with 11 ferroptosis genes significantly up-regulated in both keloid and normal tissue, and 6 genes are consistent with our findings and are associated with multiple fibrosis genes. The qRT-PCR results and tissues of normal skin and keloid agreed with our predictions. Our findings provide new evidence for the ferroptosis-related molecular pathways and biomarker of keloid.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Li Meijia
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Cheng Rong
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuan Jian
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hao Lijun
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
92
|
Yampolsky M, Bachelet I, Fuchs Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat Protoc 2024; 19:184-206. [PMID: 38030941 DOI: 10.1038/s41596-023-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023]
Abstract
Wound healing is a complex physiological process involving various cell types and signaling pathways. The capability to observe the dynamics of wound repair offers valuable insights into the effects of genetic modifications, pharmaceutical interventions or other experimental manipulations on the skin-repair process. Here, we provide a comprehensive protocol for a full-thickness, excisional skin-wound-healing assay in mice, which can easily be performed by any scientist who has received an animal welfare course certificate and can be completed within ~3 h, depending on the number of animals. Crucially, we highlight the importance of considering key aspects of the assay that can dramatically contribute to the reliability and reproducibility of these experiments. We thoroughly discuss the experimental design, necessary preparations, wounding technique and analysis. In addition, we discuss the use of lineage-tracing techniques to monitor cell migration, differentiation and the contribution of different cell populations to the repair process. Overall, we explore key aspects of the skin-wound-healing assay, supplying a detailed procedure and guidelines essential for decreasing variability and obtaining reliable and reproducible results.
Collapse
|
93
|
Justynski O, Bridges K, Krause W, Forni MF, Phan QM, Sandoval-Schaefer T, Carter K, King DE, Hsia HC, Gazes MI, Vyce SD, Driskell RR, Miller-Jensen K, Horsley V. Apoptosis recognition receptors regulate skin tissue repair in mice. eLife 2023; 12:e86269. [PMID: 38127424 PMCID: PMC10735221 DOI: 10.7554/elife.86269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1+ macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for efferocytosis pathway genes and display altered efferocytosis signaling via the receptor Axl and its ligand Gas6. During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients.
Collapse
Affiliation(s)
- Olivia Justynski
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Kate Bridges
- Dept. of Biomedical Engineering, Yale University, New Haven, United States
| | - Will Krause
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Maria Fernanda Forni
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Quan M Phan
- Washington State University, SMB, Pullman, United States
| | - Teresa Sandoval-Schaefer
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Kristyn Carter
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Diane E King
- Sunnycrest Bioinformatics, Flemington, United States
| | - Henry C Hsia
- Dept. of Surgery (Plastic), Yale School of Medicine, New Haven, United States
| | - Michael I Gazes
- Dept of Podiatric Surgery, Yale New Haven Hospital, New Haven, United States
| | - Steven D Vyce
- Dept of Podiatric Surgery, Yale New Haven Hospital, New Haven, United States
| | | | - Kathryn Miller-Jensen
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
- Dept. of Biomedical Engineering, Yale University, New Haven, United States
| | - Valerie Horsley
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
- Dept. of Dermatology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
94
|
Yang X, Li X, Guo Z, Zhang Z, Song X, Zhang M, Han X, He L, Zhou B. Generation and characterization of PDGFRα-GFP knock-in mice for visualization of PDGFRα + fibroblasts in vivo. Biochem Biophys Res Commun 2023; 687:149215. [PMID: 37949027 DOI: 10.1016/j.bbrc.2023.149215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The platelet-derived growth factor (PDGF) and its receptor, PDGFRα, are critical for tissue development and injury repair. To track PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expresses green fluorescent protein (GFP) under the control of the PDGFRα promoter. This genetic tool enabled us to detect PDGFRα expression in various organs during both neonatal and adult stages. Additionally, we confirmed the correlation between endogenous PDGFRα and transgenic PDGFRα expression using mouse injury models, showing the potential of this genetic reporter for studying PDGFRα-mediated signaling pathways and developing therapeutic strategies. Overall, the PDGFRα-GFP knock-in mouse line serves as a valuable tool for investigating the biology of PDGFRα and its role in normal development and disease.
Collapse
Affiliation(s)
- Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihou Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Zhuonan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xin Song
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximeng Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China.
| | - Bin Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
95
|
Zhao SY, Wu D, Cheng C, Xie JH. Advances and future directions in keloid research: Pathogenesis, diagnosis and personalized treatment strategies. World J Clin Cases 2023; 11:8094-8098. [PMID: 38130783 PMCID: PMC10731170 DOI: 10.12998/wjcc.v11.i34.8094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Keloids, which are abnormal manifestations of wound healing, can result in significant functional impairment and aesthetic deformities. The pathogenesis of keloids is multifaceted and complex and influenced by various factors, such as genetics, the environment, and immune responses. The evolution of keloid treatment has progressed from traditional surgical excision to a contemporary combination of therapies including injection and radiation treatments, among others. This article provides a comprehensive review of keloid pathogenesis and treatment, emphasizing the latest advances in the field. Ultimately, this review underscores the necessity for continued research to enhance our understanding of keloid pathogenesis and to devise more effective treatments for this challenging condition.
Collapse
Affiliation(s)
- Song-Yun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Dan Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200000, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Jia-Heng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
96
|
Rodríguez-Morales P, Franklin RA. Macrophage phenotypes and functions: resolving inflammation and restoring homeostasis. Trends Immunol 2023; 44:986-998. [PMID: 37940394 PMCID: PMC10841626 DOI: 10.1016/j.it.2023.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Inflammation must be tightly regulated to both defend against pathogens and restore tissue homeostasis. The resolution of inflammatory responses is a dynamic process orchestrated by cells of the immune system. Macrophages, tissue-resident innate immune cells, are key players in modulating inflammation. Here, we review recent work highlighting the importance of macrophages in tissue resolution and the return to homeostasis. We propose that enhancing macrophage pro-resolution functions represents a novel and widely applicable therapeutic strategy to dampen inflammation, promote repair, and restore tissue integrity and function.
Collapse
Affiliation(s)
| | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
97
|
Zhu X, Chen S, Zhang P, Ma Y, Liu X, Fei H, Qian J, Hao Y, Jiang L, Lin X. Granulocyte-macrophage colony-stimulating factor promotes endometrial repair after injury by regulating macrophages in mice. J Reprod Immunol 2023; 160:104156. [PMID: 37801891 DOI: 10.1016/j.jri.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Intrauterine adhesion (IUA) caused by endometrial injury is a common cause of female infertility and is challenging to treat. Macrophages play a critical role in tissue repair and cyclical endometrial regeneration. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has significant reparative and anti-fibrotic effects in various tissues. However, there is limited research on the role of GM-CSF in the repair of endometrial injury and the involvement of macrophages in GM-CSF-mediated endometrial repair. In this study, using a mouse model of endometrial scratching injury, we found that GM-CSF treatment accelerated the repair of endometrial injury and improved fertility. At the molecular level, we observed that GM-CSF can downregulate the transcript levels of tumor necrosis factor (TNF) in mouse bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) and upregulate the expression of Arginase-1 (Arg-1) and mannose receptor C-type 1 (MRC1). Importantly, during the early and middle stages of injury, GM-CSF increased the proportion of M1-like, M2-like, and M1/M2 mixed macrophages, while in the late stage of injury, GM-CSF facilitated a decline in the number of M2-like macrophages. These findings suggest that GM-CSF may promote endometrial repair by recruiting macrophages and modulating the LPS-induced M1-like macrophages into a less inflammatory phenotype. These insights have the potential to contribute to the development of novel therapeutic approaches for the treatment of intrauterine adhesion and related infertility.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University (Zhejiang Xiaoshan Hospital), 311201 Hangzhou, China
| | - Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Tiantai People's Hospital of Zhejiang Province, 317200 Taizhou, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China
| | - Jingjing Qian
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Yuyao People's Hospital, 315400 Ningbo, China
| | - Yanqing Hao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China.
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China.
| |
Collapse
|
98
|
Qin Y, Liu T, Zhang Z, Xing S, Gong L, Ni Y. Scleral remodeling in early adulthood: the role of FGF-2. Sci Rep 2023; 13:20779. [PMID: 38012225 PMCID: PMC10682392 DOI: 10.1038/s41598-023-48264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Emmetropization, a natural process of ocular elongation, is closely associated with scleral remodeling. The Fibroblast growth factor-2 (FGF-2) was reported involved in scleral remodeling in myopia models. Herein, we aimed to investigate the role of scleral fibroblast-to-myofibroblast differentiation and FGF-2 in scleral remodeling during maturation. Our findings revealed that the posterior scleral fibroblasts (SFs) from mature guinea pigs exhibit increased stiffness compared to those from young guinea pigs. Moreover, mature SFs displayed decreased cell proliferation but increased levels of α-SMA, matrix metalloproteinase 2 (MMP2), and collagen 1, when compared to young SFs. Additionally, the mRNA expression of scleral Fgf-2, Fgf receptor 1 (Fgfr1), Fgfr2, Fgfr3, and Fgfr4 was increased in mature SFs. Notably, exogenous FGF-2 showed increased cell proliferation and led to decreased expression of α-SMA, MMP2, and collagen 1 in mature SFs. Overall, our findings highlight the influence of maturation on SFs from posterior scleral shells, resulting in increased stiffness and the manifestation of fibroblast-to-myofibroblast differentiation during development. Exogenous FGF-2 increased cell proliferation and reversed the age-related fibroblast-to-myofibroblast differentiation, suggesting a potential role of FGF-2 in regulating scleral remodeling.
Collapse
Affiliation(s)
- Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54S Xianlie Road, Guangzhou, 510060, China
| | - Taixiang Liu
- Guizhou Ophthalmic Hospital, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54S Xianlie Road, Guangzhou, 510060, China
| | - Shuwen Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54S Xianlie Road, Guangzhou, 510060, China
| | - Li Gong
- Instrumental Analysis and Research Center, Sun Yat-Sen University, 135W Xingang Road, Guangzhou, 510275, China.
| | - Yao Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54S Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
99
|
Chen FZ, Tan PC, Yang Z, Li Q, Zhou SB. Identifying characteristics of dermal fibroblasts in skin homeostasis and disease. Clin Exp Dermatol 2023; 48:1317-1327. [PMID: 37566911 DOI: 10.1093/ced/llad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous dermal fibroblasts are the main components that constitute the dermis. Distinct fibroblast subgroups show specific characteristics and functional plasticity that determine dermal structure during skin development and wound healing. Although researchers have described the roles of fibroblast subsets, this is not completely understood. We review recent evidence supporting understanding about the heterogeneity of fibroblasts. We summarize the origins and the identified profiles of fibroblast subpopulations. The characteristics of fibroblast subpopulations in both healthy and diseased states are highlighted, and the potential of subpopulations to be involved in wound healing in different ways was discussed. Additionally, we review the plasticity of subpopulations and the underlying signalling mechanisms. This review may provide greater insights into potential novel therapeutic targets and tissue regeneration strategies for the future.
Collapse
Affiliation(s)
- Fang-Zhou Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zihan Yang
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
- Department of Plastic and Burn Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
100
|
Chhunchha B, Kumar R, Kubo E, Thakur P, Singh DP. Prdx6 Regulates Nlrp3 Inflammasome Activation-Driven Inflammatory Response in Lens Epithelial Cells. Int J Mol Sci 2023; 24:16276. [PMID: 38003466 PMCID: PMC10671722 DOI: 10.3390/ijms242216276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The continuum of antioxidant response dysregulation in aging/oxidative stress-driven Nlrp3 inflammasome activation-mediated inflammatory response is associated with age-related diseases. Peroxiredoxin (Prdx) 6 is a key antioxidant that provides cytoprotection by regulating redox homeostasis. Herein, using lens epithelial cells (LECs) derived from the targeted inactivation of Prdx6 gene and aging lenses, we present molecular evidence that Prdx6-deficiency causes oxidative-driven Nlrp3 inflammasome activation, resulting in pyroptosis in aging/redox active cells wherein Prdx6 availability offsets the inflammatory process. We observed that Prdx6-/- and aging LECs harboring accumulated reactive oxygen species (ROS) showed augmented activation of Nlrp3 and bioactive inflammatory components, like Caspase-1, IL-1β, ASC and Gasdermin-D. Similar to lipopolysaccharide treatment, oxidative exposure led to further ROS amplification with increased activation of the Nlrp3 inflammasome pathway. Mechanistically, we found that oxidative stress enhanced Kruppel-like factor 9 (Klf9) expression in aging/Prdx6-/- mLECs, leading to a Klf9-dependent increase in Nlrp3 transcription, while the elimination of ROS by the delivery of Prdx6 or by silencing Klf9 prevented the inflammatory response. Altogether, our data identify the biological significance of Prdx6 as an intrinsic checkpoint for regulating the cellular health of aging or redox active LECs and provide opportunities to develop antioxidant-based therapeutic(s) to prevent oxidative/aging-related diseases linked to aberrant Nlrp3 inflammasome activation.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.K.); (P.T.)
| | - Rakesh Kumar
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.K.); (P.T.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kahoku 9200293, Ishikawa, Japan;
| | - Priyanka Thakur
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.K.); (P.T.)
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.K.); (P.T.)
| |
Collapse
|