51
|
Zhu C, Li W, Campos-Arceiz A, Dalsgaard B, Ren P, Wang D, Zhang X, Sun M, Si Q, Kang Y, Ding P, Si X. The reliability of regional ecological knowledge to build local interaction networks: a test using seed-dispersal networks across land-bridge islands. Proc Biol Sci 2023; 290:20231221. [PMID: 37464753 PMCID: PMC10354482 DOI: 10.1098/rspb.2023.1221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Building ecological networks is the fundamental basis of depicting how species in communities interact, but sampling complex interaction networks is extremely labour intensive. Recently, indirect ecological information has been applied to build interaction networks. Here we propose to extend the source of indirect ecological information, and applied regional ecological knowledge to build local interaction networks. Using a high-resolution dataset consisting of 22 locally observed networks with 17 572 seed-dispersal events, we test the reliability of indirectly derived local networks based on regional ecological knowledge (REK) across islands. We found that species richness strongly influenced 'local interaction rewiring' (i.e. the proportion of locally observed interactions among regionally interacting species), and all network properties were biased using REK-based networks. Notably, species richness and local interaction rewiring strongly affected estimations of REK-based network structures. However, locally observed and REK-based networks detected the same trends of how network structure correlates to island area and isolation. These results suggest that we should use REK-based networks cautiously for reflecting actual interaction patterns of local networks, but highlight that REK-based networks have great potential for comparative studies across environmental gradients. The use of indirect regional ecological information may thus advance our understanding of biogeographical patterns of species interactions.
Collapse
Affiliation(s)
- Chen Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wande Li
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Ahimsa Campos-Arceiz
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, People's Republic of China
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Duorun Wang
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Xue Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Minghao Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Qi Si
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi Kang
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
52
|
Twala TC, Fisher JT, Glennon KL. Projecting Podocarpaceae response to climate change: we are not out of the woods yet. AOB PLANTS 2023; 15:plad034. [PMID: 37415722 PMCID: PMC10321399 DOI: 10.1093/aobpla/plad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/03/2023] [Indexed: 07/08/2023]
Abstract
Under the changing climate, the persistence of Afrotemperate taxa may be threatened as suitable habitat availability decreases. The unique disjunct ranges of podocarps in southern Africa raise questions about the persistence of these species under climate change. Here, we identified likely environmental drivers of these distributions, characterized the current and future (2070) environmental niches, and projected distributions of four podocarp species in South Africa. Species distribution models were conducted using species locality data for Afrocarpus falcatus, Podocarpus latifolius, Pseudotropheus elongatus and Podocarpus henkelii and both historical climate data (1970-2000) and future climate scenarios (Representative Concentration Pathway [RCP] 4.5 and 8.5, 2061-2080) to estimate the current and future distributions. We also used this opportunity to identify the most important climatic variables that likely govern each species' distribution. Using niche overlap estimates, a similarity test, and indices of niche expansion, stability and unfilling, we explored how niches change under different climate scenarios. The distribution of the study species was governed by the maximum temperature of the warmest month, temperature annual range, mean temperature of the wettest quarter, and precipitation of the wettest, driest and warmest quarters. The current distribution of A. falcatus was predicted to expand to higher elevations under RCP 4.5 and RCP 8.5. Podocarpus henkelii was predicted to lose most of its suitable habitat under RCP 4.5 and expand under RCP 8.5; however, this was the opposite for P. elongatus and P. latifolius. Interestingly, P. elongatus, which had the smallest geographic distribution, showed the most vulnerability to climate change in comparison to the other podocarps. Mapping the distribution of podocarps and understanding the differences in their current and future climate niches provide insight into potential climate drivers of podocarp persistence and the potential for adaptation of these species. Overall, these results suggest that P. elongatus and P. henkelii may expand to novel environmental niches.
Collapse
Affiliation(s)
| | - Jolene T Fisher
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa
| | - Kelsey L Glennon
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa
| |
Collapse
|
53
|
Leroy F, Reif J, Storch D, Keil P. How has bird biodiversity changed over time? A review across spatio-temporal scales. Basic Appl Ecol 2023. [DOI: 10.1016/j.baae.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
54
|
Isla J, Jácome-Flores M, Arroyo JM, Jordano P. The turnover of plant-frugivore interactions along plant range expansion: consequences for natural colonization processes. Proc Biol Sci 2023; 290:20222547. [PMID: 37221844 PMCID: PMC10206477 DOI: 10.1098/rspb.2022.2547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Plant-animal mutualisms such as seed dispersal are key interactions for sustaining plant range shifts. It remains elusive whether the organization of interactions with seed dispersers is reconfigured along the expansion landscape template and, if so, whether its effects accelerate or slow colonization. Here we analyse plant-frugivore interactions in a scenario of rapid population expansion of a Mediterranean juniper. We combined network analyses with field surveys, sampling interactions between individual plants and frugivores by DNA-barcoding and phototrapping over two seasons. We assess the role of intrinsic and extrinsic intraspecific variability in shaping interactions and we estimate the individual plant contributions to the seed rain. The whole interaction network was highly structured, with a distinct set of modules including individual plants and frugivore species arranged concordantly along the expansion gradient. The modular configuration was partially shaped by individual neighbourhood context (density and fecundity) and phenotypic traits (cone size). Interaction reconfiguration resulted in a higher and more uneven propagule contribution, with most effective dispersers having a prominent role at the colonization front stand, where a distinct subset of early arriving plants dominated the seed rain. Our study offers new insights into the key role of mutualistic interactions in colonization scenarios by promoting fast plant expansion processes.
Collapse
Affiliation(s)
- Jorge Isla
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Miguel Jácome-Flores
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
- CONACYT-Centro del Cambio Global y la Sustentabilidad, 86080 Villahermosa, Tabasco, México
| | - Juan M. Arroyo
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Pedro Jordano
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
- Dept. Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
55
|
Mtsetfwa FP, Kruger L, McCleery RA. Climate change decouples dominant tree species in African savannas. Sci Rep 2023; 13:7619. [PMID: 37165034 PMCID: PMC10172338 DOI: 10.1038/s41598-023-34550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
To understand how two dominant African savanna trees will continue to respond to climate changes, we examined their regeneration niche and adult tree distributions. Specifically, we wanted to (1) determine if distributional patterns were shifting, (2) predict future distributions under different climate change scenarios and (3) evaluate the realism of predicted future distributions. We randomly placed 40 grids into 6 strata across a climate gradient in the kingdom of Eswatini. Within these grids, we sampled adult and seedling marula (Scelerocarya birrea) and knobthorn (Senegalia nigrecens) trees and used the data to model their abundance. Next, we quantified shifts in distributional patterns (e.g., expansion or contraction) by measuring the current and projected areas of overlap between seedling and adult trees. Finally, we predicted future distributions of abundance based on predicted climate conditions. We found knobthorn seedlings within a small portion of the adult distribution, suggesting it was unlikely to track climate changes. Alternatively, finding marula seedlings on and beyond one edge of the adult distribution, suggested its range would shift toward cooler climates. Predicted future distributions suggest suitable climate for both species would transition out of savannas and into grasslands. Future projections (2041-2070) appeared consistent with observed distributions of marula, but knobthorn predictions were unrealistic given the lack of evidence for regeneration outside of its current range. The idiosyncratic responses of these species to climate change are likely to decouple these keystone structures in the coming decades and are likely to have considerable cascading effects including the potential rearrangement of faunal communities.
Collapse
Affiliation(s)
- Fezile P Mtsetfwa
- Department of Wildlife Ecology and Conservation, School of Natural Resource and Environment, University of Florida, Gainesville, FL, USA
- School of Animal Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laurence Kruger
- Organisation for Tropical Studies, Skukuza, South Africa
- Biology Department, University of Cape Town, Cape Town, South Africa
| | - Robert A McCleery
- Department of Wildlife Ecology and Conservation, School of Natural Resource and Environment, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
56
|
Zhang M, Dong Z, Yi X. Plant-animal interaction affects restoration. Science 2023; 380:354. [PMID: 37104590 DOI: 10.1126/science.adh4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Mingming Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Zhong Dong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
57
|
Rehling F, Jongejans E, Schlautmann J, Albrecht J, Fassbender H, Jaroszewicz B, Matthies D, Waldschmidt L, Farwig N, Schabo DG. Common seed dispersers contribute most to the persistence of a fleshy-fruited tree. Commun Biol 2023; 6:330. [PMID: 36973362 PMCID: PMC10043030 DOI: 10.1038/s42003-023-04647-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Mutualistic interactions are by definition beneficial for each contributing partner. However, it is insufficiently understood how mutualistic interactions influence partners throughout their lives. Here, we used animal species-explicit, microhabitat-structured integral projection models to quantify the effect of seed dispersal by 20 animal species on the full life cycle of the tree Frangula alnus in Białowieża Forest, Eastern Poland. Our analysis showed that animal seed dispersal increased population growth by 2.5%. The effectiveness of animals as seed dispersers was strongly related to the interaction frequency but not the quality of seed dispersal. Consequently, the projected population decline due to simulated species extinction was driven by the loss of common rather than rare mutualist species. Our results support the notion that frequently interacting mutualists contribute most to the persistence of the populations of their partners, underscoring the role of common species for ecosystem functioning and nature conservation.
Collapse
Affiliation(s)
- Finn Rehling
- University of Marburg, Department of Biology, Conservation Ecology, Marburg, Germany.
- University of Marburg, Department of Biology, Animal Ecology, Marburg, Germany.
| | - Eelke Jongejans
- Radboud University, RIBES, Nijmegen, Netherlands
- NIOO-KNAW, Department of Animal Ecology, Wageningen, Netherlands
| | - Jan Schlautmann
- University of Marburg, Department of Biology, Conservation Ecology, Marburg, Germany
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt, Germany
| | - Hubert Fassbender
- University of Marburg, Department of Biology, Conservation Ecology, Marburg, Germany
| | - Bogdan Jaroszewicz
- University of Warsaw, Faculty of Biology, Białowieża Geobotanical Station, Białowieża, Poland
| | - Diethart Matthies
- University of Marburg, Department of Biology, Plant Ecology, Marburg, Germany
| | - Lina Waldschmidt
- University of Marburg, Department of Biology, Conservation Ecology, Marburg, Germany
| | - Nina Farwig
- University of Marburg, Department of Biology, Conservation Ecology, Marburg, Germany
| | - Dana G Schabo
- University of Marburg, Department of Biology, Conservation Ecology, Marburg, Germany
| |
Collapse
|
58
|
Hernandez JO, Naeem M, Zaman W. How Does Changing Environment Influence Plant Seed Movements as Populations of Dispersal Vectors Decline? PLANTS (BASEL, SWITZERLAND) 2023; 12:1462. [PMID: 37050088 PMCID: PMC10097094 DOI: 10.3390/plants12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Plants differ widely in their ability to find tolerable climatic ranges through seed dispersal, depending on their life-history traits and habitat characteristics. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review on seed dispersal mechanisms was conducted to elucidate plant seed movements amid changing environments. Here, the highest relative count of studies was found in Spain (16.47%), followed by Brazil (14.12%), and the USA (14.12%). The megadiverse, hotspot countries (e.g., Philippines, Vietnam, Myanmar, India, and Indonesia) and Africa (Tanzania, South Africa, Democratic Republic of the Congo) have very low to no data about the reviewed topic. The effects of land use changes, habitat degradation/disturbances, climate, and extreme weather conditions on seed dispersal mechanisms and agents had the highest share of studies across topics and countries. Plant diversity and distribution of anemochorous, endozoochorous, epizoochorous, hydrochorous, myrmecochorous, and ornithochorous species are seriously affected by changing environments due to altered long-distance seed dispersal. The fruit types commonly associated with endozoochory and ornithochory are species with achene, capsule, drupe, fleshy, and nut fruits/seeds, whereas achene, capsule, samara/winged seeds are associated with anemochory. The present review provides a summary of evidence on how plants are affected by climate change as populations of dispersal vectors decline. Finally, recommendations for further study were made based on the identified knowledge gaps.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
59
|
Animal-mediated plant niche tracking in a changing climate. Trends Ecol Evol 2023:S0169-5347(23)00034-4. [PMID: 36932024 DOI: 10.1016/j.tree.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over half of plant species are animal-dispersed, and our understanding of how animals can help plants move in response to climate change - a process known as niche tracking - is limited, but advancing rapidly. Recent research efforts find evidence that animals are helping plants track their niches. They also identify key conditions needed for animal-mediated niche tracking to occur, including alignment of the timing of seed availability, the directionality of animal movements, and microhabitat conditions where seeds are deposited. A research framework that measures niche tracking effectiveness by considering all parts of the niche-tracking process, and links together data and models from multiple disciplines, will lead to further insight and inform actions to help ecosystems adapt to a changing world.
Collapse
|
60
|
Pérez-Cembranos A, Pérez-Mellado V. Long-Term Seed Dispersal within an Asymmetric Lizard-Plant Interaction. Animals (Basel) 2023; 13:ani13060973. [PMID: 36978515 PMCID: PMC10044582 DOI: 10.3390/ani13060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
During the last 24 years, the mutualistic interaction between the dead horse arum, Helicodiceros muscivorus, and the Balearic lizard, Podarcis lilfordi, was studied on Aire Island (Balearic Islands, Spain). From a small population of a hundred plants, the dead horse arum expanded extraordinarily throughout the island, reaching the highest known densities of the species and occupying areas of the island where it was not previously present. The current abundance of plants is a direct effect of the frugivorous activity of the Balearic lizard, which is the main, if not the only, effective seed disperser of the plant on Aire Island. However, abiotic factors predominated over biotic factors in driving abundance of plants. Over the years, plant densities varied significantly depending on the aridity of the island, with higher densities recorded in drier years. Lizards’ frugivorous activity and dispersal intensity was inversely correlated with annual rainfall. We found higher dispersal intensity in years with lower rainfall. We propose that the years of lower rainfall are those in which there is a lower prey availability. In such years, lizards compensate the shortage of other trophic resources with a more intense consumption of dead horse arum fruits. The mutualistic interaction is therefore asymmetric, since there is a greater influence of the frugivorous activity of the lizards on the plants than of the plants on lizards. It is, in short, a system chronically out of balance.
Collapse
|
61
|
Higino GT, Banville F, Dansereau G, Forero Muñoz NR, Windsor F, Poisot T. Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web. PeerJ 2023; 11:e14620. [PMID: 36793892 PMCID: PMC9924135 DOI: 10.7717/peerj.14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/01/2022] [Indexed: 02/12/2023] Open
Abstract
Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species' suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators' range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.
Collapse
Affiliation(s)
- Gracielle T. Higino
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis Banville
- University of Sherbrooke, Sherbrooke, Québec, Canada,University of Montreal, Montréal, Québec, Canada,Quebec Centre for Biodiversity Science, Montréal, Québec, Canada
| | - Gabriel Dansereau
- University of Montreal, Montréal, Québec, Canada,Quebec Centre for Biodiversity Science, Montréal, Québec, Canada
| | - Norma Rocio Forero Muñoz
- University of Montreal, Montréal, Québec, Canada,Quebec Centre for Biodiversity Science, Montréal, Québec, Canada
| | - Fredric Windsor
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Timothée Poisot
- University of Montreal, Montréal, Québec, Canada,Quebec Centre for Biodiversity Science, Montréal, Québec, Canada
| |
Collapse
|
62
|
Rabett RJ, Morimoto R, Kahlert T, Stimpson CM, O’Donnell S, Mai Huong NT, Manh BV, Holmes R, Khánh PS, Van TT, Coward F. Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam. PLoS One 2023; 18:e0280126. [PMID: 36753481 PMCID: PMC9907861 DOI: 10.1371/journal.pone.0280126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023] Open
Abstract
Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia's most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta's southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5-8.5 and SSP2-4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground.
Collapse
Affiliation(s)
- Ryan J. Rabett
- Archaeology & Palaeoecology, School of Natural & Built Environment, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Hellenic Culture & the Liberal Arts, The American College of Greece, Athens, Greece
- * E-mail:
| | - Risa Morimoto
- Department of Economics, School of Oriental and African Studies (SOAS), University of London, London, United Kingdom
| | - Thorsten Kahlert
- Centre for Geographic Information Science and Geomatics, School of Natural & Built Environment, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Shawn O’Donnell
- Department of Geography & Environmental Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | - Bui Van Manh
- Department of Tourism, Ninh Bình City, Ninh Bình Province, Vietnam
| | - Rachael Holmes
- School of Geography, Geology & the Environment, University of Leicester, Leicester, United Kingdom
| | - Phạm Sinh Khánh
- Tràng An Landscape Complex Management Board, Ninh Bình City, Ninh Bình Province, Vietnam
| | - Tran Tan Van
- Vietnam Institute of Geosciences & Mineral Resources, Ministry of Natural Resources & Environment, Hanoi, Vietnam
| | - Fiona Coward
- Department of Archaeology, Anthropology & Forensic Science, Faculty of Science & Technology Bournemouth University, Poole, Dorset, United Kingdom
| |
Collapse
|
63
|
Zi H, Jing X, Liu A, Fan X, Chen S, Wang H, He J. Simulated climate warming decreases fruit number but increases seed mass. GLOBAL CHANGE BIOLOGY 2023; 29:841-855. [PMID: 36272096 PMCID: PMC10099976 DOI: 10.1111/gcb.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Climate warming is changing plant sexual reproduction, having consequences for species distribution and community dynamics. However, the magnitude and direction of plant reproductive efforts (e.g., number of flowers) and success (e.g., number and mass of fruits or seeds) in response to warming have not been well-characterized. Here, we generated a global dataset of simulated warming experiments, consisting of 477 pairwise comparisons for 164 terrestrial species. We found evidence that warming overall decreased fruit number and increased seed mass, but little evidence that warming influenced flower number, fruit mass, or seed number. The warming effects on seed mass were regulated by the pollination type, and insect-pollinated plants exhibited a stronger response to warming than wind-pollinated plants. We found strong evidence that warming increased the mass of seeds for the nondominant species but no evidence of this for the dominant species. There was no evidence that phylogenetic relatedness explained the effects of warming on plant reproductive effort and success. In addition, the effects of warming on flowering onset negatively related to the responses in terms of the number of fruits and seeds to warming, revealing a cascading effect of plant reproductive development. These findings provide the first quantification of the response of terrestrial plant sexual reproduction to warming and suggest that plants may increase their fitness by producing heavier seeds under a warming climate.
Collapse
Affiliation(s)
- Hongbiao Zi
- State Key Laboratory of Herbage Improvement and Grassland Agro‐EcosystemsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro‐EcosystemsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Anrong Liu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
| | - Xiaomin Fan
- State Key Laboratory of Herbage Improvement and Grassland Agro‐EcosystemsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Si‐Chong Chen
- Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Royal Botanic Gardens KewWellcome Trust Millennium BuildingWakehurstUK
| | - Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro‐EcosystemsCollege of Ecology, Lanzhou UniversityLanzhouChina
| | - Jin‐Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro‐EcosystemsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
| |
Collapse
|
64
|
Acosta‐Rojas DC, Barczyk M, Espinosa CI, Tinoco BA, Neuschulz EL, Schleuning M. Climate and microhabitat shape the prevalence of endozoochory in the seed rain of tropical montane forests. Biotropica 2023. [DOI: 10.1111/btp.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Diana C. Acosta‐Rojas
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberg Gesellschaft für Naturforschung Frankfurt am Main Germany
- Department of Biological Sciences Goethe Universität Frankfurt am Main Germany
| | - Maciej Barczyk
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberg Gesellschaft für Naturforschung Frankfurt am Main Germany
- Department of Biological Sciences Goethe Universität Frankfurt am Main Germany
| | - Carlos I. Espinosa
- Department of Biological Sciences Universidad Técnica Particular de Loja Loja Ecuador
| | | | - Eike L. Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberg Gesellschaft für Naturforschung Frankfurt am Main Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberg Gesellschaft für Naturforschung Frankfurt am Main Germany
| |
Collapse
|
65
|
Bello C, Schleuning M, Graham CH. Analyzing trophic ecosystem functions with the interaction functional space. Trends Ecol Evol 2023; 38:424-434. [PMID: 36599738 DOI: 10.1016/j.tree.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
Quantifying the vulnerability of ecosystems to global change requires a better understanding of how trophic ecosystem functions emerge. So far, trophic ecosystem functions have been studied from the perspective of either functional diversity or network ecology. To integrate these two perspectives, we propose the interaction functional space (IFS) a conceptual framework to simultaneously analyze the effects of traits and interactions on trophic functions. We exemplify the added value of our framework for seed dispersal and wood decomposition and show how species interactions influence the relationship between functional trait diversity and trophic functions. We propose future applications for a range of functions where the IFS can help to elucidate mechanisms underpinning trophic functions and facilitate understanding of functional changes in ecosystems amidst global change.
Collapse
Affiliation(s)
- Carolina Bello
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland.
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
66
|
Schleuning M, García D, Tobias JA. Animal functional traits: Towards a trait‐based ecology for whole ecosystems. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt (Main) Germany
| | - Daniel García
- Departamento Biología de Organismos y Sistemas (Universidad de Oviedo) and Instituto Mixto de Investigación en Biodiversidad (Universidad de Oviedo‐CSIC‐Principado de Asturias) Oviedo Spain
| | - Joseph A. Tobias
- Department of Life Sciences Imperial College London Silwood Park Ascot UK
| |
Collapse
|
67
|
Auffret AG, Svenning JC. Climate warming has compounded plant responses to habitat conversion in northern Europe. Nat Commun 2022; 13:7818. [PMID: 36535960 PMCID: PMC9763501 DOI: 10.1038/s41467-022-35516-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Serious concerns exist about potentially reinforcing negative effects of climate change and land conversion on biodiversity. Here, we investigate the tandem and interacting roles of climate warming and land-use change as predictors of shifts in the regional distributions of 1701 plant species in Sweden over 60 years. We show that species associated with warmer climates have increased, while grassland specialists have declined. Our results also support the hypothesis that climate warming and vegetation densification through grazing abandonment have synergistic effects on species distribution change. Local extinctions were related to high levels of warming but were reduced by grassland retention. In contrast, colonisations occurred more often in areas experiencing high levels of both climate and land-use change. Strong temperature increases were experienced by species across their ranges, indicating time lags in expected warming-related local extinctions. Our results highlight that the conservation of threatened species relies on both reduced greenhouse gas emissions and the retention and restoration of valuable habitat.
Collapse
Affiliation(s)
- Alistair G. Auffret
- grid.6341.00000 0000 8578 2742Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-75 007 Uppsala, Sweden
| | - Jens-Christian Svenning
- grid.7048.b0000 0001 1956 2722Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| |
Collapse
|
68
|
Borràs J, Lázaro A, González-Estévez MA, Cursach J. Effects of habitat disturbance on the reproductive ecology of Arum pictum ssp. sagittifolium: from pollination to seedling recruitment. ANNALS OF BOTANY 2022; 130:835-848. [PMID: 36130093 PMCID: PMC9758297 DOI: 10.1093/aob/mcac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS The loss of natural habitats may strongly affect the fitness of plants that depend on animals for reproduction. However, very little is known regarding the differential effects of habitat disturbance on the distinct phases of the reproductive cycle of plants, especially in non-rewarding species. METHODS We assessed the effects of habitat disturbance on the entire reproductive cycle of Arum pictum ssp. sagittifolium, a species with deceptive pollination that is endemic to the western Mediterranean Basin. For this, we performed hand-pollination and bagging experiments, evaluated the role of pollinators and dispersers on reproduction, and estimated seedling recruitment in three natural and three disturbed populations (according to their surrounding natural habitat) in Mallorca Island. KEY RESULTS Pollinators were sphaerocerid flies (mainly Coproica, with ~50 % of visits) and staphylinid beetles, and were required for sexual reproduction. Habitat disturbance differently affected the reproductive phases of A. pictum ssp. sagittifolium. Habitat disturbance had a positive effect on Shannon pollinator diversity (but not on pollinator richness), and total pollinator and Coproica abundance were three times higher in disturbed habitats, where overall seed production was also ~30 % higher in natural habitats. Seed production increased with Coproica abundance, but only in natural habitats. Seed dispersers of A. pictum ssp. sagittifolium were birds, mainly Sylvia atricapilla. Although habitat disturbance did not influence disperser diversity or abundance, the majority of seedlings appeared under adult plants and in natural habitats. CONCLUSIONS Overall recruitment was higher in natural habitats, but this effect could have been masked by only assessing pollinator and disperser numbers, as processes related to the quality of these interactions might be influencing fitness. Our study highlights the need to study different reproductive phases and their multiple components and processes to properly understand the effects of habitat disturbance on the regeneration of plant populations.
Collapse
Affiliation(s)
- Joshua Borràs
- Laboratory of Botany, Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, University of Balearic Islands, Palma, Spain
| | - Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), C/ Miquel Marquès 21, 07190 Esporles, Balearic Islands, Spain
- Area of Ecology, Department of Biology, University of Balearic Islands, Palma, Spain
| | - Miguel A González-Estévez
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), C/ Miquel Marquès 21, 07190 Esporles, Balearic Islands, Spain
| | - Joana Cursach
- Laboratory of Botany, Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, University of Balearic Islands, Palma, Spain
| |
Collapse
|
69
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
70
|
Oestreich WK, Aiu KM, Crowder LB, McKenna MF, Berdahl AM, Abrahms B. The influence of social cues on timing of animal migrations. Nat Ecol Evol 2022; 6:1617-1625. [DOI: 10.1038/s41559-022-01866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
|
71
|
Lamperty T, Brosi BJ. Loss of endangered frugivores from seed dispersal networks generates severe mutualism disruption. Proc Biol Sci 2022; 289:20220887. [PMID: 36476005 PMCID: PMC9554716 DOI: 10.1098/rspb.2022.0887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Many tropical seed-dispersing frugivores are facing extinction, but the consequences of the loss of endangered frugivores for seed dispersal is not well understood. We investigated the role of frugivore endangerment status via robustness-to-coextinction simulations (in this context, more accurately described as robustness-to-partner-loss simulations) using data from the Brazilian Atlantic Forest biodiversity hotspot. By simulating the extinction of endangered frugivores, we found a rapid and disproportionate loss of tree species with dispersal partners in the network, and this surprisingly surpassed any other frugivore extinction scenario, including the loss of the most generalist frugivores first. A key driver of this pattern is that many specialist plants rely on at-risk frugivores as seed-dispersal partners. Moreover, interaction compensation in the absence of endangered frugivores may be unlikely because frugivores with growing populations forage on fewer plant species than frugivores with declining populations. Therefore, protecting endangered frugivores could be critical for maintaining tropical forest seed dispersal, and their loss may have higher-than-expected functional consequences for tropical forests, their regeneration processes, and the maintenance of tropical plant diversity.
Collapse
Affiliation(s)
- Therese Lamperty
- Department of Biology, University of Washington, Life Sciences Building, 3747 W Stevens WayNE, Seattle, WA 98195, USA
| | - Berry J. Brosi
- Department of Biology, University of Washington, Life Sciences Building, 3747 W Stevens WayNE, Seattle, WA 98195, USA
| |
Collapse
|
72
|
Nevo O, Cazetta E, Classen A, Kuppler J. Editorial: Anthropogenic stressors and animal–plant interactions: Implications for pollination and seed dispersal. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1048331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
73
|
Flack A, Aikens EO, Kölzsch A, Nourani E, Snell KR, Fiedler W, Linek N, Bauer HG, Thorup K, Partecke J, Wikelski M, Williams HJ. New frontiers in bird migration research. Curr Biol 2022; 32:R1187-R1199. [DOI: 10.1016/j.cub.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Fricke EC, Hsieh C, Middleton O, Gorczynski D, Cappello CD, Sanisidro O, Rowan J, Svenning JC, Beaudrot L. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 2022; 377:1008-1011. [PMID: 36007038 DOI: 10.1126/science.abn4012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food webs influence ecosystem diversity and functioning. Contemporary defaunation has reduced food web complexity, but simplification caused by past defaunation is difficult to reconstruct given the sparse paleorecord of predator-prey interactions. We identified changes to terrestrial mammal food webs globally over the past ~130,000 years using extinct and extant mammal traits, geographic ranges, observed predator-prey interactions, and deep learning models. Food webs underwent steep regional declines in complexity through loss of food web links after the arrival and expansion of human populations. We estimate that defaunation has caused a 53% decline in food web links globally. Although extinctions explain much of this effect, range losses for extant species degraded food webs to a similar extent, highlighting the potential for food web restoration via extant species recovery.
Collapse
Affiliation(s)
- Evan C Fricke
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Biology, University of Maryland, College Park, MD, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chia Hsieh
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Owen Middleton
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | - Oscar Sanisidro
- Departamento Ciencia de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
| | - John Rowan
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Lydia Beaudrot
- Department of BioSciences, Rice University, Houston, TX, USA
| |
Collapse
|
75
|
Dirzo R, Ceballos G, Ehrlich PR. Circling the drain: the extinction crisis and the future of humanity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210378. [PMID: 35757873 PMCID: PMC9237743 DOI: 10.1098/rstb.2021.0378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Humanity has triggered the sixth mass extinction episode since the beginning of the Phanerozoic. The complexity of this extinction crisis is centred on the intersection of two complex adaptive systems: human culture and ecosystem functioning, although the significance of this intersection is not properly appreciated. Human beings are part of biodiversity and elements in a global ecosystem. Civilization, and perhaps even the fate of our species, is utterly dependent on that ecosystem's proper functioning, which society is increasingly degrading. The crisis seems rooted in three factors. First, relatively few people globally are aware of its existence. Second, most people who are, and even many scientists, assume incorrectly that the problem is primarily one of the disappearance of species, when it is the existential threat of myriad population extinctions. Third, while concerned scientists know there are many individual and collective steps that must be taken to slow population extinction rates, some are not willing to advocate the one fundamental, necessary, 'simple' cure, that is, reducing the scale of the human enterprise. We argue that compassionate shrinkage of the human population by further encouraging lower birth rates while reducing both inequity and aggregate wasteful consumption-that is, an end to growthmania-will be required. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gerardo Ceballos
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paul R. Ehrlich
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
76
|
Gao X, Liu J, Huang Z. The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling. Ecol Evol 2022; 12:e9165. [PMID: 35919389 PMCID: PMC9336174 DOI: 10.1002/ece3.9165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
The upsurge in anthropogenic climate change has accelerated the habitat loss and fragmentation of wild animals and plants. The rare and endangered plants are important biodiversity elements. However, the lack of comprehensive and reliable information on the spatial distribution of these organisms has hampered holistic and efficient conservation management measures. We explored the consequences of climate change on the geographical distribution of Firmiana kwangsiensis (Malvaceae), an endangered species, to provide a reference for conservation, introduction, and cultivation of this species in new ecological zones. Modeling of the potential distribution of F. kwangsiensis under the current and two future climate scenarios in maximum entropy was performed based on 30 occurrence records and 27 environmental variables of the plant. We found that precipitation-associated and temperature-associated variables limited the potentially suitable habitats for F. kwangsiensis. Our model predicted 259,504 km2 of F. kwangsiensis habitat based on 25 percentile thresholds. However, the high suitable habitat for F. kwangsiensis is only about 41,027 km2. F. kwangsiensis is most distributed in Guangxi's protected areas. However, the existing reserves are only 2.7% of the total suitable habitat and 4.2% of the high suitable habitat for the plant, lower than the average protection area in Guangxi (7.2%). This means the current protected areas network is insufficient, underlining the need for alternative conservation mechanisms to protect the plant habitat. Our findings will help identify additional F. kwangsiensis localities and potential habitats and inform the development and implementation of conservation, management, and cultivation practices of such rare tree species.
Collapse
Affiliation(s)
- Xiaoxuan Gao
- College of Architecture and DesignUniversity of South ChinaHengyangChina
| | - Jing Liu
- College of Architecture and DesignUniversity of South ChinaHengyangChina
- School of Life SciencesCentral China Normal UniversityWuhanChina
| | - Zhihuan Huang
- College of Architecture and DesignUniversity of South ChinaHengyangChina
| |
Collapse
|
77
|
Liu Y, Riley WJ, Keenan TF, Mekonnen ZA, Holm JA, Zhu Q, Torn MS. Dispersal and fire limit Arctic shrub expansion. Nat Commun 2022; 13:3843. [PMID: 35788612 PMCID: PMC9253140 DOI: 10.1038/s41467-022-31597-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Arctic shrub expansion alters carbon budgets, albedo, and warming rates in high latitudes but remains challenging to predict due to unclear underlying controls. Observational studies and models typically use relationships between observed shrub presence and current environmental suitability (bioclimate and topography) to predict shrub expansion, while omitting shrub demographic processes and non-stationary response to changing climate. Here, we use high-resolution satellite imagery across Alaska and western Canada to show that observed shrub expansion has not been controlled by environmental suitability during 1984-2014, but can only be explained by considering seed dispersal and fire. These findings provide the impetus for better observations of recruitment and for incorporating currently underrepresented processes of seed dispersal and fire in land models to project shrub expansion and climate feedbacks. Integrating these dynamic processes with projected fire extent and climate, we estimate shrubs will expand into 25% of the non-shrub tundra by 2100, in contrast to 39% predicted based on increasing environmental suitability alone. Thus, using environmental suitability alone likely overestimates and misrepresents shrub expansion pattern and its associated carbon sink.
Collapse
Affiliation(s)
- Yanlan Liu
- School of Earth Sciences, The Ohio State University, Columbus, OH, USA.
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA.
| | - William J Riley
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA, USA
| | - Zelalem A Mekonnen
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer A Holm
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret S Torn
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
78
|
van Leeuwen CHA, Villar N, Mendoza Sagrera I, Green AJ, Bakker ES, Soons MB, Galetti M, Jansen PA, Nolet BA, Santamaría L. A seed dispersal effectiveness framework across the mutualism–antagonism continuum. OIKOS 2022. [DOI: 10.1111/oik.09254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Nacho Villar
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Inst. de Biociências, Depto de Biodiversidade, Univ. Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
| | | | | | - Elisabeth S. Bakker
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Wildlife Ecology and Conservation Group, Wageningen Univ. Wageningen the Netherlands
| | - Merel B. Soons
- Ecology and Biodiversity Group, Inst. of Environmental Biology, Utrecht Univ. Utrecht the Netherlands
| | - Mauro Galetti
- Inst. de Biociências, Depto de Biodiversidade, Univ. Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
- Dept of Biology, Univ. of Miami Coral Gables FL USA
| | - Patrick A. Jansen
- Wildlife Ecology and Conservation Group, Wageningen Univ. Wageningen the Netherlands
- Smithsonian Tropical Research Inst. Panamá República de Panamá
| | - Bart A. Nolet
- Dept of Animal Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | | |
Collapse
|
79
|
Rehling F, Schlautmann J, Jaroszewicz B, Schabo DG, Farwig N. Forest degradation limits the complementarity and quality of animal seed dispersal. Proc Biol Sci 2022; 289:20220391. [PMID: 35611541 PMCID: PMC9130786 DOI: 10.1098/rspb.2022.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Forest degradation changes the structural heterogeneity of forests and species communities, with potential consequences for ecosystem functions including seed dispersal by frugivorous animals. While the quantity of seed dispersal may be robust towards forest degradation, changes in the effectiveness of seed dispersal through qualitative changes are poorly understood. Here, we carried out extensive field sampling on the structure of forest microhabitats, seed deposition sites and plant recruitment along three characteristics of forest microhabitats (canopy cover, ground vegetation and deadwood) in Europe's last lowland primeval forest (Białowieża, Poland). We then applied niche modelling to study forest degradation effects on multi-dimensional seed deposition by frugivores and recruitment of fleshy-fruited plants. Forest degradation was shown to (i) reduce the niche volume of forest microhabitat characteristics by half, (ii) homogenize the spatial seed deposition within and among frugivore species, and (iii) limit the regeneration of plants via changes in seed deposition and recruitment. Our study shows that the loss of frugivores in degraded forests is accompanied by a reduction in the complementarity and quality of seed dispersal by remaining frugivores. By contrast, structure-rich habitats, such as old-growth forests, safeguard the diversity of species interactions, forming the basis for high-quality ecosystem functions.
Collapse
Affiliation(s)
- Finn Rehling
- Department of Biology, Conservation Ecology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Jan Schlautmann
- Department of Biology, Conservation Ecology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Bogdan Jaroszewicz
- Faculty of Biology, University of Warsaw, Białowieża Geobotanical Station, PL-17-230 Białowieża, Poland
| | - Dana G. Schabo
- Department of Biology, Conservation Ecology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Nina Farwig
- Department of Biology, Conservation Ecology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| |
Collapse
|
80
|
Pinsky ML, Comte L, Sax DF. Unifying climate change biology across realms and taxa. Trends Ecol Evol 2022; 37:672-682. [PMID: 35610063 DOI: 10.1016/j.tree.2022.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/18/2023]
Abstract
A major challenge in modern biology is to understand extinction risk from climate change across all realms. Recent research has revealed that physiological tolerance, behavioral thermoregulation, and small elevation shifts are dominant coping strategies on land, whereas large-scale latitudinal shifts are more important in the ocean. Freshwater taxa may face the highest global extinction risks. Nevertheless, some species in each realm face similar risks because of shared adaptive, dispersal, or physiological tolerances and abilities. Taking a cross-realm perspective offers unique research opportunities because confounding physical factors in one realm are often disaggregated in another realm. Cross-realm, across taxa, and other forms of climate change biology synthesis are needed to advance our understanding of emergent patterns of risk across all life.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Dov F Sax
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| |
Collapse
|
81
|
Shivanna KR. Climate change and its impact on biodiversity and human welfare. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9058818 DOI: 10.1007/s43538-022-00073-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K. R. Shivanna
- Ashoka Trust for Research in Ecology and the Environment, Srirampura, Jakkur Post, Bengaluru, 560064 India
| |
Collapse
|
82
|
Abstract
Archaeological and paleontological records offer tremendous yet often untapped potential for examining long-term biodiversity trends and the impact of climate change and human activity on ecosystems. Yet, zooarchaeological and fossil remains suffer various limitations, including that they are often highly fragmented and morphologically unidentifiable, preventing them from being optimally leveraged for addressing fundamental research questions in archaeology, paleontology, and conservation paleobiology. Here, we explore the potential of palaeoproteomics—the study of ancient proteins—to serve as a critical tool for creating richer, more informative datasets about biodiversity change that can be leveraged to generate more realistic, constructive, and effective conservation and restoration strategies into the future.
Collapse
|
83
|
Draper JP, Young JK, Schupp EW, Beckman NG, Atwood TB. Frugivory and Seed Dispersal by Carnivorans. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.864864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seed dispersal is critical to the ecological performance of sexually reproducing plant species and the communities that they form. The Mammalian order Carnivora provide valuable and effective seed dispersal services but tend to be overlooked in much of the seed dispersal literature. Here we review the literature on the role of Carnivorans in seed dispersal, with a literature search in the Scopus reference database. Overall, we found that Carnivorans are prolific seed dispersers. Carnivorans’ diverse and plastic diets allow them to consume large volumes of over a hundred families of fruit and disperse large quantities of seeds across landscapes. Gut passage by these taxa generally has a neutral effect on seed viability. While the overall effect of Carnivorans on seed dispersal quality is complex, Carnivorans likely increase long-distance dispersal services that may aid the ability of some plant species to persist in the face of climate change.
Collapse
|
84
|
Bartel SL, Orrock JL. The important role of animal social status in vertebrate seed dispersal. Ecol Lett 2022; 25:1094-1109. [PMID: 35235713 DOI: 10.1111/ele.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Seed dispersal directly affects plant establishment, gene flow and fitness. Understanding patterns in seed dispersal is, therefore, fundamental to understanding plant ecology and evolution, as well as addressing challenges of extinction and global change. Our ability to understand dispersal is limited because seeds may be dispersed by multiple agents, and the effectiveness of these agents can be highly variable both among and within species. We provide a novel framework that links seed dispersal to animal social status, a key component of behaviour. Because social status affects individual resource access and movement, it provides a critical link to two factors that determine seed dispersal: the quantity of seeds dispersed and the spatial patterns of dispersal. Social status may have unappreciated effects on post-dispersal seed survival and recruitment when social status affects individual habitat use. Hence, environmental changes, such as selective harvesting and urbanisation, that affect animal social structure may have unappreciated consequences for seed dispersal. This framework highlights these exciting new hypotheses linking environmental change, social structure and seed dispersal. By outlining experimental approaches to test these hypotheses, we hope to facilitate studies across a wide diversity of plant-animal networks, which may uncover emerging hotspots or significant declines in seed dispersal.
Collapse
Affiliation(s)
- Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
85
|
Donoso I, Fricke EC, Hervías-Parejo S, Rogers HS, Traveset A. Drivers of Ecological and Evolutionary Disruptions in the Seed Dispersal Process: Research Trends and Biases. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.794481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the sole opportunity for most plants to move, seed dispersal influences the biodiversity and functioning of plant communities. Global change drivers have the potential to disrupt seed dispersal processes, affecting plant communities and ecosystem functions. Even though much information is available on the effects of seed dispersal disruption (SDD), we still lack a comprehensive understanding of its main causes at a global scale, as well as the potential knowledge gaps derived from research biases. Here we present a systematic review of biotic and abiotic SDDs to ascertain the global change drivers addressed, dispersal modes impacted, plant processes affected, and spatial focus of existing research on this topic up-to-date. Although there are many modes of dispersal and global change drivers in temperate and tropical ecosystems worldwide, research efforts have predominantly addressed the effect of alien species for biotic seed dispersal in temperate systems and oceanic islands as well as how defaunation of bird or mammal dispersers has affected seed removal in the Neotropics. SDD studies were also biased toward forest ecosystems, with few in shrublands or grasslands. Finally, the effects of climate change, ecological consequences at the whole community level, and evolutionary changes were largely unrepresented in SDD studies. These trends are likely due to a combination of true geographic and ecological patterns in seed dispersal and global change and bias in research focus. We conclude that increased research investment in the less-studied systems and a better understanding of potential synergies and feedback between multiple global change drivers will be important to forecast the threats to plant biodiversity and those ecosystem functions derived from seed dispersal in the Anthropocene.
Collapse
|