51
|
Comesaña S, Velasco C, Conde-Sieira M, Míguez JM, Soengas JL, Morais S. Feeding Stimulation Ability and Central Effects of Intraperitoneal Treatment of L-Leucine, L-Valine, and L-Proline on Amino Acid Sensing Systems in Rainbow Trout: Implication in Food Intake Control. Front Physiol 2018; 9:1209. [PMID: 30210366 PMCID: PMC6121200 DOI: 10.3389/fphys.2018.01209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
To continue gathering knowledge on the central regulation of food intake in response to amino acids in teleost fish, using as a model rainbow trout (Oncorhynchus mykiss), we evaluated in a first experiment the feeding attractiveness of L-leucine, L-valine, and L-proline offered as an agar gel matrix. In a second experiment, we assessed the effect of intraperitoneal (IP) treatment with the same amino acids on food intake. In a third experiment, we carried out a similar IP administration of amino acids to evaluate the response of amino acid sensing mechanisms in the hypothalamus and telencephalon. Results are discussed in conjunction with an earlier study where leucine and valine were administered intracerebroventricularly (ICV). The attractiveness of amino acids does not appear to relate to their effects on food intake, at least when administrated by-passing ingestion and luminal absorption, since two attractive amino acids resulted in an anorexigenic (Leu) or no effects (Pro) on food intake while a non-attractive amino acid (Val) induced anorexigenic (IP treatment) or orexigenic (ICV treatment) responses. The effects of Leu on food intake might relate to the expression of hypothalamic neuropeptides and result from the direct activation of amino acid sensing systems. In contrast, while valine had few effects on hypothalamic amino acid sensing systems after ICV treatment, a significant amount of parameters become affected by IP treatment suggesting that the effect of Val after IP treatment is indirect. Proline had no relevant effects on amino acid sensing systems, neuropeptide expression, and food intake, which suggest that this amino acid might not have a relevant role in the homeostatic regulation of food intake through hypothalamic mechanisms. In telencephalon, the same amino acid sensing systems operating in hypothalamus appear to be present and respond to Leu and Val, but it is still unclear how they might relate to the control of food intake.
Collapse
Affiliation(s)
- Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sofía Morais
- Lucta S.A., Innovation Division, UAB Research Park, Bellaterra, Spain
| |
Collapse
|
52
|
Zeng N, D'Souza RF, Figueiredo VC, Markworth JF, Roberts LA, Peake JM, Mitchell CJ, Cameron-Smith D. Acute resistance exercise induces Sestrin2 phosphorylation and p62 dephosphorylation in human skeletal muscle. Physiol Rep 2018; 5:5/24/e13526. [PMID: 29263116 PMCID: PMC5742699 DOI: 10.14814/phy2.13526] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Sestrins (1, 2, 3) are a family of stress-inducible proteins capable of attenuating oxidative stress, regulating metabolism, and stimulating autophagy. Sequestosome1 (p62) is also a stress-inducible multifunctional protein acting as a signaling hub for oxidative stress and selective autophagy. It is unclear whether Sestrin and p62Ser403 are regulated acutely or chronically by resistance exercise (RE) or training (RT) in human skeletal muscle. Therefore, the acute and chronic effects of RE on Sestrin and p62 in human skeletal muscle were examined through two studies. In Study 1, nine active men (22.1 ± 2.2 years) performed a bout of single-leg strength exercises and muscle biopsies were collected before, 2, 24, and 48 h after exercise. In Study 2, 10 active men (21.3 ± 1.9 years) strength trained for 12 weeks (2 days per week) and biopsies were collected pre- and post-training. Acutely, 2 h postexercise, phosphorylation of p62Ser403 was downregulated, while there was a mobility shift of Sestrin2, indicative of increased phosphorylation. Forty-eight hours postexercise, the protein expression of both Sestrin1 and total p62 increased. Chronic exercise had no impact on the gene or protein expression of Sestrin2/3 or p62, but Sestrin1 protein was upregulated. These findings demonstrated an inverse relationship between Sestrin2 and p62 phosphorylation after a single bout of RE, indicating they are transiently regulated. Contrarily, 12 weeks of RT increased protein expression of Sestrin1, suggesting that despite the strong sequence homology of the Sestrin family, they are differentially regulated in response to acute RE and chronic RT.
Collapse
Affiliation(s)
- Nina Zeng
- Liggins Institute The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Randall F D'Souza
- Liggins Institute The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Vandre C Figueiredo
- Liggins Institute The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,Centre for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - James F Markworth
- Liggins Institute The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Llion A Roberts
- School of Allied Health Sciences & Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Australia
| | - Jonathan M Peake
- Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Australia.,School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Cameron J Mitchell
- Liggins Institute The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - David Cameron-Smith
- Liggins Institute The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand .,Food & Bio-based Products Group, AgResearch, Palmerston North, 4474, New Zealand.,Riddet Institute, Palmerston North, 4442, New Zealand
| |
Collapse
|
53
|
Zeng N, D'Souza RF, Sorrenson B, Merry TL, Barnett MPG, Mitchell CJ, Cameron-Smith D. The putative leucine sensor Sestrin2 is hyperphosphorylated by acute resistance exercise but not protein ingestion in human skeletal muscle. Eur J Appl Physiol 2018; 118:1241-1253. [PMID: 29574525 DOI: 10.1007/s00421-018-3853-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE Dietary protein and resistance exercise (RE) are both potent stimuli of the mammalian target of rapamycin complex 1 (mTORC1). Sestrins1, 2, 3 are multifunctional proteins that regulate mTORC1, stimulate autophagy and alleviate oxidative stress. Of this family, Sestrin2 is a putative leucine sensor implicated in mTORC1 and AMP-dependent protein kinase (AMPK) regulation. There is currently no data examining the responsiveness of Sestrin2 to dietary protein ingestion, with or without RE. METHODS In Study 1, 16 males ingested either 10 or 20 g of milk protein concentrate (MPC) with muscle biopsies collected pre, 90 and 210 min post-beverage consumption. In Study 2, 20 males performed a bout of RE immediately followed by the consumption of 9 g of MPC or carbohydrate placebo. Analysis of Sestrins, AMPK and antioxidant responses was examined. RESULTS Dietary protein ingestion did not result in Sestrin2 mobility shift. After RE, Sestrin2 phosphorylation state was significantly altered and was not further modified by post-exercise protein or carbohydrate ingestion. With RE, AMPK phosphorylation remained stable, while the mRNA expressions of several antioxidants were upregulated. CONCLUSIONS Dietary protein ingestion did not affect the signalling by the family of Sestrins. With RE, Sestrin2 was hyperphosphorylated, with no further evidence of a relationship to AMPK signalling.
Collapse
Affiliation(s)
- Nina Zeng
- Liggins Institute, The University of Auckland, Private Bag 92 019, Victoria Street West, Auckland, 1142, New Zealand
| | - Randall F D'Souza
- Liggins Institute, The University of Auckland, Private Bag 92 019, Victoria Street West, Auckland, 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Matthew P G Barnett
- Food Nutrition and Health Team, AgResearch, Palmerston North, 4474, New Zealand
| | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Private Bag 92 019, Victoria Street West, Auckland, 1142, New Zealand
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Private Bag 92 019, Victoria Street West, Auckland, 1142, New Zealand.
- Food and Bio-based Products Group, AgResearch, Palmerston North, 4474, New Zealand.
- Riddet Institute, Palmerston North, 4442, New Zealand.
| |
Collapse
|
54
|
Tee AR. The Target of Rapamycin and Mechanisms of Cell Growth. Int J Mol Sci 2018; 19:ijms19030880. [PMID: 29547541 PMCID: PMC5877741 DOI: 10.3390/ijms19030880] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin) is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1) enhances the cell’s capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.
Collapse
Affiliation(s)
- Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
55
|
Kwon NH, Lee MR, Kong J, Park SK, Hwang BJ, Kim BG, Lee ES, Moon HG, Kim S. Transfer-RNA-mediated enhancement of ribosomal proteins S6 kinases signaling for cell proliferation. RNA Biol 2018; 15:635-648. [PMID: 28816616 PMCID: PMC6103689 DOI: 10.1080/15476286.2017.1356563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While transfer-RNAs (tRNAs) are known to transport amino acids to ribosome, new functions are being unveiled from tRNAs and their fragments beyond protein synthesis. Here we show that phosphorylation of 90-kDa RPS6K (ribosomal proteins S6 kinase) was enhanced by tRNALeu overexpression under amino acids starvation condition. The phosphorylation of 90-kDa RPS6K was decreased by siRNA specific to tRNALeu and was independent to mTOR (mammalian target of rapamycin) signaling. Among the 90-kDa RPS6K family, RSK1 (ribosomal S6 kinase 1) and MSK2 (mitogen-and stress-activated protein kinase 2) were the major kinases phosphorylated by tRNALeu overexpression. Through SILAC (stable isotope labeling by/with amino acids in cell culture) and combined mass spectrometry analysis, we identified EBP1 (ErbB3-binding protein 1) as the tRNALeu-binding protein. We suspected that the overexpression of free tRNALeu would reinforce ErbB2/ErbB3 signaling pathway by disturbing the interaction between ErbB3 and EBP1, resulting in RSK1/MSK2 phosphorylation, improving cell proliferation and resistance to death. Analysis of samples from patients with breast cancer also indicated an association between tRNALeu overexpression and the ErbB2-positive population. Our results suggested a possible link between tRNALeu overexpression and RSK1/MSK2 activation and ErbB2/ErbB3 signaling.
Collapse
Affiliation(s)
- Nam Hoon Kwon
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea
| | - Mi Ran Lee
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea
| | - Jiwon Kong
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea.,b Department of Pharmacy , Seoul National University , Seoul , Korea
| | - Seung Kyun Park
- c Department of Molecular Bioscience , College of Biomedical Science, Kangwon National University , Chuncheon , Kangwon , Korea
| | - Byung Joon Hwang
- c Department of Molecular Bioscience , College of Biomedical Science, Kangwon National University , Chuncheon , Kangwon , Korea
| | - Byung Gyu Kim
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea
| | - Eun-Shin Lee
- d Department of Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Hyeong-Gon Moon
- d Department of Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Sunghoon Kim
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea.,e Department of Molecular Medicine and Biopharmaceutical Sciences , Graduate School of Convergence Science and Technology, Seoul National University , Suwon , Gyeonggi , Korea
| |
Collapse
|
56
|
Yoon BR, Oh YJ, Kang SW, Lee EB, Lee WW. Role of SLC7A5 in Metabolic Reprogramming of Human Monocyte/Macrophage Immune Responses. Front Immunol 2018; 9:53. [PMID: 29422900 PMCID: PMC5788887 DOI: 10.3389/fimmu.2018.00053] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Amino acids (AAs) are necessary nutrients which act not only as building blocks in protein synthesis but also in crucial anabolic cellular signaling pathways. It has been demonstrated that SLC7A5 is a critical transporter that mediates uptake of several essential amino acids in highly proliferative tumors and activated T cells. However, the dynamics and relevance of SLC7A5 activity in monocytes/macrophages is still poorly understood. We provide evidence that SLC7A5-mediated leucine influx contributes to pro-inflammatory cytokine production via mTOR complex 1 (mTORC1)-induced glycolytic reprograming in activated human monocytes/macrophages. Moreover, expression of SLC7A5 is significantly elevated in monocytes derived from patients with rheumatoid arthritis (RA), a chronic inflammatory disease, and was also markedly induced by LPS stimulation of both monocytes and macrophages from healthy individuals. Further, pharmacological blockade or silencing of SLC7A5 led to a significant reduction of IL-1β downstream of leucine-mediated mTORC1 activation. Inhibition of SLC7A5-mediated leucine influx was linked to downregulation of glycolytic metabolism as evidenced by the decreased extracellular acidification rate, suggesting a regulatory role for this molecule in glycolytic reprograming. Furthermore, the expression of SLC7A5 on circulating monocytes from RA patients positively correlated with clinical parameters, suggesting that SLC7A5-mediated AA influx is related to inflammatory conditions.
Collapse
Affiliation(s)
- Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Jeong Oh
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
57
|
Abstract
The mammalian target of rapamycin (mTOR) senses nutrients and growth factors to coordinate cell growth, metabolism and autophagy. Extensive research has mapped the signaling pathways regulated by mTOR that are involved in human diseases, such as cancer, and in diabetes and ageing. Recently, however, new studies have demonstrated important roles for mTOR in promoting the differentiation of adult stem cells, driving the growth and proliferation of stem and progenitor cells, and dictating the differentiation program of multipotent stem cell populations. Here, we review these advances, providing an overview of mTOR signaling and its role in murine and human stem and progenitor cells.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
58
|
Van de Velde LA, Guo XZJ, Barbaric L, Smith AM, Oguin TH, Thomas PG, Murray PJ. Stress Kinase GCN2 Controls the Proliferative Fitness and Trafficking of Cytotoxic T Cells Independent of Environmental Amino Acid Sensing. Cell Rep 2017; 17:2247-2258. [PMID: 27880901 DOI: 10.1016/j.celrep.2016.10.079] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
GCN2 is one of four "stress kinases" that block translation by phosphorylating eIF2α. GCN2 is thought to bind uncharged tRNAs to "sense" amino acid availability. In mammals, myeloid cells expressing indoleamine dioxygenases locally deplete tryptophan, which is detected by GCN2 in T cells to cause proliferative arrest. GCN2-deficient T cells were reported to ectopically enter the cell cycle when tryptophan was limiting. Using GCN2-deficient strains crossed to T cell receptor (TCR) transgenic backgrounds, we found GCN2 is essential for induction of stress target genes such as CHOP. However, GCN2-deficient CD8+ T cells fail to proliferate in limiting tryptophan, arginine, leucine, lysine, or asparagine, the opposite of what previous studies concluded. In vitro and in vivo proliferation experiments show that GCN2-deficient CD8+ T cells have T cell-intrinsic proliferative and trafficking defects not observed in CD4+ T cells. Thus, GCN2 is required for normal cytotoxic T cell function.
Collapse
Affiliation(s)
- Lee-Ann Van de Velde
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lidija Barbaric
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amber M Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Thomas H Oguin
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
59
|
Cummings NE, Lamming DW. Regulation of metabolic health and aging by nutrient-sensitive signaling pathways. Mol Cell Endocrinol 2017; 455:13-22. [PMID: 27884780 PMCID: PMC5440210 DOI: 10.1016/j.mce.2016.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 11/19/2016] [Indexed: 01/20/2023]
Abstract
All organisms need to be capable of adapting to changes in the availability and composition of nutrients. Over 75 years ago, researchers discovered that a calorie restricted (CR) diet could significantly extend the lifespan of rats, and since then a CR diet has been shown to increase lifespan and healthspan in model organisms ranging from yeast to non-human primates. In this review, we discuss the effects of a CR diet on metabolism and healthspan, and highlight emerging evidence that suggests that dietary composition - the precise macronutrients that compose the diet - may be just as important as caloric content. In particular, we discuss recent evidence that suggests protein quality may influence metabolic health. Finally, we discuss key metabolic pathways which may influence the response to CR diets and altered macronutrient composition. Understanding the molecular mechanisms responsible for the effects of CR and dietary composition on health and longevity may allow the design of novel therapeutic approaches to age-related diseases.
Collapse
Affiliation(s)
- Nicole E Cummings
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
60
|
Jones E, Inoki K. Microphthalmia-associated transcription factors activate mTORC1 through RagD GTPase gene expression. Transl Cancer Res 2017; 6:S1234-S1238. [PMID: 31187024 PMCID: PMC6557429 DOI: 10.21037/tcr.2017.09.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Edith Jones
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
61
|
Nguyen TP, Frank AR, Jewell JL. Amino acid and small GTPase regulation of mTORC1. CELLULAR LOGISTICS 2017; 7:e1378794. [PMID: 29296509 PMCID: PMC5739091 DOI: 10.1080/21592799.2017.1378794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/03/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1), which integrates multiple environmental signals to control cell growth and metabolism. Nutrients, specifically amino acids, are the most potent stimuli for mTORC1 activation. Multiple studies have focused on how leucine and arginine activate mTORC1 through the Rag GTPases, with mechanistic details slowly emerging. Recently, a Rag GTPase-independent glutamine signaling pathway to mTORC1 has been identified, suggesting that mTORC1 is differentially regulated through distinct pathways by specific amino acids. In this review, we summarize our current understanding of how amino acids modulate mTORC1, and the role of other small GTPases in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
62
|
Mucke HA. Patent Highlights April-May 2017. Pharm Pat Anal 2017; 6:205-213. [PMID: 28825514 DOI: 10.4155/ppa-2017-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
63
|
Khan N, Jajeh F, Khan MI, Mukhtar E, Shabana SM, Mukhtar H. Sestrin-3 modulation is essential for therapeutic efficacy of cucurbitacin B in lung cancer cells. Carcinogenesis 2017; 38:184-195. [PMID: 27881463 DOI: 10.1093/carcin/bgw124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Many purified compounds from dietary sources have been investigated for their anticancer activities. The main issue with most agents is their effectiveness at high doses which generally could not be delivered to humans through dietary consumption. Here, we observed that cucurbitacin B, a tetracyclic triterpenoid present in pumpkins, gourds and squashes, exhibits antiproliferative effects on human non-small cell lung cancer (NSCLC) cells at nanomolar concentrations. Treatment with cucurbitacin B (0.2-0.6 μM; 24 h) was found to result in decrease in the viability of EGFR-wild type (A549 and H1792) and EGFR-mutant lung cancer cells (H1650 and H1975) and reduction in cell-colonies but had only minimal effect on normal human bronchial epithelial cells. Treatment with cucurbitacin B also caused inhibition of PI3K/mTOR and signal transducer and activator of transcription (STAT)-3 signaling along with simultaneous activation of AMPKα levels in both EGFR-wild type and EGFR-mutant lung cancer cells. Cucurbitacin B caused specific increase in the protein and mRNA expression of sestrin-3 in EGFR-mutant lung cancer cells, but not in EGFR-wild type cells. Treatment with cucurbitacin B to sestrin-3 siRNA treated EGFR-mutant cells further amplified the decrease in cell-viability and caused more sustained G2-phase cell cycle arrest, suggesting that these effects are mediated partly through sestrin-3. We also found that sestrin-3 has a role in the induction of apoptosis by cucurbitacin B in both EGFR-wild type and EGFR-mutant lung cancer cells. These findings suggest novel mechanism by the modulation of sestrin-3 for the action of cucurbitacin B and suggest that it could be developed as an agent for therapy of NSCLC.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Farah Jajeh
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Mohammad Imran Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Eiman Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Sameh M Shabana
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and.,Department of Zoology, Faculty of Science, Mansoura University, Egypt
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| |
Collapse
|
64
|
Wolfson RL, Sabatini DM. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab 2017; 26:301-309. [PMID: 28768171 PMCID: PMC5560103 DOI: 10.1016/j.cmet.2017.07.001] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that responds to a diverse set of environmental inputs, including amino acids. Over the past 10 years, a number of proteins have been identified that help transmit amino acid availability to mTORC1. However, amino acid sensors for this pathway have only recently been discovered. Here, we review these recent advances and highlight the variety of unexplored questions that emerge from the identification of these sensors.
Collapse
Affiliation(s)
- Rachel L Wolfson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
65
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
66
|
The Architecture of the Rag GTPase Signaling Network. Biomolecules 2017; 7:biom7030048. [PMID: 28788436 PMCID: PMC5618229 DOI: 10.3390/biom7030048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.
Collapse
|
67
|
Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 2017; 474:1935-1963. [PMID: 28546457 PMCID: PMC5444488 DOI: 10.1042/bcj20160822] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
Collapse
|
68
|
Graber TG, Borack MS, Reidy PT, Volpi E, Rasmussen BB. Essential amino acid ingestion alters expression of genes associated with amino acid sensing, transport, and mTORC1 regulation in human skeletal muscle. Nutr Metab (Lond) 2017; 14:35. [PMID: 28503190 PMCID: PMC5426042 DOI: 10.1186/s12986-017-0187-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/01/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Amino acid availability stimulates protein synthesis via the mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway. In response to an increase in cellular amino acid availability, translocation of cytosolic mTORC1 to the lysosomal surface is required to stimulate mTORC1 kinase activity. However, research elucidating the amino acid responsive mechanisms have thus far only been conducted in in vitro models. Our primary objective was to determine whether an increase in amino acid availability within human skeletal muscle in vivo would alter the expression of genes associated with amino acid sensing, transport and mTORC1 regulation. Our secondary objective was to determine whether an acute perturbation in lysosomal function would disrupt the normal pattern of muscle amino acid responsive gene expression. METHODS We recruited 13 young adults into one of two groups: The first group ingested 10 g of essential amino acids (EAA). The second group ingested 10 g of EAA in the presence of chloroquine (CQ), a lysosomotropic agent. The subjects from each group had biopsies of the vastus lateralis taken before and after EAA ingestion. We determined the relative mRNA expression of 51 potential amino acid responsive genes using RT-qPCR. RESULTS There was a differential mRNA expression for 22 genes, with 15 mRNAs significantly changing (P < 0.05) in response to EAA ingestion (e.g., REDD1: +209 ± 35%; SLC38A9: +31 ± 9%; SLC38A10: +57 ± 15%). In the CQ group, EAA ingestion resulted in a differential expression as compared to EAA alone (i.e., 11 out of the 22 genes were different (P < 0.05) between the two groups.). CONCLUSIONS Expression of several amino acid sensing, transport, and mTORC1 regulatory genes in human skeletal muscle are responsive to an increase in amino acid availability. Furthermore, potential acute disruption of lysosomal function by ingestion of chloroquine interferes with the normal pattern of gene expression following feeding. Our in vivo data in humans provide preliminary support for the in vitro work linking amino acid sensing pathways to mTORC1 translocation to the lysosome. TRIAL REGISTRATION NCT00891696. Registered 29 April 2009.
Collapse
Affiliation(s)
- Ted G. Graber
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA
| | - Michael S. Borack
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA
| | - Paul T. Reidy
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA
- Present Address: Department of Physical Therapy, University of Utah, Salt Lake City, Utah USA
| | - Elena Volpi
- Department of Internal Medicine – Geriatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA
| | - Blake B. Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA
| |
Collapse
|
69
|
González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 2017; 36:397-408. [PMID: 28096180 DOI: 10.15252/embj.201696010] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases.
Collapse
|
70
|
Mlitz V, Gendronneau G, Berlin I, Buchberger M, Eckhart L, Tschachler E. The Expression of the Endogenous mTORC1 Inhibitor Sestrin 2 Is Induced by UVB and Balanced with the Expression Level of Sestrin 1. PLoS One 2016; 11:e0166832. [PMID: 27861561 PMCID: PMC5115827 DOI: 10.1371/journal.pone.0166832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/05/2016] [Indexed: 01/28/2023] Open
Abstract
Sestrin 2 (SESN2) is an evolutionarily conserved regulator of mechanistic target of rapamycin complex 1 (mTORC1) which controls central cellular processes such as protein translation and autophagy. Previous studies have suggested that SESN2 itself is subjected to regulation at multiple levels. Here, we investigated the expression of SESN2 in the skin and in isolated skin cells. SESN2 was detected by immunofluorescence analysis in fibroblasts and keratinocytes of human skin. Differentiation of epidermal keratinocytes was not associated with altered SESN2 expression and siRNA-mediated knockdown of SESN2 did not impair stratum corneum formation in vitro. However, SESN2 was increased in both cell types when the expression of its paralog SESN1 was blocked by siRNA-mediated knock down, indicating a compensatory mechanism for the control of expression. Irradiation with UVB but not with UVA significantly increased SESN2 expression in both keratinocytes and fibroblasts. Upregulation of SESN2 expression could be completely blocked by suppression of p53. These results suggest that SESN2 is dispensable for normal epidermal keratinization but involved in the UVB stress response of skin cells.
Collapse
Affiliation(s)
- Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Irina Berlin
- Department of Biology and Women Beauty, Chanel R&T, Pantin, France
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail: (ET); (LE)
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail: (ET); (LE)
| |
Collapse
|
71
|
Van de Velde LA, Murray PJ. Proliferating Helper T Cells Require Rictor/mTORC2 Complex to Integrate Signals from Limiting Environmental Amino Acids. J Biol Chem 2016; 291:25815-25822. [PMID: 27799302 DOI: 10.1074/jbc.c116.763623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 11/06/2022] Open
Abstract
Antigen-stimulated T cells require elevated importation of essential and non-essential amino acids to generate large numbers of daughter cells necessary for effective immunity to pathogens. When amino acids are limiting, T cells arrest in the G1 phase of the cell cycle, suggesting that they have specific sensing mechanisms to ensure sufficient amino acids are available for multiple rounds of daughter generation. We found that activation of mTORC1, which is regulated by amino acid amounts, was uncoupled from limiting amino acids in the G1 phase of the cell cycle. Instead, we found that Rictor/mTORC2 has an essential role in T cell amino acid sensing. In the absence of Rictor, CD4+ T cells proliferate normally in limiting arginine or leucine. Our data suggest that Rictor/mTORC2 controls an amino acid-sensitive checkpoint that allows T cells to determine whether the microenvironment contains sufficient resources for daughter cell generation.
Collapse
Affiliation(s)
- Lee-Ann Van de Velde
- From the Departments of Infectious Diseases and.,Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peter J Murray
- From the Departments of Infectious Diseases and .,Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
72
|
Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, Clark J, Ktistakis NT. Dynamics of mTORC1 activation in response to amino acids. eLife 2016; 5. [PMID: 27725083 PMCID: PMC5059141 DOI: 10.7554/elife.19960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere. DOI:http://dx.doi.org/10.7554/eLife.19960.001 Cells in all organisms must constantly measure the amount of nutrients available to them in order to be healthy and grow properly. For example, cells use a complex sensing system to measure how many amino acids – the building blocks of proteins – are available to them. One enzyme called mTOR alerts the cell to amino acid levels. When amino acids are available, mTOR springs into action and turns on the production of proteins in the cell. However, when amino acids are scarce, mTOR turns off, which slows down protein production and causes the cell to begin scavenging amino acids by digesting parts of itself. Studies of mTOR have shown that the protein cannot turn on until it visits the surface of small sacks in the cell called lysosomes. These are the major sites within cell where proteins and other molecules are broken down. Scientists know how mTOR gets to the lysosomes, but not how quickly the process occurs. Now, Manifava, Smith et al. have used microscopes to record live video of the mTOR enzyme as it interacts with amino acids revealing the whole process takes place in just a few minutes. In the experiments, a fluorescent tag was added to part of mTOR to make the protein visible under a microscope. The video showed that, in human cells supplied with amino acids, mTOR reaches the lysosomes within 2 minutes of the amino acids becoming available. Then, within 3-4 minutes the mTOR turns on and leaves the lysosome. Even though the mTOR has left the lysosome, it somehow remembers that amino acids are available and stays active. The experiments show that mTOR’s brief interaction with the lysosome switches it on and keeps it on even after mTOR leaves. Future studies will be needed to determine exactly how mTOR remembers its interaction with the lysosome and stays active afterwards. DOI:http://dx.doi.org/10.7554/eLife.19960.002
Collapse
Affiliation(s)
- Maria Manifava
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Matthew Smith
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Sergio Rotondo
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon Walker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
73
|
Saxton RA, Knockenhauer KE, Schwartz TU, Sabatini DM. The apo-structure of the leucine sensor Sestrin2 is still elusive. Sci Signal 2016; 9:ra92. [PMID: 27649739 DOI: 10.1126/scisignal.aah4497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sestrin2 is a GATOR2-interacting protein that directly binds leucine and is required for the inhibition of mTORC1 under leucine deprivation, indicating that it is a leucine sensor for the mTORC1 pathway. We recently reported the structure of Sestrin2 in complex with leucine [Protein Data Bank (PDB) ID, 5DJ4] and demonstrated that mutations in the leucine-binding pocket that alter the affinity of Sestrin2 for leucine result in a corresponding change in the leucine sensitivity of mTORC1 in cells. A lower resolution structure of human Sestrin2 (PDB ID, 5CUF), which was crystallized in the absence of exogenous leucine, showed Sestrin2 to be in a nearly identical conformation as the leucine-bound structure. On the basis of this observation, it has been argued that leucine binding does not affect the conformation of Sestrin2 and that Sestrin2 may not be a sensor for leucine. We show that simple analysis of the reported "apo"-Sestrin2 structure reveals the clear presence of prominent, unmodeled electron density in the leucine-binding pocket that exactly accommodates the leucine observed in the higher resolution structure. Refining the reported apo-structure with leucine eliminated the large Fobs-Fcalc difference density at this position and improved the working and free R factors of the model. Consistent with this result, our own structure of Sestrin2 crystallized in the absence of exogenous leucine also contained electron density that is best explained by leucine. Thus, the structure of apo-Sestrin2 remains elusive.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Kevin E Knockenhauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - David M Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
74
|
Abstract
The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.
Collapse
Affiliation(s)
- Riko Hatakeyama
- a Department of Biology , University of Fribourg , Fribourg , Switzerland
| | | |
Collapse
|