51
|
Bolondi A, Kretzmer H, Meissner A. Single-cell technologies: a new lens into epigenetic regulation in development. Curr Opin Genet Dev 2022; 76:101947. [PMID: 35839561 DOI: 10.1016/j.gde.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The totipotent zygote gives rise to diverse cell types through a series of well-orchestrated regulatory mechanisms. Epigenetic modifiers play an essential, though still poorly understood, role in the transition from pluripotency towards organogenesis. However, recent advances in single-cell technologies have enabled an unprecedented, high-resolution dissection of this crucial developmental window, highlighting more cell-type-specific functions of these ubiquitous regulators. In this review, we discuss and contextualize several recent studies that explore epigenetic regulation during mouse embryogenesis, emphasizing the opportunities presented by single-cell technologies, in vivo perturbation approaches as well as advanced in vitro models to characterize dynamic developmental transitions.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany. https://twitter.com/@adrianobolondi
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. https://twitter.com/@helenekretzmer
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany; Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 02138 Cambridge, MA, USA.
| |
Collapse
|
52
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
53
|
Ai Z, Yin Y, Niu B, Li T. Deconstructing human peri-implantation embryogenesis based on embryos and embryoids. Biol Reprod 2022; 107:212-225. [PMID: 35552636 DOI: 10.1093/biolre/ioac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
The peri-implantation period from blastula to gastrula is one of the crucial stages of human embryo and stem cell development. During development, human embryos undergo many crucial events, such as embryonic lineage differentiation and development, structural self-assembly, pluripotency state transition, cell communication between lineages, and crosstalk between the embryo and uterus. Abnormalities in these developmental events will result in implantation failure or pregnancy loss. However, because of ethical and technical limits, the developmental dynamics of human peri-implantation embryos and the underlying mechanisms of abnormal development remain in a "black box". In this review, we summarize recent progress made towards our understanding of human peri-implantation embryogenesis based on extended in vitro cultured embryos and stem cell-based embryoids. These findings lay an important foundation for understanding early life, promoting research into human stem cells and their application, and preventing and treating infertility. We also propose key scientific issues regarding peri-implantation embryogenesis and provide an outlook on future study directions. Finally, we sum up China's contribution to the field and future opportunities.
Collapse
Affiliation(s)
- Zongyong Ai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| | - Baohua Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| |
Collapse
|
54
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Zhao C, Xie W, Zhu H, Zhao M, Liu W, Wu Z, Wang L, Zhu B, Li S, Zhou Y, Jiang X, Xu Q, Ren C. LncRNAs and their RBPs: How to influence the fate of stem cells? Stem Cell Res Ther 2022; 13:175. [PMID: 35505438 PMCID: PMC9066789 DOI: 10.1186/s13287-022-02851-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells are distinctive cells that have self-renewal potential and unique ability to differentiate into multiple functional cells. Stem cell is a frontier field of life science research and has always been a hot spot in biomedical research. Recent studies have shown that long non-coding RNAs (lncRNAs) have irreplaceable roles in stem cell self-renewal and differentiation. LncRNAs play crucial roles in stem cells through a variety of regulatory mechanisms, including the recruitment of RNA-binding proteins (RBPs) to affect the stability of their mRNAs or the expression of downstream genes. RBPs interact with different RNAs to regulate gene expression at transcriptional and post-transcriptional levels and play important roles in determining the fate of stem cells. In this review, the functions of lncRNAs and their RBPs in self-renewal and differentiation of stem cell are summarized. We focus on the four regulatory mechanisms by which lncRNAs and their RBPs are involved in epigenetic regulation, signaling pathway regulation, splicing, mRNA stability and subcellular localization and further discuss other noncoding RNAs (ncRNAs) and their RBPs in the fate of stem cells. This work provides a more comprehensive understanding of the roles of lncRNAs in determining the fate of stem cells, and a further understanding of their regulatory mechanisms will provide a theoretical basis for the development of clinical regenerative medicine.
Collapse
Affiliation(s)
- Cong Zhao
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Wen Xie
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Zhaoping Wu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Shasha Li
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Yao Zhou
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Qiang Xu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, 412007, China. .,School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
56
|
Gordeeva O, Gordeev A, Erokhov P. Archetypal Architecture Construction, Patterning, and Scaling Invariance in a 3D Embryoid Body Differentiation Model. Front Cell Dev Biol 2022; 10:852071. [PMID: 35573693 PMCID: PMC9091174 DOI: 10.3389/fcell.2022.852071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Self-organized patterning and architecture construction studying is a priority goal for fundamental developmental and stem cell biology. To study the spatiotemporal patterning of pluripotent stem cells of different origins, we developed a three-dimensional embryoid body (EB) differentiation model quantifying volumetric parameters and investigated how the EB architecture formation, patterning, and scaling depend on the proliferation, cavitation, and differentiation dynamics, external environmental factors, and cell numbers. We identified three similar spatiotemporal patterns in the EB architectures, regardless of cell origin, which constitute the EB archetype and mimick the pre-gastrulation embryonic patterns. We found that the EB patterning depends strongly on cellular positional information, culture media factor/morphogen content, and free diffusion from the external environment and between EB cell layers. However, the EB archetype formation is independent of the EB size and initial cell numbers forming EBs; therefore, it is capable of scaling invariance and patterning regulation. Our findings indicate that the underlying principles of reaction-diffusion and positional information concepts can serve as the basis for EB architecture construction, patterning, and scaling. Thus, the 3D EB differentiation model represents a highly reproducible and reliable platform for experimental and theoretical research on developmental and stem cell biology issues.
Collapse
Affiliation(s)
- Olga Gordeeva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Gordeev
- National Institutes of Health’s National Library of Medicine, Bethesda, MD, United States
| | - Pavel Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
57
|
Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Tremendous progress has been made in the field of toxicology leading to the advance of developmental toxicity assessment. Conventional animal models and in vitro two-dimensional models cannot accurately describe toxic effects and predict actual in vivo responses due to obvious inter-species differences between humans and animals, as well as the lack of a physiologically relevant tissue microenvironment. Human embryonic stem cell (hESC)- and induced pluripotent stem cell (iPSC)-derived three-dimensional organoids are ideal complex and multicellular organotypic models, which are indispensable in recapitulating morphogenesis, cellular interactions, and molecular processes of early human organ development. Recently, human organoids have been used for drug discovery, chemical toxicity and safety in vitro assessment. This review discusses the recent advances in the use of human organoid models, (i.e., brain, retinal, cardiac, liver, kidney, lung, and intestinal organoid models) for developmental toxicity and teratogenicity assessment of distinct tissues/organs following exposure to pharmaceutical compounds, heavy metals, persistent organic pollutants, nanomaterials, and ambient air pollutants. Combining next-generation organoid models with innovative engineering technologies generates novel and powerful tools for developmental toxicity and teratogenicity assessment, and the rapid progress in this field is expected to continue.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
58
|
Anifandis G, Sutovsky P, Turek PJ, Chavez SL, Kunej T, Messini CI, Schon SB, Mavroforou A, Adashi EY, Krawetz SA. Bioethics in human embryology: the double-edged sword of embryo research. Syst Biol Reprod Med 2022; 68:169-179. [PMID: 35380489 DOI: 10.1080/19396368.2022.2052771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There has been a significant increase in the use of assisted reproductive therapies (ARTs) over the past several decades, allowing many couples with infertility to conceive. Despite the achievements in this field, a mounting body of evidence concerning the epigenetic risks associated with ART interventions such as ovarian hormonal stimulation, intracytoplasmic sperm injection (ICSI), and in vitro culture (IVC) of oocytes and embryos has also emerged. Induced development of multiple follicles, the IVC media itself, and extended culture may alter the epigenome of both gametes and embryos, resulting in yet to be fully understood developmental, postnatal, and adult life health consequences. Investigators have attempted to decipher the molecular mechanisms mediating ART-induced epigenetic changes using either human samples or animal models with some success. As research in this field continues to expand, the ethical responsibilities of embryologists and researchers have become critically important. Here, we briefly discuss the ethical aspects of ART research, concentrating on the constraints arising from the perceived 'unnaturalness' of many of these procedures. Secondly, we focus on the bioethics and morality of human embryo research in general and how ethically acceptable model systems may be used to mimic early human embryogenesis. Lastly, we review the 14-day culture limit of human embryos and the notion that this rule could be considered of taken into account using new technologies and cues from animal models. The 'black box' of early post-implantation embryogenesis might be revealed using embryo models. As long as this distinct moral line has been drawn and closely followed, we should not fear scientific growth in embryo research. Although in vitro fertilization (IVF) is ethically acceptable, research with human embryos to improve its success raises serious ethical concerns that are in need of constant revisiting.Glossary index: Moral status: the ascription of obligations and rights to embryos on the basis of sentience; Sentience: the capacity of the developing embryo to experience feelings and sensations, such as the awareness of pain; Ectogenesis: the growth of the embryo in an artificial environment outside the mother's body.
Collapse
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Peter Sutovsky
- Division of Animal Sciences and the Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | | | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Departments of Obstetrics & Gynecology, Molecular & Medical Genetics, and Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Tanja Kunej
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domzale, Slovenia
| | - Christina I Messini
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Samantha B Schon
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Mavroforou
- School of Health Sciences, Faculty of Nursing, University of Thessaly, Larisa, Greece
| | - Eli Y Adashi
- Center for Prisoner Health and Human Rights, The Warren Alpert Medical School, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Molecular Medicine & Genetics, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
59
|
Rajagopal R, Baltazar MT, Carmichael PL, Dent MP, Head J, Li H, Muller I, Reynolds J, Sadh K, Simpson W, Spriggs S, White A, Kukic P. Beyond AOPs: A Mechanistic Evaluation of NAMs in DART Testing. FRONTIERS IN TOXICOLOGY 2022; 4:838466. [PMID: 35295212 PMCID: PMC8915803 DOI: 10.3389/ftox.2022.838466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
New Approach Methodologies (NAMs) promise to offer a unique opportunity to enable human-relevant safety decisions to be made without the need for animal testing in the context of exposure-driven Next Generation Risk Assessment (NGRA). Protecting human health against the potential effects a chemical may have on embryo-foetal development and/or aspects of reproductive biology using NGRA is particularly challenging. These are not single endpoint or health effects and risk assessments have traditionally relied on data from Developmental and Reproductive Toxicity (DART) tests in animals. There are numerous Adverse Outcome Pathways (AOPs) that can lead to DART, which means defining and developing strict testing strategies for every AOP, to predict apical outcomes, is neither a tenable goal nor a necessity to ensure NAM-based safety assessments are fit-for-purpose. Instead, a pragmatic approach is needed that uses the available knowledge and data to ensure NAM-based exposure-led safety assessments are sufficiently protective. To this end, the mechanistic and biological coverage of existing NAMs for DART were assessed and gaps to be addressed were identified, allowing the development of an approach that relies on generating data relevant to the overall mechanisms involved in human reproduction and embryo-foetal development. Using the knowledge of cellular processes and signalling pathways underlying the key stages in reproduction and development, we have developed a broad outline of endpoints informative of DART. When the existing NAMs were compared against this outline to determine whether they provide comprehensive coverage when integrated in a framework, we found them to generally cover the reproductive and developmental processes underlying the traditionally evaluated apical endpoint studies. The application of this safety assessment framework is illustrated using an exposure-led case study.
Collapse
Affiliation(s)
- Ramya Rajagopal
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Effects of fibrin matrix and Ishikawa cells on in vitro 3D uterine tissue cultures on a rat model: A controlled study. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1054556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
61
|
Synthetic developmental biology: Engineering approaches to guide multicellular organization. Stem Cell Reports 2022; 17:715-733. [PMID: 35276092 PMCID: PMC9023767 DOI: 10.1016/j.stemcr.2022.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Multicellular organisms of various complexities self-organize in nature. Organoids are in vitro 3D structures that display important aspects of the anatomy and physiology of their in vivo counterparts and that develop from pluripotent or tissue-specific stem cells through a self-organization process. In this review, we describe the multidisciplinary concept of “synthetic developmental biology” where engineering approaches are employed to guide multicellular organization in an experimental setting. We introduce a novel classification of engineering approaches based on the extent of microenvironmental manipulation applied to organoids. In the final section, we discuss how engineering tools might help overcome current limitations in organoid construction.
Collapse
|
62
|
Barhouse PS, Andrade MJ, Smith Q. Home Away From Home: Bioengineering Advancements to Mimic the Developmental and Adult Stem Cell Niche. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.832754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inherent self-organizing capacity of pluripotent and adult stem cell populations has advanced our fundamental understanding of processes that drive human development, homeostasis, regeneration, and disease progression. Translating these principles into in vitro model systems has been achieved with the advent of organoid technology, driving innovation to harness patient-specific, cell-laden regenerative constructs that can be engineered to augment or replace diseased tissue. While developmental organization and regenerative adult stem cell niches are tightly regulated in vivo, in vitro analogs lack defined architecture and presentation of physicochemical cues, leading to the unhindered arrangement of mini-tissues that lack complete physiological mimicry. This review aims to highlight the recent integrative engineering approaches that elicit spatio-temporal control of the extracellular niche to direct the structural and functional maturation of pluripotent and adult stem cell derivatives. While the advances presented here leverage multi-pronged strategies ranging from synthetic biology to microfabrication technologies, the methods converge on recreating the biochemical and biophysical milieu of the native tissue to be modeled or regenerated.
Collapse
|
63
|
Zhang Y, Guo ZB, Nie YM, Feng GP, Deng MJ, Hu YM, Zhang HJ, Zhao YY, Feng YW, Yu TT, Hu K. Self-Organization Formation of Multicellular Spheroids Mediated by Mechanically Tunable Hydrogel Platform: Toward Revealing the Synergy of Chemo- and Noninvasive Photothermal Therapy against Colon Microtumor. Macromol Biosci 2022; 22:e2100498. [PMID: 35014172 DOI: 10.1002/mabi.202100498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/06/2022]
Abstract
Three-dimensional (3D) tumor cell culture offers a more tissue-recapitulating model in cancer treatment evaluation. However, conventional models based on cell-substrate adhesion deprivation are still of insufficient real tumor mimic. In this work, a novel method is proposed for inducing multicellular spheroids (MCSs) formation based on hydrogel with tunable microenvironmental properties. Colon tumor cells DLD1 cultured on hydrogel substrate with proper physical stimulation form MCSs via self-organization. Chemotherapy based on clinical drug and far-infrared photothermal therapy is evaluated with DLD1 MCSs obtained by this method. The synergism of chemotherapy and noninvasive photothermal therapy based on graphene device is further verified in MCSs model and it is believed this method holds potential in in vitro anti-tumor strategies evaluation for precision medicine.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhao-Bin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Yu-Min Nie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Guan-Ping Feng
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.,Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Man-Jiao Deng
- Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Yi-Min Hu
- Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Hui-Jie Zhang
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin-Yi Zhao
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Wei Feng
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting-Ting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
64
|
Bérenger-Currias NM, Mircea M, Adegeest E, van den Berg PR, Feliksik M, Hochane M, Idema T, Tans SJ, Semrau S. A gastruloid model of the interaction between embryonic and extra-embryonic cell types. J Tissue Eng 2022; 13:20417314221103042. [PMID: 35707767 PMCID: PMC9189523 DOI: 10.1177/20417314221103042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Stem-cell derived in vitro systems, such as organoids or embryoids, hold great
potential for modeling in vivo development. Full control over their initial
composition, scalability, and easily measurable dynamics make those systems
useful for studying specific developmental processes in isolation. Here we
report the formation of gastruloids consisting of mouse embryonic stem cells
(mESCs) and extraembryonic endoderm (XEN) cells. These XEN-enhanced gastruloids
(XEGs) exhibit the formation of neural epithelia, which are absent in
gastruloids derived from mESCs only. By single-cell RNA-seq, imaging, and
differentiation experiments, we demonstrate the neural characteristics of the
epithelial tissue. We further show that the mESCs induce the differentiation of
the XEN cells to a visceral endoderm-like state. Finally, we demonstrate that
local inhibition of WNT signaling and production of a basement membrane by the
XEN cells underlie the formation of the neuroepithelial tissue. In summary, we
establish XEGs to explore heterotypic cellular interactions and their
developmental consequences in vitro.
Collapse
Affiliation(s)
- Noémie Mlp Bérenger-Currias
- Department of Physics, Leiden University, Leiden, The Netherlands.,Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Maria Mircea
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Esmée Adegeest
- Department of Physics, Leiden University, Leiden, The Netherlands
| | | | - Marleen Feliksik
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Mazène Hochane
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Timon Idema
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Sander J Tans
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands.,AMOLF, Amsterdam, The Netherlands
| | - Stefan Semrau
- Department of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
65
|
Russo L, Sladitschek HL, Neveu PA. Multi-layered regulation of neuroectoderm differentiation by retinoic acid in a primitive streak-like context. Stem Cell Reports 2022; 17:231-244. [PMID: 35063128 PMCID: PMC8828549 DOI: 10.1016/j.stemcr.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFβ or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFβ and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system. In vitro reconstitution of neural induction by primitive streak-like cells Retinoic acid mediates neural induction triggered by TGFβ or Wnt signaling inhibition A sensitive activity reporter reveals Aldh1a2-independent retinoic acid signaling Cyp26a1 protects primitive streak-like cells from neural induction
Collapse
Affiliation(s)
- Luigi Russo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Joint PhD Degree from EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Hanna L Sladitschek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
66
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
67
|
Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep 2021; 37:109851. [PMID: 34686339 DOI: 10.1016/j.celrep.2021.109851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.
Collapse
|
68
|
Resto Irizarry AM, Esfahani SN, Zheng Y, Yan RZ, Kinnunen P, Fu J. Machine learning-assisted imaging analysis of a human epiblast model. Integr Biol (Camb) 2021; 13:221-229. [PMID: 34327532 PMCID: PMC8521036 DOI: 10.1093/intbio/zyab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022]
Abstract
The human embryo is a complex structure that emerges and develops as a result of cell-level decisions guided by both intrinsic genetic programs and cell-cell interactions. Given limited accessibility and associated ethical constraints of human embryonic tissue samples, researchers have turned to the use of human stem cells to generate embryo models to study specific embryogenic developmental steps. However, to study complex self-organizing developmental events using embryo models, there is a need for computational and imaging tools for detailed characterization of cell-level dynamics at the single cell level. In this work, we obtained live cell imaging data from a human pluripotent stem cell (hPSC)-based epiblast model that can recapitulate the lumenal epiblast cyst formation soon after implantation of the human blastocyst. By processing imaging data with a Python pipeline that incorporates both cell tracking and event recognition with the use of a CNN-LSTM machine learning model, we obtained detailed temporal information of changes in cell state and neighborhood during the dynamic growth and morphogenesis of lumenal hPSC cysts. The use of this tool combined with reporter lines for cell types of interest will drive future mechanistic studies of hPSC fate specification in embryo models and will advance our understanding of how cell-level decisions lead to global organization and emergent phenomena. Insight, innovation, integration: Human pluripotent stem cells (hPSCs) have been successfully used to model and understand cellular events that take place during human embryogenesis. Understanding how cell-cell and cell-environment interactions guide cell actions within a hPSC-based embryo model is a key step in elucidating the mechanisms driving system-level embryonic patterning and growth. In this work, we present a robust video analysis pipeline that incorporates the use of machine learning methods to fully characterize the process of hPSC self-organization into lumenal cysts to mimic the lumenal epiblast cyst formation soon after implantation of the human blastocyst. This pipeline will be a useful tool for understanding cellular mechanisms underlying key embryogenic events in embryo models.
Collapse
Affiliation(s)
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
69
|
Indana D, Agarwal P, Bhutani N, Chaudhuri O. Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101966. [PMID: 34499389 DOI: 10.1002/adma.202101966] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Organoids are lumen-containing multicellular structures that recapitulate key features of the organs, and are increasingly used in models of disease, drug testing, and regenerative medicine. Recent work has used 3D culture models to form organoids from human induced pluripotent stem cells (hiPSCs) in reconstituted basement membrane (rBM) matrices. However, rBM matrices offer little control over the microenvironment. More generally, the role of matrix viscoelasticity in directing lumen formation remains unknown. Here, viscoelastic alginate hydrogels with independently tunable stress relaxation (viscoelasticity), stiffness, and arginine-glycine-aspartate (RGD) ligand density are used to study hiPSC morphogenesis in 3D culture. A phase diagram that shows how these properties control hiPSC morphogenesis is reported. Higher RGD density and fast stress relaxation promote hiPSC viability, proliferation, apicobasal polarization, and lumen formation, while slow stress relaxation at low RGD densities triggers hiPSC apoptosis. Notably, hiPSCs maintain pluripotency in alginate hydrogels for much longer times than is reported in rBM matrices. Lumen formation is regulated by actomyosin contractility and is accompanied by translocation of Yes-associated protein (YAP) from the nucleus to the cytoplasm. The results reveal matrix viscoelasticity as a potent factor regulating stem cell morphogenesis and provide new insights into how engineered biomaterials may be leveraged to build organoids.
Collapse
Affiliation(s)
- Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Pranay Agarwal
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
70
|
Leahy BD, Racowsky C, Needleman D. Inferring simple but precise quantitative models of human oocyte and early embryo development. J R Soc Interface 2021; 18:20210475. [PMID: 34493094 PMCID: PMC8424348 DOI: 10.1098/rsif.2021.0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
Macroscopic, phenomenological models are useful as concise framings of our understandings in fields from statistical physics to finance to biology. Constructing a phenomenological model for development would provide a framework for understanding the complicated, regulatory nature of oogenesis and embryogenesis. Here, we use a data-driven approach to infer quantitative, precise models of human oocyte maturation and pre-implantation embryo development, by analysing clinical in-vitro fertilization (IVF) data on 7399 IVF cycles resulting in 57 827 embryos. Surprisingly, we find that both oocyte maturation and early embryo development are quantitatively described by simple models with minimal interactions. This simplicity suggests that oogenesis and embryogenesis are composed of modular processes that are relatively siloed from one another. In particular, our analysis provides strong evidence that (i) pre-antral follicles produce anti-Müllerian hormone independently of effects from other follicles, (ii) oocytes mature to metaphase-II independently of the woman's age, her BMI and other factors, (iii) early embryo development is memoryless for the variables assessed here, in that the probability of an embryo transitioning from its current developmental stage to the next is independent of its previous stage. Our results both provide insight into the fundamentals of oogenesis and embryogenesis and have implications for the clinical IVF.
Collapse
Affiliation(s)
- Brian D. Leahy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- SEAS, Harvard University, Cambridge, MA, USA
| | - Catherine Racowsky
- Brigham Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Needleman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- SEAS, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| |
Collapse
|
71
|
Haniffa M, Taylor D, Linnarsson S, Aronow BJ, Bader GD, Barker RA, Camara PG, Camp JG, Chédotal A, Copp A, Etchevers HC, Giacobini P, Göttgens B, Guo G, Hupalowska A, James KR, Kirby E, Kriegstein A, Lundeberg J, Marioni JC, Meyer KB, Niakan KK, Nilsson M, Olabi B, Pe'er D, Regev A, Rood J, Rozenblatt-Rosen O, Satija R, Teichmann SA, Treutlein B, Vento-Tormo R, Webb S. A roadmap for the Human Developmental Cell Atlas. Nature 2021; 597:196-205. [PMID: 34497388 PMCID: PMC10337595 DOI: 10.1038/s41586-021-03620-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Deanne Taylor
- Department of Biomedical and Health Informatics (DBHi), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bruce J Aronow
- Division of Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pablo G Camara
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), University of Basel, Basel, Switzerland
| | - Alain Chédotal
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Andrew Copp
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, Université Lille, Lille, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ania Hupalowska
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Emily Kirby
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Arnold Kriegstein
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - John C Marioni
- Cancer Research Institute UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Kathy K Niakan
- Francis Crick Institute, London, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jennifer Rood
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Rahul Satija
- New York Genome Center, New York University, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
72
|
Baverstock K. The gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:46-62. [PMID: 33979646 DOI: 10.1016/j.pbiomolbio.2021.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
73
|
Anlas K, Trivedi V. Studying evolution of the primary body axis in vivo and in vitro. eLife 2021; 10:e69066. [PMID: 34463611 PMCID: PMC8456739 DOI: 10.7554/elife.69066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The metazoan body plan is established during early embryogenesis via collective cell rearrangements and evolutionarily conserved gene networks, as part of a process commonly referred to as gastrulation. While substantial progress has been achieved in terms of characterizing the embryonic development of several model organisms, underlying principles of many early patterning processes nevertheless remain enigmatic. Despite the diversity of (pre-)gastrulating embryo and adult body shapes across the animal kingdom, the body axes, which are arguably the most fundamental features, generally remain identical between phyla. Recently there has been a renewed appreciation of ex vivo and in vitro embryo-like systems to model early embryonic patterning events. Here, we briefly review key examples and propose that similarities in morphogenesis and associated gene expression dynamics may reveal an evolutionarily conserved developmental mode as well as provide further insights into the role of external or extraembryonic cues in shaping the early embryo. In summary, we argue that embryo-like systems can be employed to inform previously uncharted aspects of animal body plan evolution as well as associated patterning rules.
Collapse
Affiliation(s)
| | - Vikas Trivedi
- EMBL BarcelonaBarcelonaSpain
- EMBL Heidelberg, Developmental BiologyHeidelbergGermany
| |
Collapse
|
74
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
75
|
Identification of cancer-related mutations in human pluripotent stem cells using RNA-seq analysis. Nat Protoc 2021; 16:4522-4537. [PMID: 34363070 DOI: 10.1038/s41596-021-00591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are known to acquire genetic aberrations during in vitro propagation. In addition to recurrent chromosomal aberrations, it has recently been shown that these cells also gain point mutations in cancer-related genes, predominantly in TP53. The need for routine quality control of hPSCs is critical for both basic research and clinical applications. Here we discuss the relevance of detecting mutations for various hPSCs applications, and present a detailed protocol to identify cancer-related point mutations using data from RNA sequencing, an assay commonly performed during the growth and differentiation of hPSCs. In this protocol, we describe how to process and align the sequencing data, analyze it and conservatively interpret the results in order to generate an accurate estimation of mutations in tumor-related genes. This pipeline is designed to work in high throughput and is available as a software container at https://github.com/elyadlezmi/RNA2CM . The protocol requires minimal command-line skills and can be carried out in 1-2 d.
Collapse
|
76
|
Chen K, Zheng Y, Xue X, Liu Y, Resto Irizarry AM, Tang H, Fu J. Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture. Biomaterials 2021; 275:120898. [PMID: 34044259 PMCID: PMC8325636 DOI: 10.1016/j.biomaterials.2021.120898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Human embryonic stem cells (hESCs) have the intrinsic capacity to self-organize and generate patterned tissues. In vitro models that coax hESCs to form embryonic-like structures by modulating physical environments and priming with chemical signals have become a powerful tool for dissecting the regulatory mechanisms underlying early human development. Here we present a 3D suspension culture system of hESCs that can generate post-implantation, pre-gastrulation embryonic-like tissues in an efficient and controllable manner. The efficiency of the development of asymmetric tissues, which mimic the post-implantation, pre-gastrulation amniotic sac, was about 50% in the 3D suspension culture. Quantitative imaging profiling and unsupervised trajectory analysis revealed that hESC aggregates first entered into a transitional stage expressing Brachyury (or T), before their development branched into different paths to develop into asymmetric embryonic-like tissues, amniotic-like tissues, and mesodermal-like tissues, respectively. Moreover, the branching developmental trajectory of embryonic-like structures was affected by the initial cell seeding density or cluster size of hESCs. A higher percentage of amniotic-like tissues was observed under a small initial cell seeding density of hESCs. Conversely, a large initial cell seeding density of hESCs promoted the development of mesodermal-like tissues. Intermediate cell seeding densities of hESCs in the 3D suspension culture promoted the development of asymmetric embryonic-like tissues. Our results suggest that hESCs have the intrinsic capability to sense the initial cell population size, which in turn regulates their differentiation and self-organization into different embryonic-like tissues. Our 3D suspension culture thus provides a promising experimental tool to study the interplay between tissue topology and self-organization and progressive embryonic development using in vitro hESC-based models.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yue Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Huaijing Tang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
77
|
Ebner-Peking P, Krisch L, Wolf M, Hochmann S, Hoog A, Vári B, Muigg K, Poupardin R, Scharler C, Schmidhuber S, Russe E, Stachelscheid H, Schneeberger A, Schallmoser K, Strunk D. Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics 2021; 11:8430-8447. [PMID: 34373751 PMCID: PMC8344006 DOI: 10.7150/thno.59661] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.
Collapse
Affiliation(s)
- Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Anna Hoog
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Balázs Vári
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Muigg
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Cornelia Scharler
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | | | - Elisabeth Russe
- Department of Plastic, Aesthetic and Reconstructive Surgery, Hospital Barmherzige Brueder, Salzburg, Austria
| | | | | | - Katharina Schallmoser
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
78
|
Weterings SDC, van Oostrom MJ, Sonnen KF. Building bridges between fields: bringing together development and homeostasis. Development 2021; 148:270964. [PMID: 34279592 PMCID: PMC8326920 DOI: 10.1242/dev.193268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite striking parallels between the fields of developmental biology and adult tissue homeostasis, these are disconnected in contemporary research. Although development describes tissue generation and homeostasis describes tissue maintenance, it is the balance between stem cell proliferation and differentiation that coordinates both processes. Upstream signalling regulates this balance to achieve the required outcome at the population level. Both development and homeostasis require tight regulation of stem cells at the single-cell level and establishment of patterns at the tissue-wide level. Here, we emphasize that the general principles of embryonic development and tissue homeostasis are similar, and argue that interactions between these disciplines will be beneficial for both research fields.
Collapse
Affiliation(s)
- Sonja D C Weterings
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
79
|
Wang Z, Zhu X, Cong X. Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs. Biofabrication 2021; 13. [PMID: 34107453 DOI: 10.1088/1758-5090/ac0982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most promising candidates for cell-based therapeutic products. Nonetheless, their biomechanical phenotype afterin vitroexpansion is still unsatisfactory, for example, restricting the efficiency of microcirculation of delivered hMSCs for further cell therapies. Here, we propose a scheme using maleimide-dextran hydrogel with locally varied stiffness in microscale to modify the biomechanical properties of hMSCs in three-dimensional (3D) niches. We show that spatial micro-variation of stiffness can be controllably generated in the hydrogel with heterogeneously cross-linking via atomic force microscopy measurements. The result of 3D cell culture experiment demonstrates the hydrogels trigger the formation of multicellular spheroids, and the derived hMSCs could be rationally softened via adjustment of the stiffness variation (SV) degree. Importantly,in vitro, the hMSCs modified with the higher SV degree can pass easier through capillary-shaped micro-channels. Further, we discuss the underlying mechanics of the increased cellular elasticity by focusing on the effect of rearranged actin networks, via the proposed microscopic model of biomechanically modified cells. Overall, this work highlights the effectiveness of SV-hydrogels in reprogramming and manufacturing hMSCs with designed biomechanical properties for improved therapeutic potential.
Collapse
Affiliation(s)
- Zheng Wang
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiaolu Zhu
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiuli Cong
- Department of Orthopaedics, Zhejiang Hospital, No. 12 Lingyin Road, Hangzhou, Zhejiang 310013, People's Republic of China
| |
Collapse
|
80
|
Glykofrydis F, Cachat E, Berzanskyte I, Dzierzak E, Davies JA. Bioengineering Self-Organizing Signaling Centers to Control Embryoid Body Pattern Elaboration. ACS Synth Biol 2021; 10:1465-1480. [PMID: 34019395 DOI: 10.1021/acssynbio.1c00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multicellular systems possess an intrinsic capacity to autonomously generate nonrandom state distributions or morphologies in a process termed self-organization. Facets of self-organization, such as pattern formation, pattern elaboration, and symmetry breaking, are frequently observed in developing embryos. Artificial stem cell-derived structures including embryoid bodies (EBs), gastruloids, and organoids also demonstrate self-organization, but with a limited capacity compared to their in vivo developmental counterparts. There is a pressing need for better tools to allow user-defined control over self-organization in these stem cell-derived structures. Here, we employ synthetic biology to establish an efficient platform for the generation of self-organizing coaggregates, in which HEK-293 cells overexpressing P-cadherin (Cdh3) spontaneously form cell clusters attached mostly to one or two locations on the exterior of EBs. These Cdh3-expressing HEK cells, when further engineered to produce functional mouse WNT3A, evoke polarized and gradual Wnt/β-catenin pathway activation in EBs during coaggregation cultures. The localized WNT3A provision induces nascent mesoderm specification within regions of the EB close to the Cdh3-Wnt3a-expressing HEK source, resulting in pattern elaboration and symmetry breaking within EBs. This synthetic biology-based approach puts us closer toward engineering synthetic organizers to improve the realism in stem cell-derived structures.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- UK Centre for Mammalian Synthetic Biology, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Elise Cachat
- UK Centre for Mammalian Synthetic Biology, Institute of Quantitative Biology, Biochemistry, and Biotechnology, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Ieva Berzanskyte
- UK Centre for Mammalian Synthetic Biology, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Elaine Dzierzak
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jamie A. Davies
- UK Centre for Mammalian Synthetic Biology, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
81
|
Bergmann S, Schindler M, Munger C, Penfold CA, Boroviak TE. Building a stem cell-based primate uterus. Commun Biol 2021; 4:749. [PMID: 34140619 PMCID: PMC8211708 DOI: 10.1038/s42003-021-02233-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Wellcome Trust - Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
82
|
Denker HW. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications. Cells 2021; 10:1461. [PMID: 34200796 PMCID: PMC8230544 DOI: 10.3390/cells10061461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The experimental production of complex structures resembling mammalian embryos (e.g., blastoids, gastruloids) from pluripotent stem cells in vitro has become a booming research field. Since some of these embryoid models appear to reach a degree of complexity that may come close to viability, a broad discussion has set in with the aim to arrive at a consensus on the ethical implications with regard to acceptability of the use of this technology with human cells. The present text focuses on aspects of the gain of organismic wholeness of such stem cell-derived constructs, and of autonomy of self-organization, raised by recent reports on blastocyst-like cysts spontaneously budding in mouse stem cell cultures, and by previous reports on likewise spontaneous formation of gastrulating embryonic disc-like structures in primate models. Mechanisms of pattern (axis) formation in early embryogenesis are discussed in the context of self-organization of stem cell clusters. It is concluded that ethical aspects of development of organismic wholeness in the formation of embryoids need to receive more attention in the present discussions about new legal regulations in this field.
Collapse
Affiliation(s)
- Hans-Werner Denker
- Universitätsklinikum, Institut für Anatomie, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
83
|
Bolondi A, Haut L, Gassaloglu SI, Burton P, Kretzmer H, Buschow R, Meissner A, Herrmann BG, Veenvliet JV. Generation of Mouse Pluripotent Stem Cell-derived Trunk-like Structures: An in vitro Model of Post-implantation Embryogenesis. Bio Protoc 2021; 11:e4042. [PMID: 34250208 PMCID: PMC8250383 DOI: 10.21769/bioprotoc.4042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022] Open
Abstract
Post-implantation mammalian embryogenesis involves profound molecular, cellular, and morphogenetic changes. The study of these highly dynamic processes is complicated by the limited accessibility of in utero development. In recent years, several complementary in vitro systems comprising self-organized assemblies of mouse embryonic stem cells, such as gastruloids, have been reported. We recently demonstrated that the morphogenetic potential of gastruloids can be further unlocked by the addition of a low percentage of Matrigel as an extracellular matrix surrogate. This resulted in the formation of highly organized trunk-like structures (TLSs) with a neural tube that is frequently flanked by bilateral somites. Notably, development at the molecular and morphogenetic levels is highly reminiscent of the natural embryo. To facilitate access to this powerful model, here we provide a detailed step-by-step protocol that should allow any lab with access to standard cell culture techniques to implement the culture system. This will provide the user with a means to investigate early mid-gestational mouse embryogenesis at an unprecedented spatiotemporal resolution.
Collapse
Affiliation(s)
- Adriano Bolondi
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Leah Haut
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Seher Ipek Gassaloglu
- Dept. of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Polly Burton
- Dept. of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bernhard G. Herrmann
- Dept. of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical Genetics, Charité - University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Jesse V. Veenvliet
- Dept. of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
84
|
Xu PF, Borges RM, Fillatre J, de Oliveira-Melo M, Cheng T, Thisse B, Thisse C. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun 2021; 12:3277. [PMID: 34078907 PMCID: PMC8172561 DOI: 10.1038/s41467-021-23653-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Generating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.
Collapse
Affiliation(s)
- Peng-Fei Xu
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Institute of Genetics and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Maraysa de Oliveira-Melo
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, State University of Campinas, Campinas, Brazil
| | - Tao Cheng
- Institute of Genetics and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
85
|
Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 2021; 474:91-99. [PMID: 33333069 PMCID: PMC8232073 DOI: 10.1016/j.ydbio.2020.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Early human post-implantation development involves extensive growth combined with a series of complex morphogenetic events. The lack of precise spatial and temporal control over these processes leads to pregnancy loss. Given the ethical and technical limitations in studying the natural human embryo, alternative approaches are needed to investigate mechanisms underlying this critical stage of human development. Here, we present an overview of the different stem cells and stem cell-derived models which serve as useful, albeit imperfect, tools in understanding human embryogenesis. Current models include stem cells that represent each of the three earliest lineages: human embryonic stem cells corresponding to the epiblast, hypoblast-like stem cells and trophoblast stem cells. We also review the use of human embryonic stem cells to model complex aspects of epiblast morphogenesis and differentiation. Additionally, we propose that the combination of both embryonic and extra-embryonic stem cells to form three-dimensional embryo models will provide valuable insights into cell-cell chemical and mechanical interactions that are essential for natural embryogenesis.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Tongtong Cui
- Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
86
|
Affiliation(s)
- Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, CB2 3EG, UK.
| |
Collapse
|
87
|
Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol 2021; 474:48-61. [DOI: 10.1016/j.ydbio.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
|
88
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
89
|
Abstract
The expanding field of stem cell metabolism has been supported by technical advances in metabolite profiling and novel functional analyses. While use of these methodologies has been fruitful, many challenges are posed by the intricacies of culturing stem cells in vitro, along with the distinctive scarcity of adult tissue stem cells and the complexities of their niches in vivo. This review provides an examination of the methodologies used to characterize stem cell metabolism, highlighting their utility while placing a sharper focus on their limitations and hurdles the field needs to overcome for the optimal study of stem cell metabolic networks.
Collapse
|
90
|
Wang X, Bai D. Self‐Organization Principles of Cell Cycles and Gene Expressions in the Development of Cell Populations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoliang Wang
- College of Life Sciences Zhejiang University Hangzhou 310058 China
- School of Physical Sciences University of Science and Technology of China Hefei 230026 China
| | - Dongyun Bai
- School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
91
|
Ma S, Zhao H, Galan EA. Integrating Engineering, Automation, and Intelligence to Catalyze the Biomedical Translation of Organoids. Adv Biol (Weinh) 2021; 5:e2100535. [PMID: 33984193 DOI: 10.1002/adbi.202100535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Organoid technology has developed at an impressive speed during the past decade. Still, organoids are not widely used in practical applications as expected. It is believed that this translation can be greatly accelerated with the integration of engineering and artificial intelligence into current research practices. It is proposed that this approach is the missing link to realize key milestones in organoid technology, namely, high-throughput, homogeneous, and standardized production, automated manipulation, and intelligent monitoring, evaluation, and control via integrated on-chip instrumentation and artificial intelligence. It is suggested that organoids-on-a-chip are the ideal platform to achieve these feats. Once these techniques are established and adopted by the scientific community, the rapid translation of organoids may be seen from laboratories to the clinics and pharmaceutical industry.
Collapse
Affiliation(s)
- Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Haoran Zhao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Edgar A Galan
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
92
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
93
|
Matthews KRW, Wagner DS, Warmflash A. Stem cell-based models of embryos: The need for improved naming conventions. Stem Cell Reports 2021; 16:1014-1020. [PMID: 33770498 PMCID: PMC8185370 DOI: 10.1016/j.stemcr.2021.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/04/2023] Open
Abstract
Stem cell-based models of embryos are known by various names, with different naming conventions, leading to confusion regarding their composition and potential. We propose the need for a general term for the field to promote public engagement and the development of a systematic nomenclature system to differentiate between specific models.
Collapse
Affiliation(s)
- Kirstin R W Matthews
- Baker Institute for Public Policy-Center for Health and Biosciences, Rice University, Houston, TX 77005, USA.
| | - Daniel S Wagner
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
94
|
Tallapragada NP, Cambra HM, Wald T, Keough Jalbert S, Abraham DM, Klein OD, Klein AM. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell 2021; 28:1516-1532.e14. [PMID: 33915079 DOI: 10.1016/j.stem.2021.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
How stem cells self-organize to form structured tissues is an unsolved problem. Intestinal organoids offer a model of self-organization as they generate stem cell zones (SCZs) of typical size even without a spatially structured environment. Here we examine processes governing the size of SCZs. We improve the viability and homogeneity of intestinal organoid cultures to enable long-term time-lapse imaging of multiple organoids in parallel. We find that SCZs are shaped by fission events under strong control of ion channel-mediated inflation and mechanosensitive Piezo-family channels. Fission occurs through stereotyped modes of dynamic behavior that differ in their coordination of budding and differentiation. Imaging and single-cell transcriptomics show that inflation drives acute stem cell differentiation and induces a stretch-responsive cell state characterized by large transcriptional changes, including upregulation of Piezo1. Our results reveal an intrinsic capacity of the intestinal epithelium to self-organize by modulating and then responding to its mechanical state.
Collapse
Affiliation(s)
- Naren P Tallapragada
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hailey M Cambra
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Wald
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha Keough Jalbert
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Diana M Abraham
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Allon M Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
95
|
Ando Y, Okeyo KO, Sunaga J, Adachi T. Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates. Stem Cell Res 2021; 53:102352. [PMID: 33901814 DOI: 10.1016/j.scr.2021.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
Self-organization of pluripotent stem cells during tissue formation is directed by the adhesion microenvironment, which defines the resulting tissue topography. Although the influence of tissue topography on pluripotency state has been inferred, this aspect of self-organization remains largely unexplored. In this study, to determine the effect of self-organized tissue topography on pluripotency loss, we designed novel island mesh substrates to confine the self-organization process of mouse embryonic stem cells, enabling us to generate isolated cell layers with an island-like topography and overhanging edges. Using immunofluorescence microscopy, we determined that cells at the tissue edge exhibited deformed nuclei associated with low OCT3/4, in contrast with cells nested in the tissue interior which had round-shaped nuclei and exhibited sustained OCT3/4 expression. Interestingly, F-actin and phospho-myosin light chain were visibly enriched at the tissue edge where ERK activation and elevated AP-2γ expression were also found to be localized, as determined using both immunofluorescence microscopy and RT-qPCR analysis. Since actomyosin contractility is known to cause ERK activation, these results suggest that mechanical condition at the tissue edge can contribute to loss of pluripotency leading to differentiation. Thus, our study draws attention to the influence of self-organized tissue topography in stem cell culture and differentiation.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kennedy Omondi Okeyo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Junko Sunaga
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
96
|
Lenne PF, Munro E, Heemskerk I, Warmflash A, Bocanegra-Moreno L, Kishi K, Kicheva A, Long Y, Fruleux A, Boudaoud A, Saunders TE, Caldarelli P, Michaut A, Gros J, Maroudas-Sacks Y, Keren K, Hannezo E, Gartner ZJ, Stormo B, Gladfelter A, Rodrigues A, Shyer A, Minc N, Maître JL, Di Talia S, Khamaisi B, Sprinzak D, Tlili S. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Phys Biol 2021; 18. [PMID: 33276350 PMCID: PMC8380410 DOI: 10.1088/1478-3975/abd0db] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States of America
| | - Idse Heemskerk
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Aryeh Warmflash
- Department of Biosciences and Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | | | - Kasumi Kishi
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Kicheva
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yuchen Long
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France
| | - Antoine Fruleux
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Arezki Boudaoud
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Paolo Caldarelli
- Cellule Pasteur UPMC, Sorbonne Université, rue du Dr Roux, 75015 Paris, France.,Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Arthur Michaut
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Yonit Maroudas-Sacks
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Network Biology Research Laboratories and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th St. Box 2280, San Francisco, CA 94158, United States of America
| | - Benjamin Stormo
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Amy Gladfelter
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Alan Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Amy Shyer
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, United States of America
| | - Bassma Khamaisi
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sham Tlili
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
97
|
Nicolas P, Etoc F, Brivanlou AH. The ethics of human-embryoids model: a call for consistency. J Mol Med (Berl) 2021; 99:569-579. [PMID: 33792755 PMCID: PMC8026457 DOI: 10.1007/s00109-021-02053-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/10/2022]
Abstract
In this article, we discuss the ethics of human embryoids, i.e., embryo-like structures made from pluripotent stem cells for modeling natural embryos. We argue that defining our social priorities is critical to design a consistent ethical guideline for research on those new entities. The absence of clear regulations on these emerging technologies stems from an unresolved debate surrounding natural human embryo research and one common opinion that one needs to solve the question of the moral status of the human embryo before regulating their surrogate. The recent NIH funding restrictions for research on human embryoids have made scientists even more unlikely to raise their voices. As a result, the scientific community has maintained a low profile while longing for a more favorable socio-political climate for their research. This article is a call for consistency among biomedical research on human materials, trying to position human embryoids within a spectrum of existing practice from stem cell research or IVF to research involving human subjects. We specifically note that the current practices in infertility clinics of freezing human embryos or disposing of them without any consideration for their potential benefits contradicts the assumption of special consideration for human material. Conversely, creating human embryoids for research purposes could ensure that no human material be used in vain, always serving humankind. We argue here that it is time to reconsider the full ban on embryo research (human embryos and embryoids) beyond the 14-day rule and that research on those entities should obey a sliding scale combining the completeness of the model (e.g., complete vs. partial) and the developmental stage: with more advanced completeness and developmental stage of the considered entity, being associated with more rigorous evaluation of societal benefits, statements of intention, and necessity of such research.
Collapse
Affiliation(s)
- Paola Nicolas
- Bioethics Center, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595 USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065 USA
| | - Ali H. Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
98
|
Bourdon G, Cadoret V, Charpigny G, Couturier-Tarrade A, Dalbies-Tran R, Flores MJ, Froment P, Raliou M, Reynaud K, Saint-Dizier M, Jouneau A. Progress and challenges in developing organoids in farm animal species for the study of reproduction and their applications to reproductive biotechnologies. Vet Res 2021; 52:42. [PMID: 33691745 PMCID: PMC7944619 DOI: 10.1186/s13567-020-00891-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Within the past decades, major progress has been accomplished in isolating germ/stem/pluripotent cells, in refining culture medium and conditions and in establishing 3-dimensional culture systems, towards developing organoids for organs involved in reproduction in mice and to some extent in humans. Haploid male germ cells were generated in vitro from primordial germ cells. So were oocytes, with additional support from ovarian cells and subsequent follicle culture. Going on with the female reproductive tract, spherical oviduct organoids were obtained from adult stem/progenitor cells. Multicellular endometrial structures mimicking functional uterine glands were derived from endometrial cells. Trophoblastic stem cells were induced to form 3-dimensional syncytial-like structures and exhibited invasive properties, a crucial point for placentation. Finally, considering the embryo itself, pluripotent embryonic cells together with additional extra-embryonic cells, could self-organize into a blastoid, and eventually into a post-implantation-like embryo. Most of these accomplishments have yet to be reached in farm animals, but much effort is devoted towards this goal. Here, we review the progress and discuss the specific challenges of developing organoids for the study of reproductive biology in these species. We consider the use of such organoids in basic research to delineate the physiological mechanisms involved at each step of the reproductive process, or to understand how they are altered by environmental factors relevant to animal breeding. We evaluate their potential in reproduction of animals with a high genetic value, from a breeding point of view or in the context of preserving local breeds with limited headcounts.
Collapse
Affiliation(s)
- Guillaume Bourdon
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Véronique Cadoret
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
- CHU Bretonneau, Médecine et Biologie de la Reproduction-CECOS, 37044, Tours, France
| | - Gilles Charpigny
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Maria-José Flores
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascal Froment
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Mariam Raliou
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Karine Reynaud
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
- Faculty of Sciences and Techniques, University of Tours, 37200, Tours, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
99
|
Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D, Koch F, Guignard L, Kumar AS, Pustet M, Heimann S, Buschow R, Wittler L, Timmermann B, Meissner A, Herrmann BG. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 2021; 370:370/6522/eaba4937. [PMID: 33303587 DOI: 10.1126/science.aba4937] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.
Collapse
Affiliation(s)
- Jesse V Veenvliet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leah Haut
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Léo Guignard
- Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 10115 Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Milena Pustet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Simon Heimann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Institute for Medical Genetics, Charité-University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
100
|
Xing Y, Liu J, Guo X, Liu H, Zeng W, Wang Y, Zhang C, Lu Y, He D, Ma S, He Y, Xing XH. Engineering organoid microfluidic system for biomedical and health engineering: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|