51
|
Scherbakov D, Duscha S, Juskeviciene R, Restelli L, Frank S, Laczko E, Boettger EC. Mitochondrial misreading in skeletal muscle accelerates metabolic aging and confers lipid accumulation and increased inflammation. RNA (NEW YORK, N.Y.) 2020; 27:rna.077347.120. [PMID: 33262249 PMCID: PMC7901843 DOI: 10.1261/rna.077347.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
We have recently reported on an experimental model of mitochondrial mistranslation conferred by amino acid exchange V338Y in the mitochondrial ribosomal protein MrpS5. Here we used a combination of RNA-Seq and metabolic profiling of homozygous transgenic MrpS5V338Y/V338Y mice to analyze the changes associated with the V338Y mutation in post-mitotic skeletal muscle. Metabolic profiling demonstrated age-dependent metabolic changes in the mutant V338Y animals, which included enhanced levels of age-associated metabolites and which were accompanied by increased glycolysis, lipid desaturation and eicosanoid biosynthesis, and alterations of the pentose phosphate pathway. In addition, transcriptome signatures of aged V338Y mutant muscle pointed to elevated inflammation, likely reflecting the increased levels of bioactive lipids. Our findings indicate that mistranslation-mediated chronic impairment of mitochondrial function affects specific bioenergetic processes in muscle in an age-dependent manner.
Collapse
|
52
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
53
|
Mazini L, Rochette L, Malka G. Adipose-Derived Stem Cells (ADSCs) and Growth Differentiation Factor 11 (GDF11): Regenerative and Antiaging Capacity for the Skin. Regen Med 2020. [DOI: 10.5772/intechopen.91233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
54
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
55
|
Xie T, Chen C, Peng Z, Brown BC, Reisz JA, Xu P, Zhou Z, Song A, Zhang Y, Bogdanov MV, Kellems RE, D'Alessandro A, Zhang W, Xia Y. Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies. Circ Res 2020; 127:360-375. [PMID: 32284030 DOI: 10.1161/circresaha.119.316298] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Hypoxia promotes renal damage and progression of chronic kidney disease (CKD). The erythrocyte is the only cell type for oxygen (O2) delivery. Sphingosine 1-phosphate (S1P)-a highly enriched biolipid in erythrocytes-is recently reported to be induced under high altitude in normal humans to enhance O2 delivery. However, nothing is known about erythrocyte S1P in CKD. OBJECTIVE To investigate the function and metabolic basis of erythrocyte S1P in CKD with a goal to explore potential therapeutics. METHODS AND RESULTS Using erythrocyte-specific SphK1 (sphingosine kinase 1; the only enzyme to produce S1P in erythrocytes) knockout mice (eSphK1-/-) in an experimental model of hypertensive CKD with Ang II (angiotensin II) infusion, we found severe renal hypoxia, hypertension, proteinuria, and fibrosis in Ang II-infused eSphk1-/- mice compared with controls. Untargeted metabolomics profiling and in vivo U-13C6 isotopically labeled glucose flux analysis revealed that SphK1 is required for channeling glucose metabolism toward glycolysis versus pentose phosphate pathway, resulting in enhanced erythroid-specific Rapoport-Luebering shunt in Ang II-infused mice. Mechanistically, increased erythrocyte S1P functioning intracellularly activates AMPK (AMP-activated protein kinase) 1α and BPGM (bisphosphoglycerate mutase) by reducing ceramide/S1P ratio and inhibiting PP2A (protein phosphatase 2A), leading to increased 2,3-bisphosphoglycerate (an erythrocyte-specific metabolite negatively regulating Hb [hemoglobin]-O2-binding affinity) production and thus more O2 delivery to counteract kidney hypoxia and progression to CKD. Preclinical studies revealed that an AMPK agonist or a PP2A inhibitor rescued the severe CKD phenotype in Ang II-infused eSphK1-/- mice and prevented development of CKD in the control mice by inducing 2,3-bisphosphoglycerate production and thus enhancing renal oxygenation. Translational research validated mouse findings in erythrocytes of hypertensive CKD patients and cultured human erythrocytes. CONCLUSIONS Our study elucidates the beneficial role of eSphk1-S1P in hypertensive CKD by channeling glucose metabolism toward Rapoport-Luebering shunt and inducing 2,3-bisphosphoglycerate production and O2 delivery via a PP2A-AMPK1α signaling pathway. These findings reveal the metabolic and molecular basis of erythrocyte S1P in CKD and new therapeutic avenues.
Collapse
Affiliation(s)
- Tingting Xie
- From the Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Changhan Chen
- Otolaryngology Head and Neck Surgery (C.C.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Zhangzhe Peng
- Nephrology (Z.P.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Ping Xu
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine (Z.Z.), University of Texas McGovern Medical School at Houston
| | - Anren Song
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Yujin Zhang
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Mikhail V Bogdanov
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Rodney E Kellems
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.,MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX (R.E.K., Y.X.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Weiru Zhang
- General Medicine (W.Z.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Yang Xia
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.,MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX (R.E.K., Y.X.)
| |
Collapse
|
56
|
Xie GH, Dai HJ, Liu F, Zhang YP, Zhu L, Nie JJ, Wu JH. A Dual Role of ATM in Ischemic Preconditioning and Ischemic Injury. Cell Mol Neurobiol 2020; 40:785-799. [PMID: 31845160 PMCID: PMC11448897 DOI: 10.1007/s10571-019-00773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein is regarded as the linchpin of cellular defenses to stress. Deletion of ATM results in strong oxidative stress and degenerative diseases in the nervous system. However, the role of ATM in neuronal ischemic preconditioning and lethal ischemic injury is still largely unknown. In this study, mice cortical neurons preconditioned with sublethal exposure to oxygen glucose deprivation (OGD) exhibited ATM/glucose-6-phosphate dehydrogenase pathway activation. Additionally, pharmacological inhibition of ATM prior to the preconditioning reversed neuroprotection provided by preconditioning in vitro and in vivo. Meanwhile, we found that ATM/P53 pro-apoptosis pathway was driven by lethal OGD injury, and pharmacological inhibition of ATM during fatal oxygen-glucose deprivation/reperfusion injury promoted neuronal survival. More importantly, inhibition of ATM activity after cerebral ischemia protected against cerebral ischemic-reperfusion damage in mice. In conclusion, our data show the dual role of ATM in neuronal ischemic preconditioning and lethal ischemic injury, involving in the protection of ischemic preconditioning, but promoting neuronal death in lethal ischemic injury. Thus, the present study provides new opportunity for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guang-Hui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Jun Dai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Liu
- General surgery department of Xinhua Hospital of Hubei Province, Wuhan, 430015, China
| | - Ying-Pei Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China
| | - Li Zhu
- Department of Pharmacy, Tongren Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Jie Nie
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China
| | - Jian-Hua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China.
| |
Collapse
|
57
|
High Levels of ROS Impair Lysosomal Acidity and Autophagy Flux in Glucose-Deprived Fibroblasts by Activating ATM and Erk Pathways. Biomolecules 2020; 10:biom10050761. [PMID: 32414146 PMCID: PMC7277562 DOI: 10.3390/biom10050761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Under glucose deprivation, cells heavily mobilize oxidative phosphorylation to maintain energy homeostasis. This leads to the generation of high levels of ATP, as well as reactive oxygen species (ROS), from mitochondria. In nutrient starvation, autophagy is activated, likely to facilitate resource recycling, but recent studies suggest that autophagy flux is inhibited in cells undergoing glucose deprivation. In this study, we analyzed the status of autophagic flux in glucose-deprived human fibroblasts. Although lysosomes increased in quantity due in part to an increase of biogenesis, a large population of them suffered low acidity in the glucose-deprived cells. Autophagosomes also accumulated due to poor autolysis in these cells. A treatment of antioxidants not only restored lysosomal acidity but also released the flux blockade. The inhibition of ataxia telangiectasia mutated (ATM) serine/threonine kinase, which is activated by ROS, also attenuated the impairment of lysosomal acidity and autophagic flux, suggesting an effect of ROS that might be mediated through ATM activation. In addition, the activity of extracellular signal-regulated kinase (Erk) increased upon glucose deprivation, but this was also compromised by a treatment of antioxidants. Furthermore, the Erk inhibitor treatment also alleviated the failure in lysosomal acidity and autophagic flux. These together indicate that, upon glucose deprivation, cells undergo a failure of autophagy flux through an impairment of lysosomal acidity and that a high-level ROS-induced activation of Erk and ATM is involved in this impairment.
Collapse
|
58
|
Lee JH, Paull TT. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol 2020; 32:101511. [PMID: 32244177 PMCID: PMC7115119 DOI: 10.1016/j.redox.2020.101511] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase responds to DNA double-strand breaks and other forms of cellular stress, including reactive oxygen species (ROS). Recent work in the field has uncovered links between mitochondrial ROS and ATM activation, suggesting that ATM acts as a sensor for mitochondrial derived ROS and regulates ROS accumulation in cells through this pathway. In addition, characterization of cells from Ataxia-telangiectasia patients as well as ATM-deficient mice and cell models suggest a role for ATM in modulating mitochondrial gene expression and function. Here we review ROS responses related to ATM function, recent evidence for ATM roles in mitochondrial maintenance and turnover, and the relationship between ATM and regulation of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
59
|
Lavin MF, Yeo AJ. Clinical potential of ATM inhibitors. Mutat Res 2020; 821:111695. [PMID: 32304909 DOI: 10.1016/j.mrfmmm.2020.111695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
The protein defective in the human genetic disorder ataxia-telangiectasia, ATM, plays a central role in responding to DNA double strand breaks and other lesions to protect the genome against DNA damage and in this way minimize the risk of mutations that can lead to abnormal cellular behaviour. Its function in normal cells is to protect the cell against genotoxic stress but inadvertently it can assist cancer cells by providing resistance against chemotherapeutic agents and thus favouring tumour growth and survival. However, it is now evident that ATM also functions in a DNA damage-independent fashion to protect the cell against other forms of stress such as oxidative and nutrient stress and this non-canonical mechanism may also be relevant to cancer susceptibility in individuals who lack a functional ATM gene. Thus the use of ATM inhibitors to combat resistance in tumours may extend beyond a role for this protein in the DNA damage response. Here, we provide some background on ATM and its activation and investigate the efficacy of ATM inhibitors in treating cancer.
Collapse
Affiliation(s)
- Martin F Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia.
| | - Abrey J Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
60
|
Macer-Wright JL, Sileikaite I, Rayner BS, Hawkins CL. 8-Chloroadenosine Alters the Metabolic Profile and Downregulates Antioxidant and DNA Damage Repair Pathways in Macrophages. Chem Res Toxicol 2019; 33:402-413. [DOI: 10.1021/acs.chemrestox.9b00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jessica L. Macer-Wright
- The Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Inga Sileikaite
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Benjamin S. Rayner
- The Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Clare L. Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| |
Collapse
|
61
|
Maciejczyk M, Heropolitanska-Pliszka E, Pietrucha B, Sawicka-Powierza J, Bernatowska E, Wolska-Kusnierz B, Pac M, Car H, Zalewska A, Mikoluc B. Antioxidant Defense, Redox Homeostasis, and Oxidative Damage in Children With Ataxia Telangiectasia and Nijmegen Breakage Syndrome. Front Immunol 2019; 10:2322. [PMID: 31611883 PMCID: PMC6776633 DOI: 10.3389/fimmu.2019.02322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS) belong to a group of primary immunodeficiency diseases (PI) characterized by premature aging, cerebral degeneration, immunoglobulin deficiency and higher cancer susceptibility. Despite the fact that oxidative stress has been demonstrated in vitro and in animal models of AT and NBS, the involvement of redox homeostasis disorders is still unclear in the in vivo phenotype of AT and NBS patients. Our study is the first to compare both enzymatic and non-enzymatic antioxidants as well as oxidative damage between AT and NBS subjects. Twenty two Caucasian children with AT and twelve patients with NBS were studied. Enzymatic and non-enzymatic antioxidants – glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase-1 (SOD) and uric acid (UA); redox status—total antioxidant capacity (TAC) and ferric reducing ability of plasma (FRAP); and oxidative damage products−8-hydroxy-2′-deoxyguanosine (8-OHdG), advanced glycation end products (AGE), advanced oxidation protein products (AOPP), 4-hydroxynonenal (4-HNE) protein adducts, and 8-isoprostanes (8-isop) were evaluated in serum or plasma samples. We showed that CAT, SOD and UA were significantly increased, while TAC and FRAP levels were statistically lower in the plasma of AT patients compared to controls. In NBS patients, only CAT activity was significantly elevated, while TAC was significantly decreased as compared to healthy children. We also showed higher oxidative damage to DNA (↑8-OHdG), proteins (↑AGE, ↑AOPP), and lipids (↑4-HNE, ↑8-isop) in both AT and NBS patients. Interestingly, we did not demonstrate any significant differences in the antioxidant defense and oxidative damage between AT and NBS patients. However, in AT children, we showed a positive correlation between 8-OHdG and the α-fetoprotein level as well as a negative correlation between 8-OHdG and IgA. In NBS, AGE was positively correlated with IgM and negatively with the IgG level. Summarizing, we demonstrated an imbalance in cellular redox homeostasis and higher oxidative damage in AT and NBS patients. Despite an increase in the activity/concentration of some antioxidants, the total antioxidant capacity is overwhelmed in children with AT and NBS and predisposes them to more considerable oxidative damage. Oxidative stress may play a major role in AT and NBS phenotype.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | | | - Barbara Pietrucha
- Clinical Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Ewa Bernatowska
- Clinical Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Małgorzata Pac
- Clinical Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Bozena Mikoluc
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
62
|
Qian W, Kumar N, Roginskaya V, Fouquerel E, Opresko PL, Shiva S, Watkins SC, Kolodieznyi D, Bruchez MP, Van Houten B. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A 2019; 116:18435-18444. [PMID: 31451640 PMCID: PMC6744920 DOI: 10.1073/pnas.1910574116] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in aging, inflammation, and cancer. Mitochondria are an important source of ROS; however, the spatiotemporal ROS events underlying oxidative cellular damage from dysfunctional mitochondria remain unresolved. To this end, we have developed and validated a chemoptogenetic approach that uses a mitochondrially targeted fluorogen-activating peptide (Mito-FAP) to deliver a photosensitizer MG-2I dye exclusively to this organelle. Light-mediated activation (660 nm) of the Mito-FAP-MG-2I complex led to a rapid loss of mitochondrial respiration, decreased electron transport chain complex activity, and mitochondrial fragmentation. Importantly, one round of singlet oxygen produced a persistent secondary wave of mitochondrial superoxide and hydrogen peroxide lasting for over 48 h after the initial insult. By following ROS intermediates, we were able to detect hydrogen peroxide in the nucleus through ratiometric analysis of the oxidation of nuclear cysteine residues. Despite mitochondrial DNA (mtDNA) damage and nuclear oxidative stress induced by dysfunctional mitochondria, there was a lack of gross nuclear DNA strand breaks and apoptosis. Targeted telomere analysis revealed fragile telomeres and telomere loss as well as 53BP1-positive telomere dysfunction-induced foci (TIFs), indicating that DNA double-strand breaks occurred exclusively in telomeres as a direct consequence of mitochondrial dysfunction. These telomere defects activated ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair signaling. Furthermore, ATM inhibition exacerbated the Mito-FAP-induced mitochondrial dysfunction and sensitized cells to apoptotic cell death. This profound sensitivity of telomeres through hydrogen peroxide induced by dysregulated mitochondria reveals a crucial mechanism of telomere-mitochondria communication underlying the pathophysiological role of mitochondrial ROS in human diseases.
Collapse
Affiliation(s)
- Wei Qian
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Namrata Kumar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Vera Roginskaya
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Elise Fouquerel
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Patricia L Opresko
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dmytro Kolodieznyi
- Department of Chemistry, Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marcel P Bruchez
- Department of Chemistry, Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biological Sciences, and Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213;
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
63
|
Sun Q, Zhang BY, Zhang PA, Hu J, Zhang HH, Xu GY. Downregulation of glucose-6-phosphate dehydrogenase contributes to diabetic neuropathic pain through upregulation of toll-like receptor 4 in rats. Mol Pain 2019; 15:1744806919838659. [PMID: 30838902 PMCID: PMC6487759 DOI: 10.1177/1744806919838659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background and aim Diabetic neuropathic pain is a refractory and disabling complication of diabetes mellitus. The pathogenesis of the diabetic neuropathic pain is still unclear, and treatment is insufficient. The aim of this study is to investigate the roles of glucose-6-phosphate dehydrogenase (G6PD) and toll-like receptor 4 (TLR4) in neuropathic pain in rats with diabetes. Methods Type 1 diabetes model was induced by intraperitoneal injection of streptozotocin (STZ, 75 mg/kg) in adult female Sprague-Dawley rats. Paw withdrawal threshold and paw withdrawal latency of rats were measured by von Frey filaments and thermal radiation, respectively. The expressions of G6PD and TLR4 in L4-L6 dorsal root ganglions (DRGs) were measured by western blotting and quantitative real-time polymerase chain reaction analysis. Fluorescent immunohistochemistry was employed to detect expressions of G6PD and TLR4 and co-location of G6PD with TLR4. Results The mRNA and protein expression levels of G6PD in DRGs were significantly decreased in diabetic rats when compared with age-matched control rats. Upregulation of G6PD by intrathecal injection of G6PD overexpression adenovirus markedly attenuated hindpaw pain hypersensitivity of diabetic rats. The mRNA and protein expression levels of TLR4 in DRGs of diabetic rats were significantly increased when compared with control rats. Intrathecal injection of TLR4-selective inhibitor CLI-095 attenuated diabetic pain in dose- and time-dependent manners. Furthermore, G6PD and TLR4 were co-localized in DRG neurons. Intrathecal injection of G6PD overexpression adenovirus greatly reduced TLR4 expression, while intrathecal injection of CLI-095 had no significant effect on G6PD expression in diabetic rats. Conclusions Our results suggest that decrease in G6PD expression was involved in diabetic peripheral neuropathic pain, which was most likely through upregulation of TLR4 expression in the DRGs of rats.
Collapse
Affiliation(s)
- Qian Sun
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China.,2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Bing-Yu Zhang
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Ping-An Zhang
- 2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Ji Hu
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Hong-Hong Zhang
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- 2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
64
|
Hosseini M, Rezvani HR, Aroua N, Bosc C, Farge T, Saland E, Guyonnet-Dupérat V, Zaghdoudi S, Jarrou L, Larrue C, Sabatier M, Mouchel PL, Gotanègre M, Piechaczyk M, Bossis G, Récher C, Sarry JE. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Cancer Res 2019; 79:5191-5203. [PMID: 31358527 DOI: 10.1158/0008-5472.can-19-0515] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022]
Abstract
Chemotherapies alter cellular redox balance and reactive oxygen species (ROS) content. Recent studies have reported that chemoresistant cells have an increased oxidative state in hematologic malignancies. In this study, we demonstrated that chemoresistant acute myeloid leukemia (AML) cells had a lower level of mitochondrial and cytosolic ROS in response to cytarabine (AraC) and overexpressed myeloperoxidase (MPO), a heme protein that converts hydrogen peroxide to hypochlorous acid (HOCl), compared with sensitive AML cells. High MPO-expressing AML cells were less sensitive to AraC in vitro and in vivo. They also produced higher levels of HOCl and exhibited an increased rate of mitochondrial oxygen consumption when compared with low MPO-expressing AML cells. Targeting MPO expression or enzyme activity sensitized AML cells to AraC treatment by triggering oxidative damage and sustaining oxidative stress, particularly in high MPO-expressing AML cells. This sensitization stemmed from mitochondrial superoxide accumulation, which impaired oxidative phosphorylation and cellular energetic balance, driving apoptotic death and selective eradication of chemoresistant AML cells in vitro and in vivo. Altogether, this study uncovers a noncanonical function of MPO enzyme in maintaining redox balance and mitochondrial energetic metabolism, therefore affecting downstream pathways involved in AML chemoresistance. SIGNIFICANCE: These findings demonstrate the role of myeloperoxidase in the regulation of ROS levels and sensitivity of AML cells to cytarabine, an essential chemotherapeutic backbone in the therapy of AML.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Hamid Reza Rezvani
- INSERM U1035, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Nesrine Aroua
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | | | - Sonia Zaghdoudi
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Latifa Jarrou
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Pierre Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Equipe Labellisée LIGUE, Montpellier, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Equipe Labellisée LIGUE, Montpellier, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France. .,University of Toulouse, Toulouse, France
| |
Collapse
|
65
|
Morrison EJ, Champagne DP, Dzieciatkowska M, Nemkov T, Zimring JC, Hansen KC, Guan F, Huffman DM, Santambrogio L, D'Alessandro A. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019; 11:nu11061337. [PMID: 31207887 PMCID: PMC6627295 DOI: 10.3390/nu11061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC–MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines and tryptophan, which were instead aggravated in old heterochronic parabionts.
Collapse
Affiliation(s)
- Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Devin P Champagne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Fangxia Guan
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Derek M Huffman
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Laura Santambrogio
- Department of Pathology, Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
- Department of Medicine-Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, 12469 East 17th Ave RC2, Aurora, CO 80045, USA.
| |
Collapse
|
66
|
Bermúdez-Guzmán L, Leal A. DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Transl Neurodegener 2019; 8:14. [PMID: 31110700 PMCID: PMC6511134 DOI: 10.1186/s40035-019-0156-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
- Neuroscience Research Center, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
67
|
Blignaut M, Loos B, Botchway SW, Parker AW, Huisamen B. Ataxia-Telangiectasia Mutated is located in cardiac mitochondria and impacts oxidative phosphorylation. Sci Rep 2019; 9:4782. [PMID: 30886180 PMCID: PMC6423017 DOI: 10.1038/s41598-019-41108-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The absence of Ataxia-Telangiectasia mutated protein kinase (ATM) is associated with neurological, metabolic and cardiovascular defects. The protein has been associated with mitochondria and its absence results in mitochondrial dysfunction. Furthermore, it can be activated in the cytosol by mitochondrial oxidative stress and mediates a cellular anti-oxidant response through the pentose phosphate pathway (PPP). However, the precise location and function of ATM within mitochondria and its role in oxidative phosphorylation is still unknown. We show that ATM is found endogenously within cardiac myocyte mitochondria under normoxic conditions and is consistently associated with the inner mitochondrial membrane. Acute ex vivo inhibition of ATM protein kinase significantly decreased mitochondrial electron transfer chain complex I-mediated oxidative phosphorylation rate but did not decrease coupling efficiency or oxygen consumption rate during β-oxidation. Chemical inhibition of ATM in rat cardiomyoblast cells (H9c2) significantly decreased the excited-state autofluorescence lifetime of enzyme-bound reduced NADH and its phosphorylated form, NADPH (NAD(P)H; 2.77 ± 0.26 ns compared to 2.57 ± 0.14 ns in KU60019-treated cells). This suggests an interaction between ATM and the electron transfer chain in the mitochondria, and hence may have an important role in oxidative phosphorylation in terminally differentiated cells such as cardiomyocytes.
Collapse
Affiliation(s)
- Marguerite Blignaut
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, OX3 0BP, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
- Department of Physics, Faculty of Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- Biomedical, Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| |
Collapse
|
68
|
Schlacher K. Sense and sensibility: ATM oxygen stress signaling manages brain cell energetics. J Cell Biol 2019; 218:732-734. [PMID: 30782782 PMCID: PMC6400571 DOI: 10.1083/jcb.201901050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Katharina Schlacher previews work from Chow et al. that links ATM activation in cerebellar Purkinje cells with mitochondrial function and ATP production during periods of high energy demand. The ataxia-telangiectasia mutated (ATM) gene regulates DNA damage repair, oxidative stress, and mitochondrial processes. In this issue, Chow et al. (2019. J. Cell Biol.https://doi.org/10.1083/jcb.201806197) connects ATM’s oxidative stress response functions to the sensing of metabolic ATP energetics distinctively important in high energy–demanding Purkinje brain cells, which could explain the most distinct A-T patient feature, cerebellar ataxia.
Collapse
Affiliation(s)
- Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
69
|
Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair (Amst) 2019; 76:60-69. [PMID: 30818170 DOI: 10.1016/j.dnarep.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are formed as byproducts of many endogenous cellular processes, in response to infections, and upon exposure to various environmental factors. An increase in RONS can saturate the antioxidation system and leads to oxidative stress. Consequently, macromolecules are targeted for oxidative modifications, including DNA and protein. The oxidation of DNA, which leads to base modification and formation of abasic sites along with single and double strand breaks, has been extensively investigated. Protein oxidation is often neglected and is only recently being recognized as an important regulatory mechanism of various DNA repair proteins. This is a review of the current state of research on the regulation of DNA repair by protein oxidation with emphasis on the correlation between inflammation and cancer.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States.
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States
| |
Collapse
|
70
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
71
|
Lin YN, Lan XF, Liu ZR, Yan YR, Zhou JP, Li N, Sun XW, Li QY. Activation of ATM-c-IAP1 Pathway Mediates the Protective Effects of Estradiol in Human Vascular Endothelial Cells Exposed to Intermittent Hypoxia. Nat Sci Sleep 2019; 11:357-366. [PMID: 31819689 PMCID: PMC6886551 DOI: 10.2147/nss.s231456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Chronic intermittent hypoxia (CIH) contributes to the increased risk of cardiovascular diseases in obstructive sleep apnea (OSA). We previously reported the anti-apoptotic effects of estradiol (E2) on IH-exposed human umbilical vein endothelial cells (HUVECs). Herein, we employed a proteomic analysis to elucidate the mechanisms of the protective effects of E2 under IH exposure. METHODS HUVECs were divided into three groups: control, IH, and IH+E2 group. Isobaric tags for relative and absolute quantification (iTRAQ) were performed to compare protein profiles among the groups. Some of the identified proteins were validated by Western blotting. RESULTS A total of 185 proteins were differentially expressed in the IH+E2 group compared to the IH group. Bioinformatics analysis indicated that the effects of E2 may be linked to the regulation of cellular stress response. Among the differentially expressed proteins, we identified that serine-protein kinase ataxia telangiectasia mutated (ATM) and its downstream target, cellular inhibitor of apoptosis protein 1 (c-IAP1), were up-regulated by E2. We also observed that E2 decreased the level of cleaved caspase-3 and inhibited cell apoptosis in IH-exposed HUVECs. The inhibition of ATM abolished the anti-apoptotic effect of E2. CONCLUSION The ATM-c-IAP1 pathway is involved in the cardioprotective effects of E2 in HUVECs exposed to IH.
Collapse
Affiliation(s)
- Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiao Fei Lan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Department of Respiratory Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, People's Republic of China
| | - Zhuo Ran Liu
- Department of Thyroid and Vascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ya Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ning Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
72
|
Tolbert CE, Beck MV, Kilmer CE, Srougi MC. Loss of ATM positively regulates Rac1 activity and cellular migration through oxidative stress. Biochem Biophys Res Commun 2018; 508:1155-1161. [PMID: 30553448 DOI: 10.1016/j.bbrc.2018.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is a serine-threonine kinase that is integral in the response to DNA double-stranded breaks (DSBs). Cells and tissues lacking ATM are prone to tumor development and enhanced tumor cell migration and invasion. Interestingly, ATM-deficient cells exhibit high levels of oxidative stress; however, the direct mechanism whereby ATM-associated oxidative stress may contribute to the cancer phenotype remains largely unexplored. Rac1, a member of the Rho family of GTPases, also plays an important regulatory role in cellular growth, motility, and cancer formation. Rac1 can be activated directly by reactive oxygen species (ROS), by a mechanism distinct from canonical guanine nucleotide exchange factor-driven activation. Here we show that loss of ATM kinase activity elevates intracellular ROS, leading to Rac1 activation. Rac1 activity drives cytoskeletal rearrangements resulting in increased cellular spreading and motility. Rac1 siRNA or treatment with the ROS scavenger N-Acetyl-L-cysteine restores wild-type migration. These studies demonstrate a novel mechanism whereby ATM activity and ROS generation regulates Rac1 to modulate pro-migratory cellular behavior.
Collapse
Affiliation(s)
- Caitlin E Tolbert
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Matthew V Beck
- Department of Chemistry, High Point University, High Point, NC, 27268, USA
| | - Claire E Kilmer
- Biotechnology Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Melissa C Srougi
- Department of Chemistry, High Point University, High Point, NC, 27268, USA.
| |
Collapse
|
73
|
Tal E, Alfo M, Zha S, Barzilai A, De Zeeuw CI, Ziv Y, Shiloh Y. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair (Amst) 2018; 72:10-17. [PMID: 30348496 PMCID: PMC7985968 DOI: 10.1016/j.dnarep.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.
Collapse
Affiliation(s)
- Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Marina Alfo
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, and the Royal Netherlands Academy of Art & Science, Amsterdam, Netherlands
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States.
| |
Collapse
|
74
|
Bennetzen MV, Kosar M, Bunkenborg J, Payne MR, Bartkova J, Lindström MS, Lukas J, Andersen JS, Bartek J, Larsen DH. DNA damage-induced dynamic changes in abundance and cytosol-nuclear translocation of proteins involved in translational processes, metabolism, and autophagy. Cell Cycle 2018; 17:2146-2163. [PMID: 30196736 DOI: 10.1080/15384101.2018.1515552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Ionizing radiation (IR) causes DNA double-strand breaks (DSBs) and activates a versatile cellular response regulating DNA repair, cell-cycle progression, transcription, DNA replication and other processes. In recent years proteomics has emerged as a powerful tool deepening our understanding of this multifaceted response. In this study we use SILAC-based proteomics to specifically investigate dynamic changes in cytoplasmic protein abundance after ionizing radiation; we present in-depth bioinformatics analysis and show that levels of proteins involved in autophagy (cathepsins and other lysosomal proteins), proteasomal degradation (Ubiquitin-related proteins), energy metabolism (mitochondrial proteins) and particularly translation (ribosomal proteins and translation factors) are regulated after cellular exposure to ionizing radiation. Downregulation of no less than 68 ribosomal proteins shows rapid changes in the translation pattern after IR. Additionally, we provide evidence of compartmental cytosol-nuclear translocation of numerous DNA damage related proteins using protein correlation profiling. In conclusion, these results highlight unexpected cytoplasmic processes actively orchestrated after genotoxic insults and protein translocation from the cytoplasm to the nucleus as a fundamental regulatory mechanism employed to aid cell survival and preservation of genome integrity.
Collapse
Affiliation(s)
- Martin V Bennetzen
- a Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense M , Denmark
| | - Martin Kosar
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark
| | - Jakob Bunkenborg
- a Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense M , Denmark
| | - Mark Ronald Payne
- c National Institute of Aquatic Resources , Technical University of Denmark , Lyngby , Denmark
| | - Jirina Bartkova
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark.,d Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology , Karolinska Institutet , Solna , Sweden
| | - Mikael S Lindström
- d Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology , Karolinska Institutet , Solna , Sweden
| | - Jiri Lukas
- e Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens S Andersen
- a Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense M , Denmark
| | - Jiri Bartek
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark.,d Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology , Karolinska Institutet , Solna , Sweden
| | - Dorthe Helena Larsen
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark.,f Nucleolar Stress and Disease Group, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark
| |
Collapse
|
75
|
Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol 2018; 58:109-117. [PMID: 30149066 DOI: 10.1016/j.semcancer.2018.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023]
Abstract
To achieve preferential effects against cancer cells but less damage to normal cells is one of the main challenges of cancer research. In this review, we explore the roles and relationships of oxidative stress-mediated apoptosis, DNA damage, ER stress, autophagy, metabolism, and migration of ROS-modulating anticancer drugs. Understanding preferential anticancer effects in more detail will improve chemotherapeutic approaches that are based on ROS-modulating drugs in cancer treatments.
Collapse
|