51
|
Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022; 12:988604. [PMID: 36389144 PMCID: PMC9641212 DOI: 10.3389/fcimb.2022.988604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
52
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
53
|
Goldblatt D, Alter G, Crotty S, Plotkin SA. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol Rev 2022; 310:6-26. [PMID: 35661178 PMCID: PMC9348242 DOI: 10.1111/imr.13091] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS-CoV-2 coronavirus. Measurement of those antibodies by neutralization or binding assays both have predictive value, with binding antibody titers giving the highest statistical correlation. However, the protective functions of antibodies are multiple. Antibodies with multiple functions other than neutralization influence efficacy. The role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with respect to CD8+ cells with regard to control of viral replication, particularly in the presence of insufficient antibody. More information is needed on mucosal responses.
Collapse
Affiliation(s)
- David Goldblatt
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Galit Alter
- Massachusetts General HospitalRagon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCaliforniaUSA
- Department of Medicine, Division of Infectious Diseases and Global Public HealthUniversity of California San Diego (UCSD)La JollaCaliforniaUSA
| | | |
Collapse
|
54
|
Differential persistence of neutralizing antibody against SARS-CoV-2 in post immunized Bangladeshi population. Sci Rep 2022; 12:14681. [PMID: 36038600 PMCID: PMC9421641 DOI: 10.1038/s41598-022-18302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Development of effective vaccines have been immensely welcomed by the world to prevent the transmission of SARS-CoV-2. However, the duration and clinical implications of antibody-mediated natural immunity in SARS-CoV-2 have not been adequately elucidated alongside some other immune system transforming factors. In a cohort study, we measured NAb titer following the 2nd immunization dosage of the CoviShield (AZD1222) vaccine. The enzyme-linked immunoassay was used to look for SARS-CoV-2—specific NAb. We measured NAb at 30 days after the 2nd dosage of immunization and > 96% titer was detected in 42.9% of subjects, but only 5.1% of subjects retained the same level after 180 days. The median NAb titer dropped significantly, from 92% at 30 days to 58% at 180 days (p < 0.001). Besides, there were significant differences observed in NAb titer after 180 days by age, sex, COVID-19 infection, tobacco use, and asthma patients. However, SARS-CoV-2 infection along with two dosages of immunization upheld NAb titer (p < 0.001) even at the end of the study period.
Collapse
|
55
|
Mullender C, da Costa KAS, Alrubayyi A, Pett SL, Peppa D. SARS-CoV-2 immunity and vaccine strategies in people with HIV. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac005. [PMID: 36846557 PMCID: PMC9452103 DOI: 10.1093/oxfimm/iqac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, based on the ancestral Wuhan strain, were developed rapidly to meet the needs of a devastating global pandemic. People living with Human Immunodeficiency Virus (PLWH) have been designated as a priority group for SARS-CoV-2 vaccination in most regions and varying primary courses (two- or three-dose schedule) and additional boosters are recommended depending on current CD4+ T cell count and/or detectable HIV viraemia. From the current published data, licensed vaccines are safe for PLWH, and stimulate robust responses to vaccination in those well controlled on antiretroviral therapy and with high CD4+ T cell counts. Data on vaccine efficacy and immunogenicity remain, however, scarce in PLWH, especially in people with advanced disease. A greater concern is a potentially diminished immune response to the primary course and subsequent boosters, as well as an attenuated magnitude and durability of protective immune responses. A detailed understanding of the breadth and durability of humoral and T cell responses to vaccination, and the boosting effects of natural immunity to SARS-CoV-2, in more diverse populations of PLWH with a spectrum of HIV-related immunosuppression is therefore critical. This article summarizes focused studies of humoral and cellular responses to SARS-CoV-2 infection in PLWH and provides a comprehensive review of the emerging literature on SARS-CoV-2 vaccine responses. Emphasis is placed on the potential effect of HIV-related factors and presence of co-morbidities modulating responses to SARS-CoV-2 vaccination, and the remaining challenges informing the optimal vaccination strategy to elicit enduring responses against existing and emerging variants in PLWH.
Collapse
Affiliation(s)
- Claire Mullender
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London Institute for Global Health, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, University College London, London, UK
| | - Aljawharah Alrubayyi
- Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sarah L Pett
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London Institute for Global Health, London, UK
- Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
56
|
Lack of Convincing Evidence That the Widely Used COVID-19 Vaccines Will Produce Herd Immunity. Am J Med 2022; 135:e231-e233. [PMID: 35139324 PMCID: PMC8818131 DOI: 10.1016/j.amjmed.2022.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
|
57
|
Abstract
The SARS-CoV-2 pandemic has demonstrated the importance of studying antiviral immunity within sites of infection to gain insights into mechanisms for immune protection and disease pathology. As SARS-CoV-2 is tropic to the respiratory tract, many studies of airway washes, lymph node aspirates, and postmortem lung tissue have revealed site-specific immune dynamics that are associated with the protection or immunopathology but are not readily observed in circulation. This review summarizes the growing body of work identifying immune processes in tissues and their interplay with immune responses in circulation during acute SARS-CoV-2 infection, severe disease, and memory persistence. Establishment of tissue resident immunity also may have implications for vaccination and the durability of immune memory and protection.
Collapse
Affiliation(s)
- Ksenia Rybkina
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Julia Davis‐Porada
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
58
|
Nguyen DC, Lamothe PA, Woodruff MC, Saini AS, Faliti CE, Sanz I, Lee FE. COVID-19 and plasma cells: Is there long-lived protection? Immunol Rev 2022; 309:40-63. [PMID: 35801537 PMCID: PMC9350162 DOI: 10.1111/imr.13115] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has resulted in over 450 million cases with more than 6 million deaths worldwide, causing global disruptions since early 2020. Memory B cells and durable antibody protection from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. However, ending the pandemic has been hampered by the lack of long-lived immunity after infection or vaccination. Although immunizations offer protection from severe disease and hospitalization, breakthrough infections still occur, most likely due to new mutant viruses and the overall decline of neutralizing antibodies after 6 months. Here, we review the current knowledge of B cells, from extrafollicular to memory populations, with a focus on distinct plasma cell subsets, such as early-minted blood antibody-secreting cells and the bone marrow LLPC, and how these humoral compartments contribute to protection after SARS-CoV-2 infection and immunization.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ankur S. Saini
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Caterina E. Faliti
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ignacio Sanz
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Frances Eun‐Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
59
|
Li H, Zhao X, Li J, Zheng H, Zhao Y, Yang J, Zhou J, Yang F, Chen Y, Zuo Y, Lai Q, Long H, Li Y, Jin W, Shi H, Liu L. Nasal Mucosa Exploited by SARS-CoV-2 for Replicating and Shedding during Reinfection. Viruses 2022; 14:v14081608. [PMID: 35893674 PMCID: PMC9394478 DOI: 10.3390/v14081608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Correspondence: ; Tel.: +86-871-6833-5905; Fax: +86-871-6833-4483
| |
Collapse
|
60
|
Yan LN, Zhao ZX, Wang ZD, Xiao X, Liu PP, Zhang WK, Gu XL, Li B, Yu LP, Yu XJ. Neutralizing antibodies and cellular immune response after two doses of inactivated SARS-CoV-2 vaccine in China. Expert Rev Vaccines 2022; 21:1465-1473. [PMID: 35861138 DOI: 10.1080/14760584.2022.2104714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND As of 2022, inactivated SARS-CoV-2 vaccines had been used in more than 91 countries. However, limited information was available on the immune responses of the inactivated SARS-CoV-2 vaccine in the real world. METHODS We used SARS-CoV-2 pseudovirus to determine neutralizing antibodies (NAbs) to wild type and several global variants and utilized enzyme-linked immunosorbent assay to investigate IFN-γ-secreting T-cell responses to SARS-CoV-2 among 240 vaccinees after two doses of inactivated vaccine in China. RESULTS A majority of vaccinees (>90%) have developed robust NAbs and T-cell responses to SARS-CoV-2 in the first two months after the second dose. After six months, only 37.0% and 44.0% of vaccinees had NAbs and T-cell immunity to SARS-CoV-2, respectively. Immune serum retained most of neutralizing potency against Alpha and Iota variants, but significantly lost neutralizing potency against Beta, Kappa, Delta, and Omicron variants. Only 40% vaccine-sera remained low-level neutralization activities to Omicron, with a 14.7-fold decrease compared to wild type. CONCLUSION The inactivated SARS-CoV-2 vaccine stimulated robust NAbs and T-cell immune responses in the first two months after the second dose but the immune effect drops rapidly, which highlights that a third or more dose boost shot may be required to boost immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Li-Na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Zhong-Xin Zhao
- Department of Laboratory Medicine, Linyi People's Hospital, Linyi, Shandong, P.R. China
| | - Zhen-Dong Wang
- School of Public Health, Xi'an Medical University, Xi'an, Shanxi, P.R. China
| | - Xiao Xiao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Pan-Pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Xiao-Lan Gu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Li-Ping Yu
- School of Nursing, Wuhan University, Wuhan, Hubei, P.R. China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
61
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
62
|
Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022; 14:1507. [PMID: 35891487 PMCID: PMC9319816 DOI: 10.3390/v14071507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.
Collapse
Affiliation(s)
- Eloïne Bestion
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Philippe Halfon
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Soraya Mezouar
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Jean-Louis Mège
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
| |
Collapse
|
63
|
Paoletti AM, Melilli MG, Vecchio I. Experimental Models of SARS-COV-2 Infection in the Central Nervous System. J Cent Nerv Syst Dis 2022; 14:11795735221102231. [PMID: 35783991 PMCID: PMC9247991 DOI: 10.1177/11795735221102231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has raised serious concerns worldwide due to
its great impact on human health and forced scientists racing to find effective
therapies to control the infection and a vaccine for the virus. To this end,
intense research efforts have focused on understanding the viral biology of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for
COVID-19. The ever-expanding list of cases, reporting clinical neurological
complications in COVID-19 patients, strongly suggests the possibility of the
virus invading the nervous system. The pathophysiological processes responsible
for the neurological impact of COVID-19 are not fully understood. Some
neurodegenerative disorders sometimes take more than a decade to manifest, so
the long-term pathophysiological outcomes of SARS-CoV-2 neurotropism should be
regarded as a challenge for researchers in this field. There is no documentation
on the long-term impact of SARS-CoV-2 on the human central nervous system (CNS).
Most of the data relating to neurological damage during SARS-CoV-2 infection
have yet to be established experimentally. The purpose of this review is to
describe the knowledge gained, from experimental models, to date, on the
mechanisms of neuronal invasion and the effects produced by infection. The hope
is that, once the processes are understood, therapies can be implemented to
limit the damage produced. Long-term monitoring and the use of appropriate and
effective therapies could reduce the severity of symptoms and improve quality of
life of the most severely affected patients, with a special focus on those have
required hospital care and assisted respiration.
Collapse
Affiliation(s)
- Anna Maria Paoletti
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| | | | - Immacolata Vecchio
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| |
Collapse
|
64
|
Sanghavi DK, Bhakta S, Wadei HM, Bosch W, Cowart JB, Carter RE, Shah SZ, Pollock BD, Neville MR, Oman SP, Speicher L, Siegel J, Scindia AD, Libertin CR, Kunze KL, Johnson PW, Matson MW, Franco PM. Low antispike antibody levels correlate with poor outcomes in COVID-19 breakthrough hospitalizations. J Intern Med 2022; 292:127-135. [PMID: 35194861 PMCID: PMC9115098 DOI: 10.1111/joim.13471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND While COVID-19 immunization programs attempted to reach targeted rates, cases rose significantly since the emergence of the delta variant. This retrospective cohort study describes the correlation between antispike antibodies and outcomes of hospitalized, breakthrough cases during the delta variant surge. METHODS All patients with positive SARS-CoV-2 polymerase chain reaction hospitalized at Mayo Clinic Florida from 19 June 2021 to 11 November 2021 were considered for analysis. Cases were analyzed by vaccination status. Breakthrough cases were then analyzed by low and high antibody titers against SARS-CoV-2 spike protein, with a cut-off value of ≥132 U/ml. Outcomes included hospital length of stay (LOS), need for intensive care unit (ICU), mechanical ventilation, and mortality. We used 1:1 nearest neighbor propensity score matching without replacement to assess for confounders. RESULTS Among 627 hospitalized patients with COVID-19, vaccine breakthrough cases were older with more comorbidities compared to unvaccinated. After propensity score matching, the unvaccinated patients had higher mortality (27 [28.4%] vs. 12 [12.6%], p = 0.002) and LOS (7 [1.0-57.0] vs. 5 [1.0-31.0] days, p = 0.011). In breakthrough cases, low-titer patients were more likely to be solid organ transplant recipients (16 [34.0%] vs. 9 [12.3%], p = 0.006), with higher need for ICU care (24 [51.1%] vs. 22 [11.0%], p = 0.034), longer hospital LOS (median 6 vs. 5 days, p = 0.013), and higher mortality (10 [21.3%] vs. 5 [6.8%], p = 0.025) than high-titer patients. CONCLUSIONS Hospitalized breakthrough cases were more likely to have underlying risk factors than unvaccinated patients. Low-spike antibody titers may serve as an indicator for poor prognosis in breakthrough cases admitted to the hospital.
Collapse
Affiliation(s)
| | - Shivang Bhakta
- Department of Critical Care MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Hani M. Wadei
- Department of TransplantationMayo ClinicJacksonvilleFloridaUSA
| | - Wendelyn Bosch
- Division of Infectious DiseasesMayo ClinicJacksonvilleFloridaUSA
| | | | - Rickey E. Carter
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Sadia Z. Shah
- Department of TransplantationMayo ClinicJacksonvilleFloridaUSA
| | - Benjamin D. Pollock
- Kern Center for the Science of Health Care DeliveryMayo ClinicJacksonvilleFloridaUSA
| | - Matthew R. Neville
- Kern Center for the Science of Health Care DeliveryMayo ClinicJacksonvilleFloridaUSA
| | - Sven P. Oman
- Division of Hospital Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Leigh Speicher
- Division of General Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Jason Siegel
- Department of Critical Care MedicineMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| | - Ameya D. Scindia
- Department of Critical Care MedicineMayo ClinicJacksonvilleFloridaUSA
| | | | - Katie L. Kunze
- Department of Quantitative Health SciencesMayo ClinicScottsdaleArizonaUSA
| | - Patrick W. Johnson
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Mark W. Matson
- Center for Digital Health—Data & AnalyticsMayo ClinicRochesterMinnesotaUSA
| | - Pablo Moreno Franco
- Department of Critical Care MedicineMayo ClinicJacksonvilleFloridaUSA
- Department of TransplantationMayo ClinicJacksonvilleFloridaUSA
- Kern Center for the Science of Health Care DeliveryMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
65
|
Simon V, Kota V, Bloomquist RF, Hanley HB, Forgacs D, Pahwa S, Pallikkuth S, Miller LG, Schaenman J, Yeaman MR, Manthei D, Wolf J, Gaur AH, Estepp JH, Srivastava K, Carreño JM, Cuevas F, Ellebedy AH, Gordon A, Valdez R, Cobey S, Reed EF, Kolhe R, Thomas PG, Schultz-Cherry S, Ross TM, Krammer F. PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2. mSphere 2022; 7:e0017922. [PMID: 35586986 PMCID: PMC9241545 DOI: 10.1128/msphere.00179-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.
Collapse
Affiliation(s)
- Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ryan F. Bloomquist
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hannah B. Hanley
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
| | - David Forgacs
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Loren G. Miller
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Joanna Schaenman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael R. Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - David Manthei
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Aditya H. Gaur
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremie H. Estepp
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frans Cuevas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - PARIS/SPARTA Study Group,
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali H. Ellebedy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Paul G. Thomas
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ted M. Ross
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
66
|
Xu R, Zhao B, Lan L, Liu Y, Li Y, Jiang L, Dai S. A one-year follow-up study on dynamic changes of leukocyte subsets and virus-specific antibodies of patients with COVID-19 in Sichuan, China. Int J Med Sci 2022; 19:1122-1130. [PMID: 35919814 PMCID: PMC9339420 DOI: 10.7150/ijms.71286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Background: SARS-CoV-2 infection causes immune response and produces protective antibodies, and these changes may persist after patients discharged from hospital. Methods: This study conducted a one-year follow-up study on patients with COVID-19 to observe the dynamic changes of circulating leukocyte subsets and virus-specific antibodies. Results: A total of 66 patients with COVID-19 and 213 healthy patients with inactivated SARS-CoV-2 vaccination were included. The virus-specific total antibody, IgG and IgM antibody of patients after one year of recovery were higher than those of healthy vaccinated participants (94.13 vs 4.65, 2.67 vs 0.44, 0.09 vs 0.06, respectively) (P < 0.001). Neutrophil count (OR = 1.73, 95% CI: 1.10-2.70, P = 0.016) and neutrophil-to-lymphocyte ratio (OR = 1.59, 95% CI: 1.05-2.41, P = 0.030) at discharge were the influencing factors for the positivity of virus-specific IgG antibody in patients after one year of recovery. The counts of CD4+ and CD8+ T, B and NK cells increased with the time of recovery, and remained basically stable from 9 to 12 months after discharge. After 12 months, the positivity of IgG antibody was 85.3% and IgM was 11.8%, while the virus-specific antibody changed dynamically in patients within one year after discharge. Conclusions: The SARS-CoV-2 specific antibody of recovered patients showed dynamic fluctuation after discharge, while the leukocyte subsets gradually increased and basically stabilized after 9 months.
Collapse
Affiliation(s)
- Renjie Xu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bennan Zhao
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Lijuan Lan
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yaling Liu
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangshuang Jiang
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Shuiping Dai
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
67
|
Garcia-Valtanen P, Hope CM, Masavuli MG, Yeow AEL, Balachandran H, Mekonnen ZA, Al-Delfi Z, Abayasingam A, Agapiou D, Stella AO, Aggarwal A, Bouras G, Gummow J, Ferguson C, O'Connor S, McCartney EM, Lynn DJ, Maddern G, Gowans EJ, Reddi BAJ, Shaw D, Kok-Lim C, Beard MR, Weiskopf D, Sette A, Turville SG, Bull RA, Barry SC, Grubor-Bauk B. SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Rep Med 2022; 3:100651. [PMID: 35654046 PMCID: PMC9110310 DOI: 10.1016/j.xcrm.2022.100651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs. Most mild COVID-19 convalescents maintain immunity at 12 months after disease onset B.1.1.529 escapes antibodies in convalescents infected with ancestral SARS-CoV-2 SARS-CoV-2 VOCs can partially avoid recognition by antigen-specific T cells Antigenic drift in SARS-CoV-2 VOCs significantly challenges convalescent immunity
Collapse
Affiliation(s)
- Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Christopher M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - David Agapiou
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; The Department of Surgery - Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Erin M McCartney
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Guy Maddern
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Eric J Gowans
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia; Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| |
Collapse
|
68
|
Stefanelli P, Rezza G. COVID-19 Vaccination Strategies and Their Adaptation to the Emergence of SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:905. [PMID: 35746513 PMCID: PMC9229267 DOI: 10.3390/vaccines10060905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
About one year after the identification of the first cases of pneumonia due to a novel coronavirus in Wuhan, several vaccines against SARS-CoV-2/COVID-19 started to be approved for emergency use or authorized for early or limited use. The rapid development of effective vaccines based on different technological platforms represents an unprecedented success for vaccinology, providing a unique opportunity for a successful public health intervention. However, it is widely known that only a limited number of vaccine doses are usually available at the beginning of vaccination campaigns against an emerging virus; in this phase, protecting health care workers and reducing mortality rates is the priority. When a larger number of vaccines become available, the identification of the drivers of virus circulation coupled with the use of transmission blocking vaccines are key to achieve epidemic control through population immunity. However, as we learned during the vaccination campaigns against the pandemic coronavirus, several factors may hamper this process. Thus, flexible plans are required to obtain the best sustainable result with available tools, modulating vaccination strategies in accordance with improved scientific knowledge, and taking into account the duration of protective immune response, virus evolution, and changing epidemic dynamics.
Collapse
Affiliation(s)
- Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Rezza
- Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|
69
|
Liu D, Rodriguez GD, Zhou HY, Cheng YX, Li X, Tang W, Prasad N, Chen CC, Singh V, Konadu E, James KK, Bahamon MF, Chen Y, Segal-Maurer S, Wu A, Rodgers WH. SARS-CoV-2 Continuous Genetic Divergence and Changes in Multiplex RT-PCR Detection Pattern on Positive Retesting Median 150 Days after Initial Infection. Int J Mol Sci 2022; 23:ijms23116254. [PMID: 35682933 PMCID: PMC9181733 DOI: 10.3390/ijms23116254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Being in the epicenter of the COVID-19 pandemic, our lab tested 193,054 specimens for SARS-CoV-2 RNA by diagnostic multiplex reverse transcription polymerase chain reaction (mRT-PCR) starting in March 2020, of which 17,196 specimens resulted positive. To investigate the dynamics of virus molecular evolution and epidemiology, whole genome amplification (WGA) and Next Generation Sequencing (NGS) were performed on 9516 isolates. 7586 isolates with a high quality were further analyzed for the mutation frequency and spectrum. Lastly, we evaluated the utility of the mRT-PCR detection pattern among 26 reinfected patients with repeat positive testing three months after testing negative from the initial infection. Our results show a continuation of the genetic divergence in viral genomes. Furthermore, our results indicate that independent mutations in the primer and probe regions of the nucleocapsid gene amplicon and envelope gene amplicon accumulate over time. Some of these mutations correlate with the changes of detection pattern of viral targets of mRT-PCR. Our data highlight the significance of a continuous genetic divergence on a gene amplification-based assay, the value of the mRT-PCR detection pattern for complementing the clinical diagnosis of reinfection, and the potential for WGA and NGS to identify mutation hotspots throughout the entire viral genome to optimize the design of the PCR-based gene amplification assay.
Collapse
Affiliation(s)
- Dakai Liu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - George D. Rodriguez
- Division of Infectious Disease, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (N.P.); (S.S.-M.)
- Correspondence: (G.D.R.); (A.W.); (W.H.R.)
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (H.-Y.Z.); (Y.-X.C.)
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Ye-Xiao Cheng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (H.-Y.Z.); (Y.-X.C.)
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiaofeng Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, China;
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nishant Prasad
- Division of Infectious Disease, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (N.P.); (S.S.-M.)
| | - Chun-Cheng Chen
- Department of Surgery, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA;
| | - Vishnu Singh
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Eric Konadu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Keither K. James
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Maria F. Bahamon
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Yvonne Chen
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Sorana Segal-Maurer
- Division of Infectious Disease, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (N.P.); (S.S.-M.)
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (H.-Y.Z.); (Y.-X.C.)
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
- Correspondence: (G.D.R.); (A.W.); (W.H.R.)
| | - William Harry Rodgers
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
- Department of Pathology and Laboratory Medicine, Weil Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
- Correspondence: (G.D.R.); (A.W.); (W.H.R.)
| |
Collapse
|
70
|
Graninger M, Camp JV, Aberle SW, Traugott MT, Hoepler W, Puchhammer-Stöckl E, Weseslindtner L, Zoufaly A, Aberle JH, Stiasny K. Heterogeneous SARS-CoV-2-Neutralizing Activities After Infection and Vaccination. Front Immunol 2022; 13:888794. [PMID: 35711424 PMCID: PMC9196185 DOI: 10.3389/fimmu.2022.888794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with different resistance levels to existing immunity have recently emerged. Antibodies that recognize the SARS-CoV-2 spike (S) protein and exhibit neutralizing activities are considered the best correlate of protection and an understanding of humoral immunity is crucial for controlling the pandemic. We thus analyzed such antibodies in individuals recovered from infection in 2020 as well as vaccinees after two doses of an mRNA vaccine. Methods Neutralizing antibody responses against three SARS-CoV-2 variants (D614G, VOCs Beta and Delta) were determined in serum samples from 54 infected individuals (24 non-hospitalized, 30 hospitalized) and 34 vaccinees shortly after symptom onset or second vaccination, respectively, as well as six months later. In addition, the effect of the S sequence of the infecting strain on neutralization was studied. Results Non-hospitalized patients had the lowest neutralization titers against all variants, while those of hospitalized patients equaled or exceeded those of vaccinees. Neutralizing activity was lower against the two VOCs and declined significantly in all cohorts after six months. This decrease was more pronounced in hospitalized and vaccinated individuals than in non-hospitalized patients. Of note, the specific neutralizing activity (NT titer/ELISA value ratio) was higher in the infected cohorts than in vaccinees and did not differ between non-hospitalized and hospitalized patients. Patients infected with viral strains carrying mutations in the N-terminal domain of the spike protein were impaired in Beta VOC neutralization. Conclusions Specific neutralizing activities were higher in infected than in vaccinated individuals, and no difference in the quality of these antibodies was observed between hospitalized and non-hospitalized patients, despite significantly lower titers in the latter group. Additionally, antibody responses of infected individuals showed greater heterogeneity than those of vaccinees, which was associated with mutations in the spike protein of the infecting strain. Overall, our findings yielded novel insights into SARS-CoV-2-specific neutralizing antibodies, evolving differently after virus infection and COVID-19 vaccination, which is an important issue to consider in ongoing vaccine strategy improvements.
Collapse
Affiliation(s)
| | - Jeremy V. Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
71
|
Harvala H, Nguyen D, Simmonds P, Lamikanra AA, Tsang HP, Otter A, Maes P, Webster M, Clarkson A, Kaloyirou F, Hopkins V, Laidlaw SM, Carroll M, Mora A, Griffiths A, MacLennan S, Estcourt L, Roberts DJ. Convalescent plasma donors show enhanced cross-reactive neutralising antibody response to antigenic variants of SARS-CoV-2 following immunisation. Transfusion 2022; 62:1347-1354. [PMID: 35588314 PMCID: PMC9348319 DOI: 10.1111/trf.16934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Background The therapeutic benefit of convalescent plasma (CP) therapy to treat COVID‐19 may derive from neutralizing antibodies (nAbs) to SARS‐CoV‐2. To investigate the effects of antigenic variation on neutralization potency of CP, we compared nAb titers against prototype and recently emerging strains of SARS‐CoV‐2, including Delta and Omicron, in CP donors previously infected with SARS‐CoV‐2 before and after immunization. Methods and Materials Samples were assayed from previously SARS‐CoV‐2 infected donors before (n = 17) and after one (n = 43) or two (n = 71) doses of Astra‐Zeneca or Pfizer vaccinations. Ab titers against Wuhan/wild type (WT), Alpha, Beta, and Delta SARS‐CoV‐2 strains were determined by live virus microneutralization assay while titers to Omicron used a focus reduction neutralization test. Anti‐spike antibody was assayed by Elecsys anti‐SARS‐CoV‐2 quantitative spike assay (Roche). Results Unvaccinated donors showed a geometric mean titer (GMT) of 148 against WT, 80 against Alpha but mostly failed to neutralize Beta, Delta, and Omicron strains. Contrastingly, high GMTs were observed in vaccinated donors against all SARS‐CoV‐2 strains after one vaccine dose (WT:703; Alpha:692; Beta:187; Delta:215; Omicron:434). By ROC analysis, reactivity in the Roche quantitative Elecsys spike assay of 20,000 U/mL was highly predictive of donations with nAb titers of ≥1:640 against Delta (90% sensitivity; 97% specificity) and ≥1:320 against Omicron (89% sensitivity; 81% specificity). Discussion Vaccination of previously infected CP donors induced high levels of broadly neutralizing antibodies against circulating antigenic variants of SARS‐CoV‐2. High titer donations could be reliably identified by automated quantitative anti‐spike antibody assay, enabling large‐scale preselection of high‐titer convalescent plasma.
Collapse
Affiliation(s)
- Heli Harvala
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
| | - Dung Nguyen
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Roosevelt Drive, Headington, University of Oxford, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Hoi Pat Tsang
- Clinical Services, NHS Blood and Transplant, Oxford, UK
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, UK
| | - Piet Maes
- KU Leuven, Rega Institute, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Mhairi Webster
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
| | - Adam Clarkson
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
| | - Fotini Kaloyirou
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge, UK
| | - Valerie Hopkins
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge, UK
| | - Stephen M Laidlaw
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Roosevelt Drive, Headington, University of Oxford, UK
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Roosevelt Drive, Headington, University of Oxford, UK
| | - Ana Mora
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge, UK
| | | | | | - Lise Estcourt
- Clinical Services, NHS Blood and Transplant, Oxford, UK.,Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK
| | - David J Roberts
- Clinical Services, NHS Blood and Transplant, Oxford, UK.,Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK
| |
Collapse
|
72
|
Ning T, Liu S, Xu J, Yang Y, Zhang N, Xie S, Min L, Zhang S, Zhu S, Wang Y. Potential intestinal infection and faecal-oral transmission of human coronaviruses. Rev Med Virol 2022; 32:e2363. [PMID: 35584273 PMCID: PMC9348496 DOI: 10.1002/rmv.2363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023]
Abstract
Human coronaviruses (HCoVs) were first described in 1960s for patients experiencing common cold. Since then, increasing number of HCoVs have been discovered, including those causing severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the circulating coronavirus disease 2019 (COVID‐19), which can cause fatal respiratory disease in humans on infection. HCoVs are believed to spread mainly through respiratory droplets and close contact. However, studies have shown that a large proportion of patients with HCoV infection develop gastrointestinal (GI) symptoms, and many patients with confirmed HCoV infection have shown detectable viral RNA in their faecal samples. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal HCoV infection. These data highlight the nature of HCoV GI infection and its potential faecal‐oral transmission. Here, we summarise the current findings on GI manifestations of HCoVs. We also discuss how HCoV GI infection might occur and the current evidence to establish the occurrence of faecal‐oral transmission.
Collapse
Affiliation(s)
- Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Sian Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
73
|
Mathavarajah S, Melin A, Dellaire G. SARS-CoV-2 and wastewater: What does it mean for non-human primates? Am J Primatol 2022; 84:e23340. [PMID: 34662463 PMCID: PMC8646409 DOI: 10.1002/ajp.23340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
In most of our lifetimes, we have not faced a global pandemic such as the novel coronavirus disease 2019. The world has changed as a result. However, it is not only humans who are affected by a pandemic of this scale. Our closest relatives, the non-human primates (NHPs) who encounter researchers, sanctuary/zoo employees, and tourists, are also potentially at risk of contracting the virus from humans due to similar genetic susceptibility. "Anthropozoonosis"-the transmission of diseases from humans to other species-has occurred historically, resulting in infection of NHPs with human pathogens that have led to disastrous outbreaks. Recent studies have assessed the susceptibility of NHPs and predict that catarrhine primates and some lemurs are potentially highly susceptible to infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. There is accumulating evidence that a new factor to consider with the spread of the virus is fecal-oral transmission. The virus has been detected in the watersheds of countries with underdeveloped infrastructure where raw sewage enters the environment directly without processing. This may expose NHPs, and other animals, to SARS-CoV-2 through wastewater contact. Here, we address these concerns and discuss recent evidence. Overall, we suggest that the risk of transmission of SARS-CoV-2 via wastewater is low. Nonetheless, tracking of viral RNA in wastewater does provide a unique testing approach to help protect NHPs at zoos and wildlife sanctuaries. A One Health approach going forward is perhaps the best way to protect these animals from a novel virus, the same way that we would protect ourselves.
Collapse
Affiliation(s)
| | - Amanda Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Graham Dellaire
- Department of Pathology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Biochemistry and Molecular Biology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
74
|
Ren X, Zhou J, Guo J, Hao C, Zheng M, Zhang R, Huang Q, Yao X, Li R, Jin Y. Reinfection in patients with COVID-19: a systematic review. Glob Health Res Policy 2022; 7:12. [PMID: 35488305 PMCID: PMC9051013 DOI: 10.1186/s41256-022-00245-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND With the continuation of the COVID-19 pandemic, some COVID-19 patients have become reinfected with the virus. Viral gene sequencing has found that some of these patients were reinfected by the different and others by same strains. This has raised concerns about the effectiveness of immunity after infection and the reliability of vaccines. To this end, we conducted a systematic review to assess the characteristics of patients with reinfection and possible causes. METHODS A systematic search was conducted across eight databases: PubMed, Embase, Web of Science, The Cochrane Library, CNKI, WanFang, VIP and SinoMed from December 1, 2019 to September 1, 2021. The quality of included studies were assessed using JBI critical appraisal tools and Newcastle-Ottawa Scale. RESULTS This study included 50 studies from 20 countries. There were 118 cases of reinfection. Twenty-five patients were reported to have at least one complication. The shortest duration between the first infection and reinfection was 19 days and the longest was 293 days. During the first infection and reinfection, cough (51.6% and 43.9%) and fever (50% and 30.3%) were the most common symptoms respectively. Nine patients recovered, seven patients died, and five patients were hospitalized, but 97 patients' prognosis were unknown. B.1 is the most common variant strain at the first infection. B.1.1.7, B.1.128 and B.1.351 were the most common variant strains at reinfection. Thirty-three patients were infected by different strains and 9 patients were reported as being infected with the same strain. CONCLUSIONS Our research shows that it is possible for rehabilitated patients to be reinfected by SARS-COV-2. To date, the causes and risk factors of COVID-19 reinfection are not fully understood. For patients with reinfection, the diagnosis and management should be consistent with the treatment of the first infection. The public, including rehabilitated patients, should be fully vaccinated, wear masks in public places, and pay attention to maintaining social distance to avoid reinfection with the virus.
Collapse
Affiliation(s)
- Xiangying Ren
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Nursing and Health, Henan University, Kaifeng, Henan China
| | - Jie Zhou
- School of Nursing, Wuhan University, Wuhan, China
| | - Jing Guo
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Hao
- The First Clinical College of Wuhan University, Wuhan, Hubei China
| | - Mengxue Zheng
- The First Clinical College of Wuhan University, Wuhan, Hubei China
| | - Rong Zhang
- Department of Neurotumor Disease Diagnosis and Treatment Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- Center for Clinical Practice Guideline Conduction and Evaluation, Children’s Hospital of Fudan University, Shanghai, China
| | - Ruiling Li
- College of Nursing and Health, Henan University, Kaifeng, Henan China
| | - Yinghui Jin
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
75
|
Jalkanen P, Kolehmainen P, Haveri A, Huttunen M, Laine L, Österlund P, Tähtinen PA, Ivaska L, Maljanen S, Reinholm A, Belik M, Smura T, Häkkinen HK, Ortamo E, Kantele A, Julkunen I, Lempainen J, Kakkola L. Vaccine-Induced Antibody Responses against SARS-CoV-2 Variants-Of-Concern Six Months after the BNT162b2 COVID-19 mRNA Vaccination. Microbiol Spectr 2022; 10:e0225221. [PMID: 35262410 PMCID: PMC9045126 DOI: 10.1128/spectrum.02252-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized.
Collapse
Affiliation(s)
- Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Anu Haveri
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Moona Huttunen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Larissa Laine
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Paula A. Tähtinen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Ivaska
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu Smura
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hanni K. Häkkinen
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University Hospital and University of Helsinki, Helsinki, Finland
| | - Eeva Ortamo
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Kantele
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University Hospital and University of Helsinki, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
76
|
Role of serology tests in COVID-19 non-hospitalized patients: A cross-sectional study. PLoS One 2022; 17:e0266923. [PMID: 35421183 PMCID: PMC9009643 DOI: 10.1371/journal.pone.0266923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus (SARS-CoV2) has imposed catastrophic impressions on the world. After all the focused researches conducted in the COVID-19 area, many features remain obscure. We have surveyed 1,363 outpatients with suspected COVID-19 in Tehran, Iran. The analysis emphasized on characteristics of patients with positive PCR or serology of SARS-CoV-2. METHODS The nasopharyngeal swabs were tested for SARS-CoV2 PCR. Serum specimens were tested for SARS-CoV2 IgG and IgM. Clinical presentations of the patients, history of chronic diseases or drug use, contact with a possible COVID-19 patient and previous infection with SARS-COV2 were investigated. RESULTS Of the total 1,363 investigated patients, 22% had positive SARS-CoV-2 PCRs, 82% had positive IgG, 38% had positive IgM, and 31% had both positive IgM and IgG values. Positive serologic tests were significantly associated with a positive PCR test obtained previously in the course of the current disease (P value<0.001). IgG and IgM antibody values were significantly associated with underlying disease, cough, fever, chills, fatigue, and myalgia (all P values <0.001). Dyspnea was significantly associated with IgG levels (P value = 0.01), yet it was not associated with IgM serology (P value = 0.2). Positive serology tests were not associated with symptoms of coryza. GI symptoms were not associated with positive IgG test (P value = 0.1), yet it did show an association with positive IgM test (P value = 0.02). Cough, fever, chills, myalgia fatigue, dyspnea, and GI symptoms were all significantly associated with positive PCR (all P values <0.001), and symptoms of coryza did not show a significant relationship (P value = 0.8). CONCLUSION Assessing antibody titers in outpatients is invaluable due to the epidemiological importance of investigations in mild or even asymptomatic cases. Since the number of such studies in non-hospitalized patients is not high, the current study can be used as a comparison model.
Collapse
|
77
|
Deng W, Lv Q, Li F, Liu J, Song Z, Qi F, Wei Q, Yu P, Liu M, Zhou S, Zhang Y, Gao H, Wang N, Jia Z, Gao K, Liu J, Xiao C, Shang H, Wang X, Bao L, Qin C. Sequential immunizations confer cross-protection against variants of SARS-CoV-2, including Omicron in Rhesus macaques. Signal Transduct Target Ther 2022; 7:124. [PMID: 35436986 PMCID: PMC9014776 DOI: 10.1038/s41392-022-00979-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
Abstract
Variants of concern (VOCs) like Delta and Omicron, harbor a high number of mutations, which aid these viruses in escaping a majority of known SARS-CoV-2 neutralizing antibodies (NAbs). In this study, Rhesus macaques immunized with 2-dose inactivated vaccines (Coronavac) were boosted with an additional dose of homologous vaccine or an RBD-subunit vaccine, or a bivalent inactivated vaccine (Beta and Delta) to determine the effectiveness of sequential immunization. The booster vaccination significantly enhanced the duration and levels of neutralizing antibody titers against wild-type, Beta, Delta, and Omicron. Animals administered with an indicated booster dose and subsequently challenged with Delta or Omicron variants showed markedly reduced viral loads and improved histopathological profiles compared to control animals, indicating that sequential immunization could protect primates against Omicron. These results suggest that sequential immunization of inactivated vaccines or polyvalent vaccines could be a potentially effective countermeasure against newly emerging variants.
Collapse
Affiliation(s)
- Wei Deng
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Qi Lv
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Fengdi Li
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Jiangning Liu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Zhiqi Song
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Qiang Wei
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Pin Yu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Mingya Liu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Shasha Zhou
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Yaqing Zhang
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Hong Gao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zijing Jia
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Gao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Jiayi Liu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chong Xiao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Haiquan Shang
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
- National Center of Technology Innovation for Animal Model, Beijing, China.
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
- National Center of Technology Innovation for Animal Model, Beijing, China.
| |
Collapse
|
78
|
Prolonged Protective Immunity Induced by Mild SARS-CoV-2 Infection of K18-hACE2 Mice. Vaccines (Basel) 2022; 10:vaccines10040613. [PMID: 35455362 PMCID: PMC9032525 DOI: 10.3390/vaccines10040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Longevity of the immune response following viral exposure is an essential aspect of SARS-CoV-2 infection. Mild SARS-CoV-2 infection of K18-hACE2 mice was implemented for evaluating the mounting and longevity of a specific memory immune response. We show that the infection of K18-hACE2 mice induced robust humoral and cellular immunity (systemic and local), which persisted for at least six months. Virus-specific T cells and neutralizing antibody titers decreased over time, yet their levels were sufficient to provide sterile immunity against lethal rechallenge six months post-primary infection. The study substantiates the role of naturally induced immunity against SARS-CoV-2 infection for preventing recurring morbidity.
Collapse
|
79
|
Egri N, Juan M. Immunology in COVID-19; more than diagnosis of infection or the basis of vaccination. Med Clin (Barc) 2022; 158:324-326. [PMID: 34872770 PMCID: PMC8590487 DOI: 10.1016/j.medcli.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Egri
- Servei d'Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, España
| | - Manel Juan
- Servei d'Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, España.
| |
Collapse
|
80
|
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China. .,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China. .,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, China.
| |
Collapse
|
81
|
Egri N, Juan M. Immunology in COVID-19; more than diagnosis of infection or the basis of vaccination. MEDICINA CLINICA (ENGLISH ED.) 2022; 158:324-326. [PMID: 35233460 PMCID: PMC8872827 DOI: 10.1016/j.medcle.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Natalia Egri
- Servei d'Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Servei d'Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
82
|
Boekel L, Hooijberg F, Vogelzang EH, Besten YR, Leeuw M, Atiqi S, van Vollenhoven RF, Wijbrandts CA, Gerritsen M, Krieckaert C, Dijkshoorn B, Bakhlakh S, Crooijmans JJ, Voskuyl A, van der Horst-Bruinsma IE, Lems W, Kuijpers TW, van Ham SM, Wieske L, Eftimov F, Kummer LY, van Dam PK, Stalman EW, Steenhuis M, Keijzer S, Cristianawati O, Keijser J, Loeff FC, Tas SW, Nurmohamed MT, Boers M, Rispens T, Wolbink G. Antibody development and disease severity of COVID-19 in non-immunised patients with rheumatic immune-mediated inflammatory diseases: data from a prospective cohort study. RMD Open 2022; 8:rmdopen-2021-002035. [PMID: 35383121 PMCID: PMC8983412 DOI: 10.1136/rmdopen-2021-002035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Background Research on the disease severity of COVID-19 in patients with rheumatic immune-mediated inflammatory diseases (IMIDs) has been inconclusive, and long-term prospective data on the development of SARS-CoV-2 antibodies in these patients are lacking. Methods Adult patients with rheumatic IMIDs from the Amsterdam Rheumatology and Immunology Center, Amsterdam were invited to participate. All patients were asked to recruit their own sex-matched and age-matched control subject. Clinical data were collected via online questionnaires (at baseline, and after 1–4 and 5–9 months of follow-up). Serum samples were collected twice and analysed for the presence of SARS-CoV-2-specific antibodies. Subsequently, IgG titres were quantified in samples with a positive test result. Findings In total, 3080 consecutive patients and 1102 controls with comparable age and sex distribution were included for analyses. Patients were more frequently hospitalised compared with controls when infected with SARS-CoV-2; 7% vs 0.7% (adjusted OR: 7.33, 95% CI: 0.96 to 55.77). Only treatment with B-cell targeting therapy was independently associated with an increased risk of COVID-19-related hospitalisation (adjusted OR: 14.62, 95% CI: 2.31 to 92.39). IgG antibody titres were higher in hospitalised compared with non-hospitalised patients, and slowly declined with time in similar patterns for patients in all treatment subgroups and controls. Interpretation We observed that patients with rheumatic IMIDs, especially those treated with B-cell targeting therapy, were more likely to be hospitalised when infected with SARS-CoV-2. Treatment with conventional synthetic disease-modifying antirheumatic drugs (DMARDs) and biological DMARDs other than B-cell targeting agents is unlikely to have negative effects on the development of long-lasting humoral immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Femke Hooijberg
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Erik H Vogelzang
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Yaëlle R Besten
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Maureen Leeuw
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Sadaf Atiqi
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Ronald F van Vollenhoven
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University medical center, Amsterdam, The Netherlands
| | - Carla A Wijbrandts
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Martijn Gerritsen
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - C Krieckaert
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Bas Dijkshoorn
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Siham Bakhlakh
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Juliette J Crooijmans
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Alexandre Voskuyl
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University medical center, Amsterdam, The Netherlands
| | - Irene E van der Horst-Bruinsma
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University medical center, Amsterdam, The Netherlands
| | - Willem Lems
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University medical center, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Laura Y Kummer
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Department of Neurology and Neurophysiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Pj Koos van Dam
- Department of Neurology and Neurophysiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Olvi Cristianawati
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Jim Keijser
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Floris C Loeff
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael T Nurmohamed
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University medical center, Amsterdam, The Netherlands
| | - Maarten Boers
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University medical center, Amsterdam, The Netherlands.,Department of Epidemiology & Data Science, Vrije Universiteit, Amsterdam UMC, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
83
|
Au GG, Marsh GA, McAuley AJ, Lowther S, Trinidad L, Edwards S, Todd S, Barr J, Bruce MP, Poole TB, Brown S, Layton R, Riddell S, Rowe B, Soldani E, Suen WW, Bergfeld J, Bingham J, Payne J, Durr PA, Drew TW, Vasan SS. Characterisation and natural progression of SARS-CoV-2 infection in ferrets. Sci Rep 2022; 12:5680. [PMID: 35383204 PMCID: PMC8981194 DOI: 10.1038/s41598-022-08431-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the infectious disease COVID-19, which has rapidly become an international pandemic with significant impact on healthcare systems and the global economy. To assist antiviral therapy and vaccine development efforts, we performed a natural history/time course study of SARS-CoV-2 infection in ferrets to characterise and assess the suitability of this animal model. Ten ferrets of each sex were challenged intranasally with 4.64 × 104 TCID50 of SARS-CoV-2 isolate Australia/VIC01/2020 and monitored for clinical disease signs, viral shedding, and tissues collected post-mortem for histopathological and virological assessment at set intervals. We found that SARS-CoV-2 replicated in the upper respiratory tract of ferrets with consistent viral shedding in nasal wash samples and oral swab samples up until day 9. Infectious SARS-CoV-2 was recovered from nasal washes, oral swabs, nasal turbinates, pharynx, and olfactory bulb samples within 3-7 days post-challenge; however, only viral RNA was detected by qRT-PCR in samples collected from the trachea, lung, and parts of the gastrointestinal tract. Viral antigen was seen exclusively in nasal epithelium and associated sloughed cells and draining lymph nodes upon immunohistochemical staining. Due to the absence of clinical signs after viral challenge, our ferret model is appropriate for studying asymptomatic SARS-CoV-2 infections and most suitable for use in vaccine efficacy studies.
Collapse
Affiliation(s)
- Gough G Au
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Glenn A Marsh
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Alexander J McAuley
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Suzanne Lowther
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Lee Trinidad
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Sarah Edwards
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Shawn Todd
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Jennifer Barr
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Matthew P Bruce
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Timothy B Poole
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Sheree Brown
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Rachel Layton
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Sarah Riddell
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Brenton Rowe
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Elisha Soldani
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Willy W Suen
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Jemma Bergfeld
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Jean Payne
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter A Durr
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Trevor W Drew
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Seshadri S Vasan
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| |
Collapse
|
84
|
Fedotova MS, Filippova AY, Omarov MA, Yurchenko KS, Gulyaeva MA. SARS‐CoV‐2: the prospects of the virus spreading and the course of the pathogenesis of coronavirus infection in various species of animals. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022; 17:6-16. [DOI: 10.18470/1992-1098-2022-1-6-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- M. S. Fedotova
- Novosibirsk State University; Federal Research Center for Fundamental and Translational Medicine
| | - A. Yu. Filippova
- Novosibirsk State University; Federal Research Center for Fundamental and Translational Medicine
| | - M. A. Omarov
- Main Bureau of Medical and Social Expertise in Moscow
| | - K. S. Yurchenko
- Federal Research Center for Fundamental and Translational Medicine
| | - M. A. Gulyaeva
- Novosibirsk State University; Federal Research Center for Fundamental and Translational Medicine
| |
Collapse
|
85
|
Willcox AC, Sung K, Garrett ME, Galloway JG, Erasmus JH, Logue JK, Hawman DW, Chu HY, Hasenkrug KJ, Fuller DH, Matsen IV FA, Overbaugh J. Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathog 2022; 18:e1010155. [PMID: 35404959 PMCID: PMC9022802 DOI: 10.1371/journal.ppat.1010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses resemble the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Differences in macaque species and exposure type may also contribute to these findings.
Collapse
Affiliation(s)
- Alexandra C. Willcox
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Jared G. Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jesse H. Erasmus
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- HDT Bio, Seattle, Washington, United States of America
| | - Jennifer K. Logue
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine, Washington National Primate Research Center, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
86
|
COVID-19: A Veterinary and One Health Perspective. J Indian Inst Sci 2022; 102:689-709. [PMID: 35968231 PMCID: PMC9364302 DOI: 10.1007/s41745-022-00318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/21/2022] [Indexed: 10/30/2022]
Abstract
Interface with animals has been responsible for the occurrence of a major proportion of human diseases for the past several decades. Recent outbreaks of respiratory, haemorrhagic, encephalitic, arthropod-borne and other viral diseases have underlined the role of animals in the transmission of pathogens to humans. The on-going coronavirus disease-2019 (COVID-19) pandemic is one among them and is thought to have originated from bats and jumped to humans through an intermediate animal host. Indeed, the aetiology, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect and cause disease in cats, ferrets and minks, as well as be transmitted from one animal to another. The seriousness of the pandemic along with the zoonotic origin of the virus has been a red alert on the critical need for collaboration and cooperation among human and animal health professionals, as well as stakeholders from various other disciplines that study planetary health parameters and the well-being of the biosphere. It is therefore imminent that One Health principles are applied across the board for human infectious diseases so that we can be better prepared for future zoonotic disease outbreaks and pandemics.
Collapse
|
87
|
Tormo N, Navalpotro D, Martínez-Serrano M, Moreno M, Grosson F, Tur I, Guna MR, Soriano P, Tornero A, Gimeno C. Commercial Interferon-gamma release assay to assess the immune response to first and second doses of mRNA vaccine in previously COVID-19 infected versus uninfected individuals. Diagn Microbiol Infect Dis 2022; 102:115573. [PMID: 35121268 PMCID: PMC8502494 DOI: 10.1016/j.diagmicrobio.2021.115573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
We analysed immunological response during vaccination by using quantitative anti-spike IgG antibodies (qAbs) and Interferon-gamma (IFNγ) production by SARS-CoV-2-specific CD4+ and CD8+ T cells (QuantiFERON® assay). Blood samples were collected at four time points: a day before the reception of first (T0) and second (T1) BNT162b2 doses, 14 (T2) and 28 days (T3) after second dose. Fifty individuals were included: 34 previously infected by SARS-CoV-2 (CoV2+) and 16 that were not (CoV2-). Among CoV2+, we only observed significant differences after the first dose in both qAbs and IFNγ+ T cells. CoV2- showed differences after each dose, and the response was lower than CoV2+. Older people presented a higher response in CoV2+, while in CoV2, young people responded best. Our results suggest that the second BNT162b2 vaccine dose is not a priority in people with previous COVID-19. QuantiFERON® is a good option to monitor T-cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Nuria Tormo
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain.
| | - David Navalpotro
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain
| | | | - Marta Moreno
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain
| | - Fernando Grosson
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain
| | - Irene Tur
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain
| | - Maria Remedios Guna
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain
| | - Pepa Soriano
- Control Commission of Nursing Homes, Consorcio Hospital General Universitario, Valencia, Spain
| | - Ana Tornero
- Control Commission of Nursing Homes, Consorcio Hospital General Universitario, Valencia, Spain
| | - Concepción Gimeno
- Microbiology Department, Consorcio Hospital General Universitario, Valencia, Spain
| |
Collapse
|
88
|
Wang Y, Wang P, Qin J. Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105187. [PMID: 35107217 PMCID: PMC8981475 DOI: 10.1002/advs.202105187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Indexed: 05/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an imminent threat to our lives. Although animal models and monolayer cell cultures are utilized for pathogenesis studies and the development of COVID-19 therapeutics, models that can more accurately reflect human-relevant responses to this novel virus are still lacking. Stem cell organoids and bioengineered organs-on-chips have emerged as two cutting-edge technologies used to construct biomimetic in vitro three-dimensional (3D) tissue or organ models. In this review, the key features of these two model systems that allow them to recapitulate organ physiology and function are introduced. The recent progress of these technologies for virology research is summarized and their utility in meeting the COVID-19 pandemic is highlighted. Future opportunities and challenges in the development of advanced human organ models and their potential to accelerate translational applications to provide vaccines and therapies for COVID-19 and other emerging epidemics are also discussed.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Peng Wang
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jianhua Qin
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- Beijing Institute For Stem Cell and Regeneration MedicineBeijing100101China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
89
|
Gao G, Hu X, Zhou Y, Rao J, Zhang X, Peng Y, Zhao J, Yao Y, Liu K, Liang M, Liu H, Deng F, Xia H, Shan C, Yuan Z. Infection and pathogenesis of the Delta variant of SARS-CoV-2 in Rhesus macaque. Virol Sin 2022; 37:299-302. [PMID: 35279412 PMCID: PMC8828374 DOI: 10.1016/j.virs.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
•Delta variant of SARS-CoV-2 can effectively infect the Rhesus macaque. •Delta variant grows faster than the early strain isolated from Wuhan in late 2019. •Shedding pattern, viral load and disease severity of Delta variant are similar to the early strain isolated from Wuhan. •This study supports the attributed rapid disease spread of the Delta variant.
Collapse
Affiliation(s)
- Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengying Liang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Xia
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
90
|
Yan LN, Liu PP, Li XG, Zhou SJ, Li H, Wang ZY, Shen F, Lu BC, Long Y, Xiao X, Wang ZD, Li D, Han HJ, Yu H, Zhou SH, Lv WL, Yu XJ. Neutralizing Antibodies and Cellular Immune Responses Against SARS-CoV-2 Sustained One and a Half Years After Natural Infection. Front Microbiol 2022; 12:803031. [PMID: 35310397 PMCID: PMC8928406 DOI: 10.3389/fmicb.2021.803031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Background COVID-19 has caused more than 2.6 billion infections and several million deaths since its outbreak 2 years ago. We know very little about the long-term cellular immune responses and the kinetics of neutralizing antibodies (NAbs) to SARS-CoV-2 because it has emerged only recently in the human population. Methods We collected blood samples from individuals who were from the first wave of the COVID-19 epidemic in Wuhan between December 30, 2019, and February 24, 2020. We analyzed NAbs to SARS-CoV-2 using pseudoviruses and IgG antibodies to SARS-CoV-2 spike (S) and nucleocapsid (N) protein using enzyme-linked immunosorbent assay in patients’ sera and determined SARS-CoV-2-specific T-cell responses of patients with ELISpot assays. Results We found that 91.9% (57/62) and 88.9% (40/45) of COVID-19 patients had NAbs against SARS-CoV-2 in a year (10–11 months) and one and a half years (17–18 months), respectively, after the onset of illness, indicating that NAbs against SARS-CoV-2 waned slowly and possibly persisted over a long period time. Over 80% of patients had IgG antibodies to SARS-CoV-2 S and N protein one and a half years after illness onset. Most patients also had robust memory T-cell responses against SARS-CoV-2 one and a half years after the illness. Among the patients, 95.6% (43/45) had an IFN-γ-secreting T-cell response and 93.8% (15/16) had an IL-2-secreting T-cell response. The T-cell responses to SARS-CoV-2 were positively correlated with antibodies (including neutralizing antibodies and IgG antibodies to S and N protein) in COVID-19 patients. Eighty percent (4/5) of neutralizing antibody-negative patients also had SARS-CoV-2-specific T-cell response. After long-term infection, protective immunity was independent of disease severity, sex, and age. Conclusions We concluded that SARS-CoV-2 infection elicited a robust and persistent neutralizing antibody and memory T-cell response in COVID-19 patients, indicating that these sustained immune responses, among most SARS-CoV-2-infected people, may play a crucial role in protection against reinfection.
Collapse
Affiliation(s)
- Li-Na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Pan-Pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xu-Gui Li
- The Department of Clinical Laboratory Medicine, Hubei 672 Orthopaedics Hospital, Wuhan, China
| | - Shi-Jing Zhou
- The Department of Clinical Laboratory Medicine, Hubei 672 Orthopaedics Hospital, Wuhan, China
| | - Hao Li
- The First School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Yin Wang
- Department of Clinical Laboratory Medicine, Hubei University of Chinese Medicine Huangjiahu Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Bi-Chao Lu
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Long
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao Xiao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Zhen-Dong Wang
- School of Public Health, Xi'an Medical University, Xi'an, China
| | - Dan Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Hui-Ju Han
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Hao Yu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Shu-Han Zhou
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Wen-Liang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
91
|
Paton S, Clark S, Spencer A, Garratt I, Dinesh I, Thompson KA, Bennett A, Pottage T. Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique. Viruses 2022; 14:v14030639. [PMID: 35337046 PMCID: PMC8950415 DOI: 10.3390/v14030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Little is understood about the impact of nebulisation on the viability of SARS-CoV-2. In this study, a range of nebulisers with differing methods of aerosol generation were evaluated to determine SARS-CoV-2 viability following aerosolization. The aerosol particle size distribution was assessed using an aerosol particle sizer (APS) and SARS-CoV-2 viability was determined after collection into liquid media using All-Glass Impingers (AGI). Viable particles of SARS-CoV-2 were further characterised using the Collison 6-jet nebuliser in conjunction with novel sample techniques in an Andersen size-fractioning sampler to predict lung deposition profiles. Results demonstrate that all the tested nebulisers can generate stable, polydisperse aerosols (Geometric standard deviation (GSD) circa 1.8) in the respirable range (1.2 to 2.2 µm). Viable fractions (VF, units PFU/particle, the virus viability as a function of total particles produced) were circa 5 × 10-3. VF and spray factors were not significantly affected by relative humidity, within this system where aerosols were in the spray tube an extremely short time. The novel Andersen sample collection methods successfully captured viable virus particles across all sizes; with most particle sizes below 3.3 µm. Particle sizes, in MMAD (Mass Median Aerodynamic Diameters), were calculated from linear regression of log10-log10 transformed cumulative PFU data, and calculated MMADs accorded well with APS measurements and did not differ across collection method types. These data will be vital in informing animal aerosol challenge models, and infection prevention and control policies.
Collapse
|
92
|
Hansen F, Meade-White K, Clancy C, Rosenke R, Okumura A, Hawman DW, Feldmann F, Kaza B, Jarvis MA, Rosenke K, Feldmann H. SARS-CoV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract. Cell Rep 2022; 38:110515. [PMID: 35263638 PMCID: PMC8860630 DOI: 10.1016/j.celrep.2022.110515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Human cases of SARS-CoV-2 reinfection have been documented throughout the pandemic, but are likely under-reported. In the current study, we use the Syrian hamster SARS-CoV-2 model to assess reinfection with homologous WA1 and heterologous B.1.1.7 (Alpha) and B.1.351 (Beta) SARS-CoV-2 variants over time. Upon primary infection with SARS-CoV-2 WA1, hamsters rapidly develop a strong and long-lasting humoral immune response. After reinfection with homologous and heterologous SARS-CoV-2 variants, this immune response protects hamsters from clinical disease, virus replication in the lower respiratory tract, and acute lung pathology. However, reinfection leads to SARS-CoV-2 replication in the upper respiratory tract with the potential for virus shedding. Our findings indicate that reinfection results in restricted SARS-CoV-2 replication despite substantial levels of humoral immunity, denoting the potential for transmission through reinfected asymptomatic individuals.
Collapse
Affiliation(s)
- Frederick Hansen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Kaza
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Michael A Jarvis
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA; University of Plymouth, Plymouth, Devon, UK; The Vaccine Group Ltd, Plymouth, Devon, UK
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA.
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA.
| |
Collapse
|
93
|
Nelson CE, Namasivayam S, Foreman TW, Kauffman KD, Sakai S, Dorosky DE, Lora NE, Brooks K, Potter EL, Garza NL, Lafont BAP, Johnson RF, Roederer M, Sher A, Weiskopf D, Sette A, de Wit E, Hickman HD, Brenchley JM, Via LE, Barber DL. Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Sci Immunol 2022; 7:eabo0535. [PMID: 35271298 PMCID: PMC8995035 DOI: 10.1126/sciimmunol.abo0535] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Danielle E. Dorosky
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nickiana E. Lora
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - NIAID/DIR Tuberculosis Imaging Program3†
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Division of Intramural Research, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - E. Lake Potter
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
94
|
Lim S, Lee Y, Kim DW, Park WS, Yoon JH, Lee JY. Anti-SARS-CoV-2 Neutralizing Antibody Responses after Two Doses of ChAdOx1 nCoV-19 vaccine (AZD1222) in Healthcare Workers. Infect Chemother 2022; 54:140-152. [PMID: 35384425 PMCID: PMC8987172 DOI: 10.3947/ic.2022.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The kinetics of neutralizing antibodies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) play an important role in evaluating vaccine efficacy and durability, herd immunity, additional vaccination, and prediction models of immune protection against coronavirus disease 2019. MATERIALS AND METHODS Serum collection times were 4 and 8 weeks after 1st inoculation of AZD1222 (AstraZeneca, Cambridge, UK), and 2 and 16 weeks after 2nd inoculation with 12-week dosing intervals. Neutralizing antibody (Nab) titers were measured indirectly using commercially available R-FIND SARS-CoV-2 Neutralizing Antibody ELISA Kit (SG Medical Inc., Seoul, Korea). Possible influences of gender, age, and adverse events on neutralizing antibody titer were also investigated. RESULTS Nab titers (median inhibition %) started to decrease shortly after reaching peaks. This decrease was more pronounced in the elderly group (≥56 years) than in the young group (≤39 years) at 8 weeks (49.5% vs. 55.4%, P = 0.021) and 16 weeks (40.6% vs. 53.9%, P = 0.006) after the 1st and 2nd inoculation. And Nab titers were inversely correlated with age in the 8-week (r = -0.2091, P = 0.0284) and the 28-week group (r = -0.2811, P = 0.0029). Seropositive conversion of Nab reached 89.1% and 100% following 1st and 2nd inoculation. This 100% seropositivity was dropped sharply to 74.5% after 16 weeks. Compared to subjects without adverse events (51.8%), median inhibition was higher in subjects with one or more systemic adverse events (74.2%, P = 0.0203) or those with one or more local and systemic adverse events (77.1%, P = 0.0003). CONCLUSION Nab induced by AZD1222 (AstraZeneca, UK) vaccination started to degrade shortly after the production period. Nab titers were lower in the elderly than in younger group during the degradation period. This seems to be because the degradation process of Nab is more pronounced in the elderly. This may explain why the frequency of breakthrough infections, disease severity, and mortality were higher in the elderly and may require revaccination to ensure robust immunity.
Collapse
Affiliation(s)
- Sera Lim
- Department of Infection Control, Pyeongtaek St. Mary's Hospital, Pyeongtaek, Korea
| | - Yuil Lee
- Department of Infection Control, Pyeongtaek St. Mary's Hospital, Pyeongtaek, Korea
| | - Dong Wan Kim
- Department of Diagnostic Laboratory Medicine, Pyeongtaek St. Mary's Hospital, Pyeongtaek, Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jung Young Lee
- Department of Infection Control, Pyeongtaek St. Mary's Hospital, Pyeongtaek, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
95
|
Huang Z, Fu Z, Wang J. Review on Drug Regulatory Science Promoting COVID-19 Vaccine Development in China. ENGINEERING (BEIJING, CHINA) 2022; 10:127-132. [PMID: 35096437 PMCID: PMC8779850 DOI: 10.1016/j.eng.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
Regulatory science is a discipline that uses comprehensive methods of natural science, social science, and humanities to provide support for administrative decision-making through the development of new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of regulated products. During the pandemics induced by infectious diseases, such as H1N1 flu, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), regulatory science strongly supported the development of drugs and vaccines to respond to the viruses. In particular, with the support of research on drug regulatory science, vaccines have played a major role in the prevention and control of coronavirus disease 2019 (COVID-19). This review summarizes the overall state of the vaccine industry, research and development (R&D) of COVID-19 vaccines in China, and the general state of regulatory science and supervision for vaccines in China. Further, this review highlights how regulatory science has promoted the R&D of Chinese COVID-19 vaccines, with analyses from the aspects of national-level planning, relevant laws and regulations, technical guidelines, quality control platforms, and post-marketing supervision. Ultimately, this review provides a reference for the formulation of a vaccine development strategy in response to the current pandemic and the field of vaccine development in the post-pandemic era, as well as guidance on how to better respond to emerging and recurring infectious diseases that may occur in the future.
Collapse
Affiliation(s)
- Zhiming Huang
- National Medical Products Administration, Beijing 100053, China
| | - Zhihao Fu
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
96
|
T cell responses to SARS-CoV-2 in humans and animals. J Microbiol 2022; 60:276-289. [PMID: 35157219 PMCID: PMC8852923 DOI: 10.1007/s12275-022-1624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, first emerged in 2019. Antibody responses against SARS-CoV-2 have been given a lot of attention. However, the armamentarium of humoral and T cells may have differing roles in different viral infections. Though the exact role of T cells in COVID-19 remains to be elucidated, prior experience with human coronavirus has revealed an essential role of T cells in the outcomes of viral infections. Moreover, an increasing body of evidence suggests that T cells might be effective against SARS-CoV-2. This review summarizes the role of T cells in mouse CoV, human pathogenic respiratory CoV in general and SARS-CoV-2 in specific.
Collapse
|
97
|
Upadhya S, Rehman J, Malik AB, Chen S. Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology (Bethesda) 2022; 37:88-100. [PMID: 34698589 PMCID: PMC8873036 DOI: 10.1152/physiol.00033.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The lung is the major target organ of SARS-CoV-2 infection, which causes COVID-19. Here, we outline the multistep mechanisms of lung epithelial and endothelial injury induced by SARS-CoV-2: direct viral infection, chemokine/cytokine-mediated damage, and immune cell-mediated lung injury. Finally, we discuss the recent progress in terms of antiviral therapeutics as well as the development of anti-inflammatory or immunomodulatory therapeutic approaches. This review also provides a systematic overview of the models for studying SARS-CoV-2 infection and discusses how an understanding of mechanisms of lung injury will help identify potential targets for future drug development to mitigate lung injury.
Collapse
Affiliation(s)
- Samsara Upadhya
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Asrar B Malik
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
98
|
Evaluation of the Levels of Peripheral CD3 +, CD4 +, and CD8 + T Cells and IgG and IgM Antibodies in COVID-19 Patients at Different Stages of Infection. Microbiol Spectr 2022; 10:e0084521. [PMID: 35196808 PMCID: PMC8865559 DOI: 10.1128/spectrum.00845-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the stimulatory levels of cellular-mediated immunity, which plays an essential role in controlling SARS-CoV-2 infection. In fact, several studies have shown the association of lymphopenia with severe COVID-19 in patients. The aim of this study is to investigate the response of the immune system, including cell-mediated immunity and antibody production, during different stages of SARS-CoV-2 infection. Peripheral blood and serum samples were collected from patients with moderate infection, patients under medication (hospitalized), patients who had recovered, and healthy individuals (n = 80). Flow cytometry analysis was performed on peripheral blood samples to determine the cellular immunity profile of each patient. The data showed a significant reduction in the levels of CD3+, CD4+, and CD8+ T cells and CD45+ cells in the moderate and under-medication groups, suggesting lymphopenia in those patients. Also, enzyme-linked immunosorbent assay (ELISA) was conducted on the serum samples to measure the levels of antibodies, including IgM and IgG, in each patient. The results revealed a significant increase in the levels of IgM in the moderate infection and under-medication patients, thus indicating the production of IgM during the first week of infection. Furthermore, changes in the levels of IgG were significantly detected among recovered patients, indicating therefore a remarkable increase during the recovery stage of SARS-CoV-2 infection and thus a strong humoral-mediated immunity. In summary, the results of this study may help us to understand the main role of the cellular immune responses, including CD3+, CD4+, and CD8+ T cells, against SARS-CoV-2 infection. This understanding might support the development of SARS-CoV-2 treatments and vaccines in the near future. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 in China. This virus is a serious threat to people not only in China but also worldwide, where it has been detected in over 222 countries. It has been reported that ∼3.4% of SARS-CoV-2-infected patients have died. The significance of our study relies on the fact that an enzyme-linked immunosorbent assay and flow cytometry were used to measure the levels of antibodies and cellular immune response, respectively, from clinical samples of patients infected with SARS-CoV-2.
Collapse
|
99
|
Clayton E, Ackerley J, Aelmans M, Ali N, Ashcroft Z, Ashton C, Barker R, Budryte V, Burrows C, Cai S, Callaghan A, Carberry J, Chatwin R, Davies I, Farlow C, Gamblin S, Iacobut A, Lambe A, Lynch F, Mihalache D, Mokbel A, Potamsetty S, Qadir Z, Soden J, Sun X, Vasile A, Wheeler O, Rohaim MA, Munir M. Structural Bases of Zoonotic and Zooanthroponotic Transmission of SARS-CoV-2. Viruses 2022; 14:418. [PMID: 35216011 PMCID: PMC8875863 DOI: 10.3390/v14020418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The emergence of multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the importance of possible animal-to-human (zoonotic) and human-to-animal (zooanthroponotic) transmission and potential spread within animal species. A range of animal species have been verified for SARS-CoV-2 susceptibility, either in vitro or in vivo. However, the molecular bases of such a broad host spectrum for the SARS-CoV-2 remains elusive. Here, we structurally and genetically analysed the interaction between the spike protein, with a particular focus on receptor binding domains (RBDs), of SARS-CoV-2 and its receptor angiotensin-converting enzyme 2 (ACE2) for all conceivably susceptible groups of animals to gauge the structural bases of the SARS-CoV-2 host spectrum. We describe our findings in the context of existing animal infection-based models to provide a foundation on the possible virus persistence in animals and their implications in the future eradication of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (E.C.); (J.A.); (M.A.); (N.A.); (Z.A.); (C.A.); (R.B.); (V.B.); (C.B.); (S.C.); (A.C.); (J.C.); (R.C.); (I.D.); (C.F.); (S.G.); (A.I.); (A.L.); (F.L.); (D.M.); (A.M.); (S.P.); (Z.Q.); (J.S.); (X.S.); (A.V.); (O.W.); (M.A.R.)
| |
Collapse
|
100
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|