51
|
Diverse functions for different forms of nuclear actin. Curr Opin Cell Biol 2017; 46:33-38. [PMID: 28092729 DOI: 10.1016/j.ceb.2016.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
In addition to its essential roles as part of the cytoskeleton, actin has also been linked to many processes in the nucleus. Recent data has demonstrated the presence of both monomeric and polymeric actin in the nucleus, and implied distinct functional roles for these actin pools. Monomeric actin seems to be involved in regulation of gene expression through transcription factors, chromatin regulating complexes and RNA polymerases. In addition to cytoplasmic actin regulators, nuclear proteins, such as emerin, can regulate actin polymerization properties specifically in this compartment. Besides of structural roles, nuclear actin filaments may be required for organizing the nuclear contents and for the maintenance of genomic integrity.
Collapse
|
52
|
Abstract
Although most people still associate actin mainly with the cytoskeleton, several lines of evidence, with the earliest studies dating back to decades ago, have emphasized the importance of actin also inside the cell nucleus. Actin has been linked to many gene expression processes from gene activation to chromatin remodeling, but also to maintenance of genomic integrity and intranuclear movement of chromosomes and chromosomal loci. Recent advances in visualizing different forms and dynamic properties of nuclear actin have clearly advanced our understanding of the basic concepts by which actin operates in the nucleus. In this chapter we address the different breakthroughs in nuclear actin studies, as well as discuss the regulation nuclear actin and the importance of nuclear actin dynamics in relation to its different nuclear functions. Our aim is to highlight the fact that actin should be considered as an essential component of the cell nucleus, and its nuclear actions should be taken into account also in experiments on cytoplasmic actin networks.
Collapse
Affiliation(s)
- Tiina Viita
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 56, Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 56, Helsinki, Finland.
| |
Collapse
|
53
|
Muehlich S, Rehm M, Ebenau A, Goppelt-Struebe M. Synergistic induction of CTGF by cytochalasin D and TGFβ-1 in primary human renal epithelial cells: Role of transcriptional regulators MKL1, YAP/TAZ and Smad2/3. Cell Signal 2016; 29:31-40. [PMID: 27721022 DOI: 10.1016/j.cellsig.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 02/08/2023]
Abstract
Changes in cell morphology that involve alterations of the actin cytoskeleton are a hallmark of diseased renal tubular epithelial cells. While the impact of actin remodeling on gene expression has been analyzed in many model systems based on cell lines, this study investigated human primary tubular epithelial cells isolated from healthy parts of tumor nephrectomies. Latrunculin B (LatB) and cytochalasin D (CytoD) were used to modulate G-actin levels in a receptor-independent manner. Both compounds (at 0.5μM) profoundly altered F-actin structures in a Rho kinase-dependent manner, but only CytoD strongly induced the pro-fibrotic factor CTGF (connective tissue growth factor). CTGF induction was dependent on YAP as shown by transient downregulation experiments. However, CytoD did not alter the nuclear localization of either YAP or TAZ, whereas LatB reduced nuclear levels particularly of TAZ. CytoD modified MKL1, a coactivator of serum response factor (SRF) regulating CTGF induction, and promoted its nuclear localization. TGFβ-1 is one of the major factors involved in tubulointerstitial disease and an inducer of CTGF. Preincubation with CytoD but not LatB synergistically enhanced the TGFβ-1-stimulated synthesis of CTGF, both in cells cultured on plastic dishes as well as in polarized epithelial cells. CytoD had no direct effect on the phosphorylation of Smad2/3, but facilitated their phosphorylation and thus activation by TGFβ-1. Our present findings provide evidence that morphological alterations have a strong impact on cellular signaling of one of the major pro-fibrotic factors, TGFβ-1. However, our data also indicate that changes in cell morphology per se cannot predict those interactions which are critically dependent on molecular fine tuning of actin reorganization.
Collapse
Affiliation(s)
- Susanne Muehlich
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Goethestrasse 33, D-80336 München, Germany
| | - Margot Rehm
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | - Astrid Ebenau
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany.
| |
Collapse
|
54
|
Lu H, Fagnant PM, Krementsova EB, Trybus KM. Severe Molecular Defects Exhibited by the R179H Mutation in Human Vascular Smooth Muscle α-Actin. J Biol Chem 2016; 291:21729-21739. [PMID: 27551047 DOI: 10.1074/jbc.m116.744011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Mutations in vascular smooth muscle α-actin (SM α-actin), encoded by ACTA2, are the most common cause of familial thoracic aortic aneurysms that lead to dissection (TAAD). The R179H mutation has a poor patient prognosis and is unique in causing multisystemic smooth muscle dysfunction (Milewicz, D. M., Østergaard, J. R., Ala-Kokko, L. M., Khan, N., Grange, D. K., Mendoza-Londono, R., Bradley, T. J., Olney, A. H., Ades, L., Maher, J. F., Guo, D., Buja, L. M., Kim, D., Hyland, J. C., and Regalado, E. S. (2010) Am. J. Med. Genet. A 152A, 2437-2443). Here, we characterize this mutation in expressed human SM α-actin. R179H actin shows severe polymerization defects, with a 40-fold higher critical concentration for assembly than WT SM α-actin, driven by a high disassembly rate. The mutant filaments are more readily severed by cofilin. Both defects are attenuated by copolymerization with WT. The R179H monomer binds more tightly to profilin, and formin binding suppresses nucleation and slows polymerization rates. Linear filaments will thus not be readily formed, and cells expressing R179H actin will likely have increased levels of monomeric G-actin. The cotranscription factor myocardin-related transcription factor-A, which affects cellular phenotype, binds R179H actin with less cooperativity than WT actin. Smooth muscle myosin moves R179H filaments more slowly than WT, even when copolymerized with equimolar amounts of WT. The marked decrease in the ability to form filaments may contribute to the poor patient prognosis and explain why R179H disrupts even visceral smooth muscle cell function where the SM α-actin isoform is present in low amounts. The R179H mutation has the potential to affect actin structure and function in both the contractile domain of the cell and the more dynamic cytoskeletal pool of actin, both of which are required for contraction.
Collapse
Affiliation(s)
- Hailong Lu
- From the Department of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05446
| | - Patricia M Fagnant
- From the Department of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05446
| | - Elena B Krementsova
- From the Department of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05446
| | - Kathleen M Trybus
- From the Department of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05446
| |
Collapse
|
55
|
Panayiotou R, Miralles F, Pawlowski R, Diring J, Flynn HR, Skehel M, Treisman R. Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity. eLife 2016; 5:e15460. [PMID: 27304076 PMCID: PMC4963197 DOI: 10.7554/elife.15460] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022] Open
Abstract
The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A.
Collapse
Affiliation(s)
- Richard Panayiotou
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Francesc Miralles
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Rafal Pawlowski
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Jessica Diring
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Mark Skehel
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
56
|
Introducing STRaNDs: shuttling transcriptional regulators that are non-DNA binding. Nat Rev Mol Cell Biol 2016; 17:523-32. [PMID: 27220640 DOI: 10.1038/nrm.2016.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many proteins originally identified as cytoplasmic - including many associated with the cytoskeleton or cell junctions - are increasingly being found in the nucleus, where they have specific functions. Here, we focus on proteins that translocate from the cytoplasm to the nucleus in response to external signals and regulate transcription without binding to DNA directly (for example, through interaction with transcription factors). We propose that proteins with such characteristics are classified as a distinct group of extracellular signalling effectors, and we suggest the term STRaND (shuttling transcriptional regulators and non-DNA binding) to refer to this group. Crucial roles of STRaNDs include linking cell morphology and adhesion with changes in transcriptional programmes in response to signals such as mechanical stresses.
Collapse
|
57
|
Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding. Mol Cell Biol 2016; 36:1526-39. [PMID: 26976641 DOI: 10.1128/mcb.01097-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023] Open
Abstract
The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin-MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin-RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation.
Collapse
|
58
|
Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol 2016; 91:52-60. [PMID: 26721596 PMCID: PMC4764462 DOI: 10.1016/j.yjmcc.2015.12.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Eric M Small
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA.
| |
Collapse
|
59
|
Corcoran JA, McCormick C. Viral activation of stress-regulated Rho-GTPase signaling pathway disrupts sites of mRNA degradation to influence cellular gene expression. Small GTPases 2015; 6:178-85. [PMID: 26480288 PMCID: PMC4905259 DOI: 10.1080/21541248.2015.1093068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023] Open
Abstract
Viruses are useful tools that often reveal previously unrecognized levels of control within a cell. By studying the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), we discovered a new signaling axis in endothelial cells (ECs) that links actin cytoskeleton dynamics to post-transcriptional control of gene expression. Translational repression and rapid decay of mRNAs containing AU-rich elements (AREs) occurs in cytoplasmic RNA granules known as processing bodies (PBs). Rho-GTPase activity influences PB dynamics but mechanistic details remain obscure. We have previously shown that the KSHV Kaposin B protein blocks the degradation of ARE-mRNAs that encode potent cytokines and angiogenic factors, at least in part by preventing PB formation. Moreover, Kaposin B is sufficient to cause marked alterations in endothelial cell physiology including the formation of long parallel actin stress fibers and accelerated migration and angiogenic phenotypes. All of these phenotypes depend on Kaposin B-mediated activation of a non-canonical signaling pathway comprising the stress-inducible kinase MK2, hsp27, p115RhoGEF and RhoA. Accelerated endothelial cell migration and angiogenesis depends on the subsequent activation of the RhoA-dependent kinase ROCK, but PB disruption is ROCK-independent. In this Commentary, we discuss implications of the activation of this signaling axis, and propose mechanistic links between RhoA activation and PB dynamics.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS, Canada
| |
Collapse
|
60
|
Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin. Proc Natl Acad Sci U S A 2015; 112:E4168-77. [PMID: 26153420 DOI: 10.1073/pnas.1507587112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD.
Collapse
|
61
|
Elliott KL, Svanström A, Spiess M, Karlsson R, Grantham J. A novel function of the monomeric CCTε subunit connects the serum response factor pathway to chaperone-mediated actin folding. Mol Biol Cell 2015; 26:2801-9. [PMID: 26063733 PMCID: PMC4571339 DOI: 10.1091/mbc.e15-01-0048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022] Open
Abstract
Correct protein folding is fundamental for maintaining protein homeostasis and avoiding the formation of potentially cytotoxic protein aggregates. Although some proteins appear to fold unaided, actin requires assistance from the oligomeric molecular chaperone CCT. Here we report an additional connection between CCT and actin by identifying one of the CCT subunits, CCTε, as a component of the myocardin-related cotranscription factor-A (MRTF-A)/serum response factor (SRF) pathway. The SRF pathway registers changes in G-actin levels, leading to the transcriptional up-regulation of a large number of genes after actin polymerization. These genes encode numerous actin-binding proteins as well as actin. We show that depletion of the CCTε subunit by siRNA enhances SRF signaling in cultured mammalian cells by an actin assembly-independent mechanism. Overexpression of CCTε in its monomeric form revealed that CCTε binds via its substrate-binding domain to the C-terminal region of MRTF-A and that CCTε is able to alter the nuclear accumulation of MRTF-A after stimulation by serum addition. Given that the levels of monomeric CCTε conversely reflect the levels of CCT oligomer, our results suggest that CCTε provides a connection between the actin-folding capacity of the cell and actin expression.
Collapse
Affiliation(s)
- Kerryn L Elliott
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andreas Svanström
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Matthias Spiess
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Roger Karlsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
62
|
Wesolowska N, Lénárt P. Nuclear roles for actin. Chromosoma 2015; 124:481-9. [PMID: 25944357 DOI: 10.1007/s00412-015-0519-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Actin's presence in the nucleus is a subject that has ignited a lot of controversy in the past. With our review, we attempt to reach out not only to the specialists but also to a broader audience that might be skeptical in light of the controversies. We take a rather conservative approach to build an argument that recent studies provide multiple independent lines of evidence substantiating actin's diverse nuclear functions, especially in its monomeric state. We then particularly focus on how the concentration of monomeric actin, and potentially of specific polymerized forms of actin, can be used by the cell as indicators of cellular state and how this information can be transduced into the nucleus by transcriptional regulators, eliciting a response. We also provide examples that in specific cell types and specific physiological conditions, actin is functional in the nucleus in its polymeric form. However, we also discuss that in many instances, the presence of actin regulators in the nucleus, which is often seen as proof of their function within this compartment, may simply reflect an additional means of their regulation by compartmentalization.
Collapse
Affiliation(s)
- Natalia Wesolowska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
63
|
Rajakylä EK, Viita T, Kyheröinen S, Huet G, Treisman R, Vartiainen MK. RNA export factor Ddx19 is required for nuclear import of the SRF coactivator MKL1. Nat Commun 2015; 6:5978. [PMID: 25585691 PMCID: PMC4309436 DOI: 10.1038/ncomms6978] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/27/2014] [Indexed: 12/03/2022] Open
Abstract
Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-β for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Tiina Viita
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Salla Kyheröinen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Guillaume Huet
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Richard Treisman
- Transcription group, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Maria K. Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| |
Collapse
|
64
|
Lechuga S, Baranwal S, Li C, Naydenov NG, Kuemmerle JF, Dugina V, Chaponnier C, Ivanov AI. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells. Mol Biol Cell 2014; 25:3133-46. [PMID: 25143399 PMCID: PMC4196865 DOI: 10.1091/mbc.e14-03-0815] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298
| | - Chao Li
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vera Dugina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Christine Chaponnier
- Department of Pathology and Immunology, University Medical Center, University of Geneva, Geneva 4, Switzerland
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298 Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298 VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
65
|
Abstract
Esnault and colleagues (pp. 943-958) take a genomics approach to investigate the role of SRF (serum response factor) in the serum response of fibroblasts. The well-established dual role of SRF with alternative cofactors and responsiveness to two signaling pathways is illustrated at the genome-wide level, yet new insight comes from this global picture.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
66
|
MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat Commun 2014; 5:3970. [DOI: 10.1038/ncomms4970] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
|
67
|
Cellular localization and dendritic function of rat isoforms of the SRF coactivator MKL1 in cortical neurons. Neuroreport 2014; 25:585-92. [PMID: 24589521 DOI: 10.1097/wnr.0000000000000141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability of megakaryoblastic leukemia 1 (MKL1) to function as a serum response factor (SRF) coactivator is regulated through its association with G-actin. In the cytoplasm, MKL1 binds to G-actin through RPXXXEL (RPEL) motifs. However, dissociation of MKL1 from G-actin triggers its translocation into the nucleus where it stimulates SRF-mediated gene expression. Previous characterization of rat MKL1 gene products has identified several isoforms: full-length MKL1, basic, SAP, and coiled-coil domain (BSAC), MKL1-elongated derivative of yield (MELODY), and MKL1met. In this study, we have investigated whether these MKL1 isoforms, which contain different numbers of RPEL motifs, differ in their subcellular localization, transcriptional activity, and effect on dendritic number and axonal length. Immunofluorescent staining of cultured cortical neurons expressing individual FLAG-tagged MKL1 isoforms indicated that all MKL1 isoforms are present in both the cytoplasm and the nucleus. However, MKL1met, which contains two RPEL motifs, shows enhanced nuclear staining compared with the other three isoforms, full-length MKL1, basic, SAP, and coiled-coil domain, and MKL1-elongated derivative of yield, which contain three RPEL motifs. Consistent with its preferential nuclear localization, overexpression of MKL1met, but not other isoforms, increases SRF-mediated transcriptional responses and reduces the number of dendrites. In contrast to the inhibitory effect of MKL1met on dendritic number, axonal length is not affected by overexpression of any of the MKL1 isoforms. These findings suggest that the subcellular localization of MKL1 isoforms, which is mediated by the number of actin-binding RPEL motifs, regulates their effect on SRF-mediated gene expression and dendritic morphology.
Collapse
|
68
|
Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 2014; 307:C2-13. [PMID: 24740541 DOI: 10.1152/ajpcell.00060.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue fibrosis occurs with excessive extracellular matrix deposition from myofibroblasts, resulting in tissue scarring and inflammation. It is driven by multiple mediators, such as the G protein-coupled receptor ligands lysophosphatidic acid and endothelin, as well as signaling by transforming growth factor-β, connective tissue growth factor, and integrins. Fibrosis contributes to 45% of deaths in the developed world. As current therapeutic options for tissue fibrosis are limited and organ transplantation is the only effective treatment for end-stage disease, there is an imminent need for efficacious antifibrotic therapies. This review discusses the various molecular pathways involved in fibrosis. It highlights the Rho GTPase signaling pathway and its downstream gene transcription output through myocardin-related transcription factor and serum response factor as a convergence point for targeting this complex set of diseases.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Andrew J Haak
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
69
|
Rajakylä EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 2014; 5:e27539. [PMID: 24603113 DOI: 10.4161/sgtp.27539] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| |
Collapse
|
70
|
Abstract
Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.
Collapse
Affiliation(s)
- Christian Baarlink
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC) Marburg; University of Marburg; Marburg, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC) Marburg; University of Marburg; Marburg, Germany
| |
Collapse
|
71
|
Lundquist MR, Storaska AJ, Liu TC, Larsen SD, Evans T, Neubig RR, Jaffrey SR. Redox modification of nuclear actin by MICAL-2 regulates SRF signaling. Cell 2014; 156:563-76. [PMID: 24440334 PMCID: PMC4384661 DOI: 10.1016/j.cell.2013.12.035] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022]
Abstract
The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.
Collapse
Affiliation(s)
- Mark R Lundquist
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Andrew J Storaska
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Richard R Neubig
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
72
|
Kaminski A, Fedorchak GR, Lammerding J. The cellular mastermind(?)-mechanotransduction and the nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:157-203. [PMID: 25081618 PMCID: PMC4591053 DOI: 10.1016/b978-0-12-394624-9.00007-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction-both structurally and biochemically-with important implications in physiology and disease.
Collapse
Affiliation(s)
- Ashley Kaminski
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Gregory R Fedorchak
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jan Lammerding
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
73
|
Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32. [DOI: 10.1016/j.ejcb.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
|
74
|
Van Roey K, Orchard S, Kerrien S, Dumousseau M, Ricard-Blum S, Hermjakob H, Gibson TJ. Capturing cooperative interactions with the PSI-MI format. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat066. [PMID: 24067240 PMCID: PMC3782717 DOI: 10.1093/database/bat066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The complex biological processes that control cellular function are mediated by intricate networks of molecular interactions. Accumulating evidence indicates that these interactions are often interdependent, thus acting cooperatively. Cooperative interactions are prevalent in and indispensible for reliable and robust control of cell regulation, as they underlie the conditional decision-making capability of large regulatory complexes. Despite an increased focus on experimental elucidation of the molecular details of cooperative binding events, as evidenced by their growing occurrence in literature, they are currently lacking from the main bioinformatics resources. One of the contributing factors to this deficiency is the lack of a computer-readable standard representation and exchange format for cooperative interaction data. To tackle this shortcoming, we added functionality to the widely used PSI-MI interchange format for molecular interaction data by defining new controlled vocabulary terms that allow annotation of different aspects of cooperativity without making structural changes to the underlying XML schema. As a result, we are able to capture cooperative interaction data in a structured format that is backward compatible with PSI-MI–based data and applications. This will facilitate the storage, exchange and analysis of cooperative interaction data, which in turn will advance experimental research on this fundamental principle in biology. Database URL:http://psi-mi-cooperativeinteractions.embl.de/
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Proteomics Services, EMBL Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and UMR 5086 CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Ishikawa M, Shiota J, Ishibashi Y, Hakamata T, Shoji S, Fukuchi M, Tsuda M, Shirao T, Sekino Y, Ohtsuka T, Baraban JM, Tabuchi A. Identification, expression and characterization of rat isoforms of the serum response factor (SRF) coactivator MKL1. FEBS Open Bio 2013; 3:387-93. [PMID: 24251100 PMCID: PMC3821035 DOI: 10.1016/j.fob.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 11/25/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) is a member of the MKL family of serum response factor (SRF) coactivators. Here we have identified three rat MKL1 transcripts: two are homologues of mouse MKL1 transcripts, full-length MKL1 (FLMKL1) and basic, SAP, and coiled-coil domains (BSAC), the third is a novel transcript, MKL1-elongated derivative of yield (MELODY). These rat MKL1 transcripts are differentially expressed in a wide variety of tissues with highest levels in testis and brain. During brain development, these transcripts display differential patterns of expression. The FLMKL1 transcript encodes two isoforms that utilize distinct translation start sites. The longer form possesses three actin-binding RPXXXEL (RPEL) motifs and the shorter form, MKL1met only has two RPEL motifs. All four rat MKL1 isoforms, FLMKL1, BSAC, MKL1met and MELODY increased SRF-mediated transcription, but not CREB-mediated transcription. Accordingly, the differential expression of MKL1 isoforms may help fine-tune gene expression during brain development. Megakaryoblastic leukemia 1 (MKL1) is a serum response factor (SRF) coactivator. We have identified multiple rat MKL1 isoforms, including a novel one named MELODY. Rat MKL1 isoforms are enriched in testis and brain. Expression of rat MKL1 isoforms is regulated during brain development. All rat MKL1 isoforms act as SRF transcriptional coactivators.
Collapse
Key Words
- Alternative promoter
- BSAC, basic, SAP, and coiled-coil domains
- DAPI, 4′, 6-diamidino-2-phenylindole
- GFP, green fluorescent protein
- MAL, megakaryocytic acute leukemia
- MELODY, MKL1-elongated derivative of yield
- MKL1, megakaryoblastic leukemia 1
- Megakaryoblastic leukemia
- RPEL, arginine proline XXX glutamate leucine
- SRF, serum response factor
- Serum response factor
- Transcript
- Transcriptional coactivator
Collapse
Affiliation(s)
- Mitsuru Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Hayashi K, Morita T. Differences in the nuclear export mechanism between myocardin and myocardin-related transcription factor A. J Biol Chem 2013; 288:5743-55. [PMID: 23283978 PMCID: PMC3581383 DOI: 10.1074/jbc.m112.408120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/09/2012] [Indexed: 02/05/2023] Open
Abstract
Myocardin (Mycd), a key factor in smooth muscle cell differentiation, is constitutively located in the nucleus, whereas myocardin-related transcription factors A and B (MRTF-A/B) reside mostly in the cytoplasm and translocate to the nucleus in a Rho-dependent manner. Here, we investigated the nuclear export of Mycd family members. They possess two leucine-rich sequences: L1 in the N terminus and L2 in the Gln-rich domain. Although L2 (but not L1) served as a CRM1-binding site for Mycd, CRM1-mediated nuclear export did not affect its subcellular localization. Serum response factor (SRF) competitively inhibited Mycd/CRM1 interaction. Furthermore, such interaction was autonomously inhibited. The N terminus of Mycd bound intramolecularly to Mycd, resulting in masking L2. In contrast, the CRM1-binding affinity of MRTF-A was much higher than that of Mycd because both L1 and L2 of MRTF-A served as functional CRM1-binding sites, and the autoinhibition observed in the Mycd/CRM1 interaction was absent in the MRTF-A/CRM1 interaction. Additionally, because the SRF-binding affinity of MRTF-A was lower than that of Mycd, the inhibitory effect of SRF on the MRTF-A/CRM1 interaction was weak. Thus, MRTF-A is much more likely to be exported from the nucleus. These differences could be the reason for the distinct subcellular localization of Mycd and MRTF-A.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
77
|
Wiezlak M, Diring J, Abella J, Mouilleron S, Way M, McDonald NQ, Treisman R. G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J Cell Sci 2012; 125:5860-72. [PMID: 22976292 DOI: 10.1242/jcs.112078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Phactr family of PP1-binding proteins is implicated in human diseases including Parkinson's, cancer and myocardial infarction. Each Phactr protein contains four G-actin binding RPEL motifs, including an N-terminal motif, abutting a basic element, and a C-terminal triple RPEL repeat, which overlaps a conserved C-terminus required for interaction with PP1. RPEL motifs are also found in the regulatory domains of the MRTF transcriptional coactivators, where they control MRTF subcellular localisation and activity by sensing signal-induced changes in G-actin concentration. However, whether G-actin binding controls Phactr protein function - and its relation to signalling - has not been investigated. Here, we show that Rho-actin signalling induced by serum stimulation promotes the nuclear accumulation of Phactr1, but not other Phactr family members. Actin binding by the three Phactr1 C-terminal RPEL motifs is required for Phactr1 cytoplasmic localisation in resting cells. Phactr1 nuclear accumulation is importin α-β dependent. G-actin and importin α-β bind competitively to nuclear import signals associated with the N- and C-terminal RPEL motifs. All four motifs are required for the inhibition of serum-induced Phactr1 nuclear accumulation when G-actin is elevated. G-actin and PP1 bind competitively to the Phactr1 C-terminal region, and Phactr1 C-terminal RPEL mutants that cannot bind G-actin induce aberrant actomyosin structures dependent on their nuclear accumulation and on PP1 binding. In CHL-1 melanoma cells, Phactr1 exhibits actin-regulated subcellular localisation and is required for stress fibre assembly, motility and invasiveness. These data support a role for Phactr1 in actomyosin assembly and suggest that Phactr1 G-actin sensing allows its coordination with F-actin availability.
Collapse
Affiliation(s)
- Maria Wiezlak
- Transcription Group, CRUK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | |
Collapse
|
78
|
Mouilleron S, Wiezlak M, O'Reilly N, Treisman R, McDonald NQ. Structures of the Phactr1 RPEL domain and RPEL motif complexes with G-actin reveal the molecular basis for actin binding cooperativity. Structure 2012; 20:1960-70. [PMID: 23041370 DOI: 10.1016/j.str.2012.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022]
Abstract
The Phactr family of PP1-binding proteins and the myocardin-related transcription factor family of transcriptional coactivators contain regulatory domains comprising three copies of the RPEL motif, a G-actin binding element. We report the structure of a Phactr1 G-actin⋅RPEL domain complex. Three G-actins surround the crank-shaped RPEL domain forming a closed helical assembly. Their spatial relationship is identical to the RPEL-actins within the pentavalent MRTF G-actin⋅RPEL domain complex, suggesting that conserved cooperative interactions between actin⋅RPEL units organize the assembly. In the trivalent Phactr1 complex, each G-actin⋅RPEL unit makes secondary contacts with its downstream actin involving distinct RPEL residues. Similar secondary contacts are seen in G-actin⋅RPEL peptide crystals. Loss-of-secondary-contact mutations destabilize the Phactr1 G-actin⋅RPEL assembly. Furthermore, actin-mediated inhibition of Phactr1 nuclear import requires secondary contact residues in the Phactr1 N-terminal RPEL-N motif, suggesting that it involves interaction of RPEL-N with the C-terminal assembly. Secondary actin contacts by actin-bound RPEL motifs thus govern formation of multivalent actin⋅RPEL assemblies.
Collapse
Affiliation(s)
- Stephane Mouilleron
- Structural Biology, CRUK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
79
|
MKLs: Co-factors of serum response factor (SRF) in neuronal responses. Int J Biochem Cell Biol 2012; 44:1444-7. [DOI: 10.1016/j.biocel.2012.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
|
80
|
Small EM. The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 2012; 5:794-804. [PMID: 22898751 DOI: 10.1007/s12265-012-9397-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/01/2012] [Indexed: 12/14/2022]
Abstract
Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called "myofibroblasts." The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1-Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin-MRTF-SRF signaling axis in regulating this process.
Collapse
Affiliation(s)
- Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, USA.
| |
Collapse
|
81
|
Li J, Bowens N, Cheng L, Zhu X, Chen M, Hannenhalli S, Cappola TP, Parmacek MS. Myocardin-like protein 2 regulates TGFβ signaling in embryonic stem cells and the developing vasculature. Development 2012; 139:3531-42. [PMID: 22899851 DOI: 10.1242/dev.082222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms that regulate and coordinate signaling between the extracellular matrix (ECM) and cells contributing to the developing vasculature are complex and poorly understood. Myocardin-like protein 2 (MKL2) is a transcriptional co-activator that in response to RhoA and cytoskeletal actin signals physically associates with serum response factor (SRF), activating a subset of SRF-regulated genes. We now report the discovery of a previously undescribed MKL2/TGFβ signaling pathway in embryonic stem (ES) cells that is required for maturation and stabilization of the embryonic vasculature. Mkl2(-/-) null embryos exhibit profound derangements in the tunica media of select arteries and arterial beds, which leads to aneurysmal dilation, dissection and hemorrhage. Remarkably, TGFβ expression, TGFβ signaling and TGFβ-regulated genes encoding ECM are downregulated in Mkl2(-/-) ES cells and the vasculature of Mkl2(-/-) embryos. The gene encoding TGFβ2, the predominant TGFβ isoform expressed in vascular smooth muscle cells and embryonic vasculature, is activated directly via binding of an MKL2/SRF protein complex to a conserved CArG box in the TGFβ2 promoter. Moreover, Mkl2(-/-) ES cells exhibit derangements in cytoskeletal organization, cell adhesion and expression of ECM that are rescued by forced expression of TGFβ2. Taken together, these data demonstrate that MKL2 regulates a conserved TGF-β signaling pathway that is required for angiogenesis and ultimately embryonic survival.
Collapse
Affiliation(s)
- Jian Li
- University of Pennsylvania Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Gjorevski N, Boghaert E, Nelson CM. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2012; 5:29-38. [PMID: 21748438 PMCID: PMC3343202 DOI: 10.1007/s12307-011-0076-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/30/2011] [Indexed: 01/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenotypic shift wherein epithelial cells lose or loosen attachments to their neighbors and assume a mesenchymal-like morphology. EMT drives a variety of developmental processes, but may also be adopted by tumor cells during neoplastic progression. EMT is regulated by both biochemical and physical signals from the microenvironment, including mechanical stress, which is increasingly recognized to play a major role in development and disease progression. Biological systems generate, transmit and concentrate mechanical stress into spatial patterns; these gradients in mechanical stress may serve to spatially pattern developmental and pathologic EMTs. Here we review how epithelial tissues generate and respond to mechanical stress gradients, and highlight the mechanisms by which mechanical stress regulates and patterns EMT.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Department of Chemical & Biological Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544 USA
| | - Eline Boghaert
- Department of Chemical & Biological Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544 USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544 USA
| |
Collapse
|
83
|
Vartiainen MK. Nucleo-cytoplasmic actin relationships in Stockholm. Nucleus 2012; 3:123-5. [PMID: 22555602 DOI: 10.4161/nucl.19515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Wenner-Gren Foundations symposium "Actin and Actin-associated Proteins from Genes to Polysomes" took place at the Wenner-Gren Center in Stockholm, Sweden, on September 7-10, 2011. As the name of the symposium implied, the organizing committee, consisting of local organizers Piergiorgio Percipalle, Neus Visa and Ann Kristin Östlund Farrants from Stockholm and Thoru Pederson from Worcester, MA USA, had boldly decided to embrace the unconventional roles of actin, namely its connections to the gene expression apparatus all the way from the nuclear genes to the cytoplasmic protein synthesis machineries. The organizers assembled a respectable crowd of 25 speakers with very diverse backgrounds, but a common interest in understanding how actin and its associated factors may function outside their conventional roles in the cytoskeleton. As many people presented unpublished work, I will not go into detail of these talks but will rather aim to highlight the discussed topics and their possible implications to this exciting research field.
Collapse
Affiliation(s)
- Maria K Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
84
|
|
85
|
Huet G, Rajakylä EK, Viita T, Skarp KP, Crivaro M, Dopie J, Vartiainen MK. Actin-regulated feedback loop based on Phactr4, PP1 and cofilin maintains the actin monomer pool. J Cell Sci 2012. [DOI: 10.1242/jcs.113241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Phactr proteins bind actin and protein phosphatase 1 (PP1), and are involved in processes ranging from angiogenesis to cell cycle regulation. Phactrs share a highly conserved RPEL domain with the Myocardin Related Transcription Factor (MRTF) family, where actin-binding to this domain regulates both the nuclear localization and the activity of these transcription coactivators. We show here that in contrast to MRTF-A, the RPEL domain is dispensable for the subcellular localization of Phactr4. Instead, we find the domain facilitating competitive binding of monomeric actin and PP1 to Phactr4. Binding of actin to Phactr4 influences the activity of PP1 and the phosphorylation status of one of its downstream targets, cofilin. Consequently, at low actin monomer levels, Phactr4 guides PP1 to dephosphorylate cofilin. This active form of cofilin is then able to sever and depolymerise actin filaments and thus restore the actin monomer pool. Accordingly, our data discloses the central role of Phactr4 in a feedback loop, where actin monomers regulate their own number via the activation of a key regulator of actin dynamics. Depending on the protein context, the RPEL domain can thus elicit mechanistically different responses to maintain the cellular actin balance.
Collapse
|
86
|
Hirano H, Matsuura Y. Sensing actin dynamics: structural basis for G-actin-sensitive nuclear import of MAL. Biochem Biophys Res Commun 2011; 414:373-8. [PMID: 21964294 DOI: 10.1016/j.bbrc.2011.09.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022]
Abstract
The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin α/β heterodimer, and that G-actin competes with importin α/β for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-α, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-α- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-α recognition.
Collapse
Affiliation(s)
- Hidemi Hirano
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
87
|
Treisman R, McDonald NQ, Mouilleron S, VanHook AM. Science Signaling
Podcast: 14 June 2011. Sci Signal 2011. [DOI: 10.1126/scisignal.2002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Structural analysis reveals how increasing concentrations of monomeric actin prevent a transcriptional coactivator from promoting expression of target genes.
Collapse
Affiliation(s)
- Richard Treisman
- Transcription Group, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Neil Q. McDonald
- Structural Biology Group, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Stéphane Mouilleron
- Structural Biology Group, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
| |
Collapse
|